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1. INTRODUCTION

1. - Of all the cylindrical hydromagnetic equilibria, one of the most stable
according to present theoretical calculations should be the hard-core pinch.
The plasma or conducting fluid is annular and a conducting rod passing through
its centre carries an axial current. There is also an axial current in the
fluid which flows in the opposite direction to the current in the rod but the
total current in the fluid is less Fh n that in the rod. 1If the fluid is
ideally conducting, theory predicts that the system should be stable
against all perturbations regardless of the profile of an axial magnetic field
that may be present, provided that the fields are such that the fluid is in
equilibrium.

2. Because the requirements for a hard-core system to be stable are not very
restrictive, many experiments have been performed in this geometry. Contrary
to the predictions of the ideal hydromagnetic theory fhe configuration? Tave
not been found to be completely stable |[Aitken et al(1 Birdsall et all3)],
There are several reasons why this may not be so. One, for example, is that
the theory refers to an infinite cylindrical system while experiments must be
performed in a tube of finite length; end effects associated with the non-
uniformity of fields near the electrodes may be important. Another possibili-
ty is that the finite transport processes in the fluid must be included in the
theory. Finite viscosity would almost certainly improve the stability of the
system but instabilities could be caused by the finite value of the electrical
conductivi ty.

3. It is with this latter possibilitg that the present report is concerned.
As has been shown previously (Tayler(8)), the introduction of a finite elec-
trical conductivity considerably complicates the mathematics of the problem.
Inside the conducting fluid, instead of a second order differential equation
having to be solved, the general solution must be obtained of a sixth order
differential equation. Boundary conditions must then be applied to the solu-
tions of this equation on both the boundaries of the annular fluid.

4. Although the solution of the complete problem would be extremely difficult,
it is possible to find the growth rates of perturbations in a fluid of extreme-
ly low conductivity. If the fluid of very low conductivity is unstable, it

proves that finite electrical conductivity can lead to instability. If the
fluid of low conductivity is stable, there is hope that the fystem is stable
for all values of the conductivity. In a previous problem{B , the worst

instabilities did occur when the conductivity was low. The method of 5?) has
already been applied to the hard-core pinch by Bickerton and Spalding( and
Tandon and Talwar(6,7). In the present report a rather more general case has
been considered.

5. There are some complications associated with the introduction of a finite
electrical conductivity into the fluid. There are many equilibrium configura-
tions for a fluid of infinite conductivity but only a few of these remain
equilibrium states when the conductivity is finite. As the configurations of
most interest are not equilibrium states some approximation must be made. It
is assumed that we have a configuration with slowly diffusing fields so that
in the equilibrium state the finite conductivity is important. It is then
assumed that, in the perturbed state, growth rates are such that instabilities
(if present) grow rapidly in one field penetration time. This will certainly
not be true in the case of arbitrary low conductivity but it was found in (8)
that there exist values of the conductivity which are so high that instabili-
ties grow rapidly in a field diffusion time and so low that the instability
growth rates are very little different from those in a field of zero conduc-
tivity. 1In addition it is assumed that the conducting rod and ocuter walls
have high enough conductivity to be regarded as infinitely conducting in the
stability problem. This will be discussed further in the next section.

6. The remainder of this report is arianged as follows. The equilibrium
configuration is described in section 2. The perturbed equations are solved



in section 3 and the derivation of the dispersion relation is described in
section 4. The numerical results are given in section 5 and a short discus-
sion of the results follows in section 6.

2. 'EQUILIBRIUM' CONFIGURATION

7. ©Since the principal feature of this problem is the presence of the conduct-
ing rod and the current it carries, all distances are normalised with respect
to the radius of the rod and all magnetic fields with respect to that produced
by the current at the surface of the rod.

8. A conducting rod of radius rp is surrounded by a vacuum which is in turn
surrounded by an annular conducting fluid of inner and outer radii Ayro and

Ayro. Finally the system is contained by a conducting wall of radius Agro.

The rod and the wall are of high conductivity and the fluid has low conduc-

tivity 6. The fluid has density pg.

9. The equilibrium magnetic fields in the conducting fluid and the two vacuum
regions are taken to be:-

Inner vacuum B = Bo (o, ro/r, bi) , (2.1)
Conducting fluid B = Bp (o, b,ro/r +b, r/ro, b, +bén r/ry), (2. 2)
Outer vacuum B = Bo (0, bg rof/r, b,). (2.3)

The expression for the magnetic field in the conducting fluid satisfies the
equation
curl j= curl curl B = o (2.4)

and for that reason appears to be a true equilibrium field. However this is
illusory. In equilibrium there would be an associated electrostatic field
which would have an azimuthal component infinite on the axis of the system,
Equations (2.1) to (2.3) are thus supposed to be instantaneous values of time
varying fields and the particular algebraic forms have been chosen for the
simplicity of the resulting work. The liklihood of such instantaneous fields
occurring is perhaps remote but it is hoped that the results of the stability
calculation will be qualitatively similar to those that would be obtained with
other field profiles.

10. The pressure in the conducting fluid can be obtained from the equation

dp/dr = - B, dB,/dr - By dBg/dr - Bg/r, (2.5)
where Bg and B, are given in equation (2.2). Thus
P =Po - B3[b3(r2/r2) + (2b b, + b, b,) en(r/r,) +b2{en(r/rg)}2/2]. (2.6)

11. There are five algebraic relations between the ten constants A,, A , Ag,

b,, b,, by, b,, by, bs, b,. Four of these arise because both Bg and B, must
be continuous at the two surfaces of the fluid. Thus
1 =Db, +b, A}, (2.7)
b,=b, + b, én A, (2.8)
b,=b, + b, A2 , (2.9)
b,=b, + by ¢n A,. (2.10)

In addition the pressure of the fluid must be zero at both of its surfaces.
" These two conditions serve to determine pp and to give another relation
between the A's and the b's. Thus

b2(A% - AZ) +(2b,by + b,bg)en(A, /A,)

+ ba[(en A,)% = (&n A,)2]/2 = 0. (2.11)



12. The equations (2.7) to (2.11) show that five of the ten parameters can be
chosen arbitrarily and then the other five can be determined. In the present
work the free parameters are taken to be A ,A,,A;, b, and by;. There are how-
ever further restrictions on the values of these free parameters. Not only
must the pressure vanish at both surfaces of the fluid but it must also be
positive everywhere within the fluid; thus only those values of the para-
meters which lead to such a positive pressure can be allowed. In addition,
so that the system is obviously stable when the conductivity is infinite, bg
must be positive and less than unity: for that reason it is convenient to
take b, as one of the free parameters.

3. SOLUTION OF THE PERTURBED EQUATIONS

13. Perturbations about eqiilibrium are considered in which any physical
variable g has the form:

q =95 + q,(r) exp {i(md + kz) + wt], (3.1)

where m and k are given and may be either positive or negative and W is to be
determined. The linearised hydromagnetic equations in the conducting fluid
take the form

Po WY, = - grad p, + curl B, x B, + curl B, x By, (3.2)
div y, = 0, (3.3)
w B, + (1/0) curl curlBy = curl (vy x Bo). (3.4)

The units are rationalised Gaussian units with the velocity of light put
equal to unity.

14. The solutions of equation (3.2) to 3.4), for low values of the conduc-
tivity, are expanded in the form:

By =Bjot 0By
Nt = Xig¥9 iy v (3.5)

Py = Pyo TO Byys

Using the technique described in (8), only the first term in the expansion
(3.5) is kept in the present report. The equations satisfied by the zero

order quantities are then

curl curl B,, =0, (3.6)
Po @ ¥yo = = grad p,, # curl By x B,y + curl B, x By {3.7)

and
div y,, = 0. . (3.8)

Equation (3.7) and (3.8) can be conveniently combined to give

V2p,4 = - 2 curl By - curl B,,. (3.9)

As the perturbed quantities are only solved to zero order in thg present
report, the suffix zero is emitted in what follows. Thus we write By,vy.P, -



15. Equation (3.6) can be solved immediately to give:

B11~ = 0, I|m+ llilklr! + a, II"" lli|k|rf
+ B, K|m4—l|i|k|r}+-53 Ilm —llllklr}'
B,g = - ia21|m_kl|[|k|rl+-iaaI|m__liilklrf (3.10)
- iﬁ2K|m_+1]i!k|ri-+i63KIm _l|I|k]r;,
B,, = i%;l(a2+ a3]1|m1i|k|r1"i£¥i(ﬁz+'BS}K|m|ilk|r}'
The equation (3.9) must now be solved for p,. This equation has a complemen-
tary function
P,of = iBo [a, I|m|ilk|r3 + B, K|m|11klr1] (3.11)

and a particular integral. This particular integral can only readily be
obtained when m = 0 or * 1. Thus we will restrict ourselves to these cases
in what follows. The results obtained are

m=0 pp;. =222000% [(a, - o)1, {[x[r] +(B, - 8K [[x|e]].  (3.12)
(e
Il =1 b, ;. = iE;__,kfom [0y - ay)Iol|x|rl+ (B, - B K {|x|r}]

+ EiE%?EE [(a2 - a3)12§|k|r1+ By ~ Ba)Kzilklrl]' (3.13)
o

Only the radial component of the velocity enters into the boundary conditions
and this is now obtained from equation (3.7). After some complicated algebra
there results

m =0, powv,. = - iBo|k| [a,I5l]k|r} + pLKS{[K|r}]

- ibgBorlkl(a, g 100 |x|x] - (8, - BoKol K] x}]
(o]

+ 2iPaBo  [(a - a )10 ]k| T} - (B, - By )KL [K|r}]
T'n ) ‘

i|k|Bobg
—_I'

+ iJ_ka_nBobzr [(a, - ag) Tol|k|r] - (Bo - Ba)Kol k|31, (3.14)

where the prime denotes differentiation with respect to the argument of the
Bessel Function.

[(a,+ a)Iof|klrd - (By+ B Kol |k|r}]

- 4 -



Im|=11 PoWv, . = - iBD|k|[O‘4 11‘1|k]r]+64 K;zlklrj]

. 4 1mkBg [b4-+b56n(r/r0)][(a2 -a3)11i|k|rf+ (B, - Bs)K, i|k|r]]

Tilr

- i|k[Bolbyrg/r][(a, - al) 1, {|k|r}+ (B, - B)K, [|K|r}]

¥ T O 2iB:c|)kJr 12 'zf,o L +2:‘§o TP i§§£|k|11g
+ agl _Z.i?.glk|r 15+21i_]:° 1, -2::0 Mg - $|k|11}
vl HEllE i BB BResq - e
copl ekl 2oy 2o BBty )
+ Bgltalle LA, (e 1) o 22 1)
ag il;iEE (m=-1)1, - iEf; Io}
+ B, .ﬂllleO (m+ 1)K, + iE——:; Kol
B, 1~ BB o e 2ot K1, (3.15)

Th re the arguments of all the Bessel functions, whether stated or not, are
kir.

4. DERIVATION OF THE DISPERSION RELATION

16. The solutions of the perturbed equations given in the previous section
contain ten constants which are arbitrary at the moment. However, boundary
conditions must be imposed on the solutions both on the perturbed surfaces of
the conducting fluid and on the rod and the wall. In all there are just ten
boundary conditicns which give homogeneous linear equations between the
constants. A consistency condition is obtained when these equations are

solved. Tnis is the dispersion relation.
17. The boundary conditions are:
On r = ry, By =
On r = Ayry, p and
On r = A,r,, p and

On r = ABrO' Br =

continuous®
£

Ww o

B continuous
0

#FNote that these 8 conditions must be applied on the perturbed surfaces
of the plasma which differ slightly from the equilibrium surfaces

r =A1r01 r = .A_gro.



18. The boundary conditions can be written in an alternative form as:-

B,pr = 0, ' r =1, (4.1)
B,i = Byr, r = ATg (4.2)
B,é = B,g+Bov,r[1 +b AT - b,]/AJwr,, r = AT, (4.3)
B,L = B, +bBov, /A urg, r = A ro (4.4)
p, = Biv,[2b,b, +b, b, +b2enh, +2A5b2] AjwT,, r o= AT (4.5)
B,2 = B,r, r = Ayro (4.6)
513 = B16-+Bov1r[b6-bbaﬁg - b, ]/AZwr,, ® = f iy (4.7)
B12 = By # bgBgvypl Agwrg, r = A,ro (4.8)
P, = B3vyr[2b,b, + b, by +b24nA, + 2A3b2 ]/ A wro, r = A,r, (4.9)
8,2 = o. r = Agro (4.10)

19. The equations can be slightly rearranged. Using equations (2.6} and
(2.8), equations (4.3)and (4.7) can be re-written:-

I
4 Big = By + 2bgBovyp/wro (4.11)
an
B, = Byg + 2b_Bov, furo. (4.12)

Equations (4.3), (4.4) and (4.5) and (4.7), (4.8) and (4.9) can be combined
to give:-

Py + BoByjg/A1 + BobyByp = BoB; p/A, + Bob,B, 5 (4.13)
and
P1 +b5B°B1e/A2 +Bob7B1z =bsBoB18/A2 +B0bTB1(z)’ (4:. 14:)

where the equilibrium conditions have again been used. Finally equations
(4.11) and (4.4) and equations (4.12) and (4.8) are combined to give:-

bsB,g - 2bgAByz = b551é - 2b3A1B1£ (4.15)
arn
bsB,g - 2bgA,B,, = bB,3 - 2balsB; S . (4.16)

If equations (4.1), (4.2), (4.4), (4.6), (4.8), (4.10), (4.13), (4.14),(4.15)
and (4.16) are taken as the ten independent boundary conditions and the
expressions for v, and B, are used, it can be seen that w2only enters into
two of them. Thus the dispersion relation can be seen to be a quadratic
equation for w2. These two roots for w? arise because the plasma has two
free surfaces.

20. Because of the complexity of the expressions derived in Section 3 for the
quantites p, and v, and because of the number of algebraic equations involved,
no further algebraic reduction of the dispersion relation will be made here.
It is more convenient for the whole of the remainder of the problem to be
handled by a computer. In fact a programme to solve the dispersion relation
was written by one of the authors (F.R.A.Hopgood) and solutions were obtained
on the Mercury computer at A.E.R.E. Harwell. These are reported in the next
section.

21. It is however worth considering some symmetry properties of the equations.
The present description of the problem involves specifying values of the con-
stants Ay, Ay, fAg , and bg. The equations are then solved for m =0, ¥ land
all [k] for k== [kT. In fact all these cases are not distinct. For m = 0,

-6 -



the dispersion relation does not depend on the sign of k so that a complete
solution can be obtained by taking k positive. For m| =1, both signs of k
must be considered but it is easy to show that changing the sign of b, (and
hence of b,, by and b,) is equivalent to changing the sign of k. A complete
solution can be obtained by taking m=1, k=1 and by considering both signs
b, simultaneously. This is a result that has often been used in simpler
problems; physically it divides perturbations into two classes which are
helices either in the same sense or the opposite sense to the magnetic field
helix at any point in the system. Of course in the pres=nt problem there is
no need for the magnetic field helix to have the same sense everywhere as by
and b; need not have the same sign.

5. SOLUTION OF DISPERSION RELATION

22. Because of the number of free parameters involved in this problem, it is
clearly not practicable to obtain a complete survey of all possible solutions
of the dispersion relation. It is hoped that sufficient cases have been con-
sidered to give a reasonable idea of possible results. The overall geometry
of the problem was fixed from the outset. Thus we have considered

Ay =2, Ay=3, A, =4. (5.1)

This means that the separation of the plasma from the rod and from the outer
wall and the thickness of the plasma are all equal. This should give a
reasonable idea of results when these three distances are of the same order
of magnitude but there may be other interesting cases when one or other of
the distances is very small.

23. The values of the parameters b, and b;considered are:-
b, or bg=0.2, 0.4, 0.6, 0.8. (5.2)

In addition, for m=1, corresponding negative values of b, have also been
studied, though these results have subsequently been displayed as belonging

to negative values of k. Finally for given values of b, and bg there are two
possible sets of values for b,, bs and b,. This occurs because equation (2.11)
is quadratic in the b's. These solutions have equal and opposite values of

b; but there is no such simple relation between the values of b, and bg.

Thus, for each pair of values of b, and by, we have obtained one configuration
with a reversed axial field and one without.

24. The full results of all these cases are summarised briefly in Tables I to
IV. 1In Table I the values of b, to b; for the 32 cases are listed. The m=0
results are shown in Table II and the m=1 results for positive and negative

values of k in Tables III and IV. It should be noted, as mentioned in Section

4, that there are two solutions for each case.

25. The general character of the results can be summarised as follows:-

(i) For both m=0 and m =1, one solution of the equations is always
stable.

(ii) For both m =0 and m=1, the other solution is always unstable
for small values of kry. If the axial field in the outer
vacuum is opposite in direction to the axial field in the
inner vacuum (reversed axial fi=ld), the system is stable for
large values of krgy, otherwise large k modes are unstable.

(iii) For m = 0 modes the growth rate - wave number curves are smooth
but there are considerable irregularities in the m =1 curves.
These seem in some way to be associated with relationship be-
tween the pitch of the perturbation and the magnetic field,
but it is difficult to be certain because of the variable
nature of the field pitch especially when the axial field

reverses.



(iv) For m =1 modes when the axial field is not reversed (so that
the field pitch does not change sign), there is some tendency
for the perturbations antiparallel to the field to be more
unstable than those parallel to it. A result of this nature
has previously been reported by Bickerton and Spalding(z) and
Jukes{4). This result is most likely to be true for small
values of !kl and there is perhaps some tendency for the oppo-
site to be true for large |k

The main overall characteristic of the results is that the degree of instabi-
lity seems to be considerably reduced by the presence of a reversed a ial
field.

26. One other aspect of the results deserves comment. When it was observed
that the m =1 results predicted a finite growth rate at zero wave-number, we
were predisposed to disbelieve the results. However, after detailed consi-
deration of the behaviour of the equations for small values of k, it seems
that the result is correct. As this probably represents bodily movement of
the low conducting fluid with respect to the rod and the walls it is perhaps
not too surprising.®

27. Although the results shown in Tables III and IV give a reasonable idea of
the behaviour of the solutions for Y3(=4mp w2?r2/B3) as a function of Xgl(krg)
a finer grid of values of Xy is required before accurate curves can be drawn.
For this reason more detailed results have been obtained for two cases only.
The magnetic field and pressure profiles for these cases are shown in Figs.l
and 4 and growth rates for m=0 and m= 1 perturbations in Figs.2,3,5 and 6.
One of these cases has a reversed magnetic field and the other does not.

6. DISCUSSION

28. The conclusions that can be drawn from the calculations of a present
report are:-

(i) The introduction of a finite and low electrical conductivity
does lead to instabilities.

(ii) For wave-numbers which should not be seriously affected by
viscosity, the growth rates can be an appreciable fraction of
a typical hydromagnetic growth rate (Yo ~ 1).

These results are essentially similar to those obtained for the
pinch in (8) and for the hard-core pinch in (2),(6) and (7). Provided
the results for arbitrary finite coanductivity bear the same relation
to these low conductivity results as they did in the similar pinch
problem studied in (8), there is a possibility that the basic require-
ment that instability growth times should be shorter than field diffu-
sion times can be satisfied. Thus finite conductivity must be regarded
as a possible cause of instability.

The final conclwusicn is new because the possibility of a reversed
axial field was not allowed for in (2),(6) and (7).

(iii) The system is much less unstable if the axial field is reversed.

29. The present results suggest two further lines of study:

(a) An attempt to solve the theoretical problem with a truly finited
value of the conductivity.

(b) A hard-core experiment with reversed axial field.

*Bickerton and Spalding(z) obtain a similar result.



Jukes (%) has already made some progress with (a) and Dr. P. Reynolds informs
us that there is some prospect of experiment (b) being performed. Meanwhile
it is of course still possible that a completely different mechanism accounts
for the hard-core instabilities.
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TABL

I

MAGNETIC FIELD PARAMETERS FOR THE CASES CONSIDERED

Case b, b2 'b:3 b, by —T bg b,

1 0.200 1.640 -0.160 -0.241 0.636 0.200 0.458
2 0.200 1.640 -0.160 1.325 -1.622 0.200 -0.458

3 2.200 1.480 -0.120 -0.191 0.565 0.400 0.429
4 0.200 1.480 -0.120 1.275 -1.551 0.400 -0.429

5 0.200 1.320 -0.080 -0,114 0.453 0.600 0.384
6 0.200 1.320 -0.080 1.198 -1.440 0.500 -0.384

7 0.200 1.160 -0.040 -0.003 0.284 0.800 0.315
8 9.200 1.160 -0.040 1.080 -1.270 0.800 -0.315
9 0.400 1.640 -0.160 0.102 0.429 0.200 0.574
10 0.400 1.640 -0.160 2.065 -2.,402 0.200 -0.574
11 0.400 1.4890 -0.120 0.141 0.373 0.400 0.551
12 0.400 1.480 -0.120 2.026 -2.346 0.400 -0.551
13 0.400 1.320 -0.080 0.200 0.289 0.600 - 0.517
14 0.400 1.320 -0.080 1.968 -2.262 0.600 -0.517
15 0.400 1.160 -0.040 0.283 0.168 0.800 0.468
16 0.400 1.160 -0.040 1.884 -2.141 0.800 -0,468
17 0.600 1.640 -0.160 0.382 0.315 0.200 0.728
18 0.600 1.640 -0.160 2.870 -3.275 0.200 -0.728
19 0.600 - | 1.480 -0.120 0.412 0.271 0.400 0.710
20 0.600 1.480 -0.120 2.839 -3,231 0.400 -0.710
21 0.600 1.320 -0.080 0.457 0.206 0.600 0.684
22 0.600 1.320 -0.080 2.794 -3.166 0.600 -0.684
23 0.600 1.160 -0.040 0.519 0.117 0.800 0.647
24 0.600 1.160 -0.040 2. 733 -3.077 0.800 -0.647
25 0.800 1.640 -0.160 0.629 0.246 0.200 0.900
26 0.800 1.640 -0.160 3.706 -4,192 0.200 -0.900
27 0.800 1.480 -0.120 0.654 0.211 0.400 0.885
28 0.800 1.480 -0.120 3.681 -4.157 0.400 -0.885
29 0.800 1.320 -0.080 0.690 0.159 0.600 0.864
30 0.800 1.320 -0.080 3.645 -4.105 0.600 -0.864
31 0.800 1.160 -0.040 0.738 0.089 | 0.800 0.836
32 0.800 1.160 -0.040 3.597 -4.035 | 0.800 -0.836
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TABLE III

4Rp o w?r2/B

kro,) FOR m

AS FUNCTION OF WAVE
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1 PERTURBATIONS AND Xg > 0
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TABLE

E (Y3 = 4mpw2r3/B2) AS FUNCTION OF WAVE

GROWTH RAT)

NUMBER (Xg

kry) FOR m =1 PERTURBATIONS AND Xg< 0
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Sketch of magnetic field and pressure for a configuration without
axial field reversal (Case 1) .

Bg/Bo, Bz/Bo and 100p/R§ are shown as functions of r/ro.

N
o
Ao

1

I

1

T
i

T

i

|

- i = B =

1
[
1
1
T
1
[l
|
I
|
L=t
| ]
o
L
I
T]
T
1
[l
T
1
1
1
|
PR
R
)
T
.
B
T
[l
HELR]

\ | LY 1 1 al &
HHHHHHH - ol - ;:;'jf_‘“_ HEHEN
D18} A A S X ﬂfTT“"’"""”"";:“;)J;:‘ T ]
/ 11 W

innL

iy

04

<

9 1-0 2.0 30
o

CLM-R25 FIGURE 1

40



Growth rate as a function of wave-number for m = O perturbations (Case 1).

For the fields shown in Fig. 1, the dimensionless growth rate (Y3)for m= O
perturbations is shown as a function of dimensionless wave-number (X,).
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Growth rate as a function of wave-number for m = 1 perturbations (Case 1).

For the fields shown in Fig. 1, the dimensionless growth rate (Y%,) form=1
perturbations is shown as a function of dimensionless wave-number (Xg).
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pressure for a configuration with axial field

Bg/Bo, Bz/Bo and 25p/B% are shown as functions of r/15.
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Growth rate as a function of wave-number for m = O perturbations (Case 2).

For the fields shown in Fig. 4, the dimensionless growth rate (Yg) form=0
perturbations is shown as a function of dimensionless wave-number (Xo).
The curve is rather schematic in the neighbourhood of the maxima.
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Growth rate as a function of wave-number for m = 1 perturbations (Case 2).

the dimensionless growth rate (Yg) form=1

perturbations is shown as a function of dimensionless wave-number (Xo)-

For the fields shown in Fig. 4,
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