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1.  INTRODUCTION

The finite element method [1,2] may be used to derive a consistent
family of computer simulation models for plasma from Alfvenic o transport
timescales. The algorithms obtained have optimal accuracy and are more
flexible than their finite difference approximation counterpari. Figure 1
shows the family of models. The branch we are primarily concerned with in
this report is the right hand side one which leads to a surface averaged
transport model. Other branches of the family are described elsewhere
[3,4,5,6]. The approach we have used is such that multiple magnefic axes
and fully two dimensional transport, such as would be encountered in the
outer'plasma regions and scrape-off layer in devices with poloidal
divertors could be handled, although this option has not been implemented

in the present version of the code.

For the long timescales associated with transport processes implicit
time integration using time dependent basis functions has been found
advantageous. Time dependent basis functions are finite element analogues
to moving mesh finite difference schemes [7,8,9]. They are used to obtain
good resolution where it is required and in transport calculations ailow

flux surface aligned elements to be maintained.

The method of deriving the discrete equations used in the program
FETRAN is summarised in figure 1. The MHD equations are split by using a
fractional timestep. Physically this may be viewed as diffusion processes
moving ﬁhe Plasma from equilibrium followed by advection to restore force
balance, followed by more diffusion and so forth. Details of the
equations and their splitting are given in the next section, followed in
section 3 by an outline of the finite element discretisation. Sections 4
and 5 describe initial and boundary conditions and transport coefficients,
respectively. The remainder of the paper gives a brief description of

the code structure, implementation, and how the code is used.



2. THE PHYSICAL MODEL

The MHD model we assume is the charge neutral two-fluid

approximation:
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where p is the mass density, u is the fluid velocity,

p = nkB(Ti + Te) is pressure, j 1is current density, B is magnetic
field, n is number density and 'I‘i and Te are respectively ion and
electron temperature. The source terms Si and Se, conductivity
tensors ﬁi and ﬁe and the resistivity tensor 7y are assumed to be
function of the fields and plasma state. BAmpere's and Faraday's Laws

close the set of equations:

UxB = kgl vB = 0 ®)
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Time splitting separates the advective and diffusive parts of
equations (1)-(7). The equations may be formally written as
ou

A B - L,(u) = L,(U) + 8 (8)



where the operator L, contains advective terms and L, contains
diffusive terms. Time splitting is achieved by defining subsidiary
vectors V and W, where V describes the diffusion stage

i (9)

A3 = Lav) +s

and W describes the advection stage

oW
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Suppose that U(t) is known, then a first order accurate

approximation U* to U(t + At) may be constructed as follows:

tHAE |
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Similarly, a second order approximation could be constructed by
symmetrising the splitting in time. Equation (9) is the set of eguations
whose solution is handled by FETRAN. The solution of the advective (ideal

MHD) processes is handled by the program EQUSOL [4].
Expressing the component equations of Eq (9) explicitly gives

%% = Sn (13)

=

L= = Yoke¥T + 5, (14)

-
]
—
&

= -Re *V x E (15)

24 = =RE (16)



Equation (14) represents the temperature equation for electron and ion
species. Faraday's law (Eqs (15) and (16)) is written in terms of the

poloidal flux, ¢ ., and toroidal flux, £ , where
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R is major radius and g¢ is the unit vector in the toroidal direction.

Equations (13)-(16), with appropriate definitions for Sn and ST, are

the trénsport equations whose discrete approximations FETRAN solves.

3. FINITE ELEMENT DISCRETISATION

The differential equations, Egs (13)-(16) are reduced to discrete
algebraic equations by the method of weighted residuals. If we let ¢
be the node basis function for the assembled elements (ie, the same ?
function that is used in EQUSCL [4]) then, provided that elements are flux
surface aligned, we may construct surface basis functions Qs by summing

over nodes {p} belonging to surface s :

¢ = ¢ (18)

* T pofes

In the slow timescale limit, equilibriation of density and
temperature on the flux surfaces may be approximated as an instantaneous
process. This allows Egs (13)-(16) to be projected onto basis functions
{@s} to yield a set of surface averaged discrete transport eguations. If
surface equilibrium were not assumed, then the choice of surface aligned
elements would again be advantageous in that it decouples the disparate

perpendicular and parallel transport scalelengths.

Ohmic dissipation causes flux surfaces to move. If the moving flux
surface aligned elements were chosen to be tied to given flux surfaces,
computational failure would eventually occur as elements collapsed into

magnetic nulls. A more suitable choice is to assume that elements move

with some velocity u , where
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Consider first the equation (13) for number density. Projecting it

onto basis functions Qs gives
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For surface averaged transport, p, n, T, £ are functions of ¢ only.
Making the particular choices of 'incompressible' basis functions (ie, the
surface average of E-EQS, <E-E§S> ¢+ 'is zero) leads to all terms in Egs
(20)=-(23) containing u being zero. Another consequence of <E-EQ5> =0

is that
4
at Je.gdr = o0 (24)

So by selecting trial functions p = ZprQr O anr s £ = frmr '

etc, equations (20)=-(23) reduce to
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The set of evolutionary ordinary differential egquations, Egs (23)-
(28) are discretised in time using a fully implicit approximation,
yielding a coupled set of tridiagonal matrix equations to be solved at

each timestep. The fully implicit approximation replaces the equation of

the form
49 _
St h (31)
by
gt) = glt = At) _ Ly (32)
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4. INITIAL AND BOUNDARY CONDITIONS

The program FETRAN may either be used independently, or in
conjunction with the equilibrium solver package EQUSOL. In the former
case, force balance is ignored and initial conditions, not necessarily
satisfying Vp = j X B, must be provided. If the equilibrium package is
coupled to the transport program, then output from one provides input for
the other, and vice-versa, thus giving a consistent surface averaged

transport model.



For the test calculations described below, parabolic temperature and

density profiles of the form
F(r) = F(o) + (F(o) = F(a))(1 - (z/a)2) (33)

.are assumed for initial conditions, where F(o) and F(a) are
respectively values on axis and at the wall. The toroidal flux function
f is initially set to RDB¢0 , where R, is the major radius of the

axiysmmetric toroidal system and B is the vacuum toroidal magnetic

¢0
field.

‘A prescription for the poloidal flux, ¢ , completes the
specification of the initial conditions. This is most conveniently done
by setting the safety factor q to, say, a parabolic form, then computing

¢ from known values of f and g9 - The parameters in the specification
s (; 1) and total plasma
current. The relationship between f , g and ¢ , when projected onto

of q are chosen to give the desired q

basis functions {¢} is

fﬁ% dv = 2n [¢qd¢ (34)

where integrals are taken over the whole of the computational region.
Taking ¢ to be linear basis functions gives the discrete equations which

allow nodal values of ¢ to be solved given f and gq .

The finite element formalism has homogeneous Neumann boundary
conditions as natural boundary conditions. The program also allows
Dirichlet boundary conditions to be specified for n, T, ¢ and f .

Constant total plasma current conditions can be used on poloidal flux
JBeas = Mol, = constant (35)

This leads to the gradient condition relating poloidal flux function

values at the two outermost surfaces



¢s - ¢s-1 = constant (36)

The constant on the rhs of Eg (36) is proportiocnal to Ip . with the
constant of proportionality being determined by the flux surface

geometry.

Initial conditions are set in subroutine <1.6> INITAL (the numbering
system follows the OLYMPUS convention [15]),'and boundary conditions are

applied by subroutine <2.50> XPTBC.

5. TRANSPORT COEFFICIENTS

The code FETRAN provides a device and geometry independent vehicle
into which different transport models can be inserted, depending on the
circumstanceé to be modelled. The subroutine <2.52> XPCOEF is presented
with the current, field, and plasma parameters as input and returns

transport coefficients.

At present, XPCOEF calls the classical transport package COEFFS [10].
COEFFS evaluates the Braginskii coefficients [11] and various plasma
parameters. In addition, XPCOEF computes the INTOR transport model used
for comparison with the 1-D transport model, HERMES. This takes
perpendicular electron thermal conductivity, Ke. a constant, and

perpendicular ion thermal conductivity, « i neoclassical:

Ke = 5 x 10!° (m sec)'l (37)
2 2
np- pin
K, = — 088, . 119 el/2+ 2 .. = (1+ 1.6q%) (38)
1+ 0.36V£ i i

and Spitzer resistivity without a trapping correction. 1In Eq (38),
€ =r/R, q is the safety factor and the remaining parameters follow the

definitions given in [11]. For further details on Tokamak transport see

references [11,12,13].



6. ELEMENT MATRICES

One advantage of the finite element method is that it allows the

processes of discretisation, mesh addressing and matrix solving to be

separated. Discretisation is independent from the method used to connect

elements together. Equations relating nodal values are obtained by

constructing matrices of coefficients for a single element, then mapping

these 'element' matrices onto the global matrix for solution.

In this section, we shall explicitly give the element matrices

arising from Egs (25)=(32) in order to show additional assumptions we

make. The most significant assumption is the lumping of the toroidal

current in the flux equations. This approximation is used so that fully

implicit equations for ¢ and f are obtained without increasing the

bandwidth of the resulting global matrix.

We consider first the toroidal flux equation (27). The basis

functions: {@s} are generated by summing over all the basis functions

{¢P: pes} of the triangular elements having nodes on flux surface s .

In a similar manner, projections of equations onto the surface basis

function, ¢§ » can be achieved by projecting onto single elements, then
summing contributions of the subset of elements with nodes on surface

Assume that a triangular element has nodes labelled anticlockwise from 1

to 3, where node 1 lies on surface s and nodes 2 and 3 lie on surface

t (=s % 1). Each term in Eq (27) will lead to four element matrix

contributions to the global matrices. The mass matrix contributions are

given by element integrals over the linear basis functions, ¢i ’

$.0
Ak | o v
[ & = or (@+ay)

where V 1is the element volume. These contribute to the surface average

(t,s)

mass matrix (Eq (29)) elements (s,s) , (s,t),
contributions from Eg (1) ((i,3j) = (1,1) for
(1,3) for (s,t) , (i,j) = (2,1) , (3,1) for
(2,3) , (3,2) , (3,3) for (t,t)) gives

(s,s)

(t,s)

(39)

(t,t) . Summing
(113) = (1,2) ,
and (i,j) = (2,2)

s
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Bccumulation of the mass matrix is implemented in subroutine <2.41>
MASMAT .
The right hand side of Eg (27) may be written as
= dt
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Evaluation of matrix element contributions to A;é is straightforward.

For a single triangular element, the integral becomes

IV¢ ° EE-E ° V¢ dt + ZI¢ ﬁ-- - &éﬁ (45)
~'i Wy =3 i = nPP Bg R

Contributions are summed as described above for the mass matrix. We
assume element dimensions are much smaller tham R in evaluating the
integrals to obtain

i v

<y _>ehy — 46
nPP ~1 Ho (48
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where <> denote element average and the vector hl is given by
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: ’ <R>
A= (%3 - xp) x So 2V (47)
and X, = (Ri' Zi) is the position of element node i .

Lumping of the toroidal current is employed to force the matrix Al2
into the same sparsity pattern at all . 71t involves approximating the

left hand side of

drt dt
5, &5 = [yp, ey 4T a8
!P0¢13¢ R f~¢1 Ve 2 (48)
d
by - (fJugt, =) 3, (49)
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where ji is the value of toroidal current density, and similarly

approximating the integral

[2 (0,r%)7, 3, 5 = 1T (o,%2) )*Dy6 R =) 4, (50)

Combining these two approximations gives the contribution of node pair

(i,3) to al2 ;g

B,
i dt
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and B, = (o), + = <5p¢> v ' (55)

Cyclically permuting indices in Eq (47) gives the definition of
vectors Kl . Elements of 6A11 and 6A12 are computed in sections 2.1
and 2.2 of subroutine <2.46> MATASS, respectively, whilst factors Bi are

found in section 3 of <2.44> JTFACS.

Equation (28) yields the equation for advancing poloidal flux values.

Substituting for F..¢ gives

ag vE

r - o P
MBS = j@s A ™ dt f@sRn¢¢J¢dr

(56)

21 22
- - A
Astft st¢t
Element contributions to A2l and A%? are found in exactly the same
manner as shown above for all ana al2 . Again, lumping is used for j¢

and R is replaced by its element average <R> to give:

M >N,V
Ooe” "1

21 _ 1 =1
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where
A
Yy < <R><n¢¢> 3

6a2l ana 6a22 are computed, respectively in Sections 3.1 and 3.2 of

<2.46> MATASS.

- 1D -



If we include ohﬁic heating, heat exchange and Bremsstrahlung terms,

the electron temperature equation becomes

- (fnleg¢e-v¢sdr + f@scexTedr)

+ Joc_T.at+ Je (393 + cpzn?r_1/2) aq

-7 Agg Ter - A:: Tir * Si bl
giving
6a33 = E 11 -: } <Ke>|&llzv - 6a34 (60)
and
S L A R

Cex and Cr are exchange energy and radiation energy coefficients,
respectively Cexs and Cexf are values of the exchange energy
coefficients on surfaces s and t .

The last two terms in Eq (59) are treated explicitly. The ohmic term

is
E VE _
Joiepeiar = Jo,VEen evg —SEF— 4 2fp o Z— . 1. 3,47
i i PP (uoR)2 i MR PO~ ¢ -
2
+ f¢in¢¢j¢d1
2 Vji
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if lumping is used for j, .

¢
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The electron temperature equation is coded in Section 4 of <2.46>
MATASS. Section 5 of that subroutine contains the corresponding terms for

the ion equation.

7. MATRIX ASSEMBLY AND SOLUTION

The matrix assembly scheme used exploits the fact that for a single
magnetic axis configuration, the surface averaged transport equations
reduce to a set of block tridiagonal equations. The element matrix
computations described in the previous section, and implemented in
subroutine <2.46> of the program, would be unchanged for multiple axis
configqurations - the only changes needed would be in the routines <2.48>
ADDMEL and <2.49> ADDVEL that <2.46> calls to add the element matrix and

vector contributions to the global matrix and vector, respectively.

Each triangular finite element has vertices (1,2,3) which correspond
to surfaces (s,t,t) where t =s * 1 , and contributes to block matrix
elements (s,s) , (s.t) , (t,s) ., (t,t) . The block matrix elements are of
order MEQ x MEQ with entries for each variable (f,¢,Te,Ti,...) in each

equation. The base address for each block element is given by
2
I = ME 2 + s, -3
(si,sj) a2 5, 3 ) (63)

where s, and sj take values s or t . Contributions from equation
NEQ to coefficients for variable NVAR are stored in a linear array at

location
I(s,t) + (NVAR - 1)MEQ + NEQ (64)

ij ; ’ ; "
Thus, element matrices 6&& J described in the previous section are

added into global matrix B at locations

I(s,s) I(s,t) 1 1 . g
1ikes) TOELE) } * E 11 } (1 + G- n mEQ) (65)

- 14 -



This addition is performed by <2.48> ADDMEL.

Source terms are similarly stored in a linear array. The value of

variable NVAR on surface s 1is stored in vector element
(NVAR - 1) NSMAX + s ' (66)

where NSMAX is some integer greater than or equal to the number of flux

surfaces. The solution vector u has elements stored in the same order.

Once matrix assembly is completed, then elements in the global matrix
can be adjusted to take into account imposed boundary conditions (cf

subroutine <2.50> XPTBC) giving the equation

Bu = 4 (67)

to be solved. In FETRAN, the solution vector u is found using the block
tridiagonal matrix solver BLKSLV [14]. This approach is somewhat
inefficient as it does not exploit the sparsity of the block submatrices,

but is sufficient to demonstrate the viability of the formulation.

B. PROGRAM STRUCTURE

The subroutines of FETRAN have been written following the OLYMPUS
[15] conventions for notation, layout and documentation. The principal
subroutines have the standard OLYMPUS functions. Table 1 gives a flow
diagram of the program. Subroutine <1.9> SETMSH1 and the routines it
calls belong to the triangular finite element mesh initialisation package
ELSET [15]. <E1> COEFFS and <A7>-<A10> are respectively classical
transport coefficient [13] and block tridiagonal solver packages [14].
The block data module (used by COEFFS) loads fundamental constants in SI

units into the common block COMFUN. Values of constants used are those

given in [16]-_



Subroutine <2.40> XPORT controls the solution of the transport
equations. The physics is contained in subroutines <2.52>, <2.44>, <2.46>
and <2.50>. <2.52> XPCOEFF computes transport coefficient, <2.44> JTFACS
computes terms associated with the lumped j¢ approximation. <2.46>
MATASS computes and assembles element matrix contributions as described in
section 6, and <2.50> XPTBC applies the boundary conditions. The
remaining Class 2 subroutines are concerned with moving data to and from
the block solver and evaluating errors. An index of subprograms is given

in Table 2.

The main transport controlling routine, XPORT contains an adaptive
timestep scheme. At each step the max norm

n+1 n
u

= . Al
E = max 1 0 (68)
u + u
over all members of the solution vector is computed. The timestep is

adjusted according to the prescription

IF e < gy

THEN DT := DT*DTFAC

ELSE return to old timelevel,
DT := DT/DTFAC

FI

Here DTFAC is a factor larger than unity. Usually DTFAC = 1.2 and
Ep = 5% prove satisfactory. In addition, it is possible to iterate the
solution at each timestep, thus allowing the ﬁransport coefficients and
source terms to be computed implicitly. Usually such iteration is not
necessary, although parameter NXPTIT is provided to allow iteration to be
performed. In runs tried so far, setting NXPTIT = 4 guarantees an error

less than 103,



9. TEST RUN -

Test runs have been performed using INTOR transport parameters (cf
section 5) and geometry. In the large aspect ratio approximation and when
force balance is ignored, the code gives results in good agreement with
_those obtained using the one dimensional code HERMES [17] running under
the same conditions. For 1 1/2-D transport, integration of the transport

equations is interleaved with equilibrium solutions to restore force

balance.

Table 3 shows input data for a sample run using INTOR transport, but
without the equilibrium being recomputed. Figure 2 shows the initial 2-D
element triangulation generated by the ELSET routines [5] for NCASE = 2,
NSECT = 3 and NSURF = 11. (Figure 3 shows the element displacements as a
result of solving for pressure balance - for further details on solving
force balance see [4].) Figure 4 shows (a) initial electron temperature,
Te  and poloidal flux, ¢ « and (b) Te and ¢ after 6.8 seconds.
Figure 5.shows the time evolution of the axial electron temperature, and
figure 6 shows the final electron temperature profile with and without
equilibrium computation. For the case with equilibrium solution, EQUSOL
was called every 10 transport steps. A sample of output for.the test case

input of Table 3 is given in Table 4.

10. FINAL REMARKS

The work reported here successfully demonstrates the finite element
treatment of transport in plasmas. The finite element approach allows the
physics, the addressing and storage, and the matrix solutions to be
separated. This makes the part of the program that a user needs to be
aware of smaller. The result is that programs become easier to adapt.

New applications should require relatively little development work.

The number of eguations in the transport model can be easily
extended. For example, to add a density eguation to the set (for
f,¢,TeTi) solved in FETRAN required (i) MEQ to be increased to 5 to deal

with addressing and matrix solution, (ii) computation of element matrices



to be added to <2.46> MATASS and copying of results from and to the
density variable ELDEN added to <2.42> OLDVEC and <2.51> NEWVEC. Adding
new terms to existing egquations is equally straightforward, involving only
integrations over a single triangular element to find the form of the
element matrices to be coded into <2.46> MATASS. Questions of complicated
curvilinear coordinates systems and metrics do not arise, as geometrical

features are taken care of by element assembly.

Any plasma cross section shape can be dealt with simply by
appropriately connecting triangular elements. Examples of this may be
seen in [4]. Multiple axis systems do not change discretisation over
triangular elements, so to adapt the model to multiple axis systems only
requires the matrix solver BLKSLV to be replaced by a more general one,
and addressing used by <2.48> ADDMEL to be altered to match the

replacement matrix solver.

The implementation of the finite element described here does not
compare favourably with existing 1 1/2-D finite difference models in terms
of computational speed. This is because we aimed to demonstrate first
that the finite element method would work by using the simplest code
structure and existing modules not tailored to the present application.
The inferior computational speed of FETRAN arises because (i)} the known
sparsity of block submatrices fed to BLKSLV is not exploited, (ii) many
spurious calculations are performed by calling COEFFS at each node on each
flux surface, and (iii) geometric factors, which change only when the
equilibrium solver is called, are reéomputed at every iteration of each

transport timestep. For example, the matrix term
Vd V@
IKN‘:’S e,

in Eq (59) is computed by summing the contributions of all triangular

elements with nodes on surfaces s and t (= s * 1) :

_ 1 -1 2
6jrg¢S.E¢t - E_1 1 } iz ['2&1] vi) K>, (69)

st



In Eg (69),'thé sum i is over the set Est of triangular element lying
between surface s and t . Est comprises the subsets E* and E~ of
elements with two nodes on surfaces s and t , respectively. Thus we

may rewrite Egq (69) as

1 =1
6IKE@s-z¢t = E -1 1 } [oézs ¥ Uth) ' (70)
where
2 1
o = (% + = Ay |2v), (71)
s - G613 1) (Il |
1 2
o, = (3 1 +% ¥ ) (|r]%), (72)
t 3iEE- 3iEE+ |~l| 1

and k , Kt + are values of «k on surfaces s and t , respectively.

. If geometrical surface factors US and c£ are computed only when the
geometry changes, then the computations of matrix elements is reduced from
a two-dimensional (Eq (69)) to a one dimensional (Eq (70)) summation, with.
obvious speed gains. Similar argquments hold for other terms. The cost
benefits of these reordering of computations dictate that the use of
macroelements (unions of triangular elements on surfaces) should be

implemented to separate geometrical and surface averaged quantities.
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Table 1: Flow diagram of Program FETRAN

BLOCK DATA
MASTER 0.0
BASIC 0.1
MODIFY 0.2
COTROL 0.3 =-=~LABRUN 1.1
--=CLEAR 1.2
=--=PRESET 1.3
-~-=DATA 1.4
~-=AUXVAL 1.5 ===SETMSH 1.9 =~=-SETCS1 1.11 ---TESVOL 1.10

--=-BCTOBV 1.19

---INITAL 1.6T

--=-START 1.8
==-=STEPON 2.1T =---XPORT 2.40X--=-MASMAT 2.41
--=-0LDVEC 2.42 —--ADDVEC 2.43
--=XPCOEF 2.52X ---COEFFS E1
--=JTFACS 2.44
--=MASSTM 2.45
--=-MATASS 2.46 ---MBASAD 2.47
-=-=ADDMEL 2.48
-=-=ADDVEL 2.49
-=-XPTBC 2.50 ---VFIXBC 2.54
-=-=BLKSLV A7 ---LUF AB
---FANDB A9
--=-FANDBV A10
--=-NEWVEC 2.51 =-==XPCOPY 2.53
--=-WRITE 3.2
---GRAPH 3.3
-=-=0UTPUT 3.1
-=-=TESEND 4.1

---ENDRUN 4.2



Table 2 :

SETMSH
SETCS1
TESVOL
BCTOBV

XPORT

MASMAT
OLDVEC
ADDVEC
JTFACS
MASSTX
MATASS
MBASAD
ADDMEL
ADDVEC
XPTBC

NEWVEC
XPCOEF
XPCOPY
VFIXBC

WRITE
GRAPH

BDATA
COEFFS
BLKSLV
LUF
FANDB
FANDBV

Table 2: Index of subprograms

Index of subprograms

PROLOGUE CLASS 1
SELSET#CONTROL MESH INITIALISATION
SELSET®*HEXAGONAL MESH IN HALF-CIRCLE
®ELSET#CHECK FOR POSITIVE VOLUMES
$ELSET®*BOUNDARY CELL TO VERTEX POINTERS

CALCULATION CLASS 2
ADVANCE TRANSPORT EQUATIONS BY ONE STEP
COMPUTE TIME DERIV 'MASS' MATRIX
FIND OLD TIMELEVEL PART OF RHS
ADD CONTRIBUTION TO VECTOR FOR BLOCKSOLVER
FIND NODE QUANTITIES FOR J-TOROIDAL CALC
LOAD MASS MATRIX TERMS INTO BLOCK MATRIX
ASSEMBLE BLOCK MATRIX BY MESH F.E.
COMPUTE BLOCK MATRIX BASE ADDRESSES
LOAD F.E. CONTRIBUTION INTO BLOCK MATRIX
LOAD F.E.CONTRIBUTION INTC RHS VECTOR
APPLY B.C.TO BLOCK MATRIX AND RHS VECTOR
UPDATE STATE AND TEST FOR CONVERGENCE
SUPPLY TRANSPORT COEFFICIENT
COPY RESULTS FROM U TO PV.EVALUTE ERROR
DIRICHLET B.C.

OUTPUT CLASS 3
LINEPRINTER OUTPUT -
GRAPHICAL OUTPUT

UTILITIES CLASS E.A
®COEF1#BLOCK DATA
&#COEF1#*EVALUTE BRAGINSKII TRANSPORT COEFFS
&BLKSLV&SOLVE BLOCK TRIDIAGONAL EQUATIONS
®BLKSLV#FORM LU FACTORS
@BLKSLV®FORWARD AND BACKWARD SUBSTITUTION
S&BLKSLVE#VECTOR FORWARD AND BACKWARD SUBST

PPN MNP DN N

[P QI QI gy
.

w w

== = e i

- 11
.10
.19

.40
A1
42
U3
44
.45
.46
U7
.48
.49
.50
.51
52
.53
.54

=0 O~] =



Table 3: Test input data

FETRAN INTOR Transport Run
Hexagonal mesh in upper half plane
No equilibrium solution case
H.LEE MAY 18 1984
&NEWRUN
RMAJOR=4.5D0,
RMINOR=1.5D0,
BTOR0=5.0D0,
TORCUR=4.0D6,
DEN0=2.0D20,
TELC0=200.0D0,
DT=0.1D=-3,
DTFAC=1.2D0,
EPSL05=0.5D-1,
NTIMES=60,
NSTART=2,
NSPRIN=10,
NRUN = 60,
NCASE = 2,
NSECT = 3,
NSURF = 11,
NLNOTT = .FALSE.,
NSMAX = 11,
NXPTIT = 4,
NLXPRT = .FALSE.,
MEQ = 4,
MAXEQN = 9,
MAXU= 468,
&END



Section of the ouptut from run using data of Table 3

Table 4
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Fig.1 The family of related finite element MHD models.
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ELEMENTS
NSTEP =« O

TAG = INTOR EQUILIBRIUM

Fig.2 Initial 2-D element triangulation.
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NSTEP = 1
TAG = INTOR EQUILIBRIUH

Fig.3 Element triangulation after Vp=jxB
is satisfied by element displacements.

CLM-R 253




INITIAL CONDITIONS

.__\
" el " PR + + "

a ar L) L1 .y a ar a ar e

Kev.

w34

ki

TEMPERATURE OF ELECTRON r/a

[
BFL

jud:

UX

T

&1 l:l I:l .:l as
POLOIDAL FLUX

AT TIME 6860, 08

[TE
(3 F 3
e
el
N 1
"' “«l B ) as as . ar ap ar e
EAE

r/e

TEMPERATURE OF ELECTRON

MS

POLOIDAL FLUX
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b) Final T, and y profile.
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Fig.5 Time variation of the axial
equilibrium solution.
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Fig.6 Final 7, profile with (solid line) and
without (broken line) equilibrium solution.
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