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Abstract

We describe in detail an analytic technique, devised by Mercier and
Luc, for solving the Grad-Shafranov equation in the neighbourhood of a
single flux surface. As an application of the resulting equilibrium we
derive the corresponding ballooning mode equation. We illustrate the
results by considering the large aspect ratio, circular flux surface

tokamak.
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1a Introduction

Many problems in fusion physics require a specification of the plasma
equilibrium only in the neighbourhood of a single magnetic surface. An
important example is the stability of -the ideal MHD ballooning mode, which
is governed by an ordinary differential equation along the flux surface.
Although in general it is very difficult to obtain analytically global
solutions of the equilibrium eguations, the solution in the vicinity of a
magnetic surface is relatively straightforward. The formalism was first
developed by Mercier and Luc [1], and is described in some detail in
section 2. Despite the power and utility of the method it does not appear

to be widely known and one purpose of these notes is to give it greater

publicity.

In section 3 we develop the ballooning mode equation corresponding to
"the equilibrium of section 2. The large aspect ratio limit of these
results is then considered in section 4. We illustrate the method by
considering the circular flux surface tokamak with constant poloidal

field.

2. Expansion in the Neighbourhood of a Flux Surface

Ideal MHD equilibria in axisymmetric systems are described by the

Grad-sShafranov equation for the poloidal flux function ¢ :

A*¢ = X2V - - X2 p'(¢) - T(MT (P . (1)

l<a
.e
1

Here we have used cylindrical coordinates ( X, ¢, Z ) where ¢ 1is the
symmetry angle, X 1is the normal distance from the axis of symmetry, and
Z is along the symmetry axis. The plasma pressure is p(¢) , and I(¢)
is the toroidal field function. The poloidal and toroidal magnetic fields

are given respectively by

B = ¥ v 2
By Vo x Vo (2)



Eib) (3)

We seek solutions of Eq (1) in the neighbourhood of a flux surface
¢(X, Z) = constant. It is convenient to introduce the coordinate system
( &, p, ¢ ) shown in Fig 1 in which p is the normal distance from the
flux surface, X 1is the arc length measured along a poloidal section e
of the surface, and ( Y Ep' 3¢ ) form a right-handed set. Provided we
consider only points sufficiently close to the surface there is a uniquely
defined normal to the curve and the coordinate system is unambiguous. We

also define the angle u betwwen the local tangent and the X direction.

The relation of these corodinates to the cylindrical coordinates is

g

X = X, + psinu + [ cosu dl’ (4)
0
2

Z = Z, - pcosu + | sinu ax’ (5)
0

where ( X, , Z, ) corresponds to £ =0, p=0, and the angle u is given

by

an’
0 RrR(L")

u(l) = u, - / (6)

where R(L) is the radius of curvature of the curve C and ug is the

value of u at ( Xg + Z0 ) « The invariant line element is therefore

given by
i . a . B 5
do gaB dx dx (7)
where x! = & ’ x2 = o x3 = ¢ , the metric tensor is given by
(1 - p/R)? 0 0
= 1 0 8
gOﬁB 0 (8)
0 0 x2



and we use the repeated index summation convention. Then
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where g = det gaB and gaB is the inverse of g{IB . In these

coordinates the magnetic field on the flux surface is

(10)
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Since ¢ is independent of ¢ by symmetry, Eg (9) becomes

Mo = T iz o em o2 tos X 201 (11)

We now expand ¢ , and the other equilibrium quantities, in powers of

p around the flux surface (which we choose to be ¢ = 0 ):

¢ = pby + p2y + e (12a)
Bp = B;O) + pB;1) + ees (12b)
B¢ = pro) + pr;) + ee (12¢)
pf = pr g W1 (124)
r o= 1'9 4t L (12e)
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(Of course, the coefficients in (12e) and (12f) are not independent,
1
I'(O) = I( )/¢l etc, but we retain the general notation for

convenience) .

It is also useful to write

sinu
X = ZXghg (1+p E_H_J (13)
oo
with
. L
hg=1+7 | cosudl’ . (14)
Xg "o

We then have

A*¢ = Xoho [1+ p iR L0, ]
00 Xghy R
0 [ sinu | p 1 o)
—=[1-p==+E] — =
{ax Xshy RS Xgh, 04

1 0 sinu  p7 @ 2
- = [1-p B L] 2 -
XUhO bp [ P XOhG R] ap} (p¢l +p qJ2 + J
22 :
= - Xghg [1 + 2p ::;2 4w Lot 'Y oo 1 & ]
o g st p(1(1)1’(0) f 1@ My (15)

We now equate coefficients of successive powers of p . The lowest order

terms give

2 ,(0
¢l(l) X%ho P (0)
- - v (16)

sinu l)
2 2 2

¢2(l) = (XOhO R

(1)

At next order we obtain an equation for ¢3(£) (which involves p



(175000} (0)11(1))]

and (I + I and so on. In so far as the ballooning
mode equation is concerned we need the solution of the Grad-Shafranov
equation only to lowest order, as given by Eq (16). Note that the
function R(AX) depends only on the geometry and can be calculated once the
shape of the flux surface has been spécified. The functions u(l) and
hy(X) can then be calculated using (6) and (14). The function ¢ ()

can be expressed in terms of the poloidal magnetic field as follows:

2 Jw? 1 4oB B3¢

IBpl Tk x2 ox® ax’
Dby 2 Dby 2
- L 0 BY)

X2 (1 - p/R)?

1 sinu
= -5 (1-2p xoho) (¢ + 2p4p)2% + ...
Xghg
2 r
¢ . xapt o) ,0)
= T {1 + 2p [E- ¢l - I ]}+ ve (17)
Xghg 1

where we have used Eq (16). Comparison with Eg (12b) then gives

b, = - B;)O)xoh0 . (18)

The sign in Egq (18) follows from

._éb:l

Thus the poloidal field can be written



(0) £(0);,(0)

.
B (L,p) = B [1+p [=+ § b (19)
P p R 5(0) XUhOBI(,O)

This expresses the poloidal field in the neighbourhood of the surface in

0
terms of the function Bé )(R) giving the field on the surface. Finally

the toroidal field is given by

2 i
B¢=—
X2
(0)2 ((0)
T [ 2p I (0)_2 2 ;
= 1+ B B " 'Xyhy, - 51nu}] . {20)
00
x%h% Xohg I(0) i8]

Thus we have expressed equilibrium guantities in terms of the shape of the
surface, which determines the function R(1) , and the poloidal magnetic

0
field on the surface B( )

L

We can continue the solution into the interior of the curve C
provided we specify all the derivatives p’ , p'' , .. , I' , I'" , ..,
on C . This is equivalent to specifying the functions p(¢) and I(¢)
which is generally sufficient to determine a solution for ¢(x,y) within
the given boundary. However, we have also specified Béo)(i)
independently, and this may not be compatible with the solution for
¢(x,y) » Thus in general a continuation of our solution into the magnetic
axis will yield a singularity. The technique described in this section

does not include a specification of the restrictions needed to ensure a

global solution, and this is the principal drawback of the method.



3. Ballooning Mode Equation

We now apply the local equilibrium solution, obtained in Section 2,
to the analysis of ideal MHD ballooning modes. The ballooning mode

eigenfunction F satisfies the equation [2]

{|ES'2 |y g BNISE
B+¥ BeVF} +2 B 2" - o (21)
== g2 =~ da¢ B2

where the curvature X is given by

1
2, [ptg e?)

E = S (22)
B2
We begin by constructing S from its definition:
B*Vs = 0 (23)
S = ¢+ all,p) . ' (24)
Using Egs (2) and (3) we have
I
x T (g xW)¥a = 0 .
Expanding around the flux surface
I(O) LS psinu
h (1- h)
3075 ]
6¢l
= . py da o]
¥ Ep X [Elp Y L= (¢1 + 2p ¢2)] [El (1 + R) oL T S ap] 0
@ = Qy + pay F ... .



Identifying the coefficient of pU , we obtain

(0 . day .
Xohy L 32
2 I(O) .
@, = —=— 4R (25)
¢ g, %oy

where 20 is an undetermined parameter. Ballooning theory [2] requires
that in solving the ballconing equation, 20 must be set to the wvalue

which gives rise to the most unstable mode.

Similarly, identifying the coefficient of p gives

,(0)
: 1 Osing Ba g da L T
- 22 Y13z " 4%2% "% TR a2
Xghg Xghy
| SR T 24, _(0) (0)
dl 1 I sinu 2 1 1
o = 4 [ S| T 22 Ty - I R
2o b1 Xghg Xghg Xghg  RXghg

Using Eq (16) for ¢2(£) then leads to an expression for S(&,p)

L L (0)
(0) dl (0) dl I
S = ¢ +1I EEHEEI + p¢I f 5 [¢l )

10 10 Xghody I
(0).,(0) Xjho
i . 00

_2sinu 2 I 'I & P,(O)] + 0(p2) (27)
Xghg d)]_ ¢l
We can now calculate IVSI2 . Note that on the flux surface the operator

B*V , which occurs in Eq (21), can be written



B-¥Y = B9
surface a be surface
B
= 8 . %0
= BP 3% + Y ¥ (28)

2 it is sufficient to work to lowest order

Therefore in calculating IVS

in the p expansion since B°V has no derivatives with respect to p .

Thus

2 _ 1 (@82 (2sy2 (25,2
IVS' BN (a¢) * (ap) * (al)
Xghg
0 2
= 212 1+ 2I; :0)2]
% ghg XghoB,,
2 2
n2s(0) 71 (0) Lo (O I(o)2 ,(0)
= { 07 Lo (U * Zaq002) + “o02
Xo 10 hOBP I XUhUBP Bp
- 2
% % (1 . R51nu) 1 (0)]} . (29)

Next, we consider the curvature terms in the ballooning equation.
Note that in this instance we can drop the | symbol on the operator Vl.

We have
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2B2(B x S)*K = (B x 9s)+¥ (2p + B?)

_ 105, s, 28
= (Bgey *Boe) * (e 535 * 2051 * 2 Bp)

By 2 Ll 2
Eiﬂ =7 (2p + B%) + e, 35 (2P + B ) ]

2
L A2 (0) (0) )
= - —(0; LBL]) 25— ) %— (2p + B2) - L — %§ %I (2p + B2)
B, Xghy Khy F Xghy °
(30)
Next we construct the pressure derivatives occurring in (30)
2 (0) (0) 1(0)2 2psinu (0
2p + B2 = 2p '+ 2¢yp p’ ¥ [1 2p B_Xghy =]
x2n2 X h (0
00 00
+ B; ) [1 + 2p (% STy L = I(O) )
B hOXOB
P
Thus
0
0 ZB( ! 21(0)2
— (2p + B2) = £ = sinu
o} R 3.3
Xohy
and
(0)2 2 2
2 2y - B (I (0) - 0B<
o1 (22 + B9 = g7 (G558 ) oL
Xohg

Finally, using Eq (27) to calculate 8S/dp we obtain for the curvature

term



’ . (0) 2 (0)
2p" B % IapvE _ 21(0) sinu _ 2Bp
2 3,3 5 (0) 2
B Xohﬂ XOhOB BP RB
(0)2 _(0) 2
) X Gr) | = o oo (04 m5mr2) * 5oy
2 ;
+ —'—(-6—) (1 + Bs__:hn_u]]} . (31)
RXOhOBP Xghg
Using Eg (28) we can now write the ballooning equation as
2
((0)
30 4L {J"'V'S',' (0 g} ® i Br s F =0 (32)
par " oo p di g2
2
with 'VS, and the curvature term given by Eg (29) and Egq (31)

respectively. This is our final form for the ballooning mode equation. F
is a function only of & , and Eq (32) is to be solved with the boundary
conditions F(* @) = 0 . The equilibrium is specified by the function

B(O)(l) and the geometry of the flux surface (ie, XU' ug and the function

I(U)' {0 P'(D)

and . Eg

R(l)], together with the surface quantities

(32) expresses marginal stability and can be regared as an eigenvalue

0
equation for, say, p'( ) o

We conclude this section by obtaining an expression for the global

0
(i.e. surface averaged) shear. This may be used to eliminate I'( ) in
favour of the shear which is physically more interesting. Expanding the

safety factor q(¢) around the surface we obtain



56 I do

2ng(¢)
{=const x2 lEpl

(0) (0)

_ é doI {1 - 1 I B(O)X h 2sinu & ol
2.2_(0) (0) 00 R
{=const XOhOBp P XOhU
10)
Xghop "' (01, (0)
Bp B(U)X h
p 0*°0

where do is the element of arc length along the curve ¢ = constant,

¢ = 0 . To lowest order, p¢l is constant on this curve, so we have
d¢l
+p——dar = 0
2 2 dd; 2
2 _ _ B 2 4 Bl 7= 2
do (1-2) ax 5 (37) ot
¢

a6 = (1-2+o00p%)) ar .

Since the curve is defined by p = ¢/¢; = - ¢/Bé0)xoh0 we find the

following expression for the shear:

oy 82 _ I(O)dl (0 + —2sinu 2
W TR L RO
,(0) (0)_,(0)
+ L . (34)

2+
E(U) B(U)nghg
P p



4. Large Aspect Ratic Tokamak

The results of the previous section can be simplified by making an

expansion in powers of the inverse aspect ratio & . We use the high-beta

tokamak ordering

and work to lowest order.

Consider first the safety factor gq given by Eg (34).. The terms in

’ 1 0
p' and II are each 0(1/g) (note that pI( )/I( ) ~ O(ge) and that

I(O) is independent of (¢ ) while the remaining terms are 0(1) or

higher. To lowest order we have

(0)_,(0)
i I _ _
5 0

,(0) 1 )
Xy

P +

In order to evaluate the shear, and when considering the ballooning

equation, we will need to keep the next order terms.

Using
b
= 1 - 2 f cosu di
2 XD
hy 0
Eg (34) becomes
(0) . (0) (0)_,(0)
T 951 dt 2 e g o B e
d¢g 2_(0) (0) (0) (0)2 2
X RB  'X; B B X
P P P P
{35)
21(0)1,(0) L
- (023 f cosu dl] .
B Xp 0



Then since

I(O)di
2nq = § S5y
) XUB
P
we can rewrite Eq (35) to obtain an expression for p’ + II’/X? in the

form

0 P
+(0) rt )I'(O) $ 84 - 2 4 ax
(e * 2 (03 ~ g (0)
X B B
p P
(o) &
2 dl 1 g
- $ (072 [E + ETET | cosu dR] . (36)
’ ®p ®p 0

We now turn our attention to the ballooning equation. Expanding Eg

2
(29) for ‘VS| gives

2 (0)2 (0)2
‘vs‘ S S p2(2) (37)
% (0) 2
where
(0)
L (0)_,(0) 2B
(0) ar 0 11 5
P(4) s, [ —osl + 2 ¥ TR
g By Xg
5 ,(0) y'!
+ —EE——— f cosu dl] . (38)
0

We now use Eg (36) to eliminate p' + II'/X2 in favour of the shear:



(0) al
P(R) B, 95le / THE:
3 o B
B(O) P
2
§ <52
23(0) I (0) RB(U)
+ == oy B ]
X (03 'R ax
0 % B 5
p B(O)
P
as
—i a
250, (0) " $ —(oys | cosuar
0
§ —Fg / ?§)3 [/ cosuag - —B—+ ] . (39
¢ 2 B ¢ 3
0 "p 0 5 (0)
p

Similarly the curvature terfm, Eg (31) can be written

(B x VS) K  (0) ,
2P:(O) = _ 2p { sinu

- X 0
B2 0 B( )
P

+ cosu P(R)} .

Xy

Thus the large aspect ratio form of the ballooning equation (32) is given

by

(0) & (¢ 2 (0) 4F
" At (a2 + 2A0) o ax!
XUB
P
2 +(0) .
+ £ {2+ cosu P(M)IF = 0 (40)

0 5Py

0

P

with P(L) given by Eq (39).

The equilibrium again requires the specification of the shape of the
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surface and the function BP(X) ; but note that the large aspect ratio
expansion has reduced the number of independent surface quantities to two,

which we have taken to be p’ and q'/q .

Equation (40) has been used [3] as the starting point for an
investigation of the effect on ballooning stability of the magnetic
separatrix in a tokamak having a poloidal (axi-symmetric) divertori Here
we shall consider a much simpler example, a circular flux surface with
B(O)(l) constant. This leads to the familiar s - a@ model [4]. If r

is the radius of the surface, and © 1is the poloidal angle, then we have

R=r, dl=rd8 , u=- 7n/2 -0, cosu=- sinb , 8(Ry) = 90
< - O - - SN, (SR - o0 _ 1 dp
d¢ ¢, dr B(0)xo dr B;O)XO dr

P

and Eq (39) simplifies to

rg’ 2 '(D)r2
P(R) = = (9- 8, + 5 (sin® - sin6,)
0 (0) 0
XUB
p
X B(O)P(i) = = s5(0 - 8,) + ®¢(sin® - sinB,)
0 p 0 0

where we have introduced the parameters

2
r dgq 5 ,(O)IQ 2X,q ap
s = = i ax = S = = W
q dr B(O) w2 dr

P

Finally, Eq (40) can be written



%ﬁ {1 * [5(9 = gl = eleind = sineo)]z} %%

+ a{cose + sinB[s(0 - 0p) = a(sind - sineo)]}F = 0 (41)

This is an eigenvalue equation, with boundary conditions F(x=) = 0 ,
which determines the marginally stable a (pressure gradient) for a given
value of s (global shear). Its numerical solution is shown in Fig 2.
When solving Eq (41) the parameter 6, must be chosen (for each value of

s ) to maximise the unstable region.
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Fig.1 Coordinate system used in the
construction of local MHD equilibria.
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Fig.2 The stability diagram which
follows from the solution of Eq.41.
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