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Abstract

The dispersion relation for a thin skin pinch surrounded by an anisotropic
thin conducting wall or liner and a perfectly conducting wall is obtained.
Instabilities can grow on a timescale for the penetration of helical fields
through the liner but near the marginal case for the liner they grow on a

much faster hybrid timescale.
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Introduction

The diffuse pinch which relies on a conducting wall to give it gross
stability is always unstable if the conductivity of the wall is finite 1].
We examine here for the simple case of a thin skin pinch the effects of a

thin liner, whose conductivity is anisotropic, on the resultant growth rates.

Equilibrium

In a cylindrical coordinate system the equilibrium configuration is given

by 2]
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where Beo is the azimuthal magnetic field at the plasma surface (r=a). The

pressure balance relation can be written as

Be =1+ bez - biz (2)

2
where BB = 8ﬂP/BeO bi is the internal longitudinal magnetic field and be

the external, which is negative for a reverse field pinch.

Equations

ST k
Perturbations of the form E(r)ewt+1(me +kz)

are considered where § is
the fluid displacement, m the azimuthal mode number and k the longitudinal
wave number. For an inmcompressible plasma the perturbations of the magnetic

field inside the plasma are given by

b=1ikb By & (3)



with the perturbed pressure and displacements given by
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where Im is the modified Bessel function and po tbe plasma density. (“denotes
a derivative with respect to the argument of the function).

In the vacuum region between the plasma and the conducting wall at r, is a thin
resistive liner of radius r, and thickness & (Fig. 1). In the vacuum region

the field perturbations, b, are expressed in terms of the vector potential A.

b=VAA E=-w

A = - ALK () + A7 T (kr)
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Dispersion relation

The continuity of total pressure across the plasma suriface can be

expressed in the form

2 5
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which on using (3) and (4) becomes
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At the plasma surface we have the condition on the electric fields

n AlE]=-ws [B] (7)



where the bracket denotes the difference between the plasma and vacuum
values at the interface and n is the unit normal to the surface directed

into the plasma. The z,9 components of (7) yield
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If we use the relation b =0y in (6) and combine (8) and (6) to
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We now turn to the boundary conditions at the liner and conducting wall to

determine Ael, A82 to give a dispersion relation.

At the conducting wall the normal component of b and the tangential

a3, a4 a3 a4l
z z 5]

components of E are zero. If in the region Ty <r<r 6 >

2!
represent the coefficients of the vector potential as in (5) then

3 _ ., 4
Az Im(er) = Az Km(krz)
(10)
3 Ls _ ll- K -
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At the thin liner of thickness & with conductivities g, Ue the surface
currents j8= - wOeAe, jz = 'wchz determine the jump in the magnetic field
components. The continuity of the tangential components of the electric
field -expressed in the form
n~[E]=0
3 4 1 2
allows us to relate Ae 5 Ae to Ae s AB
3 [agh T Gk - A7 Ky (kr)) ] .
ay” = - K (kry) (11)
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with a similar expression for ABA.



Using the expressions for the magnetic field components b | be across the
7

liner, (5) and (11) we obtain
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where Cl(rl,rz) = lm'(krl) Km'(krz) - Km'(krl) Im'(krz)
and  Cy(rj,ry) = Ky CGery) I (krp) - I "(kry) K Cery).

From (12) some general conclusions can be drawn. For m »1 and long wavelength
instabilities, krl << 1 the growth rate will only depend on g,- For m = 0 the

rate depends on 0, and for m > 1 but short wavelength, kzrl2 crz/cre > 1 it

<]
also depends on Jg. We can now obtain the final dispersion relation from (9)

and (12) by eliminating Ael, Aez. After some algebra this is
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Solution

If 6§ =0, i.e. no liner, this expression reduces to that given by
TaylerEz] (other dispersion relations similar to (13) have been given for

[

different configurations374;5])_ The plasma is stable if and only if the
above cubic dispersion relation has no root with a positive real part.
The stability criterion is of course not dependent on the presence of

the liner. Stability results for values of b_, b, and r2/a with no liner

are given in the 1iterature[2].
2 a2 o Ty .
Introducing the notation [~ = 4mp 5 8= X =ka, Y=0/o
" B A8 e

with T, = 2ﬂrl 6Gz, the penetration time through the liner for a poloidal

T —



field, and T, A, = a“4ﬂpo

A0 the dispersion relation can be written
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or in a more explicit form
T(r,)
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- if equated to zero is the marginal stability condition at the wall. T(rl) =0

is the condition at the liner, and

2 2

25k r, . Cl(a,rl)Cl(rl,rz)
2 g, (a,r,)
1 1 2

(16)
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If T(rz) > 0 the plasma is stable. The situation which is of most interest

is T(rz) < 0 but T(rl) >0 i.e. the plasma would be stable if the liner were

perfectly conducting. If the value of S is large then to a first approximation

T(r,) (> + Ykzrlz)- ¢, (a,1,)
T(rl) 2 2

28k r; Cl(a,rl)Cl(rl,rz)

I~ - >0 (17)

i.e. the growth time is proportional to TW but multiplied by a complicated
function depending on the k value of the instability and the anisotropy of the
liner, Y. A bellows liner with a convolution factor of C has ¥ ~'C-2,
consequently all instabilities with m > 1 and krl < C are unaffected by the
convolution factor. For the particular thin skin model of the pinch used here
all long wavelength instabilities are.stable i.e. T(rl), T(rz) > 0 for krl,

kr2 small so that no limiting expression can be obtained from (17).



If the conducting wall is removed i.e. r, - = then (17) can be

simplified somewhat as

Cl(al r2) . Km (ka)
Cl(rl,rz) Km'(krl)

which for m > 1 and ka small gives (rlla)m+1 and T reduces to the form

T(rz)
T(rl)

. m

(1 - aZm/r12m)

(174)

i.e. the growth time is essentially the field penetration time through a thin
wall in the presence of an internal conductor of radius a but reduced by the m
number. Equation (17) is a rather more general expression for the penetration

of helical fields through a thin walled vessel for which there are expressions

(6,71

in the literature

For m = 0 with ry - ® and in the particular limit that ka - 0 we obtain

T(rz) v

s - —5- —
T(rl) 28 Kl(krl)ll(krl)

(17B)

ie the growth time is ~ 4ﬂcer16K1(krl)Il(kr1) which gives the usual penetration
time 2ﬂUer16 if krl is small but with Ge the effective component. If krl is
large then the time is much shorter ”'Znoerlélkrl.

A notable exception to the expected behaviour given in (17) is when

T(rl) -+ 0 and an instability just fails to grow at a rate Tag - In this case

3/ T(rz)

re = :

o
al/3 S1/3

(18)

- - 8
or W h'Tw 1/3 TAG 2/3-as noted previously[ ]

Computations

The dispersion relation (14) has been solved for a number of cases of
interest. Fig. 2 shows the resultant growth rate as a function of ka. The
region of instability in this and most other cases is exemplified by ka ~ 1,
as is indeed the case for quite general diffuse pinch configurations. In

this case bi = 0.9, be = - .5 so that Be = 0.44, rl/a = 1.3, rzla =1,7

s B



and T(r2) <0, T(rl) > 0. The value of 8 is taken to be 100 which is
typical of diffuse pinch experiments with a liner such as Zeta. Curve (a)
gives the growth rate as a function of ka for the case of no liner. With
a liner present having Gz/cre = 8,4,2,1,%5 the growth rate is progressively
reduced as shown by the curves (b) to (f) and as can be seen from equation
(17). 1In most experiments with a liner czlce < 1 so that no further
reduction in the growth rate of modes with m > 1 occurs as 9 is progressively
increased (a reduction in growth rate would occur for m=0 modes).
Cbnsequently the copper rings present around the liner in the Zeta device[gj
would not be expected to convey better stability properties on the plasma
unless modes with m=0 were important. Note that even though S = 100 the

reduction in growth rate associated with the presence of the liner is only

tenfold.

Fig. 3 demonstrates the reduction in growth rate with increasing S for
. i . -1
the same parameters as Fig. 2., I'is proportional to § as expected from

(17) but if be is such that T(rl) -0, i.e. b, = - .553, then the liner is

e

not very effective in reducing the growth rate as indicated by (18). For

b, = - .553 we do indeed find that I'is proportional to S_1/3.

Even for the optimistic case of [« S-l, a pinch operating with nTE 2 101
r:m“3 sec at a density of 1014 crn-3 would require a 65 em thick copper shell
at a radius of 3m to avoid an m=1 instability for one energy confinement time.
At a density of 1015 cm_3 and a radius of 1.2 m the Cu thickness falls

to 17 cms. These results indicate that some slow feedback control of the m=1

ideal magnetohydrodynamic instability and m=1 tearing mode would be necessary.

Conclusions

The introduction of a corrugated liner into an otherwise unstable
diffuse pinch can reduce the growth rate significantly to a value somewhat
larger than that associated with the penetration of a helical field through
a tgin resistive wall, If the anisotropy of the wall conductivity

- —£ <1 then there is little effect on the growth rate of modes with m > 1

Og
but the growth rate for m = O is reduced. If the plasma is close to marginal
stability with respect to the liner then the instability grows on a hybrid

timescale of the penetration time and Alfven transit time.
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The ratio of vacuum penetration time through the liner to

Alfven transit time, S, is 100.
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Fig. 3 Normalised growth rate as a function of S as the external
longitudinal field, be.’ approaches the marginal stability

condition at the liner, be = - ,553.












