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CHANGING THE PROFILE OF AN ANNULAR BEAM
BY APERTURING ITS DIFFRACTION PATTERN

A C Selden

ABSTRACT

The intensity profile of an annular beam can be altered by focusing on
an aperture stop to limit the transmission of diffracted light. A particular
result is that the initial annular distribution can be changed to one with
a central maximum and a smooth radial profile by adjusting the limiting
aperture to ceoincide with the first dark zone of the corresponding diffraction
pattern. Results for a full beam are given for comparison. Oscillations
in the axial intensity, corresponding to the transmission of successive
diffraction rings as the aperture radius is increased, are found in both
cases. The method of changing the radial profile of a beam of light by
aperturing its diffraction pattern is an elementary example of the technique
of spatial filtering, which has been applied to the shaping of high power

laser beams.
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INTRODUCTION

Diffraction of light at a circular aperture gives rise to the well known
Airy pattern for illumination by a plane wave, while an annular aperture

produces a gualitatively similar result, but with a redistribution of intensity

in the rings (Figure 1). Comparable effects are found for the intensity
distribution in the focal plane of an imagipg system illuminated by the
radiation from a laser with an unstable cavity, where the incident beam
profile approximates the function of the annular aperture. Radial intensity
distributions with rotational symmetry can be incorporated as a refinement

in calculation of diffraction patterns by Fourier transformation.

In the absence of Fresnel zones, which would modify the distribution of
light at the output, the incident amplitude will be reproduced in the transmitted
light at the second principal plane of the focusing optics on the far side of
the diffraction focus. This 'act of faith,' which is strictly an assumption
valid only for Fraunhofer diffraction i.e. correct to first order in the
expansion of the Kirchhoff diffraction integral, allows us to calculate the
effect on the transmitted light of a limiting aperture placed at the focal
position. In particular, the 'hole' in the incident (annular) beam disappears,
and the profile is smoothed, when the 'rings' are stopped and only the central
diffraction 'disc' is transmittgd by the aperture. This is equivalent to
filtering out the high frequency components from the incident profile, so that
only low frequency information is passed through the optical system and the
output beam is more diffuse as a result. Of course the output power will be

reduced in the process by the fraction contained in the rings.

In general, the calculation proceeds in two stages: the first to determine
the Fourier-transformed amplitude profile at the focus i.e. the distribution
function corresponding to Fraunhofer diffraction, the second to derive the
transform of the modified diffraction profile following the aperture. This
should then give the amplitude function, and hence the intensity profile, of
the transmitted beam. The analysis is easily extended to non-symmetric
distributions, such as might be observed from a laser with a misaligned cavity
or a non-uniform gain profile, by using two-dimensional transforms. However,
to illustrate the principles inveolved, and hopefully give some straightforward
practical guidance in the use of an aperture stop at the diffraction focus,
the assumption of strict rotational symmetry will be maintained throughout

the following analysis.



Analytical basis

The amplitude of the Fraunhofer diffraction pattern produced by a
(1)

circular aperture of unit radius is proportional to:
1
g(k) = [ £(p) J_(kp) pdp (1)

Here f(p) is the amplitude of the light incident at radius p and JO is the
zero-order Bessel function of the first kind. (Normalising constants have
been omitted for reasons which will become clearer later). Alternatively,
when the diffraction function g(k) is known, f(p) can be found on taking the
inverse of equation (1). Should g(k) be modified in any way, as it will be
by an aperture placed at the focal position, the corresponding amplitude

profile of the emergent beam will be giwven by:
£ = ] g'(k) I (ke') kdk (2)
where now g' (k) is the aperture-limited diffraction function:

g(k) when O € k € b
0 when k > b ] (3)

g' (k)

for an aperture of radius b in the focal position. If this is adjusted to
. coincide with the first dark ring of the diffraction pattern (b=bl), only the
central maximum will be transmitted. Substituting equations (3) and (1) in

(2) we find:

£ ip’) =

o= T

é £(p) J, (kp) JO (kp') pdp kdk (4)

with f£(p) now defined over the'aperture [p| < 1 and set equal to zero elsewhere
(£(p) =0 when p > 1). This formal result establishes the effect of an aperture
at the focus: the emergent profile is changed when b is finite i.e.

£'(p') # £(p) when b < m.* For the Airy pattern, the first zero occurs at

bl = 3.83, and 94% of the incident power is contained within the radius of the
third ring at b3 = 10.17, so that the incident and emergent profiles should

be close to convergence when b > 10.

*
This follows from the identity: £(p) =7 7 £(x)J_(kx)J_(kp)xdx kdk, which also

Jjustifies omission of normalising constants in deriving the result (equation (4)).
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In practical cases, the diffraction profile g (k) corresponding to the
incident profile f£(p) will be found first (using equation (1)), then the
amplitude profile at the output will be calculated from:

o

fr(pl) = égfkl) Jo (klpl) kldkl (5)

which differs from equation (2) in having a finite upper limit, corresponding

to the radius of aperture stop.

The diffraction function g(k) is well known for a circular aperture
illuminated by a plane wave and is easily found for the annular case from
Babinet's principle (subtraction of the amplitude profile corresponding to
diffraction by the central disk). Some analytical results fof these two
examples can be obtained on substituting the appropriate function g(k) in
equation (5). These are examined below. However, the modified profile £'(p')
cannot in general be expressed analytically even in these cases, and so must
be found numerically. This does however, have the advantage that every type of

incident amplitude profile f(p) can be examined.

The circular aperture

For a circular aperture illuminated by a plane wave of uniform intensity,

the amplitude profile:

1, p in (0,1)

£(p)
(6)

O when p > 1

and the resulting diffraction function obtained when this is substituted in

equation (1) is:

Il
O

g(k) Jo (kp) pdp

J1 (k) (7)
k

which describes the well known Airy pattern (whose intensityiscrﬁhﬂk)/k}z),
with its central disc, corresponding to the broad maximum centred at k=0,
surrounded by a series of concentric rings with diminishing intensity,
reflecting the oscillatory nature of the function. If an aperture stop is
now used to cut off the transmitted light at some radius k=b, the modified

amplitude profile at the output is given by:



b
fl(pI) - é Jl (k') JO (klpl) d.kl (8)

obtained on substituting g(k) from equation (7) in equation (5). Unfortunately,
the integral in equation (8) appears to be non-standard, and so has to be

evaluated numerically as a function of p' and b, rather than analytically.

However, particular results can be obtained by analysis for p'=0 and
p'=1l, with more general conclusions drawn from the behaviour of the integrand.

One direct result is the intensity on the axis (p=0):

b
£f' (o) = [ J. (k) dk (because J (o)=1)
(] 1 o}
=1-J (b)
o
LI () = ]E (o) |2={1-30 O} (9)

For an aperture adjusted to the first zero of the Airy diffraction pattern,

so that only the light within the Airy 'disc' is transmitted,

b = 3.8317
JO (b) = - 0.403 (10)
and I' (o) = 1.96

which shows that the central intensity of the output is nearly twice the
incident intensity. If the aperture is steadily increased, the intensity
oscillates as the edge passes over successive diffraction rings, converging
on unity (the incident value) for an infinite radius i.e. with no aperture
1 (k) ,

corresponding to phase changes of m for consecutive diffraction rings. When

stop (Figure 2). This follows from the alternating sign of J

transmitted, these alternately add to or subtract from the amplitude of

the output beam.

Second, the intensity will be a maximum at the centre of the output beam,
decreasing smoothly with increasing radius when the aperture stop is set to
the first zero of the Airy pattexn. This follows from the behaviour of JO (x)

*
and Jl (x) in the integrand of equation (8).

If the aperture stop is removed (b + =) the intensity at unit radius (p'=l)

r

*
See note in Appendix.



corresponding to unit incident intensity can be calculated either from equation
(8) or the identity following from equation (4), and is:

£1(1) = z I, k) I (k) &k =% (Y (11)

1
which remarkable result, being neither the expected wvalue of unity nor zero
(which it would be outside the unit circle i.e. for p' > l),'is still correct

in the sense that both Fourier transforms and series always give the mean

value at a discontinuity, such as occurs here.+ Where there is no discontinuity,
however, the amplitude at p'=l for a finite aperture stop (radius b) can be

calculated in the usual way, so that:

i z I k) I, (k) &k
o 1 - 32w}
2
and the intensity
') =% {1-3° )2 (12)

This too will oscillate (like the axial intensity) as the aperture increases,
converging on unity (for p'<l) as b > «. The intensity corresponding to the

Airy disc alone being transmitted is:
I' (1) = 0.175 (13)

i.e. v 17% of the incident level falling at the edge.

The annular beam

The diffraction pattern (Fourier transform) produced by an annular beam

is equivalent to that from an annular aperture illuminated by a plane wave

(see Figure 1) under the conditions for Fraunhofer diffraction:(l)

1
g (k) é J, (ke) pdp

1

= { JO (kp) pdp - Z JO (kp) pdp

_ J1k)  _ e2J1(ke)

- k ke (14)
1".[‘his follows from the result: ? J  (Bx) J, (x) dx =1 (0<B<l)

B e L =% (8=1)



where the difference is written explicitly to illustrate the application

of Babinet's principle.

The profile of the incident beam is of the form:

lwhen 1L >p > ¢ (g < 1)

1l

£(p)

If

>
O when € p >0 (15)

or p > 1

.which gives the result (14) when substituted in equation (1).

If g(k) is apertured, the modified amplitude becomes:

o= U

il = {7, (k) - e J (ke)} g (kp') dk (16)

1 1
on substituting (14) in eguation (5}.

The axial intensity of the output beam is (Figure 2):
I' (0) ={J_ (be) - J . ()} (17)
e} o

and the intensity at unit radius (for b < =) can be found from:

b
£' (1) =g {Jl (k) - ed; (ke) } I, (k) (18)
2 b
1l - J5" (b)
G S e [ 3, (ke) T (k) dk

in which the second integral requires tabulating.

With the aperture set at the first zero of the diffraction pattern for

e=%, we have b = 3.15, and the axial intensity:
I' (o) = 0.60 - (19)

which is equivalent to v 60% of the intensity of the incident annular beam
appearing where the 'hole' originally was. The analytic behaviour of the
integrand in equation (16) indicates that the output intensity is a maximum

*
on the axis for these conditions, and decreases radially outwards (cf Fig.3)

*
See Appendix



Therefore, if a rotationally symmetric annular beam is focused on an aperture
Stop whose diameter matches the size of the diffraction disc, it will be

converted to a smooth-profiled beam with maximum intensity at the centre.

This is a somewhat surprising but useful result suggesting how the
inevitable hole in the annular beam from an unstable cavity laser can be
filled in, and the intensity suitably profiled for a number of applications,
though at the expense of significant power loss in the output. The value
of the method will clearly depend on the application, but this does not
invalidate the analysis. Presumably the argument already put forward in
the introduction, concerning loss of spatial frequency information, can be
invoked to explain this effect, although the removal of the alternating
phase component in the amplitude function g(k) (representing the diffraction
rings) could equally account for it. The intensity profile of the output
beam can be calculated from equation (16) for specific values of €, the
radius of the central hole in the annulus, and b, the radius of the aperture

stop.

As the aperture is increased, the annular profile will gradually
re-appear, starting with an initial dip in the axial intensity, which
deepens and spreads to form a 'hole' in the centre of the beam, until the
original flat-topped profile of the incident light is ultimately reproduced

at the output (Figure 3).

Other beam profiles

Provided only that the beam profile possesses rotational symmetry, the
form of the output, when modified by an aperture stop at the focus, can be
calculated directly from equation (4) using the appropriate function f(p) to
describe the radial profile of the incident beam. Those of practical interest

would be the truncated gaussian, perhaps with a central hole e.g.

2 g
f(p) = e R when e < p £ 1
= O otherwise ’ " (20)
where e <1
o v 1l

and the annular beam with maximum intensity at the outer boundary (p=1),

corresponding to the output of an unstable cavity laser with reduced gain in

the central region.



Similar conclusions apply concerning the transformed amplitude profile,
in particular the £illing in of the 'hole' in the incident beam, but with
respectively more and less power being transmitted than in the case of a flat

profile.

The fraction of the incident power contained in the output beam can
conveniently be calculated from the diffraction profile g(k), and is readily

(1)

available for both the full beam and for annular beams of various widths,

corresponding to different values of the output coupling of the confocal
2
unstable cavity laser required to generate them.( ) A value has also been

obtained for the truncated gaussian without a 'hole.’

CONCLUSIONS

The conversion of an annular beam to one with maximum intensity on the
axis of propagation and a smooth radial profile has practical applications
in laser processing of materials, where beam shaping can be used to control
the effect on the workpiec::e-,.(3 The method of changing the intensity profile
by limiting the angular transmission of diffracted light through an aperture
is equivalent to spatial filtering of the incident beam, such that the
modified optical transform corresponds more closely with the required prof;le.
An undesirable result of removing spatial frequency information is that the
energy contained in the outer part of the diffraction pattern i.e. the "rings,"
is lost, so that the transmitted beam has less energy than the incident beam.
The transmission factor can be v 50% or lower for an annular beam whose inner
radius is half the outer radius - corresponding to the M=2 unstable reSOnatorfz)
while the axial intensity can be increased from zero to v 60% of the incident

intensity.

The theoretical predictions concerning the transmission factor and the
modified beam profiles have been tested experimentally using multi-kilowatt

CO, lasers. The agreement between theory and experiment was particularly

clise for the transmitted power, while the beam profiles showed the expected
qualitative dependence on aperture radius, though some degree of asymmetry
was found in the first experiments, probably reflecting slight misalignment
of the system.(3) However, subsequent tests with a rotationally symmetric
beam avoided this effect, and the observed beam profiles corresponded well
with the calculated ones.(4)

In applying Fraunhofer diffraction theory to the problem of beam shaping,

it is assumed implicitly that second and higher order terms in expanding the
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phase function in the Kirchoff diffraction integral can be neglected, with
the result that Fourier transforms can be used throughout the analysis. The
inclusion of such terms, principally through the second order which enters
via Fresnel diffraction theory, will modify the calculated profiles to an
extent depending on the relative scale of the optical system, defined by the
Fresnel number NF = %X-' where a is the aperture radius, £ the focal length
of the focusing optics and A is the wavelength. For NF << 1, the domain of
integration is entirely confined to the central area of the first Fresnel
zone, which ensures that first order diffraction (Fraunhofer) theory is
applicable, and that Fresnel diffraction from the edge of the liﬁiting
aperture makes little contribution to the transmitted beam profile. This
requirement was well satisfied in the laser experiments, for which £/100
optics were used, so that a = 100A = 1.06mm for the aperture to coincide
with the first zero of the diffraction pattern for the annular beam, giving
a Fresnel number NF = 0.025. Therefore, any deviation from the theoretical
profile as calculated to first order would be small compared with errors

arising from asymmetry in the profile of the incident beam.

In principle the power loss consequent on aperturing the focused beam
could be largely avoided by combining apodisation with changes of phase
in the diffracted beam. If the phase of the first ring could be changed by
m, the coherent addition of the power it contained'would increase the overall
transmission factor from & 50% to % 80%.' In the handling of multi-kilowatt
laser beams, this must become the task for the future, now that the potential

of small apertures for beam shaping has been successfully demonstrated.

+It will also sharpen the profile of the transmitted beam.
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Appendix: Transformed profile of the diffraction 'disc’

The amplitude of the rotationally symmetric diffraction pattern gk) is

positive out to the first zero at b=bl (the first dark zone) by definition i.e.

g (k) 30when0§k5bl (Al)

and the transform of this gives the transmitted amplitude profile at the

system output:

b
1
h(o) = [ g () J_ (ko) kdk (A2)

with an obvious change of notation (cf. equation (5)).

We can now determine the radial behaviour of the function h(o)
analytically, from the properties of the integral on the rhs of (A2).

- Differentiating both sides of equation (A2) with respect to g:

by

oh 2

55 = " 45 9 (k) I (ko) k'ak (A3)
Now, by (Al), and the fact that:

Jl (u) > 0 when O £ u g bl (a4)

the integrand of (A3) is positive, and therefore:

dh
e o) =
< O when ¢ > (at least to © ].) ( 5 )

o)
= O when 0=0

showing that the intensity is a maximum at the centre of the transmitted
beam profile. 1In addition, the analytic behaviour of Jl(u) shows that h (o)
decreases smoothly without oscillation, at least to unit radius (o=1). This
is true for all annular beam profiles (0 < e < 1), including the limiting
case of a circular beam (e=0), as can be seen from the fact that the form

of g(k) was not specified in equation (Al).
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Fig.2 Axial intensity vs. aperture radius.
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Fig.3 Transmitted profiles for various apertures.












