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ABSTRACT

A method to solve the incompressible Navier-Stokes equations
for an arbitrary, three-dimensional geometry is developed. The
method consists of two stages. The first stage involves a co-ordinate
transformation which regularizes the awkwardly shaped surfaces into
planar ones by suitably stretching or 'ironing-out' uneven surfaces.
This change of co-ordinates converts the physical space into a
transformed space which forms, in general, a non-orthogonal curvilinear
system. The resulting Navier-Stokes equations now involve a few
additional terms but the boundary conditions can now be applied very
simply and accurately. The boundary layers near the surface are
resolved through the second stage involving another co-ordinate
transformation such that only the boundary layers are broadened
without substantially affecting the interior regiom. This transformation
from the transformed space of the first stage to the computational space
is orthogonal and results in a concentration of grids near the boundaries
only. All of the basic mathematical formulations are given in this report,
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NOMENCLATURE

Stretching parameters (see eq.(2.70))

Importance factor in the boundary-layer transformation
Specific heat at constant pressure
Lateral dimensions of the system

Strain element

Metric tensor

Acceleration due to gravity

Jacobian of the transformation

Thermal conductivity

Total number of meshes

Number of meshes in the lower and upper boundary layers,respectively
Reference pressure

Pressure

External heat source per unit mass
External heat source per unit volume
Temperature

Time co-ordinate

Velocity components

Surface co-ordinates (used in Section 2.7)
Specific volume

Physical space co—-ordinates

Transformed space co-ordinates

Volume coefficient of thermal expansion
Kronecker delta

Normalized boundary-layer thicknesses at the lower and upper
surfaces, respectively

Dilatation

A scalar coefficient (with the same dimensions as D)
Fluid viscosity (dimension: mass x (length x time)—l)
Kinematic viscosity (=u/p, dimension: (length)zx(time)-l)
Density

Reference- density

Stress element

Rate of dissipation of mechanical energy
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NOMENCLATURE (cont.)

gt Computational space co—ordinates (after stretching)
Superscript.
(.) Quantity in transformed space

Special Symbols

A(3) Physical component corresponding to vector component AY
[1ij,k] Christoffel symbol of the first kind
{jlk} Christoffel symbol of the second kind

(v)






1. INTRODUCTION

1,1.Background

Thermohydraulic studies of many problems require solution of
the governing conservation equationsfor geometries which may lack any
symmetry. All three spatial dimensions must therefore be considered.
In addition, most problems have some time dependence;hence the
governing Navier—Stokes equations must be solved in the one time- and three
spatial  co-ordinates. The number of equations to be solved multiply
quickly if more than one field and/or one phase must be considered.
Yet the actual solution procedure does not become much more complicated
by the presence of multifields and multiphases. The solution procedure
to be used is largely dependent on the geometry of the problem under
consideration. We, therefore, are concerned first with developing
a solution technique for an arbitrary three-dimensional geometry.

Extensions to multifields/multiphases will not be attempted here.
To keep things in perspective, it is perhaps helpful to note down
the kinds of approximations that have been made to simplify geometries.

These simplifications are noted in their increasing order of complexity:

a) Zero-dimensional approach - This approach is also known as

a well-stirred tank method. The conservation laws are applied
to a control volume. The conservation equations become ordinary
differential equations with only time as an independent variable.
For steady-flow situations the resulting equations are simple
algebraic equations,

b) One-dimensional approach - The leading spatial direction under

consideration is the flow direction., A large variety of
calculations are generally dome using this approach. The
resulting equations involve a single spatial co-ordinate and
the time variable.

c) Two-dimensional approach - The flow properties depend upon two

spatial dimensions, in addition to the time variable. A
simplification arises if there are no regions of reverse flow

and there is a single dominant direction of flow. In this case,



mathematical equations are either parabolic or hyperbolic. An example
of this simplification is the flow through a convergent-divergent
nozzle. 1In situations where reverse flow is possible, such

as that encountered in the case of an abrupt enlargement in

a duct, the mathematical equations are elliptic in nature.

d) Three-dimensional approach — This is the most gemeral category

of flows, The problem under consideration lacks any axis of
symmetry and the fluid properties are functions of all three
spatial co-ordinates. Although there are numerous situations
where three~dimensional modelling is required, there is no
general method available for an arbitrary-shaped geometry.
Some solutions are being attempted in relatively simpler
geometries at this time. The intent of this paper is to
develop a technique suitable for arbitrary three-dimensional

geometries,

1.2 Numerical Considerations and Methods

In order to solve the Navier-Stokes equations it is essential that
the boundary conditions are represented accurately, since the region
in the immediate vicinity of boundaries usually exhibit large gradients
and these large gradients must be accurately accounted for. This problem
is quite common in fluid flow studies Poth inside a cavity as well as
free flow above the surface. It is further accentuéted at higher Reynolds
number. Similar situations may also exist in evaluating heat losses from

solid surfaces.

Traditionally, the partial differential equations governing fluid
flow have been solved by employing one of the many finite differencing
techniques [1] including the so-called MAC, PIC, CEL, LINC, ICE etc
methods. These methods are used to solve the equétions of motion in
Eulerian (stationary co-ordinate system) or Lagrangian (moving co-ordinate
system) form. They solve the equations either directly for the 'primitive
variables" (velocity and pressure) or in terms of the vorticity and
stream function. In any case, these techniques appear to have worked
satisfactorily for a variety of problems particularly where Cartesian,
cylindrical or spherical co-ordinates can be used. Recently a number
of authors (see, for example,[2] and [3]) have applied finite-difference

methods to equations written in orthogonal curvilinear co-ordinates,



In all of these cases, the equations are solved for bodies for which
a natural co-ordinate system is available [4]l By natural co-ordinate
systems we mean those for which the body contour under consideration

coincides with a constant co-ordinate line.

Most practical problems of interest involve body shapes that do
not lend themselves to any of the co-ordinate systems mentioned earlier.
Numerical solutions to the partial differential equations are obtained by
approximating irregular body shapes with equivalent computational cells,
Alternately, the effects of irregular shapes are neglected or ignored.
In either case the resulting solutions are not very accurate unless the
size of computational cells is reduced considerably. While this approach
might work in some cases, it is highly inefficient and uneconomic.
Recently Gal-Chen and Somerville [5] have discussed a novel approach of
solving the Navier-Stokes equations in three-dimensional space by writing
down the governing equations in a generalized (not necessarily orthogonal)
system of co-ordinates and then finding a co-ordinate transformation
which will regularize the geometry under consideration. They have
applied [6] their technique to a two-dimensional simulation of wind flow
over a mountain. This technique appears to be a very powerful one and
we will discuss this further later on. It should be added that a number
of cthers including Meyder [7] Thames et al [4], Orlandi et all8] and Di
Carlo et al[9] have used the method of co-ordinate transformation to

regularize two-dimensional, arbitrary-shaped geometries.

An alternative to the finite-difference method is the spectral method
(SM) in which dependent variables are expressed as a sum of known smooth
functions. When these ansatz functions are only plecewise continuous
and non-vanishing on certain elements of the domain, a more commonly
known finite element (FE) method results. The FE methods have been rather
successful in solid mechanics where one is often concerned with complex
geometrical configurations and nonhomogeneous material properties [10]. The
adaptation of the FE method for fluid problems is beginning to gain some
popularity. Such adaptation, however, has not been as successful as some
of the FD methods partly due to the lack of adequate experience in
applying FE methods to fluid mechanics. Moreover the large storage and
computational effort associated with the current usage of higher-order

elements and time-stepping algorithms of FE methods may not be cost—effective [11]



Nevertheless the main attribute of the FE methods is the relative ease

with which arbitrary geometrical shapes can be handled.

Another major consideration in the numerical solution of the Navier-
Stokes equation concerns the adequate resolution of thin boundary layers
(i.e.the regions which experience very large gradients). There are
basically two approaches, viz to resolve them or to ignore them. In the
former case one needs to allow for several grid points within the boundary
layer. On the other hand since most FD techniques appear to work best
with uniform grid structure, this would necessitate a large number of
grids in the interior where there is little change in gradients. This
results in an excessive wastage of computing effort. This problem can
be resolved by employing a 'stretched' system of co-ordinates as discussed
more fully later on and also in Reference 12. It should be noted
that there ig a class of problems in which the effect of boundary layers

may be neglected, for example, wind flow over a mountain. Of course, when

FE methods are used one can choose, a priori, fine elements near the

boundaries and coarse elements farther away.

1.3 The Method

The prime objective of this report is to describe a general mathe-
matical method for solving the incompressible Navier-Stokes equations
for an afbitrary three~dimensional geometry. The key emphasis is placed
on applying the method to various awkwardly-shaped configuratioms.
Numerical solutions of the resulting equations can be obtained by one of
many existing techniques discussed previously in Section 1.2. Simplified

equations for two-dimensional configurations will also be noted.

The method proposed here consists of two steps. In the first
step, the awkwardly-shaped configurations are regularized by suitably
stretching or contracting uneven surfaces to behave like planar ones.

This is accomplished by developing a new co-ordinate system such that the
region of interest is bound by planar surfaces only. The governing
conservation equations are derived in this transformed co-ordinate space.
Consequently, the resulting equations do involve some additional non—linear
terms but these are no more troublesome to handle than the non-linear term

already present in the momentum equations in the Cartesian system of co-ordinates.



The number of additional terms, thus introduced, is directly dependent
upon the nonorthogonality of the transformation. The boundary conditions
however, become very straightforward to apply. Numerical solutions can now

be obtained by using a pre-established technique.

The second step of the method involves another transformation
which will broaden the boundary layer region only, without significantly
affecting the interior region. This transformation then effectively
packs in a number of fine meshes near the boundaries only. As a result,
the computational space now can be divided into a uniform grid thereby
eliminating any need for interpolation of the variables or their derivatives.
An application of this two-stage technique perhaps can best be visualized
through uncoupled problems [13]. The proposed two-stage technique is
represented schematically in Fig.l. For the sake of clarity this

demonstration is given in two dimensions.

This paper deals with incompressible fluids only. There are many
instances where one may have to account for the effects of compressibility
and/or the presence of other fields or phases, It is our belief that once
a technique for arbitrary geometry is well developed, its extension to

other areas should be straight forward.

1.4 Relationship with Existing Techniques

The present work was motivated from the desire to develop mathematical
technique of direct application to the thermohydraulic problems
encountered in the safety studies of nuclear reactors in general. As an
example, we cite a particular problem encountered in the core catcher
studies for liquid metal-cooled fast breeder reactors (LMFBRs). The issue
here is to assess accurately the heat dissipation capability from a core
catcher following a core-melt accident. We should emphasize here that,
in this paper, we are not concerned with judging the likelihood of such
an accident, we are rather interested in assessing the post-—accident heat

removal ‘capability of the plant.

The usual approach in the core catcher studies is to solve the Navier-

Stokes equations for a particular design. This requires either approximating



the geometry with one for which computer codes are available, or to

develop a computer program specifically tailored for that design.An

unsatisfactory feature of such a scheme is that when a significant perturbation

to the design is made (which is invariably the case in practice)a substantial
revision of the program may have to be undertaken. Altermately, if a technique
could be developed for an arbitrary geometry then any variation in the 'topography'
could easily be accommodated by changing input data statements. (We appropriate

the term 'topography' from meteorology as a short hand for the variety of

surfaces past which the fluid is flowing.)

There are a number of other areas in LMFBRs where an accurate evaluation
of the temperature field is required. For example, the temperature
distributions in the outlet nozzle of the reactor vessel (design life of
about 30 years); possible maldistribution of flows in the intermediate
heat exchanger; pipe bends; mixing of coolant in the outlet plenum

region etc.

A similar situation is encountered in the light water reactors (LWR).
The geometry to be investigated can substantially vary from one application
to another. A computer program for a generalized topography is, therefore,

just as desirable here as in LMFBRs.

There are two general purpose computer programs which are particularly
suited for thermohydraulic analyses for nuclear reactor applicatioms.
These are the TEMPEST [14] and the coMMIx[15]. The TEMPEST code is
written in the Cartesian and cylindrical co—ordinate systems while
COMMIX is available in the Cartesian system only. Thus, these codes
are particularly suitable when the geometry under consideration can be
represented with these co-ordinate systems. In cases where the topography
is complicated, these codes can be used by representing the boundaries only in
some approximate fashion. Numerical errors can be expected to be high unless a
very large number of grids is used. One may still have to either interpolate

or extrapolate variables or their derivatives at grid interfaces.

A number of other workers [7,9,16] have applied a body-fitted
co-ordinate system for a rod bundle encountered in the reactor core
cor the intermediate heat exchanger. 1In all of thess cases, the
co-ordinates in the direction perpendicular to the rod axis are trans-
formed such that a regularized geometry results. These approaches are
strictly two-dimensional and they all succeed reasonably well for rod-

bundles. The number of mesh points to be used is not optimized,however



Physical space Transformed space Corﬁputational space -

Stage 1. Stage 2.

Fig.1 A schematic representation of the two-stage method.
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as their computational space consists of a uniform grid pattern in the
transformed co-ordinates, The grid sizes are chosen on the basis of
adequate resolution in the boundary layers. The interior region, then,

has the same mesh size,

The proposed two-stage technique, which is an extension of the work
done by Gal-Chen and Somerville, has some resemblance to the conformal
mapping used in aerodynamic problems in two spatial dimensions. The
basics of the conformal mapping technique are discussed by Nehari [17].

There is no analogous transformation in three-dimensions.

1.5, Plan

This report describes our two-stage approach in solving the incom-
pressible Navier-Stokes equations in three dimensions for an arbitrarily
shaped geometry. The starting point is from the Navier-Stokes equations
written in the Cartesian system ; these are set down in Section
2.1. We will be writing these equations in temsorial form
which requires the use of some tensor calculus. Section 2.2 gives a
summary of some of the relations used in Section 2.3 to derive the conser-—
vation equations in generalized (not necessarily orthogonal) co-ordinates.
The equations thus obtained are shown to be in agreement with those

derived by Gal-Chen and Somerville [5].

A co-ordinate transformation that will regularize the topography
is discussed in Section 2.4. It should be noted that there can be a
number of other transformations which will also achieve this.
We have picked one suitable for our purposes, Examples of this trans-
formation are also included in this section. The intermediate quantities
required in the generalized representation are calculated in the

following sectiom.

The second stage of our approach is discussed in Section 2.6. 1In
this stage the boundary layers are broadened without materially changing
the interior region. Reference is made to another report [12] for a review
of various transformations. This section deals with a particular trans-
formation that we prefer. Section 2.7 deals with the derivation of a

normal vector to the surface for a generalized co-ordinate system. This



section comes in useful when applying the boundary conditioms, which are
discussed in the following sectionm. Finally, simplified equations for
two—dimensional geometries are noted. Thus, this report forms the

mathematical backbone for future computational programs.

Applications and the development of computer programs will be

discussed in a separate report at a later time.



2, MATHEMATICAL FORMULATION

2.1. Governing Equations in Cartesian Co-ordinates

The motion of a Newtonian fluid of uniform constitution is
represented by the following set of equations [18] for continuity,

momentum and energy, respectively:

3-‘:—:- + V.(pu) = 0 (2.1)
i ..
p(%%_ + E.Vul) = p9613 = igi + —EF 11 (2.2)
9x ox
and,
2
e ST _ of dp _ kAT, 1 30T, o0 ;o4
p dt o dt p P oagl axlj

where, the stress tensor is defined as

2o gy (M - %. A &ty (2.4)
.. i 1
o1l - %(ﬂ‘_‘_ o .@Ei) (2.5)
3% Bxl
_ o di aut
A = e = — (2.6)
Bxl
_ 1 fov
Qo o ; \a—T-) (2.7)
P
o 2w (iF i L1 2
¢ - (e e - 3 A ) (2.8)

_10_



Xi'S denote the co-ordinates of a point in the Cartesian system, and
the third co-ordinate axis (x3) is taken to be parallel but in the
opposite direction of gravity., Note that we have used the summation
convention [19] that (1) a repeated index is to be summed from 1 to 3
and (2) a free or unrepeated index is to have the range of values from

1 to 3. The substantial derivative, gf’ is defined as

d 0
_— = e . 259
= 5T + E_V ( )

The molecular transport co—efficients u (zu(p,T)) and k(Zk(p,T))
are functions of the local state of the fluid and they are assumed to
be known. Similarly, p and cp are assumed known functions. Equations
(2,1)=(2.3) contain ul's, P, P and T as unknown dependent variables.
Thus, there are six unknowns and five equations. The sixth equation is
provided by the equation of state for the fluid:

£(p, py T) = O | (2.10)
For a single incompressible fluid, the substantial derivative

dp/dt is equal to zero, i.e.:

dp ap _
PR = 20 . = 0 (Z.11)
at Bt ¢ L. .

Hence, the continuity equation becomes

R (2.12)

Furthermore when the effects of thermal expansion of fluid and the
dissipation of mechanical energy are ignored, the energy equation

becomes

it = () v o (2.13)
P P ax ax*

T -



We now expand p and p about their values in a reference state of hydrostatic
equilibrium for which Vpo = pog i.., p = p, * p' and p = Po * p' where the
primed quantities refer to their deviations., In addition, we also employ

the Boussinesq approximation [20] according to which the density variation

in the inertia term is neglected. The resulting set of conservation equations

for incompressible fluid are summarized below:

Continuity

2y = 0 (2.14)

ax

Momen tum

%?-(poul) + —Ew{pouluj) & p'9513 - gt ERT +-3—7 713 (2.15)

o Bxd  0x
Energy
] i .
p 3t o P,k o Nt \ vyt

LA e =
where q” is the external heat source per unit volume (EQpO) and we

have used the following identity for the second term on the left hand

side of Eq.(2.16)

u.VT = u, VT + TV.u = V.(TE)
since V.u=0 for incompressible fluid. Hereafter we will drop the
prime over p and p but these quantities will be understood to refer to
their deviations from the reference hydrostatic case. It should also
be emphasized that the stress tensor for incompressible fluid reduces to

- 5 (. ij

where for incompressible fluid A = 0 and it is so substituted in Eq.(2.4).



2.2. Some Useful Relationships from Tensor Calculus

The conservation equations noted previously are expressed in terms
of a Cartesian frame of reference. In the following we will be dealing
with a generalized co-ordinate system. The governing conservation
equations in an arbitrary co-ordinate system can be obtained from those
in the Cartesian system with the aid of tensor calculus which shows
how transformation of co-ordinates may be implemented. This section
is devoted to a brief review of some of the relationships that will be

used in the following sections.

We denote the Cartesian co-ordinates by x''s, The general co-ordinates
(need not be orthogonal) are denoted as x+'s. All of the quantities
which refer to the new co-ordinate system will be denoted by an overbar

over them. The general co-ordinates are expressed as [19]

r, 1 2

F o= F(el,x ,KB) (2.17)

r i . i : .
where F 's are arbitrary functions of the x''s. The transformation

is reversible, i.e.,

F = F@&l, 2 2h (2.18)

when the Jacobian of the transformation, defined as

2 3

1 .
1= |ox 12“(’}5’1”‘2&2"55')' (2.19)
9x> I(x ,X",X7)

is not zero except for a singular pole such as the one encountered
in spherical co-ordinates at r = 0. The element of length, ds, is

given as

(ds)2 dx* dxt
-n

_ ~m
= 8. dx dx (2.20)



where the metric, 8o ? is defined as

i i
- 3% 90X

€mn -m ..n (2.21)
ax ox

The quantity 8o is a double covariant tensor and it is symmetric. Its

. mn . .
conjugate temsor, g , is given by

=M .0
gmn _3x 39X (2.22)

axt oxt

; mn : ;
It is noted that g is the inverse of the matrix B From the laws

of determinants, one finds that

1 -1
N L i (2.23)

e Ly wws L

1 ; : .
The system A, .2 .m 1s a relative tensor of weight M,
31 g +e- jn
contravariant in 1sigs eeel and covariant in J9s3gs eee 1 with

respect to the transformation if its transformed components satisfy the

following relationship

.. . . 1 i 1 2 'A L
o L _ ax M X 1 X 2 ax M ax 1 Bx"z ax
Syigesss o | B T e T M Ml
e T e lox? axPaxlax? s
kik....k
A 1112 e (2.24)
172°**™n

The covariant derivative of a tensor is defined as

...14..



~— A,

J1deesdneS 5%S Jqdpe--]g

{ *m } pRg e ey g h
+ 9 s A.7. .
Jqdgeesneddy

L _}112...1m )
“ . sf A j R
31 2***3q

—1112"'1m 3 1112...1m 11 _2 1213...1m
A z - 1 s A + e

j1j2""'jn

o [

L L.
— {j S} R LR H L (2.25)
In T1d2 301

The comma before the index s on the left hand side of Eq.(2.25) denotes
that the tensor has been differentiated with respect to %%, The resulting
quantity is a tensor with m contravariant and (n+l) covariant components.
It should be added that the first term on the right hand side is not a
tensor. The quantity {nlrn} is called the Christoffel symbol of the
second kind and it is related with the Christoffel symbol of the first

kind [mn,p] by

i
{m n} = & [m,p] (2.26)
and,
[mn,p] .1( L)L T - ) . (2.27)
2\ 4=l -0 =D
9X X ox

The Christoffel symbols are symmetric, i.e.,

[om,p]

{ E } (2.28)
I m *:

[mnsp]

oo}

and

_]5_



Three important relations that will be used in the following are

rs .
og ms r mr s | _
o + g {m t} + g {m t} 0 (2.29)
9x
3(&n J). { m } (2.30)
aip mp
and
rs
Liﬁg_ﬁ)+{r}gmﬂ=o . (2.31)
J % b
Also, from Eq.(2.26)
r
[mn,p] = grp{m n} ) (2.32)

We often will need to relate contravariant and covariant quantities.
This is done by multiplying by 8., °F gmn and then summing the resulting
quantity. Thus the covariant components of a contravariant tensor are

obtained as
A = g rig ; A = g_ g e . (2.33)

Similarly, the contravariant components of a covariant tensor are

obtained from

=m mp = =mn _ mp nt =
= A ; A A (2.34)
A g A g ot .

. & -1 . .
The magnitude of a contravariant vector A  is defined as

- - Y 1 S 1
A = (gmnAmA“)"’ = (gPTR 2 )? (2.35)

pr :

. : ; ; 3 . . r
A unit vector is one whose magnitude is unity and hence, if A~ and B, are

unit vectors, then

g AA = 1,g uwup =1 (2.36)

_16-..



As an illustration, we note that the velocities and accelerations
. =1 . .
are contravariant vectors. Let X (t) be the co-ordinate of a moving

particle with the time t, then

. -1 T, i -1 .
=1 _ :x - Bx. gx _ ax. ) (2.37)
E BXJ E BXJ

J o2 x5 (2.38)

Now we can express the divergence, gradient and curl of a vector
. . . ; -r . ;
in tensorial form. The divergence of a contravariant vector A 1is defined

as its covariant derivative, i.e.,

div &Y = aF%, (2.39)

where the dot denotes the relative position, i.e., the contravariant
vector is differentiated covariantly with respect to x . Using Egs.(2.25)

and (2.30 ), one gets

div A" = -} B JiH (2.40)

.. . ; —-ij . .
Similarly, the divergence of a double contravariant tensor A-J is given

by

3 =ij i |=mn
div A —(J A™Y) + {m n}A . (2.41)

=1j = Eiq ;
X

n
&
]

[

The gradient of an invariant (scalar) function ¢ is defined as the

covariant vector Ar where

z il (2.42)
r 4T =T *

11l
-
]



The Laplacian of ¢ 1is given by

2 _ ..o=r _ 13 (- rs3p) (2.43)
Vg = divAa = 3 (J & Bisj .

where the contravariant components of A" were obtained by using Eqgs. (2.34)

and (2.42) before substituting in Eq.(2.40).

The curl or rotation of a covariant vector K; is defined as

B = curl 5, = ey (2.44)

i rst
where the quantities ¢ and € o are absolute tensors and are called

the e-systems [19]

Erst - %_erst . & = J & . (2.45)

- rst ; S
The quantities e and e o are equal to zero if any of the two indices
are identical, +1 if the indices are in even permutation order and -1

if the indices are in odd permutation order.

It is worth pointing out here that the components of a vector or
higher order tensor when expressed in generalized co-ordinates are not
what is understood by the physical components in the Cartesian system.
Consider, for example, a simplified spherical co-ordinate system
x =r, §2=9,'§3=¢. In this case only the first has the dimension of length
and the other two have no dimensions. Thus the components of a contravariant
velocity vector would not all have the same physical dimensions. This

problem is alleviated by the following definition of the physical

components, denoted as E(j), of a contravariant vector AJ

A(G) = (g..)% % (no sum on i) (2.46)
]

For a covariant vector we first construct the associated contravariant

vector and then apply Eq.(2.46). Thus



A@G) = (gjj)i gij Ki (no sum on j) (2.47)

For a mixed second order tensor E}j’ the physical component is given by

1
- .. fgii)z -i
A(lJ) = — A., o (2.48)
\83; ]

To find the physical components of a pure covariant or pure contravariant
tensor we should lower or raise an index using Eqs.(2.34) or (2.33).

Thus

—ce, Bii 2 ip— Bii : =ip
Ran - () o0, - () s .68
i] i]

where summation is on p only,

2,3 Conservation Eguations in Generalized Co-ordinates

The conservation equations for an incompressible fluid in the
Cartesian co-ordinates are given by Egs.(2.14) - (2.16). We will now
employ various relationshipsnoted in the previous section tq derive the
conservation equations in the generalized co-ordinate system. The
basis for such a derivation is that the physical laws are independent
of any particular choice of co-ordinates. Mathematically,this

statement means that if a physical law is expressed as

Ast = Bst (2.503

in a co-ordinate system then the same law can be expressed in any other

co-ordinate system as

st Bst (2.51)
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where an overbar indicates quantities in the other co-ordinate system

§ % -
and the quantities Az and Ast and th and EZt are related to each

t
other through Eq.(2.24).

The continuity equation in the generalized co-ordinates is

obtained by combining Eqs.(2.14) and (2.40). Thus we get

£ poﬁj) =0 (2.52)

-
Q2 Qo
il

[ PN

In the momentum equation, Eq.(2.15), the first term on the left hand
side becomes B(poﬁl)lat. The second term is obtained by using

Eq.(2.41) as

The buoyancy term in Eq.(2.15) can readily be transformed to the generalized
co-ordinate system by noting that 613 is a contravariant vector and that

it transforms through Eq.(2.24). We get

|

pgéd

The pressure gradient term in Eq.(2.15) becomes

iy T
311 23p ga 2R
ax? %3

which is the contravariant component of the gradient of pressure. The
strain tensor term of Eq.(2.15) becomes T}g,j which can be expressed

by using Eq.(2.41) as

% 0 . (J%lj) & { i) =mn
e wnf T
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The covariant components of eij become eij where

The contravariant components of éij can be obtained by rasing both

indices using Eq.(2.34). Thus

sii o gimdng
. x im jn - * im jn _
.2 (g & Un,n & 8 un.m) .

Now we note that gl . s from Eq.(2.34). The covariant

= u.,
4 n
Thus

derivative can be expanded by using Eq.(2.25).

Similarly, an expression for anﬁn o can be written by a change of

indices. After some rearranging, we get

i3 1[ 3 05t | in o lgn . [ 5 1 dnhe
e ==.§[g ;;E +g E;H + ({2 n}g + {F m}g )u ]- (2,53)

Now we note that in Cartesian co-ordinates, g%!,2= 0. The same must be

true in any co-ordinate system. Hence by using the definition of

covariant derivative from Eq.(2.25) one gets

i ) . . q
g il nj jlin . 2.54
=L, * {n R} g + {n E}g 0 ( )
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When Eq.(2.54) is used to replace the Christoffel symbol in Eq.(2.53)

we get
i M o ] ij
sti - _% [an Bun + gln Bun _ Bfn ﬁn] . (2.55)
X X X
. ij _iy i . .
The quantity A6™- becomes (G ),ig . Using Eq.(2.40) this becomes

Now the conservation equations can be written in generalized co-ordinates.
The energy equation in transformed co-ordinates is obtained by using

. . . . . [/ - . .
various relationships noted earlier and observing that g is 1nvariant,

The conservation equations in generalized co-ordinates (not

necessarily orthogonal) are summarized as follows:

Continuity
< 9 (Jo G) = 0 (2.56)
s 0
X
Momen tum

(] o, ! 13 ] i ~M-Tl
T Wl ) = 5 G B {m n} Pl &

-i .. =15 .
—p X -t 12010, {mln} T (2.57)
ax 5% %]
Energy
3 1) —j
. EF(DOT) + c 5 aij(J oU T)
= e T g REE g o (2.58)
J =] -1
X ax

- 22 =



where

T - 2;{5” -k ¥ LEGE (2.59)

and for incompressible fluids,

713 o guEtd (2.59a)
and
5 ’ 0 : -] 1j
Lt 1[an &8 e g 3wl _ 37l G“] (2.60)
7 -n _n - ) )
X ax X

These equations are identical to those derived by Gal-Chen and

Somerville [5],

2,4 Co-ordinate Transformation for Flow Field Bounded by Irregular Boundaries

Let us consider the following domain

0 < xl <D, , 0= x2 < D2 , O S¢(x1,x2)£k35w(xl,x2) (2.61)

as the region of interest. The applicable conservation equations are
expressed by Egs.(2.14)-(2.16) in the Cartesian system. This domain is
seen to be bounded by a lower (¢) and an upper () topography where ¢

and ¢ are arbitrary but single valued and continuous functioms of xl

and xz. The quantities D, and D, are lateral dimensions as schematically

1 2
sketched in Fig.2.

We will now look for a transformation of co-ordinates such that
the domain of interest (Eq.(2.61)) becomes a parallelepiped. This is
done by suitably stretching and contracting the topography. The

conditions imposed on the transformation are
(a) it must be reversible (i e., the Jacobian of transformation

must be non-zero )in the domain of interest,

(b) for flat topographies,(i.e., for ¢ and Y to be equal

_23_



to a constant ) the transformation should become the
identity transformatiom, and
(c) the transformation should be continuous up to second

derivatives.

The last requirement results from the fact that we will need to calculate

ij ? s 3
g 175 as well as its derivatives.

We find that the following transformation satisfies all of the

above conditions:

1

gl = X
D,
2
%2 = .;‘_ (2.62)
2
=3 - x3-¢
v =9

where the new co-ordinates are normalized such that the parallelepiped
reduces to a unit cube. The new domain, in other words, is defined by

ol cl, 0 €l, mdDLE <1 (2.63)

The inverse transformation can readily be noted as

xl =D il 3 x2 = Dziz; and 33 = ¢ + (¢“¢)§3 . (2.64)

It is worth emphasising that the suggested transformation is not
unique — there can be an infinite number of others which will meet all
of the requirements. The one chosen here is rather simple and straight

forward.

The transformation suggested by Eq.(2.62) reduces to simplified forms

when either of the two topographies is flat. For example, for flow field
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above an irregular boundary, the third equation of Eq.(2.62) becomes

=3 _ x3-¢
X = §T5

Similarly for flow field below an irregular boundary described by

w(xl,xz) it becomes
=3 _ x3-c .
= ==

The advantage of the co-ordinate transformation method is that the
governing conservation equations can now be solved in a "rectangular"
grid. The equations to be solved will now be given by the generalized
equations [Eqs.(2.56)-(2.58)] which are considerably more complicated
than their counterpart in the Cartesian system. The boundary conditionms
can, of course, be specified in a much more tractable way, as it will be

discussed later.

We illustrate the proposed transformation by its application, for
the sake of simplicity, to a two-dimensional geometry. The topography
also shown in Fig.3, is described by

le

b (x1)
and

5 + 4x

v(xb)

The physical domain of interest is 0 < xl £ 4 and O < x3 <y (xl). The

transformed domain covers a square of unit side as sketched in Fig.3(b).
For this simple case the grid structure in both physical and transformed
spaces are also shown. Another illustration of the transformation is
shown in Fig.4 for a slightly more complicated topography. In either
case the physical domain is transformed to a square domain (cube for the
three-dimensional case). The transformed region is much easier to handle

than the physical space.
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2.5 Evaluation of Christoffel Symbols and the Metric

When the physical domain of interest is transformed to another
domain (hereafter referred to as either the transformed or computational
domain) the governing equations must also be expressed in the transformed
co-ordinates. The transformed equations in a generalized co-ordinate
system are given by Eqs.(2.56) - (2,58). In order to solve these equations

we used to calculate the metric, the Jacobian and the Christoffel symbols.

For the transformation given by Eq.(2.62), the metric is found to

be given by
=3 =3
0 (X-1)¢-%7y,;
D1(¢‘¢)
3 =3
(Z"=1)¢,-x"¢
1/D3 .
D2($‘¢)
3 3 _3 3 f .3 3 1203 3 1*
(% -1)¢1-x wl (% -1)¢2-x ¥y 1+{(x -1)¢15x ¢1}+{(x -1)¢2-x wZI
2
Dl(¢‘¢) D2(¢“¢) (W=4)
(2.65)
= 1 _ 2
where ¢1 = ap/ox, Y, = p/ox” ete,
The determinant of the matrix gmn is found to be given by
2
my _ (1 1 (2.66)
™ w-cp) b %2 -
1

The Jacobian of the transformation can now be obtained by using Eq.(2.23).

We get
J = (=$). DD 5 (2.67)

2

The Christoffel symbols of the second kind are given by Eq.(2.32).
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This equation can be shown to reduce to

=r .23
r _ oX d X
{m n} - ] . (2.68)

All of the Christoffel symbols can now be calculated by using the above

equation. We find

I
=
[we}
o=
P
=
=
'—l
+
~~
=
(o)
=
-
'—I
—
p—
b
SN—r

and ’
{333} = 0 (2.69)

2
where wIZ 9 $/3x18x2 5 ¢]2 = 82¢/8x13x2, etc.
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2.6 Boundary-Layer Treatment

The conservation equations in the transformed co-ordinates can now
be solved using rectangular grids as the topography is removed through
an appropriate co-ordinate transformation, A uniform grid, although
desirable for most finite-difference schemes, is not suitable for thin
boundary-layer problems, however [ 12]. Some technique therefore
must be employed which will a116w fine grids within the boundary-layer
without forcing the same in the interior region. We employ the method
of spatial co-ordinate transformation to accomplish the desired grid
pattern. In this method, the independent variables are subjected to a
change of co-ordinates., Various transformation functions that have been
used are discussed elsewhere [12], We include only a brief recipe of

this technique as applied to boundary layers at §3 =0 and 1.

. -1
Independent variables X are transformed to another set of

variables 51 through the following relationt

. 2a, % (i h 2b, (1-(i
; c tanhanalg(l) tan i € x(ln] b (1-e R (2,70)

1
g ==L -
2 L tanh Zai tanh 2bi

where a, and bi are determined by requiring that there be a desired

number of meshes within the boundary layer, cy is an importance factor
which determines the number of nodes in the interior region and %(i) is
related to ii through Eq.(2.46). The parameters a; and bi are thus the

solutions of the following equations:

n . (o tanh 2a.8 .
oL ~ i 1 ol (2.71)
N 2 tanh Zai '
and
nli =‘i£ tanh Zbiali (2.72)
N 2 tanh 2bi

where Soi and 61i are, respectively, the normalized boundary-layer
thicknesses at ECi)=O and x(i)=1 and an assumption is made that

Goi and Gli are much smaller than unity. These equations can be

Footnote: + The summation convention does not apply to this section.
=3



further simplified when a; or b, is > 4 to give

2n .
1 -1 / 01\
a, = tanh (2.73)
i~ 28 \ ¢, N/
and
2n, .
. 2,74
b, = EEE"' panil ( - iﬁ) ' Lmis
1i i

A word of caution.. must be added that the value of the parameter c;

must be such that the desired number of meshes within the boundary layer
out of a total of N meshes is feasible. Mathematically this condition
can be expressed by requiring that the argument of the tanh-l in

Egs.(2.73) and (2.74) must be less than unity, i.e.,

c. > 2-max(nO (2.75)

i N i,nli) :

We now illustrate this change—of-variable method by applying it
to a problem in which the lower and upper boundary—léyer thicknesses
are taken to be 0.0l and 0.005, respectively. We require that there
be at least four meshes in each of the boundary layers out of a total
of twenty meshes, In this case we find from Eq.(2.75) that ci>0.4.

We choose c; = 0.6, and Eq.(2.70) gives

¢l = 0.3 [1 + tanh 80.5 %' - tanh 161.0(1-%")1+0.4%" . (2.76)
The computed grid pattern is shown in Fig.5. The grid structure is
uniform in the transformed El-space but it is highly non-uniform in

i p : 4
the X -space., Note that this transformation has resulted in a

minimum of four meshes in each of the two boundary-layers.
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In the case where the boundary-layer thicknesses are equal, one
will find that the proposed transformation is symmetric around ﬁi = 0.5,
For those problems where the boundary—-layer is to be considered at omnly
one boundary (such as air flow over a mountain) a simplified and yet

flexible transformation is noted below:

i _ tanh a:E(L) .o .\ mzeaye
£ = Ci m-;.—-—"'(l Ci) (X(l)) (2.77)

where the boundary-layer is assumed at ii = 0 and other wvariables
have been defined., It is worthwhile to point out that we prefer to
use a quadratic term in this case although a linear term can also be
used. The quadratic term tends to give more emphasis to the interior

region,

2.7 Normal Vector to the Surface

In order to apply the boundary conditions we will need an expression
for the unit normal vector n'. This is accomplished by establishing a
relationship between the space and surface co-ordinates. This formulation
is used to show a generalized approach although for fairly simple
geometries a more direct derivation may be possible. The covariant
components of the unit normal vector to a surface are given by
of i

_1
"T7 f fik S

k
; tB (2.78)

a ; s
where € B and 1ts conjugate € are so—-called the e-system tensors and

aB

are involved in connection with the intrinsic geometry of a surface.

Some useful relationships are

E (2.79)

a = a, (2.80)
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i i
- ox~ 0x
%aB ~ 3u® BB ’ (2.81)

where u1 and u2 are the surface co-ordinates, emB equals zero when

the two indices are same, +1 when a = 1, 8 = 2; and -1 when o = 2,
iv. y :

B=1. ta's are the hybrid tensors which connect the surface and

space co—ordinates and are defined as

ti _ X
a " Sa¥ s (2.82)

We note that t: is a contravariant space vector and also a covariant
surface vector. The Greek indexes are used to denote the fact that the
quantity under consideration is defined with respect to the surface
co-ordinates and the italic indexes refer to the space co-ordinates.

The summation convention for Greek indexes is used, similar to that for
italic indexes, namely that (a) a repeated or dummy Greek index in any
term implies a summation from | to 2, and (b) a free or unrepeated Greek
index is to have the range of values 1,2.

Consider a generalized space denoted by z (the co-ordinates need
not be orthogonal). Then the equation of a surface can be expressed as
ii = ii(ul,uz). Note that u” # ua(x],xz,XB) since such an equation is
only meaningful if the point x is on the surface. An expression for the
normal vector to the surface can now be obtained once the surface is defined.

We choose the surface to be defined as

-1 1
=u
2 2
X =u (2.83)
§3 = constant .

Then, the hybrid tensors are given by
=1
t1=2{-(1 = 5l
o 3du o
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o
and,
=3
td = L 0 since §3 = constant (2.84)
o Jul

The covariant components of a unit normal vector to the surface
;3 = constant are computed by combining Eqs.(2.79), (2.82), (2.84) .

with Eq.(2.78) and making use of the definitions for e-tensors. We

find
-1 _aB ] .k
LT3 % ik T B
af
1 2 £3 _ .3 .2
_ ie J(ta tB ta tB)
Va
apB
J
=S 0
Va 2
=0 -
Similarly,
n2 =0

1 _J B 2 _ .2 .1
5 1/g..e (t t? - tg tB)

=il

— g 2.85
- (283

Thus, the cqvariant components of the normal vector are (0,0,J/Va).
We must calculate |aa8‘ now. a o is given by Eq.(2.81l). The

. . . i . .
partial derivatives of X with respect to the surface co-ordinates

need to be calculated. In so doing we will have to make explicit usage
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; 7 i
of the transformation from the Cartesian system X 's to the transformed

system %' 's. Thus, from now on the results will be applicable to the

particular transformation. The transformation is given by Eq.(2.62) and

its inverse by Eq. (2.64).

-B_xl —3.:5':!-- 3_}-{‘] aKl: D
3ul T 3% Bul T 3wlT )

ax2  9x2 %]

T s it — =0

du 9X~  du

ox¥ _ ax3 o%) _ ox3 0R! . ax3 3% pyd %3
sul " B Ju! T B! Bul T 3®2 Wl t 3E3 aal

= 2x? ax!
%! Bul
. z3 . =2
since 9X~_ for ¥ = constant; and 351= 0
du ou '

Thus,

§E3_ E§3 EEI Bgl
dul” Bx! Bx! aul

--Dl[(ia = ])¢1—23¢1]

|
— w

Similarly,

axl
u?

I
o

ax2_
3u? 2

o

and

9x 3 [

a2 = =0 (x3—1)¢2—x3w2]

[
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aaB can now be calculated. We get

2 2
250 = Dl{l + {(x3 —1)¢l- x3¢1} ] DlDz{(x3-1)¢1-x3¢1}{x3-1)¢2-x3¢2}

2 2
DlDz{(x3~1}¢1—x3w1}{(x3-1)¢2—x3¢2} D1[l+{(x3-1)¢z'33¢2} ]

(2.86)

The determinant of this matrix can now be calculated to give

2
1+{(x3-1)¢1-x3w1} + {(x3-1)¢2 -x3¢2}2]

The quantity J/va can now be expressed as

(v=-¢)D1D2

2 g1y
DD, {1 + {(x3 -1)¢l—x3w} + {(x3 - 1)p2"K3¢2} }2

1/ /533

Thus, n, = (0, O, 1//833)

The contravariant components of a unit normal vector to the

surface 53 = constant can be obtained by using Eq.(2.34). Thus,

or, i rm
ot = (gl?, 523, g33)/ /g3
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2.8 - Boundary Conditions -

In order to solve the governing equations ((2.14)-(2.16) in the
Cartesian system or (2.56)-(2.58) in the generalized co-ordinates) we
naed to specify a set of boundary conditions for the velocities and
the temperature or the heat flux. These conditions must be consistent
and any constraints thereupon should be stated. We will begin with
writing the boundary conditions in the Cartesian system and then derive

their equivalent expressions for the generalized co-ordinates.

Two types of boundary conditions may be considered: (a) no-slip
and (b) free-slip. The no-slip boundary conditions are applicable to
all practical fluids which have non-zero viscosity. In this case
adequate resolution of boundary layer is important, In situations
where the behaviour of the fluid far from the boundaries is not very
sensitive to the conditions imposed on the boundaries, the effect of
boundary layer may be filtered out, In this case the free-slip/rigid
boundary conditions may be used. An example of such a situation is the
wind flow over a mountain where the interest is in the interior region.
In the present work we will be dealing with no-slip boundary conditions

only,
Mathematically, the'no—slip boundary conditions can be written as
ut = @ (2.91)

at the boundary surface, In generalized co-ordinates, this condition

becomes
it = 0 - (2.92)
These conditions can readily be implemented.

For non-isothermal problems, boundary conditions are also needed
for the temperature or the heat flux. A general boundary condition can
be written as the sum of the temperature and the heat flux as:

clT + ¢, 9T/an = £ {2.93)

2
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where ¢ and c, are some constants and £ is a known function on the

boundary.

In the generalized co-ordinate system the covariant components
of gradient are defined by Eq.(2.42). The contravariant components of
the gradient can be obtained by combining this equation with Eq. (2.34).
Thus, the contravariént components of the temperature gradient are
gij(aT/aij). The normal component of the temperature gradient is
¢33 (a1/8%3). Thus, Eq.(2.93) becomes

c, T + ¢ g3j EE. = f . (2.94)
I 2 axd
X

2.9 Equations for 2-D Geometries

The conservation equations (Eqs.(2.56)-(2.58)) and the associated
Christoffel symbols and the metrie¢ take considerably simpler forms for
two-dimensional arbitrary-shaped geometries. Because of the interest in

two spatial dimensions for many problems we note down the simplified

equations.

The region of interest in physical space in (xl,x3) co—ordinates
is given by 0 < xi < L and O < ¢(xl) < x3 < w(xl). We transform this
region into a unit square in transformed space (viz. o < ;1 <1; 0¢ x3 < 1) by

using a transformation similar to Eq.(2.62), namely by

il x]/L

i3 & [33-¢(xl)]/T¢(xI)'— ¢(xI)] . (2.95)

]

The metric is now given by

"o i/L2 0 (x3-1)¢1-x3w1_
' (p=9) ¢
0 1 0 12.96)
2
(x3—1)¢1—x31p1 0 1 + {(X3—1)¢’1—X31ﬂ1-‘
- Z
W= (b-9)°



where by = d¢/dx], Yy = dw/&xj and the Jacobian is given by
J=1L (y-¢) . o (2+97)

The only non-vanishing Christoffel symbols are

3 ¢ 3
{1 1} =1p_—¢"¢’1-1 + (P11 = d11)x (2.98)
and
3 3 L
{1 3}={3 1} = lP_‘-t_P- (‘«pl —'¢1) (2.99)
where
Yu=_""1 ,¢91= =y
dx! dx!

The number of additional terms in Eq.(2.57) now reduce to two only.
The resulting equations are not very different from the more familiar

ones,
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APPENDIX

CONSERVATION EQUATIONS IN SPECIFIC CO-ORDINATE SYSTEMS

In this appendix we will show that starting from the generalized
conservation equations [Eqs.(2.56)-(2.60)] more familiar forms of these
equations are obtained in cylindrical and spherical systemSof co-ordinates,
These derivations are given in the spirit of worked examples. They also
provide a cross—check on the correctness of the tensorial manipulations

in the main text.

Cylindrical Co-ordinates

The metric tensor in cylindrical co-ordinates (El’§2’;3 = r,8,z) is
given by
z[//<
/0y
¥
2 =M =7
(ds)™ = &ny 9% dx (A.1)
where
1 0 0
gm =[ O r2 0
0 0 1
or,
2 2
(@s)° = (dr)? + r2@d0)2 + (4z)? . (A.2)
The Jacobian can now be obtained by taking the square root of |gmn . Thus,
$=E — : (A.3)

Also, all but the following Christoffel symbols are identical to zero:

{212} =~% } {122} - {221} -: (a.4)



The tensor components can be expressed in terms of their physical
counterparts by using Eqns.(2.46) - (2.49). Thus,

ad - 8Qd)
Gl B (A.5)
8ij
and
éiJ _ e(ij)
"Bii85; . (A.6)
In other words
u
i & B 3 _
i =u, T T and U = u, (A.7)
and,
e |
Sl gtz e 13
re r Tz | g
(A.8)
222 _ % 23 _ %z 33 _ |
€ =~gab ’ zz
£ r

Now by combining Eq.

(A.2) with (2.60) and using the above relations we
find

o = du b
rr or
1 3y 1 u i (A.9)
= &0 = 3
%m r o * r % {
Ju
.
€2z = Bz

- A2 -



For the ease i # j, Eq.(2.60) when combined with (A.2 ) gives

Using Eq.(A.8 ), we obtain

. ;'l aur . 1 aue‘ ) 22
Ig 2r 36 2 or 2r
_ 1 Bur + 1 guz
€rz T 7 3z 7 or . (A.10)
o1 M1
zZy 7 3z 2r 3

The stress tensor for an incompressible fluid can now be obtained by combining

‘the above equations with T(ij) = 2pe(ij).

The continuity equation in cylindrical co-ordinates is obtained by

combining Eq. (2.56) with Egqs.(A.3 ) and (A.7); it is

1l 3
r 9r

H |
~~

9 3
——————— — - - - ]. 1
(rp_ur) * T 38 (pue ) + e %uz.) 0 (A.11)

The reduction of the momentum equation is rather more complicated. Let
us consider the r—th component first., The summation over m and n indices
reduces to a single term corresponding to m = n = 2 as all other pertinent
Christoffel symbols are equal to zero. The left hand side of Eq.(2.57)

becomes

u u e
i(p Xy 4 %__a'(rpo_;i U(J))- rpoi/._lf /_:L'_ .
"853 VBya "E22

-.A.3...



This expression, after substitution for gj; s and carrying out the sum

over index j,leads to

2

p u

3 1 9 2 1 3 3 _ o8 .
Bt(pour) * T ar (rpour ) + p 9(0 Het ) * z(rpouruz) %

We now substitute for %E (pouz) from Eq.(A.11 ) and then after some

re-arrangement get

9 . 1 3 3 1
iy u u o s _° g - \
0 t(po r) * T or (pdur) * u@ r 96 (p&ur) ok z (pou ) ?p 18

The right hand side of Eq.(2.57) becomes

_ ol 2. l___ 21 1}—22
g 3l T T 3U T T2 oS

where the gravity is assumed to be in parallel but opp051te direction
of the z—-axis. We now substitute expressions for T 1] by combining
Eqs.(A.10 ), (A.6.) and(2.59a). Here again we find that a great deal
of simplification results when %E (pouz) is substituted from Eq.(A.1D),

The right hand side of the momentum equation becomes

_ 9p l-l 3 (Bur\ 1 9 u. 3 ur-l u. 2 du
or )

A 8
— u — — — - i —— =
or Lr 8r "3 2 sad 2] 2 24

Similar exercises can be carried out for 8 and z components of the
momentum equation. Similarly an equation for the energy conservation
in the cylindrical co-ordinates can be obtained. The results are noted

in the following:
Continuity

Vau = 0 (4.,12)

- A4 -



Momen tum

du u du
r 1 2 1 2p 2 v 2 )

o - ek B (s e . e .1
at +|E'Vur T Y= p_ dr * U(v Yr 2 2 a8 } (4.13)
o r r

du u_u ' ou u
) re __1 (13p 2 -2 - _ 8
—a-E-- + P_.Vue + " L= E ('I_" ae)+ '\J(V 1_'[8 + ) ——ar 2 ) (A-]a’)
r r
du
—Z£ + u.7u =P--g -1 3, \)Vzu (A.15)
at - z o p_ 9z z
Energy
e 2L 4 g uT) = : V.KVT + = ' (A.16)
pat p = Po Do

where for any scalar ¢, and vector A

D 52
z 36 3z

or 00
E=auf+bu9+cuz
A A
1 3 1 3 p:4
== ° - — +
Wil B r or (rAr) & r 3 dz

and 4, b and ¢ are the unit vectors along their respective co-ordinates,

and v = u/Po.

Spherical Co—ordinates

The metric tensor in spherical co-ordinates (EI,EB,EB

r,0,¢) is

given by
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gmn = 0] r 0
0 0] rzsin 8
and,
@s)? = ()% + r2de)? + rlsinedp® . (A.17)
The Jacobian is given by
2 .
J=1r sin 8 . (A.18)

Out of a total of 27 Christoffel symbols of the second kind only nine

are non—zero. These are

{212}= Tro {313} - - rsine {323}='Si“6 cos®

{122}={221} = {133}={331} - s and {233}={332}= cor 0. (A1)

The evaluation of strain tensors is rather more cumbersome. We will
illustrate a couple of them and then list the results for other components.
For the case of i = j and using the orthogonal characteristics of the

metric, Eq.(2.60) gives

. 3 awi ii - -
-ii _1 ii u” _ 9g =1
e -2[2 EZ ]

ii P 4
where g = gl for any orthogonal system of co-ordinates and a summation
ii
. . . 2 .
over the index n is implied. Let 8:1 = hi then the above equation becomes

5 i _:
Sii _1 8(hyu™). g dh;  —k 3h, (A.20)

— + —

hy 93x h? 3% h3 Bik
& i
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Similarly, for the case i # j, Eq.(2.60) gives

sq, . 1 3 (A.21)
72 3xd T n2 axi] - ‘

The relationship between the tensorial and physical components of the
velocity is given by Eq.(A.5 ). Explicitly, these are

ue/r , and ﬁ3 =-u¢/(r sin g) - (A.22)

We will now calculate 333 and 523. From Eq.(A.20 ) and the metric we get
=33 1 a“m -1 3(xrsind) -2 3(rsin8)
¢ = 3[a¢'+u or . T % T e }
(r sinB)~ + ‘ e

When this equation is combined with the expressions for the physical
components we get the familiar form for e

¢

as

cotd

su .
r 0

Also,

_23_ %8¢ 1 [ 1 pu? . 1 aad]
e = B
r.rsimd 21| rzsin288¢ . ¢ 26 |

or

1 Etﬁ % sin® 9 u?
®g¢ ~ 2rsind 00 2r  26\sin O .

Results for other elements of the strain tensor are:
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rr ar
u du
. 2k 1 )
6 =¥ " T3
B W )
v ~ 2r %8 2 Br\r
and,
h_L_ﬂ§+£i_Eﬂ . (A.23)
®r¢ ~ 2rsind 20 23r\r/

The actual derivation of the momentum equations starting from Eq.(2.57)
is quite complex and hence the detailed steps will not be repeated here,
The trick to remember is to use the continuity equation to replace only
one-half of the term involving 3u¢/3¢ . The other half must be retained.

Results are noted down for the sake of completeness.

Continuity
V.u=0 (A.24)
Momentum
Bur ug Ll2
SE—-+ E,Vur D, w2 o L g - & %B
r T s P, 3T
2u du
2 r 2 2 . 2 9]
+ v[v i - — (u,sinf) - ———— —=
r 2 rlaing 00 @ r2sine 20 | (A.25)
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du u ’
6 r6 ecotéd 2 1 dp
ot * E:Vue * T T u¢ B T 38"
au u : du
+ v[vzue + Ef aer = 8 g 22cosg . ¢} (A.26)
5o r sin"8 r sin”8 3

r ¢ cothd _ 1 ap
3T E,Vu¢ Tt T ueu¢ porsine 3¢

du du u
{ 2 2 r , 2cos8 6 ¢ 1 (A.27)

Vu, + -
¢ 2 L rzsinze 3¢ r sin28J

Energy

T 1 1 " ’
e V. (uT) =—— V.kVT + —q (A.28)
°pat ~ p (ul) Py Py

where for any scalar ¥, and vector A

o1 Y 1 3, . o0 1 32y (A.29)
2, = 29¥%; .- 2
Vi 32 Y Yoim 39(51n8359 ¥ rZsin2g 392

=2 g LA o1 3
o= a r T b r ar  © Tsin® 39 (4.30)
3A
o1 3, o 1 3, . 1 ¢
VA = T an (rAL) * oraE weeindAy) + e 5 (8.31)

and,

>
b

(A.32)

= 4,9 =












