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ABSTRACT

The statistical accuracy of estimates of the r.m.s. level of a
fluctuating signal with zero mean value is calculated for the case
when the individual readings cannot be assumed to be completely
independent. The accuracy is specified by the "effective number"
of independent readings which would give the same accuracy. An
expression is also given for the effective number when the estimate
is obtained by continuous electronic averaging.

Numerical results are given for some specific forms for the auto-
correlation function of the original fluctuating signal. Features of
these results which are likely to occur in general are pointed out.

A criterion is suggested for choosing the optimum number of readings.
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Introduction

1. In this report we discuss the statistical accuracy of estimates of the root
mean square value of a random signal, under conditions such that the individual
measurements are not completely independent. Let us suppose that we have a
record of the random signal of length T. We assume that the statistical proper-
ties of the signal are independent of time, i.e. the signal is stationary. We
make N measurements of the signal at equal time intervals throughout the record,
where N>» 1. From these measurements we determine an estimate 3 of the r.m.s.
value 0. If T/N»T where T is the correlation time*of the random signal, then
the neasurements are independent, and for a Gaussian distribution the error in
2 is 0/V2N. However, if T/N « T successive measurements are strongly correlated,
and we can get at most about one independent measurement per correlation time.
Thus if we write the error in general as 0/V2Neff, where Neff is the "effective
number" of independent measurements, we have for small N:

Neff ~ N
while for large N, Neff becomes constant
Neff »~ T/t

The work to be described consists Principally of the determination of a general
relation between Neff and N, and its numerical evaluation for some specific
forms for the auto-correlation function of the random signal.

2. The situation discussed here arises in particular in the measurement of
random fluctuations in high current pulsed gas discharges (see, for example,
Rusbridge et al.,1961). We assume that records made in successive pulses are
independent, and that the statistical properties of the random signal do not
vary from pulse to pulse. Then we may obtain independent measurements by mak-
ing one measurement in each pulse and averaging over many pulses. However, if
a period within the pulse (around peak gas current, for example) can be found
over which the random signal is stationary (i.e. the statistical properties are
independent of time), then more than one measurement may be made per pulse,
allowing considerable economy of experimental time. This is the case we shall
consider,

3. We have so far assumed that a series of separate measurements is made, and
the averaging carried out numerically. Alternatively, we may measure the mean
amplitude directly by full wave rectification followed by electronic averaging.
To take account of this case we extend our results to the limit of zero spacing
between readings.

4. In either case the specification of the accuracy by the effective number of
readings introduced above is convenient for several reasons:

(i) By comparing the calculated effective number with the actual number
we obtain a useful measure of the overall effect of correlation
between measurements.

(ii) The effective number is additive, so that we may refer. to the
effective number of measurements per pulse, and it is then easy to
decide how many pulses are needed to obtain a specified accuracy.

(iii) The effective number forms a convenient fi gure of merit which we
may use to compare the accuracy given by electronic and numerical
averaging.

*Note: The correlation times of a random signal are defined in the Appendix.
The macroscopic correlation time is that intended here.



Although we shall calculate the effective number of readings per pulse, which
will usually be a small number, we shall always assume that many pulses are
used in the measurements, so that methods appropriate to large samples may be
used.

Theory
5., Let xkx(t) be a single record of the random signal; the index k distin-
guishes different records. We assume that the records make up a stationary

ergodic ensemble. We use brackets{ > to denote ensemble averages, i.e.averages
over all k; by definition such averages are independent of time. We assume

<nck(t)> =0

6. We define Zi(t) as the result of squaring or rectifying xk(t); then<:Zk(t>
is related to the r.m.s. level O of the random signal xk(t) which we wish to
determine. For square law detection we have

o2 = {Z(t)>

while full wave rectification gives
oz = 5 {zie(1))
u (t) =z (t) - <z (1)
so that <:uk(t£> -0

and define
a2 = {(ux(t) 2>

7. Now suppose we make N readings in each record at equally spaced times given
by

Write

th=to+nAt (0<n<N-1,n integral)

and we form the average of uy(tpy) over all t, and over K separate records. The
average obtained from these KN readings is
_ K-1 _
u = = 2 u
KN K k=o k
where N-1

- 1
uk =ﬁ nEO uk[tn)

then clear1y<Ek> = o, <EKN>= o. If we now square ugy, take the enseble average,
and remember that separate records are uncorrelated, we obtain

Caey = Cuy

N-1 N-1 N-1
<ﬁk§=§5 n>=1o<(uk(tn))2 v22 3 Cugltn)ue(tm)> (1)

m=0 n>m

where

From above, <(uk(tn})2> = a2, and <uk(tn)uk(tm)> depends only on the time
difference tp-tm; we write

<uk(tn—uk(tm)> = <uk(to +nAt)ug(ty + mAt)>
= a2F(rAt)



where r = n - m and F(T) is the normalised auto-correlation function of ug(t).
Substituting in eq. (1) and noting that the term corresponding to a particular
value of r occurs (N - r) times we_have

N-1
2 % (N-r)F(rAt)
{a? = a2 .

+ =
Finally we have N-
(N-r)F(rAt)

2

: N2 §
2 2

1
<W2>= G'Tz I\ll t £=l N2

(2)

1
By 5 S
8. From the definitions of gy > Uk(t) we see that [ <> 1% is the

expected value of the standard deviation of the average of KN readings of u
and hence of Zyx; it represents therefore the accuracy of an estimate of<12k¥tj>
based on KN readings. We may determine a2 by comparison with known results for
the case when all the readings are independent, i.e.

F(rAt)=0o for all r.

Then {wn> = (3)

For a square law detector the variance of an estimate of 0 based on KN readings
is 02/2KN; comparing this with eq. (3) gives

2
g® & 8o
2

For full wave rectification we obtained
2 - g2 (X -
6= = 0% (5 = 1)
(We have ignored the difference between the number of readings KN and the number
of degress of freedom KN-2; we assume KN is always sufficiently large to make

the distinction unimportant).

9. We now define the effective number of readings per record, Ngs¢, by

o o2
<uKN2> = 2KNefg (4)
BN?Z
N-1 (5)
N + ZrEI(N-r)F(rAt)

Comparison with eq.(2) gives
Nefs =

where B=1 for square law detection and B = E%E for a full wave rectifier.

10. Finally, if T is the record length between first and last reading we have

T
At = B
BN
N = N-1 (6)
eff _ rT
N +2 3 (N-r)F (=)
- 11. The extension to the case of continuous averaging is straightforward. Let

6t now denote the reading spacing : then



= L
N=g5p+1
ot = t
(N-r)6t = T+06t -t

Taking the limit as 6t - o we easily obtain

2
Negs = B —— (7)
20T (T-t)F(t)at

12. A result which may be shown to be equivalent to eq,(7) has been obtained
directly by Rice (1945) and Jacobs (1960).

13. As a check of the accuracy of eq.(6),note that if F = o for all r we obtain
Neff = BN, and if F = 1 for all r it can easily be shown that Neff = P as we
should expect.

14, Equations (6) and (7) are the basic results we require. In para.3 we shall
investigate them further using specific forms for F(t) to illustrate their
significance and obtain some results of practical importance. Note that F(t)
is the auto-correlation function of ug(t); from results given by Rice (1945)
and by Laning and Battin (1956) we may find the relation between F(t) and R(t),
the auto-correlation function of the original random signal xk(t). For a

square law detector we have
F = R? (8)

and for a full wave rectifier
v1-R? + Rsin 'R- 1 (
Ty -1 )

F =

Numerical Results for Special Cases

15. The computation of eqs.(6) and (7) is straight forward but tedious where
many cases are required. A short programme for carrying out these computations
was therefore written for the IBM 7090 computer at A.W.R.E. Aldermaston.

16. To obtain numerical results we must specify some form for the auto-
correlation function (a.c.f.) R(t). The exact form must depend on the signal
to be measured and often cannot be predicted a priori. We therefore choose
representative forms and call attention to those features of the results which
are likely to be independent of the details of the form of R(t). A broad dis-
tinction may be drawn between oscillatory and non-oscillatory forms for R(t).
In each case we may consider continuous or discrete averaging, and square law
detection or full wave rectification. The most interesting results obtained
are for the case of discrete averaging, but we include some results for contin-
uous averaging since they will be required for a discussion of the continuous
averaging method (Lees and Rusbridge, to be published).

(a) Oscillatory auto-correlati on function

17. The form used for R(t) was suggested by an experimental arrangement includ-
ing bandpass filters with passbands of the order of 1 octave wide (Rusbridge
et.al. 1961). Suppose the filter has a passband extending from a lower limit
We to an upper limit bwo, and that the cut-off is infinitely sharp at both
limits. Suppose in addition that the input random signal has a power spectrum
which is flat over the passband of the filter. Then the (normalised) a.c.f. is
easily obtained from the Wiener-Khintchine theorem:



b

I Yo cos wt dw
Weo
R(t) = =
o
4;0 dw

sin buwgt -sin wet

R is shown as a function of t in Fig.l(a).

18. We consider first the case of discrete averaging and square law detection.
Fig.2 shows some typical results : here Neff is shown as a function of N for
various values of the filter constant and constant record length T. For small
N the readings are uncorrelated and Ng¢s =N, while as N—+ow, Neff tends to a
finite limit. For intermediate values of N, Ngoff oscillates, and for small b
the maximum value of Neff is actually greater than the limiting value. (The
smooth curves are drawn simply to give an idea of the trend and to help identi-
fy th? points; of course only the points at integral values of N are signifi-
cant.

19. We suggest that the optimum value of N is that correspond ing to the most
prominent maximum; the difference between N and Neff is less than 20% at this
point. From these and other results a general expression has been found for
the value of N corresponding to this maximum : this is the nearest integer to
5

ZNm + 1

where Ny is the mean number of maxima per record in the original random signal.
This is likely to be approximately correct for any oscillatory form for R(t).
The sharpness of the maximum is to be noted; particularly for small b an error
of 1 reading in N will make a great difference to the accuracy attained. 1In
doubt, it is better to choose a smaller value of N than a larger.

20, Fig.3 shows a comparison of one of the cases of Fig.2 and the corresponding
result for full wave rectification. The latter method is always less accurate
but the difference is small.

21. For the case of continuous averaging we calculate Neff as a function of T
for various values of b. The results are shown in fig.4. 1In all cases Ngff
increases rapidly to about 2.0 for wgT= 2.0 and increases more slowly and
approximately linearly thereafter. Fig.5 shows a further comparison of square
law detection and full wave rectification; again the latter is less accurate.
This result has also been noticed by Jacobs (1960).

(b) Non-oscillatory auto-correlation function

22, Here we have little experimental guidance as to the form of R(t). The
situation is discussed in the Appendix, where for following form is proposed
as the simplest which satisfies the necessary conditions:

ela-v)t, ~(a-v)t

e (11)
e e

R(t)=
+
provided 2a>y, where a and y are constants related to the microscopic and
macroscopic correlation times. Here we have limited the computation to the
case o =Y, which gives

R(t) = sech ¥t (12)

this is shown in Fig.1(b). The macroscopic correlation time Tz (see below,
Appendix) is then given by



a
]

. = Jo R(t)dt
s

2y

23. Typical results for discrete averaging and square law detection are shown
in Fig.6,giving Negf as a function of N for various values of ¥ and constant
record length T =20 (arbi%;ary units). As we might expect, the limiting value
of Neff is approximately T, and for large values of this ratio Neff increases
monotonically to this limit. For small values of 1712, however, Neff has a
maximum at a small value of N (cf. the case of small b in the oscillatory case).
Discrete averaging is then slightly more efficient than continuous.

24. We suggest as a convenient criterion, that the optimum value of N should
be taken as the largest value of N for which

H%%E > 0.8
Values of N given by this criterion are marked in Fig.6 for the various cases.

25, No results for full wave rectification or square law detection have been
calculated in this case.

Conclusion

26. We have introduced the idea of the effective number of readings Neff as an
indication of the accuracy of measurements of the r.m.s. values of fluctuating
quantities in pulses devices, and have obtained expressions for it in terms of
the actual number of readings in the case of discrete averaging, and in terms
of the averaging time for the case of continuous averaging. These expressions
are valid provided the records obtained from successive pulses can be considered
to represent sections of a stationary random process, and provided the total
number of readings is large. They contain the auto-correlation function of the
fluctuating signal which in general depends on the actual experiment, but to
illustrate features of practical importance they have been evaluated for speci-
fic forms for the auto-correlation function.

27. The results obtained may be summarised as follows:-

(1) Full wave rectification is in all cases slightly less accurate
than square law detection for the same number of readings.

(2) When the auto-correlation function is oscillatory a sharp maximum
is found in Neff considered as a function of N for constant record
length. This represents the most economical value of N for making
measurements.

(3) When the auto-correlation function is non-oscillatory there may
still be a broad maximum in Neff if the ratio of record length to
scale time is not very large, but in general Neff increases mono-
tonically to a limiting value.

A criterion for choosing the value of N for use in practice is suggested.



APPENDIX

The Form of the Non-Oscillatory Auto-Correlation Function

28. A common form given in the literature for a non-oscillatory autocorrelation
function (e.g. Bendat 1958) is

-R(t)=e-Y|f| (13)

This has the virtue of analytic simplicity, but it does not in fact represent
an acceptable a.c.f. because of the discontinuity of slope at t =o. This leads
to some difficulty in its application; for example, a random signal with this
a.c.f. would have an infinite number of zeros per unit time.

29. To resolve this difficulty we note that two parameters of physical signifi-
cance may be defined for a general a.c.f, For small t we may expand R(t) in
the form

R(t) = 1- at2

with a > o. Then one parameter is the microscopic correlation time T, defined
by(Fig.?) 1
Ty 7= Cic
or
- S W
Ty= (dzR
dt2 t=0

The other parameter is the macroscopic correlation time T, defined by
T, =J R(t)dt

Clearly the simple form of eq.(13) represents a case in which T,=o0; it is not
surprising therefore that quantities such as the number of zeros per unit time,
which depend primarily upon T,, should become infinite.

30. A convenient and fairly simple form for R(t) which contains two parameters
explicitly is given by

e(a'-T)t +e'(04"Y)t (14)
Ot -0t

R(t) =

provided 2a>v. In this case the derivation is continuous at t =o0; however,
we recover eq.(13) in the limit @ —+w. A further necessary condition for R(t)

to represent an acceptable a.c.f. is that the corresponding power spectrum must
not be negative. By the Wiener-Khintchine theorem the power spectrum is

proportional to
G(w) =j(')°°R(t) cos wt dt
For the above form of R(t) we have
cos(3m E;I)cosh(%ﬂg)
Glw) =L -a am : (15)
@1 cos(x 2EI)+ cosh (ﬂa)

(Brdelyi et.al. 1954). .
which is positive for all w; eq.(14) therefore gives an accep?able a.c.f. Franm
eqs.(14) and (15) we may find the values of the correlation times:



cos(3x® Eix)

1 +cos W(Eéx)

For a—+o it is easily verified that we obtain T; —0,T, =Y '

corresponding to
the values obtained from eq.(13).
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CLM-R22 Fig.1l(a). Typical oscillatory auto-correlation function,
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CLM-R22. Fig.1l(b). Typical non-oscillatory auto-correlation function.
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CLM-R22, Fig.4. Neff as a function of averaging time T, for various
valves of b. Oscillatory auto-correlation function.
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CLM-R22, Fig.5. Comparison of square law detection and full wave
rectification,
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