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ABSTRACT

An accurate expression for the wavelength spectral density of plane polarised
light scattered by a relativistic Maxwellian distribution of electrons is
presented in a simple analytic form suitable for rapid processing of Thomson
scattering data from fusion plasmas. When combined with the relevant
statistical analysis, this should find wide application to the automatic

measurement of electron temperatures in the range 100keV 3> T, » 100eV by laser

scattering.
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INTRODUCTION

Since the advent of laser scattering as a plasma diagnostic, magnetic
confinement machines have grown larger and the plasmas they contain have
got hotter, to the point where relativistic effects have to be taken into
account when deducing the electron temperature from the observed photon
scattering spectum. Even when Te is only 100eV, the departure of the
spectral density function from the classical gaussian form is such that
the temperature will be over-estimated by 5% for 90° scattering, if the
normal fitting routine is applied to experimental scattering data
obtained on the short wavelength side of the laser line; the necessary
correction increases to 15% for Ty = lkeV - and measurements at higher
temperatures still will be grossly in error — as a result of the
relativistic blue shift and consequent asymmetry of the scattering

spectrum (Matoba et al 1979).

The relativistic formula for the frequency spectrum of the scattered
power was originally expressed in the form of an integral over electron
velocity space by Pechacek and Trivelpiece as early as 1967, who
published several representative sets of scattering spectra computed for
electron temperatures in the range 25-200keV and scattering angles of 90°
and 180°, For practical purposes a first-order correction (in v/e) to
the standard gaussian given by Sheffield is adequate for deriving values
of T, up to several keV (within ~ 5%); this has been extended to 25 keV
by Mattioli and Papoular (error in Te € 15%), with the relevant

statistical analysis for the reduction of experimental results.

An expression for the wavelength dependence of the scattered power which
includes the second-order terms has recently been derived from the
relativistic scattering integral by Matoba et al (who also computed
precise numerical values for the scattering spectra), but even this
introduces ~ 5% error at 10keV (and ~ 10% at 25keV) as a result of the
systematic deviation of the second-order spectral density function from

the full relativistic curve*. However, an analytic formula for the

‘relativistic scattering spectrum is available from the work of Zhuravlev

and Petrov, who derived their results from the lorentz invariant

differential scattering cross-section obtained from quantum

*by approximately 307% in the wings at 10keV



electrodynamics. Although this work has been criticised for lack of
correspondence with classical theory by Kukushkin (1981) and corrected
for the transformation of the Stokes' parameters by Zhuravlev et al
(1980), the resultant error in Te is negligible for Thomson scattering on
fusion plasmas (Selden 1980), and the simplicity of the analytic
expression is of great advantage for devising numerical curve-fitting

routines for automatic data analysis.

2.  ANALYSIS
The theory of Thomson scattering in plasmas with temperatures of several
kilovolts has to take account of two relativistic effects:
(i) the temperature-dependent 'blue shift' of the scattering spectrum
(ii) changes in the polarisation of the scattered light.
The first arises principally from the forward bias in the radiation
pattern of a relativistic -electron, so that approaching electrons scatter
more light toward the obsefver than those which are receding; the second
corresponds to the change in orientation of the E-vector of the incident
light as seen by the electron, with a fraction ~ v2/c2 of the scattered
light appearing in the orthogonal polarisation. In addition to these,
the distribution function has to be modified to allow for the variation
of electron mass with velocity, which depresses the wings of the

classical Maxwellian distribution.

2.1 The Scattered Spectral Density

The intensity of the scattering spectrum can be calculated by integrating
the differential scattering cross-section** over the electron velocity

distribution, as follows:

l-Bi

3
) ¢ B ¢H)

2 2
d"oc _ 22 1-B
Tods = o @ /I =, £ u(@) o
where ¢ is the total scattering cross—-section, ry = ez/mc2 is the
classical radius of the electron, w = mslmi, the ratio of the scattered
to the incident frequency, Bi and BS are the components of B = v/c in the

incident and scattered directions, f(B) is the electron velocity

**the derivation of this quantity for a relativistic electron is discussed in
the Appendix.



distribution function, u(E_) is a polarisation factor, and the delta
function accounts for the frequency change of each scattering event, for

which (Sheffield 1972);

1-B w
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The factor m2 outside the integral introduces an asymmetry in the
scattering spectrum, which gives rise to the observed 'blue shift'. With
both the incident and the detected scattered light polarised
perpendicularly to the scattering plane, we have the following result

from classical electrodynamics

af) = {1 - H= ;Z??{ 55 B} 3)
for a relativistic electron, where BE is the transverse velocity
component (i.e. parallel to the E-vector of the incident radiation),

and O is the scattering angle (Williamson and Clarke 1971). Equation (1)
has been integrated numerically for a wide range of electron temperatures
(500eV < T, < 200keV) and a number of scattering angles (6 = 50°, 90° and
180°%) by Pechacek and Trivelpiece and by Matoba et al., assuming a

relativistic Maxwellian velocity distribution;

2)—5/2 2 ~%}

£(B) = c(a) (1 - B exp{-2¢ (1 - B%) (4)
where a = mc2/2kTe, and c(a) is a normalising constant. The function
u(B ), which appears in the relativistic formulation of the classical
dipole description of radiation scattering (Sheffield21972), here
represents a reduction in the scattered power (by O0(B )) arising from
the transverse motion of the electron; in general its form will depend on

the polarisation of the incident and the scattered radiation**%*,

In the absence of any complete analysis of the relativistic scattering
integral, it is necessary to make an approximation to obtain a practical
formula for the scattering spectrum. The most accurate to date is

obtained by taking a mean value for the polarisation term - thus,

***The form of u(B) for arbitrary polarisations is discussed in
Williamson and Clarke (1971).



with <u(B)> = q(a) € 1 , we find that equation (1) can now be integrated
analytically (Zhuravlev and Petrov (1972, 1979)),

{2x 2a)} 7" W ?
= = - (w- 1
S(w,0) = q(a) = mzexp{ 201 + 5o cose)} (5)

With the substitutions w + (1 + e)_l and dw » -(1 + E)-Zde, where
l1+¢€-= Rslki (the ratio of the scattered to the incident wavelengths),

we find the following expression for the wavelength spectral density,
-1
S(e,0) = q(a) {2K2(2a)A(€,9)} exp{-2aB(e,0)} (6a)

where the functions of (£,0) are defined as follows,

ACe,0) = (1 + )3 [2(1 + €)(L - cosd) + €2}* (6b)
82 RS
B, = {1 + s oym —cosey! (6c)

and q(a) < 1 for @ > ¢ > 0

The normalising factor contains the modified Bessel function K,(z), which
is tabulated in Abramowitz and Stegun (p.417-422). The form

of S(e,0) given above is both simple to calculate and accurate in use;
direct comparison with the numerical results of Matoba et al**** shows
excellent agreement with the computed spectra for T, up to 100keV for

relative values of the scattered power (see Figures 1 and 2 and Table 1).

Although the relativistic polarisation term u(B) has little effect on the
shape of the scattering spectrum over the whole temperature range, it
does reduce the intensity of the scattered light, so that it will be
necessary to apply the correction factor q(a) in order to find the
absolute electron density n, from a scattering experiment in which T, is

derived by fitting S(e,0) to the experimental data (cf. Figure 3).

As a check on the validity of the analytical expression for S(g,0) at

lower temperatures, equations (6a, b, c) can be expanded to first-order

*%%*Kindly supplied by the authors.



2.2

to give the result

3

s(W e 0y = 5,01 - —Z—e topreegy)  when q(a) = 1 (7a)
(0) = (T % 1 _ ae
where S (3,9) (“) ; 1._ cose EXP{ m]’ (Tb)

in agreement with the correction to the classical gaussian scattering
spectrum first derived in this form by Sheffield (1972). However, a
second-order expansion of S(g,0) does not yield strict term—-by-term
correspondence with the expression derived by Matoba et al, as a result

of averaging over the polarisation term in the scattering integral.

Relativistic Blue Shift

The asymmetry in the scattered spectrum, in which the peak is shifted
towards shorter wavelengths, is a second—-order effect (~ kTe/mcz) arising
from the forward bias in the radiation pattern of high velocity
electrons, such that more power 1s scattered by electrons moving toward
the observer ('blue') than by those moving away ('red'). Its magnitude
can be calculated from the spectral density function S(e,0)

when 8S/0e = 0 and 628/652 < 0, as follows

dlnA/de
% 5870e (8

ax =

on differentiating equation (6a) and setting the result to zero. Since
neither of the functions A(e,0) and B(e€,0) has been defined in equation
(8), this relation can be used quite generally to calculate blue shift
formulae from any spectrél density function which can be expressed in the
form Afl(s,e) exp{-ZaB(e,G)} s including most of the approximations given
in the literature (usually as a product of the gaussian exponential term

with a polynomial expansion in € and a).

Inserting the functions A(e,8) and B(e,0) defined in equations (6b), (6c)

in equation (8), carrying out the differentiations and re-arranging

terms, we get the final result,

2x (1 - cosB){4x 2 7x cosb + 3}2
a2 __GC [ c (9)

2.2 2
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for any scattering angle © , where x, = 1+ By ™ Kclki, the ratio of the
wavelengths at the peak of the scattered spectrum. Equation (9) is an
implicit relation for the blue shift (hc - Ki) as a function of electron
temperature, since it gives T, (via «) in terms of hc’ and is best
tabulated as such. Explicit (but less accurate) formulae can be derived
on expanding equation (9) in powers of 1/a for moderate values of the

blue shift (sc < 0.3)
e (x,0) = sc(l) + ecfz) + o (10)

The leading term of such an expansion yields the well-known result

derived by Sheffield from first—-order theory,

. 2
c(1) _ 7 sinﬁ 8/2 (11)

£

This shows the initially linear dependence of blue shift on electron
temperature, which is reasonably accurate when T, < 10keV (for 90°

scattering). The second-order term is;

(2) _, 7 sin® /2 {1 +7 sin®

c 2a2

6/2} (12)

£

giving a small reduction in the magnitude of the first-order (linear)
shift by ~ (kTe/mcz)z, such that the blue-shift vs. temperature relation
is nonlinear above 10keV (although still increasing monotonically). For

high temperatures (T, 2 100keV) we find;

X e (13)

for X, << 1, showing that Ac goes asymptotically to zero as Te-2 (for
2
hvy £<€ me™).

RESULTS FOR 90° SCATTERING
Setting © = n/2 in equations (5), (6) and substituting x =1 + € = hs/ki,

we find;

S(a,x) = a(a) Y(x) exp{— 2a Z(x)} (14)

where Y(x) = x (1 + Kz)-!‘rg



_1
and Z(x) =77 (x + 2
The extremely simple form of equation (14) facilitates rapid calculation
of the scattering spectrum for any a , and it is also very accurate (see
=1
below). The normalising factor a(a) = {2K2(2a)} can be approximated
by the asymptotic expansion**#**%

a'(@) = (a/m® e®(z(a))™!
where I(a) = 1 + iga + —13.7 > - 15‘7'93 o s i (15)
21(1l6a) 3!1(16a)
=5
when a 3> 1, with absolute error 6 < 10 for T, < 25keV. Values of

the relafive scattered power calculated from
P(a,x) = v2 Y(x) exp {2a[1l - z(x)]} (16)

which is normalised to unity at x = 1, i.e. for zero shift (e = 0), are
compared with the computed values of the spectral density function of
Matoba et al in Table 1, and some of the points plotted (with appropriate
re-scaling) on their published curves for T, = 20 and 50keV in Figure 1,
from which it is clear that the two theoretical forms of the scattering
spectrum would be indistinguishable experimentally at the 1% level even
at these temperatures (assuming arbitrary plasma density). Inspection of
the tabulated values shows that the maximum differemce in magnitude

1s < 2.1073 at 20keV, and the mean relative error is + 0.125% averaged
over the whole useful spectrum (- 0.6 < € < 0.6). The corresponding
figures for Te = 5 keV are ~ 10_1+ and 0.005% respectively

(for - 0.3 < € < 0.3), showing that the simple formula (equation (14))
can be used equally well for accurate fitting of 90° Thomson scattering
data from fusion plasmas with electron temperatures up to 20keV

(to < 0.1%). Even for extreme temperatures, the agreement between the
two is still good (~ 1% at 100keV and ~ 3% at 200keV), and certainly
within experimental error for incoherent scattering on plasmas with

electron densities n, ~ 1013 to 1014 cmf3.

*%%k*Abramowitz and Stegun 'Handbook of Mathematical Functions' (Dover Publ.
1965) p. 378



Figure 2 shows the fractional difference AS(e)/S(e) plotted as a function
of € for T, = 20keV, from which it is clear that the analytic form of the
spectral density function has a slightly greater width and blue-shift
than the scattering density calculated from equation (1), and is thus
equivalent to a slightly higher temperature, though the difference is
very small when compared with the available polynomial expansions of the
scattering spectrum i.e. ~ 0.1% at 20keV vs 137 for lst order theory and
8% for 2nd order.

A plot of the density ratio q(a) vs T, for 90° scattering is shown in
Figure 3, which illustrates how the absolute scattered power - and hence
the calibrated electron density - increasingly departs from the analytic
formula for T, > lkeV, which should be taken into account in carrying out
accurate scattering experiments at higher temperatures. The function
q(a ) was calculated by comparing the normalising factor a(a) with
computed values of equation (1) for e = 0, g, (Table 2). The difference
in spectral density amounts to ~ 1% at Te = 3keV, increasing to 3% at
10keV and 5.6% at 20keV for 90° scattering, and will be correspondingly
greater (or less) for larger (or smaller) scattering angles, in marked
contrast with the extremely close agreement in the electron temperature

values deduced from curve fitting.
The blue-shift for © = 90° can be found from the formula;

, 2x_ (bx 2 4 332

a” = —=< = (17)
a-x2a- x, ")

with -€, = 1 = X,
which follows from equation (9) on setting cos® = 0. The function on the
rhs of equation (17) was evaluated for the series of values of Ec in
Table 3, which shows the corresponding electron temperatures Tg and the
first and second-order shifts Ec(l) and Ec(z) calculated from equations
(11) and (12). These results show that the first-order formula
(Sheffield 1972) is within 10Z of the exact value up to ~ 1lOkeV, while
the second-order expression has a similar accuracy up to T, ~ 40keV.

Comparison with the results of Matoba et al (see their Figure 5) gives



within 1% to 50keV and better than 10% for T, &t 100keV, showing that the
scattering formulae agree within experimental error in determining blue-
shifts at plasma densities Dg, 1013 cm_3 over the non-linear region

0.1 > Ec > 0.7 (i.e. 10keV < Te < 100keV).

BACKWARD SCATTERING

The greatest asymmetry is found in the spectrum of light scattered
through 180° (Pechacek and Trivelpiece (1967)). Substituting cos® = -1
in equations (6) and (9), we get the following expressions for the

scattering spectrum and the relativistic blue-shift respectively

S(a,x) = —3—3(“—)— ssnle mla" * % iy} (18)
x (1 + x)
,  hx (hx_+ 3)2
and o = —< ‘"'22 (19)
(1= x )

with the symbols as defined in section 3. In practice we would

have 6 € 7 and it would also be necessary to allow for rotation of the
scattering plane (given an annular scattering geometry) for an exact
analysis (Zhuravlev and Petrov (1980)). However, these effects are
second order in (m — 6), and the extremely simple form of the scattering
spectrum in equation (18) means that experimental data can be rapidly
fitted with an efficient routine. The blue-shift given by the function
in equation (19) is compared with the (smaller) shift for 90° scattering

in Figure 4, and precise numerical values given in Table 4.

SUMMARY AND CONCLUSIONS

A numerical comparison between the relativistic spectral density derived
from classical electrodynamics and the analytic expression obtained by
Zhuravlev and Petrov shows no experimentally detectable difference in the
shape of the scattering spectra for Ty 50keV (to better than 1%).
However, for electron temperatures T, » 5keV and scattering

angles Os > 50°, an independent calibration of the electron density will

"be necessary to allow for the relativistic correction to the polarisation

term. Nevertheless, the extremely simple form of the analytic

approximation to the spectral density function (when both the incident
and the scattered light are polarised perpendicularly to the scattering

plane) makes it ideal for routine analysis of Thomson scattering data in

the field of high temperature (fusion) plasmas, and particularly relevant

_9_



to the new generation of Tokamaks now under construction.
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APPENDIX

Calculating the Differential Scattering Cross-—section for

a Relativistic Electron

The differential cross—section for scattering a photon on an electron
initially at rest is

i=3

E fii Eiﬁ

do _ _ 2 ,wl2 '
1 i

" Yo (39

[E, # £ &8y ¥%yY + }
g (A1)

from quantum electrodynamics, where r = e2/mc2 is the classical radius of the
electron, Ei, 51' (1i=1,2,3) are the Stokes' polarisation parameters of the
incident and scattered photons, whose frequencies w, w' are related by the

Compton formula (Heitler p.21l).

%, =1+ 397 (1 - cos®) (A2)
me

where 0 is the scattering angle, and the coefficients fos £3 fj4 in equation

(Al) are functions of w'/w and © (Berestetskii, ILifshitz and Pitaevskii

p.302). If both the incidentrand the detected photons are linearly polarised

( 52 = 52' = 0, 512 + 532 =1), the differential scattering cross—section

becomes
2
do 2 w2 2 w-w"
=) @7 feos®s + 5] (43

where cos¢ = e . e', and e, e' are the linear polarisation vectors (ibid.

p.303). From equation (A2) we find the term
2)2 o Ak

(m—m')zlww' ~ (hw'/me 10 for visible light, so that equation (A3) can

be written

L}
%%c = rOZ (g— 2 le . Eﬁz (A%)
whence,

do = ro2 (w'/m)2 dQ' for e Il e'

The factor (m'/w)2 = (k‘/k)2 in (A4), where k, k' are the wave numbers of the

incident and scattered photons, comes from the phase—space element kde, and

- 12 =



distinguishes the quantum formula from the classical expression

(%)class - r02II i 12 (A5

for an electron at rest (Jackson pp.679-682). The difference is ~ hm/mc2 2
corresponding to the recoil of the electron on scattering (Compton effect).
The differential scattering cross—-section do is an iﬁvariant, and can
therefore be re-expressed for a relativistic electron through a lorentz
transformation of (A4) as follows (cf. Akhiezer and Berestetskii (1965)

pp 369, 479-480):

w ]
_ .2 ,70.,2 : 2
dob = B (EE—J on cos ¢0 (46)

where the suffix 'o' refers to the inertial frame K0 in which the electron is

initially at rest. From the invariance of the phase space element, we have

d@ ' = )% dar (A7)
[o]

and from the relativistic Doppler formula
| - ] -
k' = k" ¥ (1= B.) (48)
where Bk’ is the component of the electron velocity B = v/c in the direction
of the scattered photon, and y = (1 - 52)_%. Collecting formulae, and

writing do = (w'/w)(1 - ﬁk) doo for the cross-section for the energy flux in

the observer's reference frame K (Zhuravlev and Petrov (1980)), we find

4 a2
do=r? & )2(}—_-%1{—') u(B)de’ (49)

where
u(B) = cos’y

For parallel polarisations of the incident and scattered photons in the
laboratory frame, we can calculate the factor u(B) for the rest frame K,
following the procedure in Zhuravlev et al (1980), or obtain it directly from
classical electrodynamics (Williamson and Clarke (1971)), with the final

result

_]3_



do 2 2. 1-§ 2 (1 - cosb)

2
@ " ¢ g - @ a=gsa ) Bt

where w = w'/w; this is the form used for calculating the spectral density
function by integrating over the (thermal) electron velocity distribution
(Matoba et al (1979)). The factor in curly brackets accounts for the
differential rotation of the polarisation vectors e, e' as seen by the moving
electron (¢o ~B). Clearly, when the velocity vector lies in the scattering
plane, B.e = 0 and u(B) = 1. Hence only the transverse velocity

component Eeﬁ e affects the polarisation term.

o -



TABLE 1

Comparison of Spectral Demsity Functions

for T, = 20keV and © = 90°

€ Sy(e) Sz (€) AS(e)/S(¢€)
+ 0.6 0.0451 0.0452 0.0013
+ 0.5 0.0818 0.0819 0.0008
+ 0.4 0.1457 0.1458 0.0007
+ 0.3 0.2530 0.2532 0.0005
+ 0.2 0.4237 0.4238 0.0002
+ 0.1 0.6744 0.6744 0.00004

0.0 1.0000 1.0000 0.0000
- 0.1 1.3432 1.3433 0.0001
- 0.2 1.5697 1.5703 -0.0004
- 0.3 1.5037 1.5049 0.0008
- 0.4 1.0764 1.0782 0.0016
- 0.5 0.4946 0.4959 0.0026
- 0.6 0.1109 0.1113 0.0036
-0.7 0.0069 0.0069 0.0039




TABLE 2

Values of the Density Scaling

Factor q(a) for 90° Scattering

T, q(a)
(keV) e =0 e= ¢, i = 4E2y
0.9968 0.9968 0.998
2 0.9942 0.9942 0.996
5 0.9853 0.9853 0.990
10 0.9713 - 0.980
20 0.9446 0.9441 0.961
50 0.8753 0.8706 0.902
100 0.7891 0.7800 0.804




TABLE 3

Relativistic Blue Shift (0 = 90°)

T, i ) c W, (@
(keV) c c e c
3.77 - 0.05 - 0.0517 - 0.0499
7 .80 - 0.1 - 0.107 - 0.0995
16.75 - 0.2 .= 0.229 - 0.196
27.10 - 0.3 - 0.37 - 0.28

- 39.21 - 0.4 - 0.54 - 0.35
53.56 - 0.5 - 0.73 = 039
71.00 - 0.6 - —
93.27 - 0.7 = o




TABLE 4

Comparison of Blue—-Shift Temperatures T,

for 90° and 180° Scattering

€, 9 = 90° 6 = 180°
-0.05 3.77 keV 1.88 keV
-0.1 7.80 keV 2.88 keV
-0.2 16.75 keV 8.29 keV
-0.3 27.10 keV 13.43 keV
-0.4 39.21 keV 19.55 keV
-0.5 53.56 keV 27.10 keV
-0.6 71.00 keV 36.89 keV
-0.7 93.27 keV

50 .54 keV
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Fig.1 Comparison and analytical formula (circules) with the “classical’ spectral density
function (curves computed by Matoba et al Jap. J. Appl. Phys. 18, (1979) 1127).
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Fig.2 Residual error in spectral density vs. normalised wavelength shift for T, = 20keV.
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Fig.3 Density scaling factor vs. electron temperature for 90° scattering with incident
and detected light polarized perpendicularly to the scattering plane.
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Fig.4 Relativistic blue shift vs. electron temperature for 90° and 180° scattering.
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