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ABSTRACT

A study is made of the hydromagnetic stability of a current
carrying fluid whose Chm's law includes finite conductivity, elec-
tron inertia and the Hall effect. The system has previously been
shown to be unstable when finite conductivity alone is considered.
It is found that the system is still unstable. The introduction
of the Hall effect does lead to a reduction in growth rate but
electron inertia is a further destabilizing influence. In none of
the cases studied is the growth rate reduced by an order of magni-
tude. It is possible that viscosity (which has not been included)
caus=s a larger reduction in growth rate than the Hall effect.
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1. INTRODUCTION

l. In recent years several attempts have been made to extend hydromagnetic
stability theory so that it applies to problems in which either mean free
paths and collision frequencies or Larmor radji %ng %HF?E}OH frequencies are

of importance. In particular several authors 1 have shown that
the allowance for finite electrical conductivity can introduce instabilities
which do not occur in a perfectly conducting fluid. In contrast, it appears

that finite Larmor radii and gyration frequencies can exert a stabilizing
influence on systems which would otherwise be unstable(2,5,6,7,8,12)

2. In the present repori the two influences are studied simultanecusly as
there are physical situations in which both can be important. A very simple
pro?lfm is chosen which has been studied previously with both effects neglec-
ted'9) and with both effects considered individually(lovlz). Axisymmetric
perturbations of a cylindrical column of fluid carrying a uniform axial cur-
rent density are studied and, in the generalised Ohm's law for the {fluid,
finite conductivity, electron inertia and the Hall effect are included.

3. The introduction of the Hall effect considerably complicates the disper-
sion relation for the problem. Overstability becomes possible and complex
roots of a transcendental dispersion relation are required. A complete solu-
tion of the dispersion relation has not yet been attempted but solutions have
been obtained in some limiting cases and the general character of the results
seems fairly clear.

4. In this problem it appears that the introduction of the Hall effect only
reduces the growth rates of instabilities and does not make any unstable
mode stable. Moreover electron inertia is a destabilizing influence and,
when the ion gyration frequency becomes small enough, the destabilizing effect
of electron inertia is more important than the stabilizing effect of the Hall
term and the growth rates of instabilities rise again. Thus there appears to
be an optimum value of the ion gyration frequency for reduction of growth
rate. In the cases studied it does not seem that this optimum reduction of
growth rate is very large and this suggests that the instabilities caused by
finite conductivity are not seriously affected by the introduction of other
terms in the generalised Ohm's law.

5. The remainder of this report is arranged as follows. The basic equations
and the equilibrium configuration are described in Section 2. The dispersion
relation is derived in Section 3 and its general properties are discussed in
Section 4. Solutions of the dispersion relation are obtained in Section 5
and there is a short discussion of the results in Section 6.

2. BASIC EQUATIONS

6. The system of hydromagnetic equations used in the present problem have
the form, in Gaussian units,
dy IxB
——= = - grad + = (2.1)
P 3% g P %
div v ='0, (2.2)
curl B=i€f~i , (2.3)
div B = 0, (2.4)
) 1 22 (2.5)
curl E -k .



S yxB ixB
and = +-a;5 <= =B # SRt ¥ g grad pe- (2.6)

In these equations the fluid is taken to be incompressible (density p) and to
have a scaler pressure p. The electric and magnetic fields, current density
and fluid velocity are E, B, j and v respectively. The fluid has conducti-
vity 0 and the nugber denslty of electrons (and ions) is n. The plasma
frequency is wp[wp.-éﬂnezlm] and all frequencies considered are less than
this, so that the electron and ion densities can be taken equal. p. is the
electron pressure. The masses of ions and electrons are M and m, ¢ is the
velocity of light and e the magnitude of the electronic charge. The only
difference from the more frequently used idealised hydromagnetic equations
for an incompressible fluid is the replacement of the equation,

E + v x E/c =0, (2.7)
by the generalised Ohm's law (2.6) which includes terms involving finite

electrical conductivity, electron inertia and the Hall effect. Equation
(2.6) can be conveniently rewritten using equation (2.1)

i j dy

A . XxB L M

Gtupr At TRt TC ne 8¥2d Pi~ g gt ¢ (2.8)
where pj is the ion pressure. In what follows it will, where necessary, be

assumed that pj = pe = p/2.

7. The equilibrium configuration is as follows. A cylinder of conducting
fluid of density po and radius r, carries a uniform axial current. The
magnetic field and pressure profiles are:

BP = (0, B, r/rg, 0) (2.9)

o [1 = 28[rE) (2. 10}

H

and P

where p, = B3/4xm.

The conducting fluid is surrounded by a vacuum in which there is a magnetic
field: v

g = (0, BO ro,/r, 0).
8. The set of hydromagnetic equations imply certain boundary conditions on
the conducting fluid - vacuum interface. These are that all three components
of the magnetic field and the pressure should be continuous. In addition

there is a boundary condition on the tangentlal electriz field which does not
couple to the dispersion relation. There is in addition a radial electric
field in the equilibrium situation but this (and the resulting charge density)
does not affect the stability problem as long as the electric field force
term in the equation of motion can be neglected. It will be assumed that
this interaction is unimportant in what follows.

3. DERIVATION OF DISPERSION RELATION

9. In this report only axisymmetric disturbances of the equilibrium configu-
ration are studied. Thus any variable q takes the form:

q=qo+ a,(r)e® Ot (3.1)
When the hydromagnetic equations (2.1) to (2.5) and (2.8) are linearised
they become: -

curl B, x Bo curlBo x §1 (3.2)

w = - grad +
Po A grad p, 47\: ix



div v4 = 0 (3.3)
c2 c2w Mcw
. L 1 lB + = - Mcw
ano T drwp z]cur G wB, = curl (y, x Bo)- =Z= curl y,, (3.4)

where equation (3.4) is derived from (2.3), (2.5) and (2.8). Using the
particular forms of the equilibrium magnetic fields and equation (3.1),

curl (curl B, xBg) = 0, (3.5)
curl (curl BoxB,)=- (2ik Bg/r,)B, (3.6)
and curl(x1 xgo) =0

and the equations can be further rewritten

Pow curl y, = - (2ik Bol4ﬁro)§1 , (3.8)

div v, = 0 (3.9)

and [—92 + —————]curl curl B; + wBq = - Mel curl v, (3.10)
470 4ﬂwp2 ~1 ~ e ) :

Finally equation (3.10) can be written in terms of the perturbed magnetic
field alone

c?w 2ikc?
T . 5 :
[4‘.7CG 7UJ.JP Jeurl curl B, + (w W] B, 0, (3.11)

where cy is a hydromagnetic velocity and w; an ion gyration frequency, both
in the field Bg.

Thus CHQ

B3/4mpo, (3.12)
eBo/Mc. (3.13)

Wi

10. Because of the relative simplicity of the perturbed equations,it is con-
venient to write them in component form. Thus

o = BO = B0B1
Po® v, . = Dp, Irs D(rB,g) ?ﬁFEQ ; (3.14)
BoByr
w =
pO VTB m » (3. 15)
5 ikrBoB, 8
w v = - ik S i L (3.16)
po 1z pT 47{1‘0
D(rv,r) + ikrv,, = 0 , (3.17)
4ng 2ikefy wo_ . ve Bir .
(=30 - _?;EE_)/(I 0 4 T - =0, (3.18)
e r
i4‘]t0 Zikcﬁ' ) wo } - V2B n B,g
—=(w - —— /(1 + ZiBig 10 = =0, (3.19)
o*i
and .
4ﬂ° _iE;H_}/(l +L.0p,, - V2B, =0, (3.20)
Z
P
where D stands for d/dr. In writing down this set of equations it is neces-

sary to note that (V2v); does not necessarily equal V2v; in curvilinear co-
ordinates.

11. The perturbed equations in the vacuum have the form



curl EY = div ~Y =0 (3.21)
and these equations have the solution
BY = grad ¥, o grad Ko(kr)eikz L

ar

12. The four boundary co?difions which must be satisfied on the fluid-vacuum
interface can be written'l0

B,y =B/ _ , (3.22)
B;g + 2Bor,/ro = 0, (3.23)
B,y = By (3.24)
and - p, + 2por,/ro = 0 , (3.25)
where the perturbed fluid surface is
rs Ty eikz + Wt - p 4 (V{r/w)eikz L wE {3.26)
and all the boundary conditions are to be applied at r = rg,.

13. It can now be seen that the fluid variables fall into two groups Vv, .,
Viz, Py and B,g and B, , B,,, Vv,g which are coupled neither by the fluid
equations nor by the boundary conditions. Thus two distinct types of pertur-
bation are possible. The second type of perturbation involves no disturbances
of magnetic surfaces (v, . = 0) and can only be a torsional motion and further
consideration is restricted to the first type. Note that in this case the
vacuum magnetic field is not perturbed. Equations (3.14),(3.16),(3.17) and
(3.19) must now be solved in conjunction with (3.23) and (3.25).

14. The solution of equations exactly similar to the present set has been
described in (10). There electron inertia and the Hall effect were neglected
and the coefficient of B,g in (3.19) was simply 47mow/c2 but viscosity was
included in (10).* Now it is easy to deduce solutions of the present equa-
tions in the form:

B,g = A I,{Viz + a2 r}, (3.27)
_ Kk2Bg I )
Vi3 = S e AT {Vizfqz 7} s B I, (kr), (3.28)
_ ikBoviZ2 y a2 5 ik
Vg = —EEazazﬂ?;-.AIo!Jk2+~a r} e B Ig(kr) (3.29)
and
p, =- Dok 0% 4 1 {ATTGZ £} - J20 A I, [VEP+ 62 1]
2RAST 47r,
+ B I, (kr)
where .
470 2ike
a2 = =7z (v - —;;5§ Y/ (1 + %%g)- (3.31)

15. The dispersion relation is now obtained by writing down equations (3.23)
and (3.25) at r = ry and eliminating A and B. There results:

¥t would be formally very simple to include the effect of an igotropic
viscosity in the present problem but it would make the dispersion equa-
tion very unwieldy. Instead a rough estimate of the influence of
viscosity is made later.



/kT7az r, lal/kZta? rol | ke Lolkro) |}, ma2rZpow? —
I,{VkZ+a? r,} (kr ) BaZ | ¢

It is now convenient to introduce dimensionless variables:

Vo= 4RCcyro/c? | 5283
and
Zo= WiT,/cy
The dispersion relation can then be written
; 72 . 2.3
RETEEE Lo VXBHGTE | o Toto) [ atrivg | (3.34)
1 ¥Xg +alrs I, X,) 4x3
where
0®r2 = Vo[ Yo - 2iXo/20]/[1 + mYoVy/4mMZ2] . (3.35)

Because of the imaginary term in a®r 2 introduced by the Hall effect, it is
difficult to solve equation (3.34) campletely and the next section is devoted
to discussing general properties of the equation.

4. PROPERTIES OF DISPERSION_RELATION

16. When Zo = «, ion gyration frequency becoming arbitrarily large, equation
(3.34) becomes

T T wov, sevfa & 1 o VX8 + YoVo _ Xo Io(Xo) | YoVO} (4.1)
I1 /X3 + YoV, I (Xo) 4X3

This equation has been solved completely in (10) and solutions of the equa-
tion are shown in Fig.l. For all values of the conductivity (V,) the asymp-
totic behaviour of solutions at large and small wavenumber are:

Yo ~ Xo/V2 Xo =+ 0, (4.2)
YD \/?: XO"*OO- (43)

1

17. The object of the present report is to discover when the finite nature
of the ion gyration frequency (Z,) causes the growth rate - wavenumber curves
to deviate markedly from those shown in Fig.l. An estimate of when this is
lxkely to happen can be obtained from the expression (3.35) for &> Thus

it is likely that

(a) Hall effect is important if 2X,/Z, 2 Yo (4.4)

(b) Electron inertia is important if Yg » 47°Mz3/mV, - (4.5}

In both of these inequalities, the value of Yo(Xo,V,) appropriate to equation
(4.1) is used.

18. Since, for the solution of (4.1), Yo is always less than Xo/v2, the Hall
effect is important for all values of X, if



Z, % 2/3 - (4.6)

In any case the Hall effect is 1mportant for large values of the wavenumber
Inequality (4. 6) can be rewritten in several ways, perhaps the most signifi-
cant being 47%ne ro/Mc2< 8, or for deuterium

nrg s 1016 . (4.7)

Thus for low enough line densities, the Hall effect is always of importance.

19. Electron inertia is certainly unimportant for small enough values of the
wavenunber but is important at large wavenumber if

47MZ2 /m £ V2 Vo, (4. 8)
or, for deuterium .
| 22 53 10°% v,. (4.9)
This inequality can certainly be satisfied in a fluid of high conductivity.
Again the significance of this inequality iway bs clearer if it is written in
its original form
ow/wp> 2 1. (4.10)

This can be satisfied for ®w << W, because for a fluid of high conductivity
G >> W,.
P

20. Solutions of the dispersion relation for very large and small values of
Xo can be studied by considering the asTmTtotic behaviour of the Bessel func-

tions Ig(z) and I;{(z). Thus for small
Iglz) ~ 1 + 122 (4.11)
o I1(z) ~ 3z +352° . (4.12)

For large values of ]z] and z not pure imaginary

Io(2z) ~ J%?Z [cosh (p cos ¢)cos (p sin ¢ + %)
+ i sinh (p cos ¢)sin(p sin ¢ + %)] (4.13)
and
I,(z) ~ /é%é [i cosh(p cos ¢) sin(p sin ¢ + %)
+ sinh (p cos ¢ )cos(p sin ¢ + %)], (4.14)
where i¢
=g e . (4.15)

For given ¢ and p -+ w, cosh(p cos ¢) ~ sinh(p cos ¢) and Igolz)/i(z2)}=>1,(4.16)
These asymptotic expansions can be deduced from those for Jnp(z) given in (14)

by using the relation I,(z) =e -Zn7i In (ze2®1) (13).

Finally when z is real or asympotically tending towards real values correc-
tion terms to (4.16) are required

Io(2)/11(2) » 1 + 25 + 5oz (4.17)

21. Using these asymptotic expansions the following results can be obtained

(a) As X5, =+ 0
YO L Xol/i

(b) As Xg & o
Y, ~ V2



These results are exactly the same as those obtained in the limit Zo = o (no
Hall effect or electron inertia).

(e) when |mr0] — o but X  is not large
2, AXo 1i1(Xo)
Yo Gro Ioﬁgj" (4:-18)

22. Besides the above asymptotic results further approximate results can be
obtained. Thus if

(i) Electron inertia is unimportant
(ii) The Hall effect is important
(iii) Xo « 2Vo/Zo , 1 « 2VoXo/Zg

equation (4.18) can be written
Y2 ~ 2(1 + i) fXofo IilXo) (4.19)
Vo Io(xo)

On the other hand if condition (i) is replaced by

and

(iv) Electron inertia is important
equation (4.18) becomes

s _2imXo [I4(X L]2.
Yo ~ Tmrzs Tig(X) (4.20)

Equation (4.19) shows the stabilizing influence of the Hall effect as Ys
decreases as Z, decreases while (4.20) shows the destabilizing influence of
electron inertia. (4.19) is of course not valid for very large Z, nor is
(4.20) valid for very small Z,. The fact that electron inertia alone has a
destabilizing influence is easily demonstrated by considering the dispersion
relation when finite conductivity and the Hall effect are both neglected.
This is

2 /. 2 2.2
Yg = 2, Xg-+m2rg Xoi-wpro

o il o)
wpTs | ___~¢F c2 EL%XQ) -1 1, (4.21)
oz R e T f;gjfaggg Tq 0

which has an obvious positive root for Yg.

23. Use of (4.2),(4.3),(4.18),(4.19) and (4.20) and other similar expressions
enables approximate solutions of the dispersion relation to be obtained and
these are studied in the next section.

5. SOLUTICONS OF THE DISPERSION RELATION

24. In order to obtain a representative picture of possible solutions of the
dispersion relation three values for each of Vo.and Z, have been considered.
In addition M/m has been given the value appropriate to deuterium; for ele-
ments of higher mass number thes electron inertia term is of smaller impor-

tance. The values chosen for Vg, and Z, are
Vo = 1, 103, 10°
Zo, = 1/10, 1, 10 (5.1)

25, This gives nine different dispersion relations to be considered. Using
the inequalities obtained in section 4 and the solutions of the dispersion

o



relation for Z, = o, it is possible to estimate which terms in the general-
ised Ohm's law are important in each case. Results are shown in Tables I to
IV. The results obtained in(10) for Z, =  are shown in Table I. The Hall
effect is probably important if inequality (4.4) is satisfied. Values of Xo
for which this is so are shown in Table II. Electron inertia is probably
important when inequality (4.5) is satisfied. Values of X, for which this
is so are shown in Table III. Finally Table IV shows those values of Xo for
which it is likely that X, exceeds |arg|. It should be noted that the
results of Tables II to IV have been obtained by using the unperturbed values
of Yo and must be subject to correction when results have been obtained.
Approximate solutions of the dispersion relation can then be obtained by
simplifying the equation by retaining in X%-&azrg only the most important
terms. Thus, for example, Table IV shows that in most cases Xg can be
dropped.

26. The approximate solutions of the dispersion relation are shown in Tables
V to VII. It must be stressed that most of these results have been obtained
by using asymptotic forms of the dispersion relation and there would be
corrections to the growth rates if more accurate solutions were obtained.

It seems that the worst inaccuracies occur for the imaginary part of Yo and
that the calculated behaviour of the real part of Yo (instability growth
rate) is substantially correct. Figs.2 to 4 show R(Yo) as a function of Xg.
Fig.2 shows results for V5 = 106. In this case the growth rate first
decreases as Z, decreases but the destabilizing influence of electron inertia
has caused this trend to reverse when Z, = 0.1. The optimum values of Z5 for
stabilization is around Zp = 1. Figure 3 shows results for Vg, = 103, 1In
this case there is no noticeable reduction in growth rate for Zg = 10 but
reduction does occur for Z, = 1 and 0.1. However it seems that the growth
rate soon increases again when Zo drops much below 0.1. The results for

Vo = 1 are shown in Fig.4. In this case, even with Z, = 0.1 there is very
little reduction in growth rate.

27. From the results obtained in this section, it seems that for no choice of
parameters is reduction of growth rate by an order of magnitude likely to be
possible.

6. DISCUSSION

28. In the problem studied in (12) it was shown that the Hall effect could
actually remove instabilities of an ideally conducting fluid. This led to
the hope that it would exert a stabilizing influence in many other problems.
In the present report we have obtained a very di fferent result. Although

the Hall effect does reduce the growth rates of instabilities in a fluid of
finite conductivity it does not make any unstable modes stable. It would be
serious if this were true for all instabilities caused by finite conductivity
and not only for the rather special configuration studied in this report.

29. For example, consider the values of V, and Z, appropriate tg a high
temperature ionized gas. If the gas has a temperature, T ~ 1079, particle
density, n ~ 1013/¢cc and radius, r, ~ 10 cms, then V5, ~10° and Zo ~ 1. For
Vo = 106 andZo = o (no Hall effect?, there is a growth rate at Xg = 10 (wave-
length equal to circumfesrence of plasma) of Y, = 0.08. The introduction of
the Hall effect reduces this to £(Yy) = 0.03 but this is less by little more
than a factor of 2. The remaining growth rate is still 3 per cent of the
characteristic growth rate (cH/ro) and this is uncomfortably large.

30. There are still effects that have not been included in the present
problem. These include viscosity or viscous type terms in the equation of
motion. Ordinary viscosity does reduce growth rates and the results given

=g =



in (10) suggest that in the present problem it might be as effective as the
Hall effect at the wavelengths of greatest interest and of course much more
effective at shorter wavelengths. However once again this does not lead to
real stabilization. The finite Larmor radius effects studied in (7) and (8)
do lead to stabilization in a fluid of infinite conductivity but are they
any more successful than the Hall effect in a fluid of finite conductivity?
This is clearly a very important question,
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TABLE 1

SOLUTIONS OF THE DISPERSION RELATION FOR Vg— oo

(Yo AS A FUNCTION COF X, AND Vo)

VALUES OF Xo FOR WHICH ELECTRON INERTIA

V\\fo 0.2 0.6 1.0 2.0 3.3 5.0
o
106 0.022 | 0.053 | 0.079 | 0.125 | 0.162 | 0.198
103 0.087 | 0.206 | 0.304 | 0.477 | 0.620 | 0.740
1 0.140 | 0.406 | 0.632 | 1.014 | 1.227 | 1.316
TABLE 11
VALUES OF X, FOR WHICH THE HALL EFFECT IS IMPORTANT
ZO
Vz\\ 0.1 1.0 10.0
100 a1l X all X, Xo > 0.05
103 all Xo all Xo X5 & 3.3
. 1 all X, all Xg Xg 2 7.5
I
TAB 111

IS IMPORTANT

VXO 0.1 1.0 10.0
100 almost all Xo > 0.6 naver
103 X 22.0 never never
1 never never never
TABLE IV

VALUES OF X, FOR WHICH X, 2 |aro|

—

\zo
VO

106
103
1

> 10
> 10
XO.Z 20

1.0

>> 10
>>10
Xo2 2




TABLE

v

APPROXIMATE VALUES OF Yo FOR Zo =10

X
v&f’

107

0.2

0.6

1.0

2,0

3.3

106 0.016 + 00,0091 [0.041 +0.0164|0,059 + 0.0241|0.087 +0.0361i {0,107+ 0.0451

5.0

0.124 +0.,0511

as Zg = 0.694+ 0.268i
1 as Zg = ™
TABLE VI
APPROXIMATE VALUES OF Yo FOR Zo = 1
X
- ° 0.2 0.6 1,0 2.0 3.3 5.0
o
'IO6 0,010 +0,0051]0.023 + 0,0091{0,03%+ 0,014i[0.049 +0,0201|0.0635 +0,0371|0,076 + 00441
103 0,058 + 0.02i|-i 0.130 +0.05331]0.185 + 0.07711C.274 + 0.114410.339 + 0, 1411 O.390+0.162i
1 not calculated

TABLE VII

APPROXIMATE VALUES OF Yo FOR Z5= 0.1

\°
Vo

106
103

0.2

0,013 + 0.0081
0.033+ 0.0141
0,739 + 0.0101

0.6

0.038 + 0.0221
0.073 +0.0303
0.371+0.0671

1.0

0.061+ 0.0351
0.104+ 0.0L31
0.539+0.1221

2.0

0,103 + 0.05%1
0.154 + 0,064i
0.812 +0.1591

3.3

0.137+ 0.0791
0.191 + 0.080i.
0.992 +0,1511

5.0

0.165+ 0,095i
0.219+ 0,09141
1,130+ 0.1551
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