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Abstract

We consider the equilibrium and axisymmetric stability (n = 0)
of a straight, uniform-current plasma maintained by a quadrupole field.
Holding all currents constant, and keeping the plasma cross-sectional
area invariant, ﬁe investigate the first and second variatidns of the
free-energy of the system. We show the equilibrium to be a vertical
ellipse, recovering previously known results. Unlike earlier work
based on the energy principle, we find that all poloidal mode-numbers
can be unstable. Denoting the horizontal and vertical semi-axes of the
ellipse to be a and b respectively, them the condition for secular
instability is t(= b/a) > Ty where T denotes the mth bifurcation
associated with the equilibrium; t; = 1, whereas for m > I, T ~ 3m/2.
Thus, assuming the vertical shift (m = 1) to be stabilized by feedback,
then the ellipticity is limited by an m = 2 mode. Although the present
model predicts T =~ 2.9, it is possible that for more realistic current

profiles the value could be much smaller.
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1. INTRODUCTION .

Recent experimental work [1] on vertical 'elliptic' cross-—section
tokamaks has shown both poloidal-B and energy confinement time to improve
with increase of the semi—-axis ratio. However, observations [1] indicate that
the largest obtainable value of this ratio is approximately 1.5. This result,
which is at present unexplained, has provided the stimulus for our work.
Assuming a particular model, the present paper investigates the theoretical
upper limit to the ellipticity which is set by an axisymmetric (n = 0)

secular instability. Two different idealized experiments can be envisaged:’

(a) a closed system in which the magnetic flux is always conserved,

and

(b) an open system, in which all currents are held constant, the

magnetic field doing work on the plasma during any motiom.

Whereas previous analyses have been concerned with the former, we
shall investigate (b).

We consider a plasma with uniform longitudinal current density Jj,
maintained in equilibrium by the field of a pair of straight wires carrying
currents —I and separated by a distance 2d. (See Fig. 1). Denoting the
poloidal-flux by y , we define the plasma boundary to be ¢ = 0. In the
plasma (¢ > 0) the flux satisfies the equation

2, = - 4m]
2y = - =% . ()

and in the vacuum (¢ < 0)

(2)

]
o

v2y

Following the asymptotic method of Strauss [2] for the four-wire (symmetric
quadrupole) problem, Eqns. (1) and (2) can be solved together with the
appropriate boundary conditions to yield an elliptic cross—section equilib-

rium. For given I/jd?, the semi-axis ratio, b/a, is determined by the

. QG- @

equation,




We note that for the four-wire problem [2], I on the left-hand side of

Eq. (3) is replaced by 2I. Plotting Eq. (3) leads to the curve shown in
Fig. 2. Regarding I and d as fixed, for j < jA there are no elliptical
equilibria, whereas for j > jA there are two. This result was first
remarked by Strauss. Although the value of b/a at the bifurcation is 2-9,
recent numerical work [3] has shown that more realistic (i.e. non-uniform)

current profiles can lead to much lower values.

The interesting question now arises as to the physical significance
of the bifurcation point. In a previous paper [4] we conjectured that it
might represent a marginal point to a dissipative n=0, m=2 mode; in
fhis case, stability would depend on the magnitude of b/a with respect
to 2°9. We note that several authors [5, 6, 7] have shown the ideal MHD
(i.e., flux-conserving) n=0, m=2 mode to be always stable. Our principal
.objéctive is to show that the bifurcation value 2-9 is marginal with respect

to an n=0, m=2 secular mode.

In the present paper, we consider a straight, arbitrary cross-section
plasma for which the current density is assumed uniform, and for which the
total cross-sectional area and total plasma current are given. It is fur-
ther assumed that the currents in any fixed external windings are also
prescribed. We evaluate the free-energy of this system as a function of
the plasma shape and determine that configuration which minimizes the free-
energy; the above constraints imply that Jj 1s constant as well as uniform

during the process of free—energy variatiom.

To facilitate our analysis, we shall assume the longitudinal field,
Bz’ to be uniform and constant, so that there is no poloidal current in
the plasma. Since jz = j = constant, the plasma pressure, p , must be
proportional to ¥ . Now, it is well-known in electromagnetic theory [8]
that the work done in assembling a system of current-carrying loops, the

current in each loop being held constant, is given by the volume integral,

5‘=——8'?JBZ av (4)

where B 1is the magnetic field due to these currents. This quantity,
which is the effective free energy [9] of the system, is more usefully

written as,

Fe-gojhoiw (5)



By viewing the plasma as made up of longitudinal current filaments, the
total & resulting from the interaction of the plasma and external con-
ductors can be evaluated from Eq. (5). Specifically, we can write the

free—energy as

I ;
F= - ngixpjds (6)

where ji and b, are the current density and magnetic flux function

i . . th
assoclated with the 1 current.

In applying Eq. (6), we make the simplifying assumption that the
plasma boundary is an ellipse, but with a superposed harmonic variation
of small (compared with the semi-axes of the ellipse) but finite ampli-
tude, £. We are led to an & which is a function of the generalised
coordinates b/a and £. To determine the corresponding forces acting
on the system, we differentiate F with respect to these coordinates [9].
Setting the generalized forces to zero leads to the equilibrium condition
(Eq. (3)). To ascertain the stability of our configurationm, we take the
second variation of & with respect to b/a and £ and examine its sign,
again holding all currents constant., If & is a minimum at equilibrium
then the system is stable. If, on the other hand, % is a maximum, then
the presence of dissipation will lead to a decrease in the free-energy.

Such a motion is generally referred to as a secular instability [10].

The actual evaluation of the free-energy is described in section 2.
Determination of equilibrium and stability is carried out in section 3.
In section 4, we relate and compare our results to those previously
obtained from the energy principle. Section 5 contains our principal

conclusions.

2. [EVALUATION OF FREE ENERGY

As mentioned in the introduction, we regard the plasma as being
approximately elliptical. This simplification enables us to evaluate J
in steps; indeed, our method is analogous to that described by
Lyttleton [10] for determining the change of potential energy (gravita-
tional and centrifugal) of a rotating fluid ellipsoid when its surface
is subjected to a small deformation. Thus we treat our system as compris-
ing two wires, an elliptical 'core' and a narrow, surrounding 'boundary-

- T
region'.



The interaction energy of the wires (both self and mutual) is a function
of I and d only. Since the latter quantities will be held constant during
the subsequent determination of equilibrium and stability, this contribution
to é? can be ignored. For a2 + b2« dz, the magnetic flux function near the

origin due to the wires, is

221 2% o b
ww-cdz (Y x)- (7)
Using this result, we shall derive contributions arising from the ellipse-
wires and boundary-wires interactions; these will be denoted by

and , respectively. For the plasma alone,

F

ellipse-wires boundary-wires

we require the contributions and

ellipse—ellipse’ ellipse-boundary

boundary-boundary’

(a) F

ellipse-wires

The evaluation of this contribution is very straightforward. Thus

- - 1[4, axay, (8)

ellipse-wires c

the integrals being taken over the elliptic cross-section, that is
x2/a? + y2/b? < 1. Substituting from Eq. (7) and making simple trans-

formations, we obtain
IT

= 2 _ 2
géllipse—wires 20242 (b a®) €

where Ip = T abj .

(b) %

ellipsé-ellipse

The magnetic flux function ¢p due to the ellipse satisfies the

Poisson equation

2, = - 471
vy, ;- (10)
Now it is well-known from potential theory that the solution of Eq. (10)

is given by

Wy ™= %leog {(x-x2+ (y -y"2}dx'dy’, (1
x:2 YIZ
a2 The ¢

and thus



- -
?ellipse—ellipse 2c JJ-wp(x: y) dx dy

2 2
X y
a2 *p2 * ]
2
= + -Z:J—cz J’J J,J' log{ (x-x")2 + (y = y’)2}dx’dy’dx dy (12)
" il 2 .2 ’2
X X X
2*f2 €1 2 v <l

The above integrals can be performed analytically (see appendix) to

yield the closed form

- 2
- _P (a2 + b)
7 ellipse-ellipse = 2¢2 108 ~zqz — - . (13)

Strictly, Eq. (13) should include a further term, and which is propor-
tional to (ab)? or I;Z. Since, however, the subsequent equilibrium
and stability analysis will involve differentiating % with respect

to b/a, the quantities ab or I being maintained constant, then

the expression in Eq. (13) is adequate for our purposes.

(c)

boundary-wires

To evaluate this contribution it is convenient to introduce the

elliptic coordinates

X = h sinhu sinv y = h coshu cosv. (14)
. . x2 2
Denoting the ellipse 22 +-E =1 by u-= u, s then h and u,
satisfy
a=nrnh sinhuO and b =nh coshuo. (15)

The element of arc dS along u = ug is given by

1
ds = A (cosh 2u_ - cos 2v)? dv = @(v) dv . (16)
/2 ¢

Figure 3 shows the geometry of a typical element of the ellipse and

surrounding boundary region. E(v), which is the distance of the



boundary measured perpendicularly from the point (uo, v), is a
periodic function of v. The element of area at the point P, which
is at a perpendicular distance n from (uo, v), is dA =dndS. We

make the expansion

g (v) ;;(v) = h? E](pm cos mv + q_ sin mv) , -(17)

which implies that

2m

Ewdv = 0. (18)

)
Thus the area of the ellipse and the deformed cross-section (ellipse
plus boundary region) are the same to leading order in Py and q;
that is, the Fourier coefficients which define £. 1In fact, P and
9, denote modes which are symmetric and anti-symmetric with respect

to the vertical axis, respectively.
Using the elliptic coordinates, the expression for ww’

namely Eq. (7),can be expressed as

Ve, =|£§ h2(1 + cosh 2u cos 2v) . (19)

To first-order in n, that is, in the neighbourhood of u = u s this

becomes
2
ww = E%z[l + cosh Zuo cos 2v + 2 sinh 2u bos 2v n] ) (20)
€ ()
Since
-
t'}b0u.milatry-w:i.res T ¢ Jjww s (21)
then substitution from the above formulae, leads to
s 2r £(v) 2 sinh.Zuo cos 2v
) = - iIb J I 1 + cosh 2u_cos 2v + ny dna dv
boundary-wires c242 o 2o
o o
(22)

It is straightforward to show that this becomes



IIP pY — gt 2 2w ) :
:}boundary—wires - abd2 P2 T qaz J £€cos 2vdv, , (23)
o

where p, 1is of order & . Although the leading term is first order
in &, as will become apparent later, all three contributions from the

boundary are required to order £2 .

() &

ellipse-boundary

This component is evaluated from the integral

2m E_
}ellipse—-boundary - J J% TJ,p < da: . (24)
o o
The magnetic flux within the plasma due to the currents in the ellipse,
is given by Eq. (11). We note, however, that this can be written in
a much simpler form, and which is particularly suited to the present

purpose, namely

c |a+b a+b

: 2 2
Ibp(x, y) = - ﬂ-{%x + E}’_} + H(a, b) (25)

where H 1is a function of a and b only. Changing to elliptic co-

ordinates and retaining terms up to first-order in n , we obtain

u -u u
21 -u o] e °- o l— —2uo
v 5 o el @, | D % + 3 c092v+i T]ll-e cost] + H(a,b)
P ¢ w(v) -
(26)
Substituting in Eq. (24) we derive
I 2 2 2
- p [(b-a) ol | g2
'g’ellipse—boundary E [ ab P2 *ogp [ BTV
)
21
- (E : :) '1-1';!33- [ E2cos 2v dv] . (27)
o

We note that due to the area constraint, Eq. (18), H makes no contri-

bution to the above result.



(e)

boundary-boundary

For this we require the magnetic flux function, ¢boundar ’
¥

due to the current in the boundary region. The additional magnetic flux

inside the ellipse due to the presence of the boundary region is given
by

_ coshmu sinh mu .
wi = bo +mz=] {Am(coshmuo)cosmv-!- Bm (_——sinhmuo) s:anv} (28)

where bo’ Am and Bm are coefficients yet to be determined. Similarly,
for the vacuum region,
-+ — -
m(u uo)

¢e = ao(u - uo) + bo + mE] e {A.111 cosmv + Bm sinmv } (29)

To the order of accuracy required, these solutions must satisfy the

boundary conditions

qJ:i. = ¢e = Ipl:n:nmdary on =ty (30)
and
ay oy, .
(a—j——éf)_ - -2 g(v) T . can)

In fact, the forms for wi and ¢e given above, automatically satisfy the
first boundary condition. Substituting Eqs. (17), (28) and (29) into
(31), allows us to determine the coefficients a,s bo’ Am and Bm' Thus

a, = 0, bO can be chosen to be zero,

_ 4wjn? ~L
Am = T (1 + tanhm U.o) pm
. tanhmu
_ 4mjh2 0
Aindl Bm " "cm 1+tanhm u 9y

To obtain the free-energy appropriate to the boundary region correct
to 0(£2), we evaluate
2m

; __ 1 ) -
g%oundary—boundary B 2c J lei(uo,v)gusdv. (32)
o



Using the above forms this yields

7 2w w0 2
/IP) (bz - az) Py ¥ tanhmuo I
ab m(l + tanhmu )

m=1 o]

7 = -2

boundary-boundary \ e

We are now in a position to form the total free energy of the system.
Combining the above contributions, we obtain an :# which is correct apart
from an undetermined constant. The latter, however, is irrelevant, since
the properties with which we are concerned will be obtained by differen-
tiating SP . Defining,

Yab

T=bfa, k= Ip/I , and €=—7, (34)

the 'effective' dimensionless free energy, Q, can be expressed as

2 1 -
bt L St A M C D) [

2 2 . .2 2 2
® p= + ps + ¢ (1)
rae- ) 1 () - (e ) G
: T m=1 T + _]_-_ m(l + qu(T))
T
2T
4 1 2 e $
where ACT) = 4 (T _ ?)L_z . 1c:os v ( Z p, cosmv+ q, sin mv) dv (36)
OT-Z—_] — Cos 2v m=1
m m
and  ¢_(1) = E+1) -CG-1) (37)

(t + !)m + (1t - 1)m

3. EQUILIBRIUM AND STABILITY

In examining equilibrium and stability, we consider © to be a function
of the variables T, Py and q, for given value of the parameters e and k.

Thus taking first derivatives we obtain

as?

aT|.

1 -1 2
’g(“?") [(TTTE T)(r)+ 1)"%] + 0(&) (38)

(33)

e?
K



R N e e I L CINE
P2 Ty Pyl t2/L (22 + 1)(t + 1)

aQ - i 40)

- = 0(8) (
m 'r:q_m,pz

- = 0(&) (41)
9 T’Pm

where m’ denotes all m other than m = 2. It follows immediately

that to zero—order in £, the equilibrium is determined by

T(T - I) =_Ei (42)
(tZ+D(r+1)

This of course, is the condition given in Eq.(3) and first derived

by Strauss for the four wire problem.

To test for stability, we now form the second derivatives. Thus we

obtain (using Eq.(42))

2 =
ﬁp;.(uL)d%( t(x = 1) )+ocg) (43)
at? 12 (t + 1)(t2 + 1)
- "(Tz - —I‘) = ( - 1 );+ 0(£) (44)
P2 72/ % (t + 1)(x2 + 1)
a2Q ( 1)2{ 1 1 }
C— =gl T - = - + 0(E) (45)
ap2 /UL m(l+ g (1))
m T
a2q 1\2 | by () + 0(E) (46)
Furtlh L Ly T~ a(l + 5.
Bqé T + P m
All other second derivatives are of higher order. From equat%on (43) , it
is straight forward to deduce that for Tt < Tcr(Tcr =~ 2.,9) 3—%-) 0, and our
aT

-10 =



basic elliptic configuration is secularly stable to variation of the axis ratio

320 . A ’
. > .
T For = L 3z % O and we have secular instability; the mode

consists of a simple elongation of the major axis of the ellipse, the
cross—sectional area and the plasma current being maintained constant.
"As exemplified in equation (44), the analysis does not distinguish

between this mode (variation in T) and that arising from a po(m = 2)

deformation.

Consider equation (45). For a p;(m = 1) deformation secular insta-
bility occurs for all t > 1. Thus the rigid vertical shift instability,
which hitherto has been established using the energy principle [5, 6, 7]
does not necessarily depend upon ideal MHD theory. For a general Py

deformation, the condition for secular instability is

m
2m - (r +-% )[1 + (: : ;) ] <0. (47)

Setting m = 2, this gives exactly the same condition as deduced from

Eq. (43) and (44), that is stability for 1t < Tis and instability for

T > T, - For ageneral m, the marginal stability points are attained

1 m ~ L
2m—-(1-m + a)[l + (a—;—l) ] =0, . (48)

In fact, the T, are the bifurcation points obtained by Papaloizou et al

at T where
m

 [4] using neighbouring equilibrium analysis; as they show, By is to a

good approximation given by

T, = mt, (49)

where t 1is the root of
_i_- (1 + 3_2&) =0. (50)
Thus T > T ' (51)

is the secular instability criterion for the Pn mode (m > 2).



We now consider Eq. (46). From elementary analysis, it is easy to

derive the inequality,
1 N 9,(D
L m(1 + ¢ (D)

(52)

for m 21 and T > 1. We immediately deduce that all deformations 4

(m 2 1) are secularly stable.

The results which we have obtained in this section are summarized

thus:

(1) The properties of the equilibrium are identical with those
obtained by Strauss for the closed (flux-conserving) four-wire
problem. That is, for given e, k , elliptic equilibria are possible

provided the relation

g2 _ (t - 1)
K2 1)(T 1)

holds, where T = b/a. In particular, no elliptic equilibrium or
one 'neighbouring' it is possible in the present model if e2/k
exceeds a critical value, given approximately by 0-15. For
e2/k < 015, tw6 elliptic equilibria are possible, one with

T<T and the second with T > t__. T __ is approximately 2-89
er cr cr

T (T -1 (

2
wnld e = "?E) o 0015 .

2
(Tcr + 1)(Tcr-+l) cr

(ii) Every elliptic equilibrium (t > 1) is secularly unstable to

the p; or thevertical shift mode.

(iii) Elliptic equilibria with 1 <t <t are secularly and
hence ordinarily stable to the p; or the elongation mode provided

the area and the current in the plasma are conserved.

(iv) Elliptic equilibria with t > t__ are secularly unstable to

the ps2 mode.

(v) ~ The secular instability with respect to a general p  mode

(m 2 2) is given by the criterion

3
T>7T_ =~—=m,
m 2



(vi) Every elliptic equilibrium (t > 1) is secularly stable and
a fortiori ordinarily stable with respect to every 4, mode., In
particular, the horizontal rigid shift (q;) and the rigid rotation

about the elliptic centre (qp) are secularly stable.

4. DISCUSSION

Several authors [5, 7] have used the energy principle to investigate
the axisymmetric stability of a straight, uniform current, elliptic cross-
section plasma. It is clearly of interest to relate our method to that

used in the earlier work, and to compare and contrast the results.

(a) Relation to Energy Principle

It is a well-known result [11] that the complete set of ideal

.. 3
MHD equations and their attendant boundary conditions lead to %E'= 0,

€ being the total energy of both plasma and vacuum, For such a
closed system the magnetic flux must, of course, be conserved.

Taking the first variation of the non-kinetic part of € (potential
energy) with the poloidal and toroidal magnetic fluxes held constant,
Kruskal and Kulsrud [12] have shown that the necessary and sufficient
condition for equilibrium is Vp = j x B. The second variation
yields the familiar energy principle [11]. By way of applicationm,
Rutherford [5] and Laval et al. [7] assume an elliptic cross-section,
uniform current plasma, to be maintained in equilibrium by a suitable
arrangement of external conductors. Introducing the standard low-
tokamak ordering, they show the axisymmetric minimising modes to be
incompressible; this implies that the cross-sectional area of the
plasma is invariant. It follows that the plasma and electromagnetic
properties separate out. Thus the stability problem actually con-
cerns the second variation of the magnetic energy, that is

EM =%HJ'B2dT for the complete system.

In the present paper, we have regarded the plasma as comprising
a conglomerate of longitudinal filaments in which the currents (Ipn)
are always held comnstant; currents in external conductors are also
fixed. Unlike the energy principle formulation, we suppose the uni-
form j to be unchanging; this, taken with the restriction on
the currents in the filaments, implies that the cross—sections of

the latter are invariant. Thus our problem is reduced to the

v 3 -



(b)

electrodynamics of filaments whose total cross section area is

maintained constant ('incompressible'). We now define the quantity

x
s-K+eM-ZIpnwn (53)

filaments
where K 1is the kinetic energy of the filaments, and the last
term is the work done in keeping the currents IPn constant
during any change. Although our system is open, following
Berkowitz et al [13], we can show that %ﬁ; = 0. Using electro-
magnetic theory [8], it is straightforward to deduce that the

free energy

Fu ey~ L LW (54)

pn 'n
filaments

can be written as

F = - € . (55)

Equilibrium and stability are now determined through the first and
second variations of & . Thus 67 =0 and $2F< 0 are the con-
ditions for equilibrium and instability, respectively. If &2% < 0,
our method only really demonstrates the propensity for the system to
lower its free—energy. However, since an actual system will be
dissipative, we anticipate that an instability (secular) cam occur,
although strictly, a time-dependent treatment of the resistive

equations, say, is called for.
Comparison of Results

We now compare the results derived from the two formulatioms.
In applying the energy principle, Rutherford [5], and Laval et al
[7] assume the existence of an elliptic equilibrium. As outlined
in the introduction, however, solution of the MHD equilibrium
equation in the presence of two or four external conductors,
directly demonstrates the plasma configuration to be a vertical
ellipse. The corresponding transcendental equation which relates
1(= b/a) to the current demnsity, current in the wires and their
distance from the plasma, leads to the curve shown in Fig.2.

Neighbouring equilibrium analysis [4] reveals that this curve is

= 14 =



intercepted by an infinity of branches; the points of interception
(bifurcations), 1 = Tn? are determined from Eq.(48): 1In fact, the
integers .m which characterise the bifurcations, also relate to

the poloidal mode numbers of axisymmetric perturbations. Thus it

is known that the uniform-current model is MHD unstable tom = |
(vertical shift) for T » 1, and further, that the odd m modes

are MHD unstable for r > T [5,6]. In the flux-conserving
formulation, then, the odd m bifurcation points can be inter-
preted as MHD marginal stability points. The even—m modes, however,

are always stable [5,6].

In the present work, in which all currents are maintained
constant, the above transcendental equation follows naturally from
8¢ = 0. The stability analysis shows the mth poloidal mode number
to be unstable if 1T > Tm> Where as before, B is determined by
Eq.(48). 1In other words, all bifurcation points are marginal to
secular instabilities, and in particular, this now provides an
interpretation for the even-m bifurcations. Whereas Rutherford
and Laval et al have considered dynamical instability, our work on
secular modes shows that the uniform current model can be secularly
unstable without being dynamically unstable, a phenomenon well-
known in the study of gravitational equilibrium of rotating fluid

masses [10].

We now speculate on the possible significance of our paper.
Recent experimental work [1] on elliptical plasmas indicates the
poloidal-B and energy confinement time to increase with ellipticity.
The m = 1 mode presents no difficulty as this can be feed-back
stabilised. Thus so far as the present work is concerned, a
limitation on b/a could be set by a secular m = 2 mode. Although
this is 2.9 for a uniform current, recent numerical studies show

this bifurcation to be strongly profile dependent, and can be much

smaller [3]. 1In principle our method can be applied to any chosen
current profile, and thus provide a possible explanation of the

limit on b/a observed in TOSCA. Whether this unstable mode can
actually occur might depend on the programming and time-scale of an
experiment. If the latter is sufficiently long then it is anticipated

that dissipation would play a rdle.



5. CONCLUSIONS

We have considered the equilibrium and axisymmetric stability (n=0)
of a straight uniform current plasma maintained by an external quadrupole
field. Holding all currents constant and keeping the plasma cross
sectional area invariant, we have investigated the first and second
variations of the free—energy. We show the equilibrium to be a
 vertical ellipse, recovering previously known results. As regards
stability, earlier investigationms (flux-conserving) demonstrated the
even poloidal mode numbers to be always stable, and the odd-m to be
dynamically unstable for t(= b/a) > Ty where T is the mth bifurca-
tion point associated with the equilibrium. Our work, however, shows
both even and odd bifurcation points to be marginal for secular insta-
bility; the instability condition is T > Tos for all m. Thus for our

simple model, ellipticity is limited by the m = 2 secular mode.
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APPENDIX

In this appendix we give the method for evaluating g:llipse-ellipse

12
JLE N, where N is the integral

2c
N = I[ _ JI log{(x - x’)% +(y - y’)2}dx’dy’ dxdy
2 2 2 2
L a3 —z—x' +1"7-’ <1 (A.1)
a b a b

X=au X' =au’ y=bvy y =bv (A.2)
and introducing
L %) : : - yry2
cos?g = o =) and sin?6 = & = 1)
(u=u) + (v-vr)? (u=u")?2+ (v-v)2
(A.3)

then the above integral can be expressed as

2 2 2,22 7 g7
N = (ab)2 JI JJ log{a“ cos“8 + b4sin®6}du’dv’du dv

u? +v2 <1 u'? + y’2 < 1

+ (ab)? jf_ IJ log{(u - u’)? + (v - v/)2}du’dv’du dv (A.4)

u?2 +v2 <1 ur? 4 vi2 <]

We note, that apart from the factor (ab)?2, which is essentially I;’
the second integral does not depend on b/a. Thus the latter can be
neglected during any investigation of equilibrium and stability. To
evaluate the first integral in Eq.(A.4) we transform to polar coordinates

(p,8) such that

p cosB u’ - u

and (A.5)
p sind -v

i
<

Hence,
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IJ log{a? cos26 + b2sin26}du’dv’

u’? + v'2 <1 ‘ﬂ'F(e)
= J J log{a?cos?8 + b2sin?6}p dp d6 (A.6)
-T 0
Making the further transformation
u = Rcos¢ and v = Rsin¢ 3 (A.7)
then T 1 T F(8,R:9)
N = (ab)? Jf Jf J J log{a2cos26 + b2sin26}pdpdbRAR d¢ . (A.8)
-T 0o - T o
Elementary trigonometry shows that
1
F(O,R,¢) = (1 - R%sin?(8 - ¢))% - Rcos(® - ¢) (A.9)
and this enables us to perform successively, the integrals over p, ¢
and R, leaving
-
N = (ab)? %- J log{aZcos?6 + b2sin?6}de . (A.10)
-7
Defining
T
F(a,b) = J log{a®cos?6 + b2sin?6}ds , (A.11)
o
then
T )
2 )
X2 J oLl L and %= 2b J[ et A8 (A.12).
a?cos?8 + b2sin?e 5 a?cos?6 + b2sin?e
Using these two expressions, we can deduce the relation
oF oF _
7&5;"'13-3?—211' (A.13)

and
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1 3F _ 1 3F _ 2r
2% "D " @ (- 14)
from which it follows that
oF _ 2w oF _ 2w r
3 a+p ™ T @D . Bl

Hence the unique solution for F which gives the correct value when
a=b (F(a,a) = mlog a2) 1is
2
F = 7mlog ié—arhl— : (A.16)

Thus we can complete the integral in Eq.(A.10), and finally obtain the

result
12 2
P (a + b)
F11incamalls = e 1R e (A.17)
ellipse-ellipse 202 4 42

where d? has been introduced for dimensional consistency.
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Fig.1 Configuration of plasma and wires.
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Fig.2 Plot of against b/a.
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Fig.3 Element of boundary region surrounding the basic ellipse.
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