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Abstract
The problem of interpreting line-of-sight integrated density measure-
ments, transverse to a positive function of two independent variables, is
discussed from the point of view of Optimal Approximation. One advantage
of this approach is that points in the interpretation process where hard,

but inescapable, intuitive choices must be made are clearly exposed.

As well as the "best" density estimate (in Qarious Hilbert spaces)
which can be obtained from the data, questions relating to its probable
error, optimal positioning of the lines of sight and "smoothing" of the
observations are also discussed, without the necessity for introducing

further ad hoc assumptions.
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I INTRODUCTORY DISCUSSION
A problem which arises in a number of experimental fields, including

X-ray tomography and the study of plasmas, both astronomical and in the
laﬁoratory, is that of estimating a 2-dimensional density function ¢
from a finite number of transverse measurements, each of which effectively
integrates ¢ along a line of sight. An idealised diagram of the geom-
etry in question is shown in fig. 1. Here ¢ is presumed to be zero
outside the domain D, while observational information is available in
the form of numbers {Sj; i=1;2, ...ﬂl} such that

B,

J $.ds = sj 5 32152, sens My (1)

43
the integration parameter s being measured along each appropriate line
of sight. For simplicity we can imagine D to be convex, but this is

not strictly necessary.

In the case of experimental plasma diagnostics, which is our main
concern here, ¢ may represent an electron density, vanishing on the
boundary D’ and non-negative within D . Thus, ¢ will also satisfy

the constraints

d(x,y) = vV (x,y) €D’ (2)

I
o
we

¢ (x,y)

v
o
we

v (x,y) e . (3

The measurements {Sj T 1 (U n} may be obtained by laser.inter-
ferometry, using instruments of narrow aperture, so the idealisation of
infinitely thin lines of sight is not unrealistic, especially when the

total number of observations is too small to resolve much fine structure

in ¢ . Nevertheless, it is also possible to include within the formalism



developed below measurements taken along lines of sight of finite width.
An extension of this formalism also permits a natural treatment of
observational errors, as described in section 6, as well as an assess-—
ment of errors resulting from making few observations (resolution

errors) as discussed in section 7.

We take the generally applicable view that, before any measure-
ments are made; ¢ could be any.number of a class H of all those
functions thought to represent physically possible solutions. The
effect of learning the numerical values {Sj w T2 L2y ewomy n} is to
localise ¢ to a subclass V of ii comprising all those members of H
consistent with observations (1) (and, of course, constraints (2) and
(3)). Strictly sﬁeaking, nothing further can legimately be inferred -
from the known informatiom. In order to obtain a single function
@E:Vb to represent as "the solution" to the estimation problem it must
be selected from v, often on the basis of qualitative judgement, but
in any case from extra information or assumptions independent of
constraints (1), (2) and (3). This somewhat unpalatable fact is quite
inescapable. Furthermore, as pointed out by Golomb and Weinberger [61],
in order to localise ¢ to a bounded region of a linear space H the
extra information must be non-linear in nature. In practice, it seems
that engineers and experimental scientists are often strongly disposed
to choosing & as the "smoothest" member of V, s @ procedure which
can be conveniently interpreted within the context of optimal approxima-
tion (see section 2, below) if the norm, or a semi-norm, in H is

acceptable as a quantitative measure of "lack of smoothness'.

One advantage of the 3-stage process
(i) Choose H

(ii) Regard the observations, and other necessary constraints, as



determining V
(iii) Select & from V

is that it clearly shows the possibly subjective nature of stages (i)
and (iii). By paying special attention to these stages, for example
by choosing H according to realistic physical principies, it should
be possible to extract the maximum possible amount of real information
from the measured quantities. Also, by discouraging the use of an
interp;etation method simply for reasons of convenience, the approach
may reduce the risk of inadvertent inclusion of spurious information

arising as an artefact of the technique.

Furthermore, we shall see below that the three stages are not
entirely independent. It turns out that the nature of observations (1)
limits, at least to some degree, the permitted extent of H , wWhich in

turn can suggest a natural way of select &

In some circumstances it may be desirable to treat ¢ as a
(hopefully) small perturbation on another fixed function 1 which is

known to be a good initial approximation to the required density.

2 OPTIMAL APPROXIMATION IN A HILBERT SPACE
In this section we review the essentials of approximation optimal
with respect to the norm in a Hilbert space (e.g. [4], {9]) and show how

the experimental situation fits into this context.’

. Let H denote a real, separable Hilbert space and let
{Fj; i =1,2,...,n} denote a finite number of bounded linear functionals
on H. For example, if H were a space of real functions of a single
real variable, the {E& } might correspond to the operations of ordinate
evaluation at n distinct abscissae. Then, by the Riesz representation

theorem, there exist {fjelh k| =1,2,...,n} such that



Fih = (h,fj) , VhEH 3 j=1,2,..,m

Now suppose that, for some fixed heH , we know numerical

values {Sj; i= 1,2,..i,n} such that
F.h = (h,fj) = 5. i = 12500050 & (4)

This information limits h to lying somewhere in a linear variety
VcH of co-dimension n (see figure 2). We now seek the unique

element ﬁeV of smallest norm.

To minimise a squared norm subject to constraints (4) we introduce

Lagrange multipliers {kj; ] =1,2,...,n} and minimise the quantity
1 n
a® = 3@ + 1 4[5~ @] (5)
2 =1 3L J _

with respect to g€eH . The small change ©6Q in Q resulting from
a small perturbation &g away from the minimizing element h is then
found to be

~ n
8Q = (53,11) _‘Z

A (88,:) + 5(5g,68) -
jo1 i .

~

Neglecting the second order quantity, the condition for h to minimise

Q can thus be expressed as

~ n % =
(6g,h-) \.£.)=0 , Vigedl (6)
j=1 3

and in order for the left-hand side of (6) to vanish for arbitrary

small &g in H we must have

" n
h =] Af, ; (7)
527 473



~

i.e. h must lie in the subspace H0 spanned by -the Riesz representers

of the known functionals (see fig 2).

The constants {lj; i= 1,2,...,n} are then found by appealing to

contraints (4) which, together with (7), give

n
(h,£,) =j£1Aj(fj,fk) =5 3 k=1,2,...,n . (8)

Defining the general element ij of a Gram matrix F by

Fig = E508) 5 §k=1,2,...,0 ,

and introducing vectors A and S in an obvious notation, we see that

(8) can be written as
FA =5 , (9)

which is easily solved for the {2& } required in (7). The minimal
norm |]h”2. is then given by
A D .
IB]l"= A"Fx = 577 's (10a)
also

=Bl = fn] - &)1 = |u)? - g5 (10b)

To make a connection with the experimental situation described in

the previous section we simply identify the spaces H , set h = ¢ and

B.
J
th = f hds = S; 3 i Ly s sl 13 (11)
4
If, as is often the case, ]lhl] is acceptable as a measure of the "lack

~

of smoothness" of h we can also identify h with ® to complete the



interpretation of the experimental situation as a problem in optimal

estimation.

Notice that this formalism implies an important relationship
between the nature of the observations and the choice of Hilbert space.
The linear functionals {Fj; j= 1,2,...,n} must be bounded on H ;

that is

|F.h
]l <o VheH ; j=1,2,...,0 .

]

In fact the "induced norms" of the {F} } are defined as

o NIEssl]
o' B e " gm0 000 (12)

e, || =
0
g0 gl

j

and it is well known that these are related to the corresponding Riesz

representers by
||Fj|| =||fj|| Cow . § =L lseswsll o (13)

If one attempts to choose H so large that it contains an element

g of finite norm such that for some j

IFJgI = 2
then
”FJ”= ”fJ” -
and from (10a) it follows that Hﬁ|[= 0 . In effect, this means that

measurement of the value of an unbounded linear functional on H cannot

be used to distinguish ¢ from the zero element. Conversely, if the



nature of H is fixed by underlying physical principles, the only
useful kind of linear measurement is one corresponding to a bounded

functional on H .

For computational purposes it remains to determine the Riesz
representers of the bounded linear functionals (11). These can then

be uéed to construct F and hence the {lj} and ﬂ from (9) and (7).

If it turns out that the $ so constructed is non-negative every-
where in D a solution has been found which satisfies all thg constraints,
including (3). However, the versagility of this approach becomes
apparent when one realises that in the general case the "smoothest"
permissible function can be found by minimising its norm over H , subject
_to‘all of the known constraints, including (3). The presence of active
non-linear constraints (positivity is a non-linear constraint) may
complicate the computational work and/or necessitate verification of
mutual consistency. Nevertheless, the general approach is defensible
Within the’framewérk of the above ideas. Any errors introduced by
simplifying the calculations will have to be assessed as a separate

exercise.

Quite apart from the relative smoothness of ﬁ is the role it plays
in the estimation of values of bounded linear functionals from known values
of others. Suppose F0 has the Riesz representer fo- and we wish to
estimate the value of Foh from the known values {Sj; i 0 T

The error in a general linear estimate can be expressed as

n
Eh=F h-)yu.c.h , (14)

where the coefficients {ﬁj; j==1,2,...,n} are to be chosen so that ]Ehl

is kept as small as possible. We therefore have



n

n -
- Y )| < |nll £ - ] uLE,
|Eh| = |(h,f j£1u3f3)| < |Inll-Il£, jZluijII (15a)

and actually it turns out that

def IEhl .
Bl = b —— = llf,- L wt. |l . (15b)
AR TR S
Thus, from (15a), |Eh| can be kept small, relative to ||n|| , by choosing the

{uj; j =1,2,...,n} to be the "optimal' values {ﬁj; ] =1,2,...,n} which

minimise [|E|| in (15b).  Introducing vectors
Bo= (U5l ) (16a)
t' = ((fo,fl),(fo,fz),...,(fo,fn)) (16b)

it may be verified that

= F_l_t_:_ . (1l6c)

|=>.

However a fundamental result in optimal approximation holds that, for
any bounded linear functional Fo s

~ - ’\’
Fh=1u's (17)

i.e. an optimal estimate of the value of any bounded linear function can

be found simply by applying the functional to b,  once that is known.

3 THE FIRST HILBERT SPACE
To choose a suitable function space consider first that, if ¢
describes a steady-state electron density in a cross—-section roughly

normal to the magnetic field lines threading a plasma column in some



magnetic containment device, it should satisfy a diffusion-type equation

like
Ve(aVp) = B . (18)

Here o denotes a positive definite matrix or scalar diffusivity while
B represents a scalar source or sink. Both o and B may be rather
c;mplicated functions of position and other significant physical quanti-
ties so, while it might be possible to include information on them in
the construction of a suitable function space, initially we geek an H
independent of o and B .

Specialising to the case where o is a positive scalar, for the
,pu?poses of qualitative discussion, it is well-known (e.g. [101) that
the function ¢ satisfying (18) subject to boundary condition (2) will

minimise the quadratic functional

R(9) = ff[%IV¢IZ-+B¢]adA s0=0onD , (19)
D

dA being an element of area. It follows that ¢ must be a member of the

Hilbert space Hi of all functions {d&- satisfying
def 2 . ;
Il °=" || v da <o 5 4 = 0 on D (20a)
)3
D

with inner product defined by

W1,9,), = JJ. (V1) (W,)-dA 5 W, 0, eH, . (20b)
D

Even if ¢ does not satisfy a diffusion equation it may still be a



member of H, . This space is certainly wide enough to include all
functions which can be well approximated by polyhedral functions,
although conceivably it could be wider than is absolutely necessary to
include all actually eﬁcountered density functions in its cone of
positivity. Also, the norm defined by (20a) could be regarded as a

reasonable measure of '"lack of smoothness'.

We next show how to determine the Riesz representers in H , of

the linear functionals (11), corresponding to the known observations.

For any fixed point Q in .D , let U satisfy the conditions |
ViU = 0 in D (21a)
U= %T-log |P-q| VP eD - (21b)
1t can then be shown by Gauss' theorem that the function
L(P,Q)dgf% log |P-Q| - U | (22)
possesses the reproducing property
W,L(-,Q) =¥(@Q , VyeH, and VQED . (23)

However, L(-,Q) is not a member of H, and because of this it turns
out that the linear functional of measuring an ordinate value at some
fixed point in D 1is not bounded on H, ; such a measurement therefore

conveys no useful information about any other property of ¢ .
From (23) we then obtain

B. B.

] J
Jw(Q)'dSQ= (LP:JL(':Q)‘dSQ)s leeHl; i=1,2,...,n,
4 4

- 10 -



1

so, provided their norms are finite, the functions {fj; ji= 1,2,...,nj
defined by
B.
]
£, = (1,0 ds

A.
J

q YPeD; j=1,2,...,n (24)
will be Riesz representers of the corresponding measurement functionals.

It can indeed be shown that
][fj” <e® ; j=1,2,...,n ,
1
implying that

FjeH;’f s JoLissvessl 5

so the functions {fj;_j= 1,2,...,n} are Riesz representers of the
linear functionals defined by (11), which therefore must be bounded on

H, .

In suﬁmary, according to the foregoing analysis, for any line of
sight Aj Bj we must first solve equations (21) for the reproducing
function U (which, of course, is closely related to the Green's
function for D ), next determine the required Riesz representers from
(24) and then find the Gram matrix F . In general, these operations
will have to be performed numerically. Finally, for eﬁery vector §
of bbservations, the coefficients A fequired in (7) for constructing
$1 (that member of H, of least norm, subject to the linear constraints)
is found by solving (9), and optimal estimates of any desired linear

functionals can then be found simply by operating on $1 .

4, THE SECOND HILBERT SPACE

It turns out (see Appendix) that the Riesz representers in H,

_11._



of the bounded linear functionals in (11) all have derivative discontinuities
across their corresponding lines of sight.  Because of (7) the "optimal
estimator"_ $ of ¢ will also possess such discontinuities. In some
situations this may be quité acceptable but, if not, a smaller Hilbert

space, consisting of somewhat smoother functions, may be called for.

For any particular Riesz representer fj and suitably differentiable

YeH, consider that, by Gauss' theorem,

ij V3p-dA + J:E.ﬁi-ds : (25)

(wsfj)l = H'(WJ)‘( fj)'dA == i n
DP

D

[ F—

The boundary integral vanishes because fj =0on D' , so if we define

a function gj by the requirements

Vg, = - £ in D ' (26a)
and

g. =0 on D' (26b)
relation (25) becomes

Wty = | [owasp.a (27)
. b
It is now clear that, in the Hilbert space H, of all functions {q:}

satisfying
% def 2,12 . =y2y=0 D' (28a)
lvll %€ | jIv*0l®-aa < @ 5 $=TY=0on D", a
D 1

with inner product

(Ipl:lpz)z: J"J(vzwl)(vzwz)'dﬁ* ’ V]'pl’ wZEHz ) (28b)
D

_12_



we have

B.
J
Wt = [pras - (g, 5 Vhen, C (29a)
A,
J
i.e. the function gj defined by (26) is the Riesz representer in H,

of the linear functional represented in H; by fj . Also, of course,

We are now in a position to determine, numerically if necessary, the
Riesz representers {gji:Hz; ] ?1,2,..Q,n} from the corresponding Riesz
representers {ij:HI; ji= 1,2,...,n} and proceed with the construction of
$2€:H2 » according to the scheme outlined in section 2 Thus, if G

is the Gram matrix formed from the {!?i} we have

~ -1 29b

¢2= §FG E ( )
SO

V¥, =-58'¢'t ; §,=0 onD’ . (29¢)
Also

_ _ ([ o2 - j' .

Thus, $2 can be found by solving the Poisson equation (29c), whose
right-hand-side is given only in terms of § and f; i.e. it is not
strictly necessary to find the -{gj } explicitly by solving (26), if

the {fj } are already known.

However, an alternative approach is possible by recognising that,

unlike H, , H, posses a reproducing kernel function [1]. This is the

2

_13_



unique function K defined over D? by the properties

K(-,Q)eH , VQeD (30a)

(W(), K(-, Q)2=¥(Q ; VY¥eH, and VQED . (30b)

From (30b) we see immediately that

Bj Bj : Bj
J 1P(Q)'dSQ = J (\U(').K(-sQ))'dSQ = (lp(')aj. K(-,Q),dSQ), VUJE:HZ
Aj Aj ‘ Aj

so necessarily

B.
J

gj(P) = j K(P,Q)-dsQ : VYPeD ; j=1,2, ...,n. (31)
A,
]
The reproducing kernel function may be constructed as follows:

For any fixed QeD, define a function T(P,Q) , VPeD, by the

conditions
v2(v?T) =0 in D (32a)
2
T = 'Es__ngl" -log|P-q| , VPeD (32b)
1 2 2 1 '
VAT = g o [|p-q| log|P-Qll =2—1T[10g|P—-Q[+]], VPeD'
(32¢)
It can then be verified that the function
def P-Q 2 _
K(P,Q) = -g—— -log|P-Q[-T ; VP,QeD (33)

is a member of H, and also possesses property (30b). Therefore K is

the required reproducing kernel function for H, and
B
] .
gj(P) = J K(P,Q)-dsQ , VYPeD ; j=1,2 ...,0. (34)
A

i

& Y. =



Notice ‘that, beéause of the existence of a reproducing kernel
function, the linear functional of measuring an ordinate value at a
fixed point Q in D is bounded on H, ; in fact (30b) shows that
K(-,Q) is the corresponding Riesz representer. Such an operation
therefore does convey useful information about other properties of the

observed function in H, .

Clearly, other Hilbert spaces of still smoother functions can be
constructed, if desired, by repeating this integration process.
Furthermore, Hilbert spaces of functions not subject to constfaint (2)
can also be constructed aﬁd used for the purpose of optimal approkima—

tion.

55 l OPTIMAL DISPOSITION OF THE LINES OF SIGHT‘

In the initial design of a diagnostic apparatus one may well wish
to choose the lines of sight so as to maximise the "amount of informa-
tion recgived". Obviouslf, it is necessary to specify the object of
measurement since; for example, if one merely wishes to determine the

linear functional

By

F1¢ = J’q) ds, ’
A1

only one line of sight is necessary and it should coincide with A B, .

If, on the other hand, it is important to obtain a good estimate

of the quantity

Fod) = JJ‘I‘dA - (¢sgo) s Say,
D

by means of the optimal linear rule

_15—.



n
Fo= JuF.¢ ,

j=1 .] J
from (15a) we know that
n , n .
F - . B : - -
¥ ¢ j£1uJFJ¢I < lsll-1e, jzluJ el

where the coefficients {ﬁj; j 51,2,...,n} are optimally chosen.
However, the quantity
def RPN
E||l = = . g.
lEll"=" lle, j£1u3 g;l

depends, through the representers {gj; j =l,2,...,n} , upon the
location of the lines of sight and can be minimised still further by an
appropriate choice of the {Aj Bj} as well as the {ﬁj} . This

further minimisation can be performed numerically.
Alternatively, one might wish to minimise the "mean-square—error"

% (¢)€F U l6-3]%+an (35)

Presuming that H possesses the reproducing kernel function K , and

noting that the mapping

M=¢+§ VoeH

is actually an orthogonal projection onto the subspace H0 of H

spanned by the representers {fj; j= 1,2,...,n} , we have

?-aa, ;

2 _ A 2, = A
2@ = [ [ loe oo [[ 1@, 0 xe,o [ ran

D D

_16_



(the suffix P denotes that P .is a "dummy variable").

Hence
=[] 6o, 6m,mu xe 0, o, K(P,Q)) -da,
D
- b om, [ [ g reomure,0-a)), - oo
D
Thus we can write
E2(0) = (4,T¢) , -say, . (37)

where the positive semi-definite operator T has the representer
rep {T} = J I [I-MI K(R,Q).[I-M]_K(P,Q).dA. . (38)
_ 4 R P Q

Inspection of (38) shows that E; may be kept relatively small by
minimising the gréatest eigenvalue of T , or perhaps its trace.
Since trace {1?} is a much more convenient quantity to work with we
next show how it can be determined. Also, it may be shown [12] that
trace {1?} is proportional to the expectation of (h,Th) over
H , with respect to a canonical weak Gaussion distribution, so minimisa-
tion of trace {fr} is a defensible strategy in its own right.

It is known (e.g. [14]) that of {wj; j==1,2,3,...}' denotes any

complete ortho-normal sequence in H then

8

K(P,Q) =
J

Il 0~

. . 3
l‘iJJ (P) liJJ Q) (39)

so, choosing {@j; j =1,2,...,n} to span the subspace H0 and

defining

_17_



ij = (gj,gk) ; j’k o 1’2"",11 ]
we find that

n
M,K(P,Q) =_zle (®).4;@ = g/ ®.Ce@ . (40)
= _
Hence

rep{r} - || {K(R,Q).K(P,Q)—K(R,m{g(q)a‘gm]-K(P,tn.[g @8ls® |
i |

; [g (R)Egm)] [g'(Q)EIg(P)]} any, - (41)

Now choose the {wj; j= 1,2,3,...} to be the ortho-normalised
eigenvectors of T corresponding to the eigenvalues {aj; ji= 1,2,3,..ﬁ}

and note that

rep {1?} =j=1ajuﬁ (P).¢j(R) (42)

so, for the Hilbert space H, in particular, we have

trace {T} =

The trace of T can thus be found by operating through (41) separately

=

Eﬁj ] [‘@ b [T 0@ oy

D

with V; and V; , then identifying P and R and finally integrating
over D . Hence, making use of the properties of the reproducing kernel

function, we find

crace{r} - [[ {0 -5 @Fh@ -5’ @F(@ + 5" @FCE@ -4,
D

« 18 =



i.e. trace {7} = K(Q,Q)-dA_ - g'(Q)G'5(Q)-dA . . 43)
. Q . = Q

The trace of T is then minimised by adjusting the positions of the
lines of sight so as to maximise the quantity
i |

n n ) = =
.”g’(Q)EIg(Q)-dA =] ) @,p, =trace{G1D} = trace{LlD L' L (44)
s U jlrgm EIK
D J

where we define D and the lower triangular matrix L by

Djk = JJ gj(Q).gk(Q)-dAQ 5 j,k=1,2,-..,1’1 (45&)
D

'and

G=LL , (45b)

Although the above prescription was justified only for a particular
Hilbert space possessing a reproducing kernel function the final quantity
to be maximised depends only upon the representer; {gj; j==1,2,...,n} i
Therefore, it is tempting to extend the application of this prescription
to other Hilbert spaces, including H; , even though it does not possess

a reproducing kernel.

6. TREATMENT OF OBSERVATIONAL ERRORS

As remarked in section 1, ¢ cannot be localised to within a bounded
region in H without the aid of non-linear information. In the usual
form of optimal approximation one must know, or assume a bound on the
norm (or a semi-norm) of ¢ , thus limiting it to a hypersphere and
finally restricting it to the hyper-disc of intersection between V and
the hypersphere (see fig. 2). A very fruitful alternative, which

obviates the necessity for a numerical value for the norm bound, is to

_19_



introduce the required localising information by endowing H with
a canonical weak Gaussian distribution [81]. Roughly speaking, this
has the effect of associating with every member heH a prior relative

likelihood

Fmen) = exp A|R|1D . (46)

where A 1is an unknown positive constant.

The weak distribution on H induces a proper distribution on
every finite dimensional subspacé: in particular, the prior density’

function for the quantities
greES {(h,fj); j= l,2,...,n}
is given by
L
2

0 - (2)

Now suppose that during the measurement process the desired vector

=1
exp (-AS'FS) . (47)

3>

S 1is additively contaminated by a stochastic noise vector N , so

the quantity C actually obtained is given by
C=8+N . (48)

Presuming N to be independent of S, with a probability density

function

(S]]

P(N) = (%) exp (—uN' B—IE) (49)

for some positive u and B, it turns out [13] that the maximum

- 20 -



liklihood estimate _§ of 8 is expressible as

s .
§=(I+%BF1)E . (50)

Often B may be taken to the unit matrix, or at least diagonal, corres-
ponding to the situation of mutually independent noise elements. The

méximum liklihood estimate $ of ¢ is then given by
A' ~ -1 A 1 e
o (P) = §'F f(P) = g’(x + ﬂF B) fg - VPeD , : (51)

and, presuming B is known, it only remains to estimate the value of

A

the unknown quantity U=r, say.

Notice that the ratio r can be regarded as a measure of the
"amount of smoothing" applied to the observations C, a zero value
leaves _g = C while an infinite value smooths the observations to
zero. Currently, there seems to be little agreement on the best way
to estimate r , aithough Wahba [15] reports that a technique known as
"generalised cross-validation" appears satisfactofy in many instances.
Another approach, used by the author in circumstances where generalised
cross validation seems unsatisfactory, rests on the observation that
the vectors L—IE and (E-E) should (assuming B=1, for simplicity)
eachihave independent, identically (Gaussian) disﬁributed elements.

The expectation of their scalar product thus satisfies
&5 L7 (-85} =05 1L' =F (52)

if r is properly chosen, so (52) is actually a defining equation for

this ratio. A reasonable estimator r of r can therefore be found by

solving the equation
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§'L” (-85 =0 ' (53)
for T .

The obvious approach of estimating r by the method of maximum
likelihood (e.g. [5] or any statistics text) seems to divide the
"smoothing adjustment" roughly equally between signal and noise, which
is unsatisfactory.if the latter is known a priori to be much smaller
than the former. However, if 1 -is known, as for example when an
experimenter is prepared to specify the variances of his observatioms,

~ then a maximum likelihood estimate % of \, satisfying
~ -] ~ m
S"(F+ AW F(F+A/W) S = _K (54)

often does seem to be satisfactory. However, it must be admitted that

the subject of appropriate data smoothing requires further study.

7. ESTIMATION OF THE RESOLUTION ERROR

Even if the observed values {Sj; j==1,2,...,n} could be regarded
as exact the optimal estimate $ will in general differ from ¢ and
some estimate of the discrepancy is desirable. For example, we might
wish to assess the numerical value of the quantity Eﬁf(¢) defined in
£35). As usual, determination of an error estimate requires non—linear
information, and it happens that the weak Gaussian distribution introduced
in the previous section is very helpful in this respect.

Consider the quantity

EZ(9)
181>

Inspection reveals that the denominator ||#||? is a tame functional on

def

V(92 (55)

H with support HO , while the numerator depends only on the variation
of ¢ over the orthogonal complement of Ho in H . Thus, with

respect to the weak Gaussian distributionm, Eﬁf(¢) and ”¢||2 are
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statistically independent quantities. Their probability density functions
can be obtained from their known characteristic functions [12] so, in
principle, the probability density function of V can be found. It

then becomes an exercise in elementary statistics to find confidence

limits on Q; (¢) from the known (computable) value of ”&[[2.
Even more simply, a rough estimate of Enf(¢) can be found as

E2(9) =~ ]|$]|2.IV(h).u(dh) (56)
H

and it may be shown [12] that, for n > 2 and T defined by (37),

jv(h).ﬁ(dh) o o L) (57)
q n- 2

Hence, from (43) and (56) we have the computable approximation,

2.
E2(g) L0l [[{r@o-goes@}.a, | (s8a)
- (-2) 5
where, of Eourse, “$l[2 is given by

loll2 = sre’s .

Notice that relation (58a) makes sense only when H possesses a
reproducing kernel function so, in particular, it‘cannop be used in
connection with Hl ;5 indeed, for Hl trace (T) 1is actually infinite.
However, even for Hy it will be possible in principle to find the
probability density function for V (which, like the Cauchy distri-
bution, will have infinite mean), from which other reasonable error

techniques may be devised.
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8. SPECIAL CASES
Useful simplifications occur in the special cases when
(a) the region D 1is circular
(b) contours of constant ¢ are known in advance

(c) both (a) and (b) apply simultaneously -

In case (a) the Green's function for H1 and the reproducing
kernel for H, a?e available analytically, making determination of the
representers {fj} and {gj} a relatively easy task. Case (b)
permits H to be chosen to be a space of functions of a single

' variable - a very valuable restriction which allows the values of the

observed quantities to be used with great effectiveness.

Case (a):
If D 1is circular with radius a it may be verified from

properties of the circles of Apollonius that (referring to fig. 3)

L, _P_Q_.EQ'_)
L(P,Q) = 5 log(_PE T (59a)
where
OQJ - az . ) (59b)
0Q

The analytic form of the Riesz representer in H1 of the operation of

integration along AB (see fig. 4), as derived in the Appendix, is given

by

4m - fap

E s § _
(h-y) - log (h-y)? + (b-%)? +2|b-x| - tan { E_i }

+

[ | -1
(h+y) * log| (h+y) 2 + (b-x)2 | + 2|b-x]-tan { E+y }
L " .

(h-Y) -+ log| (h-Y)? + (b—X)z- - 2| b-X| -tan ! {
L .
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. . = 2 iR
- (h+Y).1log [(:h+Y) 2 (b—X)ZJ = 2]b-X| - tan A { Ei§ }— 2h.log (—x a+2_y )

(60a)
where

X = xa’/r? and Y = ya?/r? ‘ (60b)

The representer of the operation of integration along Aij (in fig. 5)

is then easily obtained by rotation through the angle nj 2 Figs. 7 and

8 illuétrate the general properties of fAB » in terms of its contours and
an oblique view, respectively. The Gram matrices required in sections

3 and 4 are readily computable in terms of these representers.

Case (b):

Now suppose a function X is available such that ¢ is known to
be constant on the level curves of X ,» l.e. ¢ = ¢(X) . Without
loss of generality we can take X =0 on D', positive in D and
having maximum value X . Then, for any ¢eH , and depending only

upon X ,

Vo = ¢'VX (61)

where the prime indicates differentiation with respect to X .

Also, for any ¢, yecH > and depending only upon X ’

9,9), = ”dafw'IVXIZ-dsX-dsY » Vé,ven
' |

where dsX and dsY denote elementary arc lengths along contours of

constant height in X and Y respectively (see fig. 6). Thus

2_('
dx
(@, 9), = JJ ¢y’ |vx|? x| “dsy = J¢’(X)-¢'(X)-W(X).dx (62a)
(o]
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where, for each contour C of X,

W) = ﬂ( |vx] - dsy . (62b)
c
Clearly the natural space for optimal approximation of this type of
function is the Hilbert space H3 of absolutely continuous functions

{Tl} of a single real variable X such that
X
zdef 9
[n]*7=" |0 (®)]% W) -dX < e 63)
o :

with the corresponding natural inmer product.

The representer of an operation of line-of-sight integration can be
found (in general, numerically) as follows. Referring to fig. 6, for
every ¢ €H,; we see that if Sj denotes a distance along Aij

measured either from Aj or Bj as appropriate

B. B. B.
j j
dx
F.¢ = ds. = s.| - f——. 5.+ds.
Jd) J¢ h] [¢J] hdsj j 3
A A. A.
] 1 ]

Using the fact that ¢(Aj) =0 = ¢(Bj) and splitting the remaining
integral at M , where X attains its maximum value X(M) on Aij ,

we then find that

X(M) X (M)
Fj¢ i [ ¢’ (X)-sj(X)-dX - .Jd;’ (X)-sj (X)-dx
X(Aj) X(B;)
so that _ <
X X
Fj¢ = Jq)'f’Aj W(x).dx + ,l,d)’fB’- W(X)-dX , (64)
[0} o
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where
X

s, (X)-dx
fA.(X)= -.[-—l—————— ;3 X< XM) , and f£,.(X(M)) otherwise (65a)
J Aj
DN |
and

X s (x)-dx
£ .00 = —.[ J 3 X<XM) , and f_.(XM)) otherwise, (65b)
Bj W(X) Bj

o

0f course, the difference between (65a) and (65b) is that in the former
relation sj is measured inwards from Aj ,» and in the latter Sj is
measured inwards from Bj . Thus, in H, the representer of Fj is

given by
hJ. (X) = fAJ.(X) + fBJ. X)) ¢ vyxelo,X]. . (66)

In the above analysis we made implicit simplifying assumptions that
the contours of X are convex and X is monotonic increasing on AjM
and BjM ; In the case of the plasma diagnostic problem these |
assumptions will often be valid; howevér, they are not essential to
the general approach and can be relaxed at the expense of some slight

algebraic complication.

Case (c):

The situation is particularly simple when D is a disk and ¢
is known to be constant on circles concentric with its centre.
This case, which has been discussed by a number of authors (e.g. [21,
£31, [71, [111), reduces to estimation of the inverse of an Abel trans—
form, subject to a non-negativity constraint, from the finite number of
observations. Inversion of aﬁ Abel transform is well-known to be an
"ill-posed" problem, being equivalent to a process of half-order
differentiation. Consequently, unless special precautions are taken

(e.g. Tikhonov regularisation) numerical results can be very sensitive
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to errors in the initial data and inexact arithmetic. = Actually, the
approach outlined here incorporates a natural regularization and so
is satisfactory on that account. Of course, this desirable feature

also extends to the general case.

9. CONCLUSIONS AND RECOMMENDATIONS

The foregoing discussion really outlines a programme for investi-
gation of techniqﬁes for interpretation of line-of-sight integral
measurements transverse to a plasma column. The basic rationale is
that the experimental situation has a natural interpretation in terms
of the well-established theory of Oﬁtimal Approximation in a Hilbert
space, which also suggests an obvious treatment of observational and
resolution errors, optimization of the lines of sight and various special-
izations, without the need for introduction of further ad hoc procedures.

Although in a general geometry the initial computations may be -

quite lengthy, once the appropriate Gram matrices are available the
interpretation of a set of observations is quite straightforward and
short.

We suggest thét, for any chosen plasma experiment, the following

steps should be undertaken:
(i) The analysis should be elaborated in conformity with the
geometry characterising the experiment.

(ii) Program to determine the Riesz representers, in H,, H, and
any H, thought to be reasonablé, of the {Fj}’ as well as
appropriate Gram matrices and reproducing kernel functions,
should be written.

(iii) Out of the possible lines-of-sight configurations permitted
by other engineering considerations, the optimal one should

be determined (using the programs of (ii), above).
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(iv) Programs sh&uld be written to compute, on a real-time basis,
the "best"function § and any desired expected resolution
errors, taking any observational errors into account.

(v) Practical comparisons of the performance of the programs in
(iv) above should be made with each other and with any other
reasonable interpretation method. These comparisons should
be reviewed whenever the experiment is operated in a different
regime,

(vi) If the non-negativity condition on ¢ ever turns out to be an
active constraint it may be necessary to provide alternative
versions of the above programs. To accomplish this, exten-
sions to the general theory may be necessary, possibly in the

direction suggested by [11].
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12. APPENDIX

Referring to fig. 4, in which the broken circle is the inverse

(with respect to the origin in the full circle) of the line AB, consider

that, by the construction of the circles of Ap

log(jii) - log(PQ

RQ
ﬁence
f

a(B) =

) 0 , wherever P 1lies on D/’

RQ’

u, RQ’

RQ

} ds

r?+b%+5%-2rb cosf -2rs sin 8

] s

r?2(b%+s%)/a’+a%-2rb cos 8 —-2rs sin 6

J {1og[ (s-r sin 8)% + (b-r cosB )?

2
A .(S*aT SinE))2+(b-Elr—c:ose)2

o)

This expression is easy to integrate in closed form, yielding

4Tr°fAB(P)

where

+

(h-y)-log [(h-y)2 + (b-x)? |+ 2|b-x]|-

(h-Y)-log[(h4Y)2-+(b-X)2

(h+y) - log[ (h+y)? + (b-x)? J +2|b-x|-
J- 2loex]- it {2

(h+Y) - log [_(h+¥) 2+ (b-x)? | -2|b-%]-

and Y = ya?/r? .

X = xa?/r?
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Fig.2 Diagrammatic representation of a Hilbert space.

Fig.3 Construction of the reproducing function in H, (disk).
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Fig.4 Geometry for construction of Case (a) Riesz representers nH;.

Fig.5 Orientation of a general line of sight in a disk.

X = constant = XM

Y = constant

Fig.6 An ortho-normal co-ordinate system in D.
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