

CIM-R 202

INITIAL SCL USER INTERFACE FOR THE 2976

R Endsor
Culham Laboratory, Abingdon, Oxon, 0X14 3DB, UK

(Euratom/UKAEA Fusion Association)

Abstract

This report describes work performed on an initial user
interface for the Culham 2976. The interface consisted of SCL
macros and procedurés written in S3. The interface was designed
to support batch jobs submitted from the twin PRIME 500 computer
systems and to give a straightforward mapping from PRIME Culham
commands onto 2900 SCL.

20 March 1980
dmg ISBN 085311 086 7

CONTENTS

1 Description of Culham central computer configuration
2. The user interface on the 2900, a description of SCL
3. Culham commands on the PRIME

4. 'Design of the batch user interface
4.1 The organisation image
4.2 Filestore structure
4.3 TFacilities supported

4.4 Usability and housekeeping features
5. Implementation of the batch user interface
6. Further enhancement of the 2976 user image
Acknowledgements
References
Appendix 1 Examples of use of the batch user interface
- Appendix 2 1Interface structure

* Appendix 3 Definition of the user interface

*Note: Appendix 3 is available by special request

1. Description of the Culham Central Computer Configuration

The central computer configuration at Culham consists of linked ICL 2900
and PRIME 500 computers. These form a Front End/back end system with the Front
End réle taken by the twin PRIME 500 systems. This is shown below:

ICL
2976
RJE RJE
link link
PRIME PRIMENET PRIME
A LINK B

The two PRIME systems are linked together by a fast serial link known as
PRIMENET. Each PRIME is linked to the 2976 by an RJE synchronous link running
at 9600 baud.

The role of the PRIME systems is to handle terminal communications with
user terminals distributed throughout the Laboratory. Interactive programs and
program development can be performed on the PRIME systems. The 2976 is a
background processor receiving jobs over the RJE links. In the initial configur-
ation very little interactive work will be run on the 2976 although a few terminals

will be directly connected for systems development.

A reconfiguration of the communications links between the 2976 and PRIME
systems will take place soon. The synchronous RJE links will be replaced by
much faster BSI parallel links (BS 4421) . At this stage interactive working
through the PRIME to the 2976 will be possible and a full 2900 user image will

then have been developed.

2. The 2900 User Interface - A Description of SCL

The 2976 at Culham runs the VME/B operating system produced by ICL.
This operating system is structured to make use of the protection features
built into the hardware. It is conceived as layers of software, the most trusted
being the kernel which is fully protected from all other software. Surrounding
the kernel is the director which performs VME/B supervisor functions. The outer
layer of director forms an interface to user level software. This interface is

known as the Total User Machine. The basic structure of VME/B is shown:

TUM interface

Director

The user interface provided by ICL is thus built upon the underlying

TUM interface which consists of VME/B procedures.

The kernel and director are mainly coded in the ICL software development
language, S3. This has many features in common with ALGOL '68 and supports
complex data structures and structured code. The structural design of the whole
system is modular; the basic unit being known as a "holon" with well defined
interfaces. This design concept was initiated for the construction of VME/B and
was supported by a design database called CADES (see Ref. 1), The TUM interface
is, therefore, a procedural interface of S3 routines and data types. It should
be noticed that this interface is essentially open in the sense that the

facilities of VME/B are available to the overlying user interface.

The user interface is provided by a System Command Language, known as SCL,
together with a command language interpreter. The user, therefore, expresses
the actions which are to be performed as SCL statements which are then interpreted
and obeyed. Two main access paths to VME/B facilities are possible. In the first
case SCL supports a subset of S3 data types and as there is a common procedural
interface it is possible for SCL statements to interface directly to TUM
procedures. Secondly ICL have provided a large set of SCL macros (which are

essentially equivalent to procedures) which provide VME/B facilities. The

/

User SCL commands

_Calls on ——————p TUM interface

ICL macros

situation is shown below:

Direct calls on

TUM interface

~ 2 =

A third mode of access is available as it is possible for user produced
S3 routines (which access the TUM interface) to be called from SCL commands.
The user interface to VME/B is, therefore, very flexible and there are several

approaches which an installation may adopt.

The simplest approach is for the user to work entirely with ICL macros
(see Ref. 2) possibly supplemented by an approved set of customer macros known
as GOODIES. These macros cover the full range of VME/B facilities
and are very comprehensive. The user is, however, faced by the difficulty of
understanding VME/B in all of its aspects. There are over 350 standard SCL
macros some of which have over 30 parameters. Although the effort and time
involved in understanding VME/B is acceptable to a professionmal programmer, this
will not be the case with the scientist who wishes to use the computer as a tool.
An installation would not usually offer a service to its users comprising only

standard macros.

The alternative appreoach is for a set of installation defined macros to be
produced. Each installation will wish to present to its users an interface which
is suited to the way in which they work. The flexibility of SCL allows the
installation to tailor VME/B facilities to the extent that the user interface
can be radically different from the underlying software. It is possible for the
interface to define objects, structures and semantics in a simple and self-
consistent way. The user is presented with the installation defined system

which is most acceptable. This is shown below:

Installation interface

ICL
interface

VME/B

facilities

Communication between the user and the computing system is a two-way process.
The installation interface defines both the commands which the user will give to
the system and also messages which will be returned from the system to the user.

This is particularly true of error messages where the prime aim of the message'

o B o

should be to explain the fault in terms which are meaningful to the user. Too
often the error message relates to the internal structure of the operating
system and requires expert interpretation. Again the flexibility of SCL will
allow the user interface to have full control over messages which will be

received by the user.

In producing a user interface an installation can use SCL only. There are,
however, some disadvantages in this approach. The installation macros may be
complex and as each macro must be interpreted as it runs the overheads may be
quite considerable. 1In a later release of VME/B (5X36) software will be provided
which will allow SCL procedures to be complied into an intermediate code to
achieve faster execution. Another disadvantage is that the SCL language is
fairly restricted in the data types which can be manipulated so that the best
algorithms cannot always be used. Similarly, because SCL supports only a limited
number of data types the mapping of SCL calls onto the TUM interface is
restricted. These disadvantages can be avoided if the installation user inter-
face is coded in S3. As S3 is fully compiled into code before execution it is
much more efficient and also is fully compatible with the TUM interface which is
similarly coded in S3. Although ICL had previously not allowed customer use of
S3 this restriction has been removed and S3 is available as a special product.

In practice the user interface will be a mixture of SCL macros and S3 procedures.

TUM
Interface

User Interface User SCIL. ICL

//,/” macros \\\\\ﬂ ’nacros
User S3 //?

procedures

SCL commands

VME/B supports a common procedural interface to all its languages. The
user interface could, therefore, also contain routines written in FORTRAN, COBOL
or ALGOL 68. These languages are less useful than S3 because of the restricted

data types which they support.

An S3 procedure may have parameters associated with it. TIf, as part of the
user interface, it is required that the user should be able to call that procedure
from SCL then the user will need keywords for the parameters and default values
will have to be supplied for optional parameters. This facility is added by a
"template'" defining parameter keywords and defaults being attached to the

procedure.

o — ——— —

User SCL
command

Templates can also be attached to procedures written in other languages.

-A user defined interface to the 2900 can either replace or exist alongside
the standard ICL macro interface. In the latter case there is a restriction that
macro names must beunique between the two interfaces. In some respects restricting
usage to a .single user interface is preferable as this reduces the support and
documentation required by an installation. This is the approach which has been
adopted at the South West Regional Computer Centre at Bath. The drawback is
that all users are restricted to facilities provided by the installation interface.
In a situation where, although most users will run scientific programs,
commerical work also has to be supported, a single user defined interface maynot be
sufficient. The solution-at Culham was to develop a simple user interface which

would be attractive to scientific users alongside the standard ICL interface.

A basic feature of VME/B is that whatever macros or procedures are
provided by an installation the user still has the facilities arising from the
fact that SCL is a language and each user can produce macros which will be
tailored to his requirements. Users providing applications programs as a general
service can, therefore, develop the applications user image to their own

specification.

To summarise the VME/B system has been designed to provide a flexible and
extensible user interface. The basic building blocks, standard ICL macros, are
comprehensive but use of these macros is really restricted to computing
specialists. The aim of the initial user interface for the Culham 2976 has

been to provide a simple and readily acceptable interface for scientific users.

3. Culham Commands on the PRIME

The PRIME front end computer systems have essentially taken on the Satellite
réle played by the CTL Modular One computer in the previous Culham configuration
based on System 4-70 computers. One aspect of the CTL Satellite system was that
it supported a General Command Language, known as GCL. The purpose of this
language was to enable jobs, expressed by GCL statements, to be run on any
mainframe attached to the Satellite. In practice this meant that jobs could be
submitted to the System 4-70 or to the AERE IBM 168. GCL statements were
processed by a macro processor, known as JOLT, into job control statements for

‘the appropriate target systems and the job was then submitted via an RJE link.

-5 =~

One problem with GCL was that it was a separate subsystem on the CTL
Satellite and so was not widely used. On developing the Satellite functions
on the PRIME it was decided that the functioms of GCL should be taken over into
a general set of commands, known as Culham Commands. Having defined a target
system (using an RJOB command) the user would then enter other commands describing
the action to be taken by his job. Each Culham command would be expanded into
the appropriate command language for the target system. This approach is more
flexible in that Culham commands could form the basis for system independent
interactive use of remote systems. (It is expected that Culham users will have-

interactive access to the 2976 from the PRIME later.)

On investigating the possibility of mapping PRIME Culham commands onto
standard ICL macros it was found that this process was by no means straightforward
and that each Culham command would have to generate very complicated SCL. The
alternative approach, to build a user interface on the 2976 which corresponded
to the Culham Commands on a one-to-one basis,was adopted. A positive advantage
from this was that the user interface could also be used from terminals directly
attached to the 2976. Error messages could also be handled by the user interface

and this is currently not possible with Culham commands.

The initial aim of the S8CL interface for the 2976 was, therefore, to
provide a straightforward mapping for Culham commands. WMot all the functions of
the SCL interface were defined in this way. Some extra facilities were added
which are not covered by the current implementation of Culham commands. However,

it is true that the SCL interface has developed from the GCL and Culham command

systems.

4, Design of a Batch User Interface

The batch user interface which is now supported on the 2976 has evolved
from design criteria arising from the overall structure of the Culham computing
configuration. A basic decision which was taken at an early stage was that
users' source files would normally reside on the PRIME. Editing, which is
essentially an interactive process, would be performed on the PRIME. TUser jobs
sent to the 2976 would, therefore, contain any source which was to be compiled
and no source would be permanently stored on the 2976. Compiled code would
reside on the 2976 as would most data files. There would, however, be data
files which would be transmitted from the PRIME and it was also decided that it
should be possible to direct output files from the 2976 to nominated files on
the PRIME. A second criterion was that user programs written in FORTRAN on the
System 4-70 should be able to be run on the 2976 with minimum inconvenience.

Fortunately a compiler, known as the FORTRAN(G) compiler, praduced by the Edinburgh
Regional Computer Centre, had been enhanced to compile any System 4 FORTRAN program.

w G e

The user interface, therefore, supported this compiler. A further aim was
eventually to extend support to the ICL Optimising FORTRAN Compiler known as the
OFC compiler. For this the difference in using the two compilers would be
minimised. At present there are still incompatibilities in the handling of
input/output between the two compilers and the standard ICL compiler will not
be fully supported until these differences are resolved. The prime feature

of the user interface is that it is designed for a remote batch work-load based

on FORTRAN,

4.1 The Organisation Image - a VME/B Overstructure

Before describing the structure of the user image a short digression on
the support of an organisation image by VME/B is necessary. The organisation
image may be implemented by relationships within the VME/B catalogue above the
user node level., At the highest level in the catalogue is an installation node.
A hierarchy of divisional/group and "real-user' nodes can then be set up
representing the organisation structure. The importance of this mapping is that
it allows computer resource allocation, budgeting and privacy to reflect the
existing organisation structure. At Culham, for example, resources are allocated
by projects and this is reflected within the Culham VME/B catalogue by the
allocation of file space to projects. Whenever a user runs a job the job will
run for a particular project, and will use the resources owned by that project.
However, this function of VME/B is not directly part of the user image which is
primarily concerned with the computing facilities made available to the user

rather than the organisational structure within which work is performed.

4.2 The User Filestore Structure

The user image has to be based within a firm context which defines the
objects which are to be manipulated and the relationships between them. The
first object which was selected was the program., This was envisaged as the
code which was needed, associated with data files used when the code was
executed. In general each user would have a number of programs which he would
wish to keep separate. The user filestore was, therefore, divided into a number
of programs. In VME/B terms a program was mapped onto a file group. Within
each program there was a requirement for storing object code and the standard
VME/B method of storing object code directly in a library was chosen. At this
point the decision was taken that each program would only need one library for
storing compiled code and a standard name, LIB, was chosen. The FORTRAN
compilation macros would assume that this library would be used though provision
was made for an alternative library to be nominated. Although there is no

strict requirement for compiled modules to be collected before a program is

executed it was further décided that users would wish to use the VME/B Collector
to produce "linked" modules. To avoid problems with common entry names to
compiled and linked modules the linked modules would be kept in a second library,

known as LINK. The overall structure for a program was as follows:

. Program
{ ;ilegroup node

LIB o Data files

Compiled code

library LINE

Linked code library

Within libraries the following conventions were observed:

a) Compiled code was kept with each routine in a separate library file module.

Only the latest generation of each library file module was kept.

b) When a program was collected all routines in the LIB library were collected
into a single linked module, known as CCM (for Culham Collected Module) in

the LINK library. More than one generation of linked module could be kept. -

The formality of the conventions is an advantage in constructing the user
image. In the first instance the adoption of standard naming conventions decreases
the parameters which need to be specified by the user. Also the formality should
help to establish a mode of working for new users which will be bemeficial to
the supporting staff. The possible disadvantage is that flexibility is reduced,
and users, as they develop, will be forced to use the more complex standard ICL
macros. In the current implementation of the user image some care has been taken
to ensure that flexibility is preserved and the possibility of users requiring

some standard ICL macros on special occasions has been envisaged.

Besides forming part of the file structure the LIB and LINK libraries
form an integral part of the "library list. This concept is fundamental
to the way in which VME/B is structured. Associated with each virtual machine
is a hierarchic library list containing all the routines available within that
machine. At the lowest level is the standard ICL library comnstituting the TUM
interface. Above that level are libraries of compiler support routines and
standard subroutines such as the NAG library. At the top of the list are the
libraries containing the program code which is about to be executed. In
standard SCL extra commands have to be given to extend the'library list to
include the user program libraries. In the Culham user image this is performed

automatically for the LIB and LINK libraries.

4.2.1 Filetypes Supported in the User Image

The filetypes supported by the user image are currently restricted by

the limited batch usage which is planned for the introductory service.

The full user image will encompass many more of the structures which

are available under VME/B but this will not be available until interactive

access to the 2976 is implemented.

The first filetype is compiled code in OMF (Object Module Format) which
is held in the LIB library. These files are known as modules. Secondly
compiled code for a program is collected into a single file (also in OMF)
held in the LINK library. These files are known as linked modules. The
two libraries, LIB and LINK, are set up for each program. Finally, program
data files are held as individual files (ie not within libraries) and
may be of two types. Serial data files are held in variable length
spanned record format. This means that the maximum record size for these
files is a user option. Direct access data files with a record size

up to 2046 bytes are supported. This limit is a function of the uniform
pre-formatting of allocated file space into 2 Kb blocks. This is an
installation decision and VME/B will allow allocated file space to be set
up with larger blocks. If the need arises for a larger block size the
user image will be extended to support this. Multiple generations of

both serial and direct access data files are supported.

The above filetypes are the only permanent filetypes supported by the

user image.- FORTRAN source text and text data files with a maximum record
size of 80 bytes are transported to the 2976 as 'in-line' data with the
SCL commands (in VME/B terms this is known as "aliendata"). Such files only
exist for the duration of the user job. Similarly output files containing
line printer output may be created. These 'spooled' files are also
temporary and disappear after printing. These temporary filetypes exist

within a generally available filespace owned by the system.

Finally a spool file type associated with a special data transport is
supported for copying serial text filés with a maximum record size of

132 bytes from the 2976 to the PRIME.

4.3 Facilities of the User Image

Two basic modes of running FORTRAN programs are supported by the user
image. The first mode, known as test mode, is primarily designed for small
programs which are to be run once before further modification. The FORTRAN

text is compiled directly into virtual store, rather than a library module.

When the program is run the virtual store code is executed. The user cannot
collect modules in test mode, Files associated with test mode programs are
catalogued immediately below the user node. In the current implementation
these files are permanent. A future modification will be to set up these
files as temporary files so that a run of a program in test mode will have no

permanent effect on the user filestore.

The second mode of working is program development mode where the LIB and
LINK libraries are available within a specified program file group. These two
libraries are placed at the top of the user's library list so that programs
will be loaded from them when a call is made. The user has the option of
executing a program directly from compiled modules which will be cascade loaded
from the LIB library or by setting up a single linked module which will be
loaded from the LINK library. In both cases further libraries may be specified

and routines will be loaded as required,

The various macros available in the initial user image will now be
briefly described. A spécification of each macro is given in Appendix 3. The

macros are grouped by functions.

a) Virtual Machine handling

JOB

The JOB macro contains the username for the user running the job and
the project under which the job is to be run. The userk job is then
connected to the filestore associated with that project. The virtual

machine profile for the job may also be selected

ENDJOB

This macro terminates the control statements for a job.

b) Program handling

PROGRAM

This macro is used to select either test mode or program development
mode. In the latter case a program file group name must be specified.
For a new program file group the option NEW=YES must be specified.
This macro ensures that the LIB and LINK libraries are present. If not
these libraries will be created. The libraries are then put on the
library list. The file and library contexts are extended to the program

file group node.

If the user wishes to handle several program file groups in the same job
then the statements applying to each file group should be enclosed in
BEGIN and END statements.

e T =

g

d)

DELETE_PROGRAM

All files and libraries associated with the specified program file group

will be deleted.

CHANGE _PROGRAM ACCESS

All files and libraries within the program file group may either be
accessible to all other users for read and execute access or will be

inaccessible.

Compilation, collection and execution

FORTRAN

The FORTRAN source, whicch usually follows the macro as alien data, will be
compiled either into the LIB library or virtual store. This macro
supports the System 4 and IBM H dialects of the FORTRAN language supplied
by the FORTRAN(G) compiler and the non-optimised and optimised versions of
F1 FORTRAN supplied by the F1 and OFC compilers. In the initial release
of software at Culham the Fl compilers will not be availablé. There still
exist some incompatabilities in input/output handling between FORTRAN(G)
and F1. When these are resolved the compilers should be fully compatible

in the sense that compiled modules can be freely mixed.

LINK

This macro collects the modules in the LIB library into a single linked
module in the LINK library. Other nominated libraries may also be

gsearched and specific modules may also be included. Several generations
of the linked module may be kept to allow fall back if a new version of

a program does not work,

CALL

This macro starts execution of a program. The program is identified by
the specification of an entry point which will be in a library (normally
LIB or LINK) on the user's library list. The module, or linked module,
satisfying the entry point is loaded and then any other routines required
will be cascade loaded. There is an option allowing further libraries

to be added to the library list for scanning, and the scanning procedure

can also be specified. Other options set diagnostic and trace mechanisms.

File specification

DEFINE
This macro is the basic building block for data file types. Whenever

other macros set up data files (such as QUTPUT) a call is made to DEFINE.

— W

e)

Serial and direct access data files are supported, One feature of the
implementation is that DEFINE checks that a new generation of an existing
file has the same filetype and characteristics as the existing file.

This is a usability feature to ensure that files are uniform and helps

with support of the interface.

A file to be directed to a specific file on the PRIME may also be set up.
This is a spool file which will be directed to the PRIME data transport.

Compiler and collector listings can also be directed to nominated files
using this macro. It is expected that this will usually be used to send

such listings to the PRIME.

DATA

Input data for FORTRAN programs is assigned to a specific FORTRAN data-
set by this macro. The data may be contained in a nominated file or
follow the macro as alien data (the alien data is copied into a temporary
file for subsequent access). If the FORTRAN dataset is not specified the
file will be attached to dataset 5 or dataset 97.

INOUT

An input/output file may be set up and attached to a specific FORTRAN

dataset. A file set up by this macro is not 3p601ed for printing.
OUTPUT

This macro assigns an output file to a specific FORTRAN dataset. The
file may be spooled to a line printer. If the FORTRAN dataset is not
specified the file will be attached to dataset 6 or dataset 99.

File handling

COFY

A nominated VME/B file, or alien data following the macro, is copied to
a nominated VME/B file or to a file on the PRIME. The underlying file
support provided by DEFINE is used to ensure that a new generation of
an output file has the same filetype and characteristics as previous

generations.

DELETE
The specified VME/B file is deleted. An option exists to allow the

latest generation and all previous generations to be deleted.

PRINT

The specified file is copied into a spool file for printing. The file
may then be reused or deleted. This method of printing is similar to
that used on the PRIME. The standard ICL macros place on & spool queue

a request for the file to be printed without copying.

s 1B s

COPY_MODULE COPY_LINKED MODULE

The macros, COPY MODULE and COPY_LINKED MODULE, copy modules into the
LIB and LINK libraries for the current program. These macros can only

be used in named program context.
DELETE MODULE DELETE LINKED MODULE

These two macros delete modules from the current LIB and LINK libraries

and can only be used in named program context.

£) File listing
LIST FILES

This macro lists the names of all the files belonging to the user. An
option is available to allow names of files within libraries to be

listed.
LIST FILES OF_ PROGRAM

This macro lists the names of files within the current program file
group or belonging to the named program file group. An option is

available to allow names of files within libraries to be listed.

4.4 Usability and Housekeeping Features

Part of the purpose of the user image is to improve usability for non-
computer specialists over the standard ICL macros. The various improvements

are described below:

Removal of special names

To use the ICL macros the user needs to know several special names,
such as ICLICEMAIN. This is made more difficult by the fact that these names
are different for F1 FORTRAN and FORTRAN(G). The user image supports these

names implicitly and the user need not be aware of their existence.

Support of standard libraries

The PROGRAM macro automatically sets up the LIB and LINK libraries and
will ensure that these libraries are present. The libraries are then placed

on the library list.

Support of default input/output channels

A user program which reads from channel 5 (or 97) and outputs to channel 6
(or 99) does not need specific assignment of these channels. Also if channels’
‘6 or 99 are not used for output the spool file prepared for output is automatically

deleted so that the user does not receive a blank output file.

- 13 -

Uniform file typé maintenance

As mentioned previously a check is performed that successive generations

of a file have the same file type and characteristics.

Simpler and more user directed error messages

The user image goes some way to trapping the more complex error messages
which may arise for the underlying VME/B software and producing its own, user
directed error messages. In contrast to the standard ICL messages which are
upper case only, both upper and lower case are used, This feature has
implications for the support team as user image messages can be immediately

distinguished from (possibly unexpected) VME/B messages.

5. Implementation of the Batch User Interface

Implementation of the batch user interface was accomplished by the design
of a structure containing S3 procedures and SCL macros. These could be

arranged into five subsystems described by Holon trees. The main categories

were:
Holon number Holon name
GA 1000 GENERAL SERVICES
GA2000 ASSIGN_FILE_SERVICES
GA3000 PROGRAM SERVICES
GAS5000 FILESTORE_SERVIGES
GAB6000 LANGUAGES

A complete description of these subsystems, itemised at component level,
is given in Appendix 2. The function of the many service routines is to give
comprehensive and uniform support for the underlying objects chosen for the
interface. This has meant that VME/B facilities are obtained via these support
procedures so that there is control throughout the interface. In some cases
this meant that a support procedure would map closely onto a standard procedure.
The existence of the support procedure would, however, allow modification or
enhancement at a later stage in a uniform manner. The function of each sub-

system will be briefly described.

GENERAL_SERVICES
These routines can be divided into four major categories. The fundamental
basis of the user image is the approach to file handling and routines
were provided to give the characteristics of objects held in the VME/B
catalogue. The aim was always to be able to validate user-supplied

objects within the context of the user image. This was seen as essential

= I

if the user was to be guaranteed meaningful error messages. A particular
example is the proper handling of protection error messages where

standard ICL procedures may produce incomprehensible messages,

A second category of routines handled the creation and deletion of spool-
files. These were used for line-printer output and as a means of
transporting files to the PRIME. Deletion of a spool £flle was necessary
where a default output file had been created and not then used by

a program.

One routine provided an interface for parameterised error messages.
It is useful to include the name of an ijeét which has been incorrectly

specified in the text of an error message.

There were some routines of general utility for conversion and validation

of literals and integers.

ASSIGN_SERVICES

These routines were based upon a global table containing file assign=-
ments to channels. The channels corresponded to FORTRAN datasets and
were represented by integers apart from the READ, PRINT and PUNCH datasets
of F1 FORTRAN. When a program was run the necessary job space variables
would be created and assigned to the appropriate currencies. Though the
existence of the table was global the currencies could be invalidated

by the use of SCL block structure so that these had to be checked before

assignment,

Entries in the table were made by calls from the DATA, OUTPUT and INOUT
macros. Besides assignment these macros handled file creation using

the underlying support procedures of DEFINE,

PROGRAM SERVICES

These routines divided into three categories. Procedures underlying
CALL handled the loading of a user program. Extra libraries could be
added &uring the loading procedure and the loader searching algorithm
could be specified. A feature of the implementation was that a default
program entrypoint could be selected if a linked module existed in the
LINK library. The CALL procedures were also invoked at the finish of a

program run to remove unused default output files.

The LINK procedures provided a simple interface to VME/B collector. All

modules in the program LIB library were collected into a single module,

known as CCM, in the LINK library. Further modules and libraries could

- 15 -

be included in the collection. The implementation ensured that if an
entryname in an additional module clashed with an entryname in the LIB

library the latter would be superseded.

SCL macros handled the copying of modules in the LIB and LINK libraries
using the standard utility COPY_LIBRARY TO_LIBRARY.

FILESTORE SERVICES

The DEFINE procedure and its underlying support procedures formed a basis
for the user's file specification. The DEFINE procedure set up a new
generation of an existing file provided that- the characteristics of the
file matched those of previous generations (if these existed). This was
done by calling the procedure SELECT_PREVIOUS_GENERATION and then calling
MATCH DESCRIPTIONS. The check performed was that the filetypes

(ie SERIAL/DIRECT) were the same and that the record size for DIRECT

files was the same.

The PROGRAM procedure supported the underlying file group structure and
set up the basic program environment including access to the LIB and
LINK libraries. These two libraries would also be created if the

specified file group node existed but they were absent.

Procedure PRINT copied a 2900 file to a spool file for listing om the
line printer. ' Copying was at the record level to enable spanned record
format to be changed to standard variable length format. The filename
of the copied file was placed in the spool queue entry for inclusion on
the banner page of the listing. A specified number of copies of the
listing could be produced. Optionally the file to be printed could be
deleted after the spool file-copy had been made.

Other filestore services were provided by SCL macros. COPY could be used
to copy VME/B files. The output file was set up using DEFINE procedures
to ensure uniformity of successive file generations. Serial VME/B files
could also be copied to spool files for transfer to nominated PRIME files.
Deletion was based on standard ICL macros DELETEFILE and DELETE_GROUP.

A check was required that the user did not attempt to delete a current
program file group. A simple filestore protection facility was based

on CHANGE GROUP_ACCESS. Finally two macros gave file listing facilities.
These were based upon LIST FILES OF USER and LIST FILES IN GROUF.

- 16 -

LANGUAGES

Only one programming language, FORTRAN, was supported by the initial
system. Both the System~4 and IBM extended H dialects of FORTRAN could
be compiled. The definition of the macro allowed eventual extension to
support of ICL F1 FORTRAN. 1In program context the FORTRAN macro would
produce OMF files in the LIB library. 1In test mode the compiled code

was set up on virtual store.

The DEFINE procedure could be used to set up a listing file for compiler
output. This was detected in the FORTRAN-macro by the existence of a

job space variable containing the file currency.

"6, Further Enhancement of the 2976 User Image

The interface described in this report was prepared for the initial
batch usage of the Culhag 2976. Developments of this interface will continue
over the next two years. The main areas which have to be covered are the
inclusion of the.scientific and management aspects of the laboratory workload
to be serviced by the 2976 in its role as part of the new computing system.

This includes:
a) Interactive use of the 2976 for engineering design application
b) Management program development and production based on COBOL and IDMS
c) Scientific database development
d) TFurther enhancement for batch processing of the base workload

e) 'Real time' processing of experimental results.
P g P

Other computing systems at Culham provide flexible interactive facilities,

communications and word processing.

The guideline for future developments will be the same attention to
simplicity and consistency which has been built into ‘the initial interface. To
illustrate this examples of use of the initial interface are shown in

Appendix 1,

_17-

Acknowledgements

The initial batch user interface has been developed as a joint project
involving the Culham Computer Systems and Services Group and the on-site ICL
Project Team. Mr R Thomas (ICL) was responsible for the design of the holon
structure shown in Appendix 2 and a substantial proportion of the implementation.
The initial interface is closely linked to the design of PRIME Culham commands
initiated by Dr R Dakin (CSIRO, Commonwealth of Australia) and continued by
Mr D Fox. Finally the author wishes to acknowledge the work on a VME/B user
interface produced at the South West Regional Computer Centre under the
guidance of Mr M Thomas which has substantially-influenced the design in its

usability aspects.

References

1. CADES - Support for the development of complex software; G D Pratten

and R A Snowdon. Eurocomp 76.

2, VME/B SCL Vocabulary, ICL publication TP6500

- 18 -

APPENDIX 1

Examples of use of Culham SCL

1. A test run of a single module ﬁrogram. The program is compiled and then
run using input for FORTRAN Dataset 5. OQutput on Dataset 6 is sent to the 2976

printer. A compiler listing and job journal will also be printed.

JOB(:KTCEXM, EXAMPLE1)
PROGRAM
FORTRAN

REAL*4 A,B,C(10)

END
-
CALL

1.0 1.35 1.03 2.65
-

ENDJOB
Feekk

= 10 =

2. A job which compiles three routines into a program library. The program
is called ENERGY BAIANCE and is a new program (ie the filestore structure for

that program does not already exist)

JOB(:KTCEXM, EXAMPLE2)
PROGRAM(ENERGY_BATANCE,NEW=YES)
FORTRAN

SUBROUTINE SUB1

END
SUBROUTINE SUB2

END-
SUBROUTINE SUB3

END
-
ENDJOB

wedekek

w00 =

3. A job to compile a main routine in program ENERGY BALANCE and to run

the job returning the results to a PRIME file.

JOB(:KTCEXM, EXAMPLES3)
PROGRAM(ENERGY_BALANCE)
FORTRAN

PR

INTEGER L(10)

END
et
DATA(CHANNEL=16)
INITIAL RUN1
1.7 5:9 16.7
e
OUTPUT(KTCEXM>ENER>RESULTS 1, TARGET SYSTEM=PRIME)
CALL

ENDJOB
dededek

= BT =

4. A job to set up a linked module for program TORUS_STABILITY and then run
the program using a Direct Access Data file for FORTRAN Dataset 12. A second
program GRAPHS is then run to read the Direct Access file. The programs are
separated into separate SCL blocks using BEGIN and END so that the library
list extensions and contexts set up for the first program are completely

removed before the second program starts.

JOB(:KTCEXM, EXAMPLE4)

BEGIN

PROGRAM(TORUS_STABILITY)

LINK

DEFINE(INDEX, TYPE=DIRECT ,RECORD SIZE=80,MAX SIZE=10)
INOUT(INDEX, CHANNEL=12)

CALL

END

@ Run second program using INDEX as data @
BEGIN '

PROGRAM(GRAPHS)
DATA(TORUS_STABILITY.INDEX, CHANNEL=11)
OUTPUT(CHANNEL=9)

CALL

END

ENDJOB
dedekd

- 22 =

5. A job to perform some housekeeping for program ENERGY BALANCE. The
program is made generally available, a file is deleted, another file is
printed and a file is copied to a PRIME file. Finally all files belonging

to the user are listed in the job journal.

JOB(:KTCEXM, EXAMPLES)
PROGRAM(ENERGY_BALANCE)

CHANGE PROGRAM ACCESS(ACCESS=READ)
DELETE(RESULTS1,ALL=YES)

PRINT(DATA2)

COPY(RESULTS2 ,KTCEXM>ENER>RES2 ; TARGET SYSTEM=PRIME)
LFS(HIGH)

ENDJOB

Yol

- 23 -

Initial SCL User Interface for the 2976

" s S S S

APPENDIX 2

The holon trees indicate the type of object supporting the interface. In

particular:
above IL : A conceptual holon which controls a number of real,
implemented holons.
SCL : An SCL macro.
SIM : A Simple Procedure written in S3 and declared in the
controlling holon.
GSP : A Global Static Procedure written in S3.

- 24 -

Holon Tree for UKCI9GB10OOO SERVICES

GB1000
SERVICES

(above IL)
GC1100
CHECK_FILE NAME (GsP)

GC1200
CREATE_SPOOL FILE (GSP)

GC1300
DESTROY_SFOOL FILE (GSP)

GC1400 |
GIVE_FILE WRITTEN SIZE (GSP)

- GC1500

REPORT (GSP)

GC1600
CONVERT_INT_TO_CHAR (Gsp)

GC1700 _
VALIDATE LITERAL (GSP)

GC1800
_SELECT OBJECT ~(Gsp)
6C1900

EXTEND LIBRARY LIST (Gsp)
GC1A00 '

READ_OBJECT_LIBRARY CURRENCY (GSP)

GC1BOO
CHECK_FILE TYPE (Gsp)
GD1B10 |
REPORT_INVALID TYPE (SIM)
- GC1C00 '

GIVE_FILE CHARACTISTICS (GSP)

g

APPENDIX 2

APPENDIX 2
Holon Tree for UKCI9GA2000 ASSIGN FILE_SERVICES

GA2000
ASSIGN_FILE_SERVICES (above IL)

GB2000
FILE TABLE SERVICES (above IL)

GC2100 ,
ASSIGN_DEFAULT CHANNELS (GSP)
GD2110
SEARCH _FILE TABLE (SIM)
GD2120
DEFAULT_OUTPUT_CHANNEL (SIM)
GD2130
DEFAULT_INPUT CHANNEL (SIM)
GC2200

ASSIGN_FILE (GSP)

GC2300
RESET_FILE TABLE (GSP)

GC2400
' WRITE_IOCAL NAMES (GSP)

GD2410
CONSTRUCT LOCAL NAMES (SIM)

GD2420
PROPOGATE_CHANNEL (SIM)

GC2500
TIDY_SFOOL FILES (GSP)

GC2600
ASSIGN OUTPUT_FILE (GSP)

GB2100
DATA (SCL)

GR2200
OUTPUT (SCL)
GB2300
INOUT (SCL)

GB2400
APPEND (SCL) - 26 -

APPENDIX 2

Holon Tree for UKC9GA3000 PROGRAM SERVICES

GA3000
PROGRAM SERVICES (above IL)

GB3000
CALL (GSP)
' GC3100
GCL_I0AD (STM)
GC3200 o
LOAD DEFAULT PROGRAM (SIM)
GC3300 _
LOAD DEFAULT TEST_PROGRAM (SIM)
GC3400 .
CONSTRUCT_TRACE_DATA (SIM)
GC3500 (SCL)
RUN
GB3100
LINK (GSP)
~ GG3110
TEST_LINK (SIM)
cc3lzo |
PROGRAM LINK (STIM)
GD3121
ADD_COLLECTOR DIRECTIVE (SIM)
GD3122
CONSTRUCT _COLLECTOR_DIRECTIVE (SIM)
GD3123 |
PROCESS_INPUT_MODULE (SIM)
GC3124
PROCESS_SCAN_LIBRARY (SIM)
GB3200

COPY_MODULE (SCL)

GB3300
COPY_LINKED_MODULE (SCL)

GB3400

DELETE LINKED MODULE (SCL)
- 27 =

APPENDIX 2

GB3500
DELETE MODULE (SCL)

= 28

APPENDIX 2

Holon Tree for UKCI9GAS000 FILESTORE SERVICES

GA5000 _
FILESTORE_SERVICES (above IL)
GB5000
PRINT (GsPp)
.GB5100
PROGRAM (GSP)
GC5110
CREATE_:ES:_ENVIRONMENT (SIM)
GC5120
CREATE PROGRAM ENVIRONMENT (SIM)
GD5120
CHECK_PARAMETER NOT NULL (SIM)
GD5121 .
'PROCESS_FILE GROUP NODE (SIM)
GD5122
PROCESS_OBJECT LIBRARY (SIM)
GB5200
DEFINE (GSP)
GC5210
DESCRIBE_FILE (GSP)
GC5220
SELECT PREVIQUS_GENERATION (GSP)
GC5230
CHANGEFILE ACCESS (GSP)
GC5240
MATCH_DESCRIPTIONS (GSP)
GC5250

CREATE FILE (GSP)

- 29 =

GB5300
COPY (GSP)

GB5400
DELETE (SCL)

GB5500
DELETE_PROGRAM (SCL)

GB5600
CHANGE _PROGRAM ACCESS (8CL)

GB5700
LIST FILES (SCL)

GB5800
LIST FILES_IN PROGRAM (SCL)

= 30 -

APPENDIX 2

APPENDIX 2

Holon Tree for UKCO9GAG6000 LANGUAGES

GA6000

LANGUAGES
GB6000
FORTRAN (scL)

-~ 31 =

APPENDIX 3

The definition of the user interface is available on

request as a separate document.

The following macros are defined.

CELL

CHANGE PROGRAM ACCESS
COPY
COPY_LINKED_MODULE
COPY_MODULE

DATA

DEFINE

DELETE

DELETE LINKED MODULE
DELETE_MODULE
DELETE_PROGRAM
ENDJOB

FORTRAN

INOUT

JOB

LINK

LIST FILES
LIST_FILES OF_PROGRAM
OUTPUT

PRINT

PROGRAM

- 32 -

