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1. Introduction

The main aim of the report is to gain understanding of the
signal-to-noise ratio, sampling frequency and sample size required for
three novel methods of time series analysis to produce useful results.
The importance of these methods is that they provide a quantitative
measure of the complexity of the system responsible for the time series.
In particular, complicated but nonetheless deterministic behaviour may be
distinguished from noise. 1In addition, the knowledge that a system
possesses only a few degrees of freedom should be of great help in

modelling such behaviour.

The methods cannot be explained without recourse to a little
mathematics. However, the presentation will be mainly heuristic with the
number of definitions kept to a minimum. Central to all is the idea of
generating a multi-dimensional structure from the data using delay

co-ordinates. Suppose we have a time series Xk = X(tk), k= 1,.4.,N,
where N is the total sample size and the tk are evenly spaced times,

At apart, then we may construct n-dimensional vectors ﬁk by

x, = (X(£,), X(E, + ©yeeey X(t_+ [0 - 11T)), (1.1)
where T is an arbitrary time interval. It may be shown rigorously that
this (delay) co-ordinate system is a good choice provided [n - 1]7 < P,
a measure of oscillation duration (Takens, 1981). Degeneracy occurs when
two components of X, are the same, e.g. it is pointless to set T =P

when the time series has a single period P.

In principle, there is no need to have recourse to this procedure if
more than one time series is collected - there is the obvious choice of

co-ordinates say (Xk, Y Zk) if X, Y and Z, are simultaneous

k' k k' k

samples of the same system but measured at e.g. different places. However
these co-ordinates may still be degenerate if it happens that Yk « Zk for
each k; further, there is then a physical restriction on the allowable

Ne



As a consequence of (1.1) we can conceive of our data as a set of
points in an n-dimensional space. We can imagine these joined in order

Koo Xoresey ,+«. to give an approximation to the trajectory, i.e.

R R S R
the result of joining points Xy when the sampling is continuous.
Clearly in this limit the trajectory is one-dimensional. However for
finite sample intervals the points on the trajectory can appear to be
space-filling. The first method of analysis assigns a dimension v to
the trajectory. This measure of the signal complexity does not depend on

sample interval over a range of At and need not be an integer (see

Chapter 2).

The second method of analysis gives Lyapunov exponents, which
quantify how rapidly nearby trajectories diverge or converge. If the
trajectory fills a region of space sufficiently well, it is possible to
find a lot of points X0 and X close together but separated by many
At. By calculating how fast x . and x . separate as ] increases

~R+] ~m+j
from 0, and averaging, the Lyapunov exponents associated with the

trajectory may be obtained (see Chapter 3).

The third method of analysis seeks a new co-ordinate system for the
n-dimensional space that depends on the trajectory. This co-ordinate
system has the property that, in the absence of noise, it gives an upper
bound dM(<n) for the smallest dimension dS of space in which the
trajectory does not intersect itself. dM therefore provides an upper
bound on the number of degrees of freedom of the systeﬁ responsible for

the signal (see Chapter 4).

In summary, Chapter 5 indicates that much of the data routinely
collected from DITE tokamak discharges is barely suitable for analysis by
all these methods, because the sampling rates are set just too low
relative to the characteristic time-scales of in particular the magnetic
(Mirnov) oscillations. When sampling rates are increased by a moderate
ratio (2.5 to 5), the first method yields dimensions near 2, and the
second shows that successive oscillations decorrelate rapidly. The
physical significance of these results is then discussed. The
signal-to-noise ratio of the data, barely adequate for the first two

measures, is too poor for the third. It transpires however that it does



provide a powerful assumption-free method for filtering out noise

if the sampling rate is very high (20-50 times normal).

2. Dimensionality Studies

2.1 Introduction

We shall be exclusively concerned with the measure v first
suggested by Young (1982), now associated with the names of Grassberger
and Procaccia (1983a,b). Mathematically speaking, Vv is a lower bound on
the Hausdorff dimension dH > v: generally it is impractical to calculate

d directly. Other techniques for estimating dH have been proposed
(Termonia and Alexandrowicz, 1983; Badii and Politi, 1984) and there are
other valid definitions of dimensionality (Ott et al, 1984). However, the
scheme of Grassberger and Procaccia remains the most popular choice for

analysing experimental data (Eckmann and Ruelle, 1985) .

Definitions of dimension such as dH, that need not always give
integer values, were motivated by the existence of fractals (Mandelbrot,
1977). These are mathematical objects with a complex self-similar
structure: whatever scale we choose to view them on, we can always find a
smaller one on which they look the same. The trajectories of many,
chaotic dynamical systems turn out to wind through fractals. Using the
method of Grassberger and Procaccia we can determine whether an apparently

irregular signal is generated by a system of this type and quantify its

complexity.

Their definition of Vv can be understood in the light of the
following (Nicolis and Nicolis, 1984). Consider simple geometrical
objects such as the perimeter of an ellipse, a square (with its interior)
and a cube, and imagine them sampled at equispaced points. (N.B. a simple
sine wave has an elliptical trajecto:y in delay co-ordinates.) Then, in
the case of the ellipse, the number of points of the trajectory within a
distance r of a given pbint upon it is proportiocnal to rv with v = 1,
provided r is not too large or small, whereas for the square or any

other planar object v = 2 (see Fig. 1), and v = 3 for the cube. Thus



v gives the expected dimensions of ordinary objects, yet it does not have

to be an integer, as its exact definition (below) makes clear.

First we introduce the correlation integral

— -3 1 \' - -—
o) = Tdm — | Hiw - ~ %V (2.1)

N3o N2 iFj ™

where H is the Heaviside step function, W is the total number of

sample points x & that serve to define the geometry of the object, and

5,
is then defined by

= §j| is the distance between two points in n-dimensional space. V
= 1li d 1l d .
v r%E ogC/d logr, (2.2)

assuming the limit exists.

The main aim of this section is to determine under what conditions a
meaningful value can be assigned to v. It is immediately evident that
the noise associated with any experimental data may affect v when r is
of order of or smaller than the uncertainty in the measurements. Although
these matters have received some discussion in the literature
(Ben-Mizrachi et al, 1984), the data collected from tokamak experiments is
relatively much poorer than has normally been used in the calculation of

Ve

The data available from the DITE tokamak is limited by the
acquisition unit to a maximum of N = 4096 samples per experiment, and has
at best 8-bit precision. Typically, signals are sampled every S0ps, yet
the characteristic frequency of the magnetic oscillations is of order
2kHz, giving only 2-3 measures per cycle. Disregarding for the moment the
restriction on n € 2 imposed by Takens' theorem (1981), we determine if
it is possible to measure v for an attractor with known properties from

data of this gquality.



2.2 A Controlled Study of the Lorenz System

We use as control a data-set produced by computing a solution of the
Lorenz system (Lorenz, 1963), a third-order set of ordinary differential

equations (ODEs) of the form:
a = qL(b -a), b=-b=-ac + ra, c¢= ab - RLc. (2.3)

for parameters OL = 10, rL = 28, XL = 8/3, post-transient solutions are
known to lie on a fractal, the Lorenz attractor, with dimension = 2.05
(Grassberger and Procéccia, 1983b) . c(t) wundergoes irregular
oscillation with a mean period P = 0.75 and amplitude 24. We sample it
at intervals At = 0.1, i.e. about 8 measures per cycle, truncating c¢ to
the nearest integer. C'(r) = d logC/d logr for the resulting record,
for which N = 2000, is plotted for varying n in Fig. 2a and for small
values of 1T in Fig. 2b. r is normalised with respect to s where
nl/2ro is the mean absolute deviation of the data about its average value.
Fig. 2a shows the characteristic saturation in the logarithmic slope
of C(r) as n is increased greater than v at a value of 2.1 - 2.2.
This agrees with other calculations to about 5%, the expected degree of
accuracy (Grassberger and Procaccia, 1983b). At all n we see a change
in the slope as r/rO gets small, due to the noise introduced by the
truncation and there is inevitably a saturation as r becomes of order
the maximum value of the data. The constant section indicative of a
fractal is further shortened as n increases because the delay
co-ordinates distort the trajectory more strongly. It is important to
verify that v is independent of the choice of delay co-ordinate, see
Fig. 2b. However, as the delay time 1t is further increased, C'(r)
distorts and increases. When <T/At = 20, we find v = 3 (Fig. 2¢) and
‘higher <t give even larger v . This is because we no longer have a good
co-ordinate system: the components of each fi become decorrelated when

nt 1is much greater than P.

We conclude that despite the drastic truncation of the DITE data and

the restricted sample size, it is possible to infer the presence of



fractal trajectories. However, the sampling rate is not quite fast enough
relative to the oscillation frequency: the restriction on nt makes it

difficult to check reliably that v is independent of n and <.

2.3 A Controlled Study of Random Data

If for some reason we cannot estimate v very well, we would still
like to be able to distinguish whether a signal has a deterministic
component. Thus, we have undertaken a study of v for data-sets
generated using the NAG routine G@SDAF to produce random values on (-1,1).
A totally random signal is expected to give Vv =n for all n, because
its constituent points should scatter evenly throughout a space of any
dimension. WNevertheless we expect, for a finite sample size, some

clustering as n increases, and we seek to determine this.

T is irrelevant in this case. Fig. 3a shows a typical plot of
C'(r) as n increases. Fig. 3b shows how for a sample size WN = 2000,
v becomes significantly less than n as n increases beyond 8. Clearly
we cannot expect to calculate v of this magnitude with only a few
thousand measurements. We remark that only 8/2000 = 2.5 points lie along
each side of an 8-dimensional object using this sample size. However, if
we demand a minimum of 10 points per side, N 2 108, which may be an

unduly pessimistic estimate of the amount of data required.

2.4 First application to DITE Data

As Section 2.2 makes clear, much of the magnetic data routinely
collected from the DITE tokamak is inadequate for good dimensionality
studies. A few records are available with At = 25ps, and from these we
select discharge 24591 for study (Arter and Edwards, 1985). For this
shot, the standard diagnostics indicate a total plasma current I = 125kA,
toroidal magnetic field, Bm = 2T (qL = 4.6), and a line-averaged density

n= 1.6 x 101%~3,
e

The DITE data is provided by 8 Mirnov coils, distributed uniformly in

poloidal angle around the tokamak inside the vacuum vessel in one vertical



plane, see Fig. 4a. The local Be , the time rate of change of the

poloidal field, is sampled by each coil simultaneously.

The 4096 data points cover approximately the first 100 ms of
discharge 24591. We discard the first 43 ms of data, which corresponds to
the plasma current rise time; the current plateau phase ("flat top") of
the discharge might be expected to form a simpler system than the
transient phase, the properties of which might also depend more strongly

on discharge number.

We consider the time signal from coil 1, now represented by a record
with N = 1920, duplicating the analysis of the Lorenz attractor. Figs. 5a
and 5b show that the resulting correlation functions have the same
gqualitative behaviour as Lorenz, and a similar slope (at least for larger
r). Since the number of points in the sample is small, it is adequate to
estimate gradients and their errors graphically, giving v = 2.1 % 0.3.
C(r) at smaller r has a steeper logarithmic slope close to n, i.e. this
level of signal is uncorrelated for n < 6 and might well be identified
with experimental noise (Ben-Mizrachi et al, 1984), but see the discussion

in Chapter 5.

Taking n =4 and T = 6At (=150ps) we find that coils 3, 4 and 7
give slopes consistent with the above estimate for v suggesting that we
are measuring a global feature of the discharge. As a check, we use the
signals at a given instant from coils 1, 2, 3 and 4 tc construct a
4-dimensional vector and find v = 2.2 using 1920 vectors of this type,

see Fig. 5c.

Further analysis of the signal supports the contention that an
attracting fractal trajectory ("strange attractor") underlies the magﬁetic
.behaviour of discharge 24591 (Arter and Edwards, 1985, 1986). The sample
slze however is apparently insufficient to confirm the convergence of v
with respect to increasing N (Fig.75d). Since this is ultimately the
only means of demonstrating the presence of a fractal and that v has
been accurately calculated, the strange attractor interpretation is not

completely unambiguous.



2.5 Other DITE Discharges

While the ohmically heated density limit on DITE was being
investigated in late 1985 we were able to obtain data sampled with At <
25ps. In this section, we consider the flat-top phase of another
discharge, number 27649 and data collected prior to disruption on
discharges 27792 and 28030. The sampling intervals At were 5us, 2us and
10ps respectively. For all four shots, I = 150kA and B@ = 2T. Data prior
to disruption from an earlier discharge 26246 was found to have At = 10us
and is analysed. Further description of all these data-sets is provided

by Table I.

Discharge 27649 has He increasing from 2.3 X 101%~3 at £ = 100 ms
to 8.1 x 101%~3 at t = 500 ms. During the discharge, a soft X-ray (SXR)
signal from a chord located as shown in Fig. 4b, outside the sawtooth
inversion radius was available in addition to magnetic data from coil 7,
positioned as in Fig. 4a. The two signals were each recorded starting at

a time 275.64 ms into the discharge, and N = 3894.

Plotting C'(r) for the soft X-ray signal suggests it has at least
two components, one of logarithmic slope = 1.2 at large T and another
with slope = 3.2 at smaller r (Fig. 6a). Taking N = 1944 supports this
interpretation and the v values found. There is little evidence that
noise is affecting the data. The Vv = 1 component is easily interpreted

as corresponding to the characteristic sawtooth oscillation.

Fig. 6b shows C'(r) for the Mirnov data, which shows no evidence
for any saturation. This is rather curious, because it would otherwise be
natural to interpret the high v component of the soft X-rays as due to
superimposed Mirnov oscillations. v =3 is a typical value for Mirnov
data collected on TOSCA and JET (Coté et al, 1985). One possible
explanation is that the v = 3.2 component of the DITE soft X-rays is in

some way Spuriouss

The data for discharge 28030 consists again of a soft X-ray signal

from even further outside the inversion radius than shown in Fig. 4b,



together with magnetic signals collected from coil 8. Sampling was from
times 480.01 - 507 ms (N = 2700) into the discharge, which disrupted (i.e.
had a loop voltage spike) at t = 511 ms when ﬂe = 3.3 x 101%~3. c¢'(r)
for the 2 signals is plotted in Fig. 7. The soft X-rays are shown to
have two components with v =1 and v = 1.9 respectively, similar to
discharge 27649. This time the Mirnov data yield v = 1.8 + 0.1, and so

account for the high v part of the soft X-ray signal.

For discharge 26246 Mirnov data from 8 coils is available, but no
soft X-ray information. Sampling was from times 170 - 198 ms into the
discharge when ;e-= 3.6 x 101%n~3: there was a soft disruption at t =
190 ms, preceded by a factor 4 decrease in Mirnov frequency starting at t
= 188 ms. The data was therefore divided into two parts, the first "A"
with N = 1800 covering t = 170 - 188 ms, and "B" with N = 1000 for the
remaining times to 198 ms. Part A from coils 1, 2 and 6 gave three values
of v =1.7 £0.1. The signals in part A at a given instant from coils 1,
2, 3 and 4 and from coils 5, 6, 7 and 8 were used to construct vectors
with n = 4 and both gave v = 1.6. It seems that v = 1.6 corresponds to a
global feature of the discharge. BAnalysis of the part B samples gave
ambiguous results - the results are consistent with a v of anything

between 1.5 and 2.5.

Lastly we considered data collected from coils 5 and 7 of discharge
27792, spanning times t = 455.101 = 459.191. The loop volts and soft
X-rays indicate that there was a soft disruption at t = 457.1, followed by
a hard one at 459.5 (He = 6.7 X 1019m‘3). Inspection of the C'(r) plot
in Fig. 8a yields a slope of 1.2 for coil 5. The signal from coil 7 is
much harder to interpret since there are no‘prominent straight line
sections in Fig. 8b, but there is some evidence for Vv =~ 1. These
v-values presumably relate to the 10 cycles or so of the gross
oscillation. From Fig. 8, the data appears to be such that a lower

amplitude component with v > 2 would not be detectable.

3. Lyapunov Exponents

3.1 Basic Concepts

The concept of Lyapunov exponent derives from linear stability

studies of steady solutions to ordinary differential equations (ODEs).
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Small amplitude perturbations « e"\'t are superimposed and for an nth order
system, A is found to satisfy an nth order polynomial. Generically,
there are n distinct roots hi, i=1,.., n, each associated with a
particular perturbation eigenvector e.r i=14e4s, n. The Ai' arranged
in descending order, constitute the spectrum of Lyapunov exponents for the
fixed point. However, this is just one instance of their use: the
definition of Lyapunov exponents is framed much more generally, so that
they may be assigned to time dependent solutions of ODEs. Loosely
speaking, the hi at each point on the trajectory are calculated and

averaged over.

More precisely, let us introduce the n-dimensional system of ODEs

with trajectory ﬁ(t)'
?\(’:E(i)' (3-1)

At a point on the trajectory, say x(0), we may define tangent vectors
Ei(O) analogously to the Ei above. As t increases and the trajectory
is traversed the Ei change continuously in both magnitude and direction.

We may write
gi(t) = %(t)-gi(ﬂ)- (3.2)

In the light of the first paragraph it is reasonable to assume that the
length of each & (while it remains small) varies exponentially as the

trajectory is traversed. Hence we define

1 |§i(t)|
A, = lim — n — (3-3)
e VT ]

from now on neglecting the directional changes in the ei.
The definition (3.3) is not immediately suitable for numerical

calculation since any exponential variation in ,e (t)

i | will rapidly
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generate very large or small numbers, hence it is necessary to renormalise

Ei from time to time so that 'gi{t)’ = 1. Further, when we have a

trajectory X (tj) defined by a discrete set of data, there is more than

one way to calculate Ai.

3.2 Description of the Methods

We consider two methods: the first "Ss" method was proposed by Sano
and Sawada (1985) and Eckmann and Ruelle (1985). Conceiving the
trajectory as a line in n-dimensional space, select a point ﬁj on the

line, and seek near neighbours xk of X.,. "Near" means the points xk

lie such that ,xk - x,l < g+ where ¢ is chosen so that there are almost
~k | ~j
i

always at least M > 1 near neighbours. In the time interval 0 = pAt, x.
~]

evolves to §d+ and Ek. to fk.+p' Introducing Xi= Ek. - fj and Ei =
i b i
- it
{ki+p §j+P' we can write
E!i. = %(J)quj_' i= Tieae,M , (3.4)

where é(j) indicates an estimate for é(t) (3.2) at the time t when
x(t) = x,. %(j) is optimally estimated by least squares fitting (Sano and
~ ~1

Sawada, 1985) and can then be used to estimate li as

K
e w1 . .
A, = lim — ] 1n |a(j). e, (3-1| . (3.5)

K+ KO j=1
gi(o) may be any orthonormal set of n-dimensional vectors: the ei(j) are
calculated from é{j).gi(j—1) using the standard Gram-Schmidt
orthnormalisation procedure. After a few iterations the Ei(j) become a
good approximation to the gi(tj), ordered corresponding to hi

- decreasing.

The second, "WSSV" method, due to Wolf et al {1985) does not claim to
be able to calculate negative exponents, although it has much in common
with the first. Further, we have implemented only the version that

calculates the largest exponent. This is done by choosing a single near

-11-



neighbour x to the point x. , and calculating lengths L. defined
X, ~J4 g J tP
by

. x . (3.6)
+p ~J1+p ﬂ-k1+p

Eventually Lj +p/Lj becomes too large at some p=p, as the trajectories
1 1

sampled by §k1+p' §j1+P diverge. We replace §k1+P1 by some sz close to
xj where j2=j1+p1 and repeat. It follows that we can estimate
~J2

K
J S (L, /L), L)
i=1 Jivr i

1
M1

where T 1is the time taken to get from xj to
K

X,
1 ~]
For both methods we plot a running average of ki against increasing
number of iterations to give an indication as to whether convergence has
occurred. The SS method is claimed to be superior to the WSSV one,
because it tracks an arbitrary vector, whereas the latter is more tied to

the data-points. However, our experience indicates the SS method is much

less robust.

3.3 The SS Method Applied to the Lorenz System

As in Section 2, we set up a data-set to act as control using the
Lorenz system, Egn.(2.3}. To compare directly with Sano and Sawada
(1985), we took GL = 16, r. = 40 and RL = 4. The resulting c(t) has a
characteristic time-scale of 0.5 and a mean amplitude of 16. c(t) was
sampled at At = 0.035 and the values were rounded to the nearest
one-eighth to give a data-set with a signal-to-noise ratio as low as the

best DITE data.

Table II shows the effect of varying the parameters €, T, 6 and
M . M is the maximum number of vectors used in forming (3.4): increasing
the number of vectors used in (3.4) improves the accuracy of the
calculation. Keeping M low, however, saves computer time, since

otherwise the whole data-set will be searched for near neighbours of each

-12-



point, giving a N2 operation count. Taking M=n=3 gives a very poor
result (Table II, Run 1) and although M=6 gives as good a result as

M=15 (suggesting that there are on average no more than 6 near neighbours
of each point), it is apparent that the hi determinations are so poor
that accuracy considerations must outweigh those of cost, and so M»6 for
the remaining calculations, as suggested by Sano and Sawada (1985). ¢ ,
measured in units of max(c)-min(c), is the nearness parameter. Reducing

€ to 0.015 (Run 5) has a similar effect to taking M small, implying
there are on average too few near neighbours at this € . Increasing e
to the maximum suggested by Sano and Sawada (1985) improves the Ai

estimates, particularly when M=15.

Runs 8-20 show that the poor estimate li=(2. -0.8, -16) compared to
the known values of hi=(1.37, 0, -22.37) is not simply due to a
particular choice of 1 and 6 . The computed results are independent of
the lag-time 1T in the range At < T < 5At, but it is clear that taking
8 > 2At badly affects the Ay estimate. The reason for the 50% errors in
A

reconstruct the Lorenz trajectory. Table IIb shows that using the

1 and Ay seems to lie partly in our choice of the c-variable to

a-variable to generate a data-set with otherwise the same properties as
that studied in Table IIa gives a much better estimate for the Ai

provided © < 2At, T € 5At. However, both sets of results in Table II
show that the apparent convergence of an iteration (inevitably a rather
subjective criterion) is no indication with data of this quality of the

accuracy of the hi calculated, and so we do not consider it further.

¢ 1is not a generic variable of the Lorenz system since its
oscillations do not reverse unlike those of. a and b, and this may
explain the large error, since parts of the trajectory that are otherwise
well separated are folded together when c(t) is used in reconstructions.
Nevertheless the lack of robustness demonstrated by the method is worrying
for application to experimental data. There is another difficulty
concerning the choice of n in such cases. n=3 1s known for the Lorenz
system, but for systems with an unknown number n of Lyapunov exponents,

A

taking n > n leads to spurious exponents being found (J.A. Vastano and

A
E. Kostelich, private communication). Although nh can be estimated by

study of the eigenvalues of A, Eqn.(3.4), if
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the data is very clean (Sano and Sawada, private communication), our data
is too noisy for this to work. For the sample of Table IIb, taking n=4,
we discover that the eigenvalue of A corresponding to the spurious Ai
is the same Ysize as that corresponding to Ai= -21.37. For the
experimental data, we shall have to assume that the appropriate n is given

by max([v],S), where [v] denotes the first integer larger than v.

3.4 BApplication of the SS Method to Experimental Data

If we re-express the reguirements T < 5At, © < 2At for the SS
method in terms of the characteristic time of the system (see Table I), it
appears that only the magnetic signals from discharges 28030 and 24591 are
sufficiently well sampled. Even so, we are very restricted as to the
allowable T and 6 , with 28030 giving the best data-set for our

purposes.

Parts (a)-(c) of Table III show that hi for discharge 28030 still
depend quite strongly on T, €6 and n . Since the signal is by
inspection aperiodic, we have to take n >3 and v = 1.8 suggests we
should take n = 3. Table IIIa further indicates we should attach less
weight to hi from the larger values of /6 . Discarding
(1,8)/6 = (2,1), (3,1), (3,2) and averaging the remaining 3 points gives

hi = (33, 0.2, -49). The only conclusion that may be safely drawn from
Table IIIb is the hi spectrum has shape (+, 0, -), similar to the Lorenz
system. Nevertheless we go on to use it to estimate an upper bound d

A

for dM. The formula for any 4 is given in Eckmann and Ruelle (1985),

A

after Frederickson et al (1983). For the averaged hi we find dh = 2.7,

which seems very high but not unreasonably so, since dh = 1/K3 and |k3|

may be systematically under-estimated as in Table IIIa.

For discharge 24591, where v = 2.1 suggests we should take n=3,
Table IIId and IIIe again indicate that the Ai spectrum is of form
(+, 0, -). The scatter with T and 6 is so high that it is again
difficult to assign more precise values to the Ai . Taking coils 1(IIIc)
and 4(IIId) together and neglecting hi for (7,0)/At = (2, 1) gives an
average Ki = (14, -0.1, -18). It follows that 4 =x2.8 (assuming

A
Ao = 0), which is high, presumably for the same reasons as before. It is
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apparent that we cannot put too much faith in the smaller

the SS procedure.

3.5 The WSSV Method

As before, we set up

Lorenz system.

(o, =

For comparison with Wolf et al (1985) we take

A

4 found by

a control data-set using the c-variable of the

45.92

r
L

16, RL = 4), but unlike in the previous work we do need not to

discretise the sample since their method demands that we do not calculate

Lj (see Egn.(3.6), p=0),

1
than a distance

E,
in

Taking the suggested value for

L L, etc. for points separated by less

J3

§ r !
Ja
0(10~2) has

3
in

roughly the same effect as rounding the sample to the nearest one-eighth

(c.f. Section 3.3).

method, N = 1998.

Table IV lists the values of

these we conclude that it
e
the results significantly.

6/ At

respect to T, and €

as
misleading results,
that this data-set has a
P/ At

of 4.5, compared to

increases beyond 6, while picking

just as for the SS method.

We use a smaller total sample than for the SS

From

M

is very much

found by the WSSV method.
more robust than the SS method with
although taking n 2 4 does degrade

M

variations,
noticeable trend towards lower

/6 > 2

There is a
can glve very

A notable difference is
P/At (a characteristic dimensionless time-scale)

14

in the case of Table II. Thus all of the

magnetic data may be meaningfully examined using the WSSV technique,

assuming the critical ratios are

Tables V, VI and VII

respectively. 1In each, a

8/At is evldent and high

very much more pronounced
A

1
Where

for them, we see that

h1 = 35 for 28030.

within the scatter (Table

and <T/P.

e8/p

list K1 for discharges 24591, 26246 and 28030

trend towards decreasing k1 with increasing
/9 gilves discrepant K1. These trends are

than with the test data-set. Making allowance

25 for 26246 and
7\1

M

comparison with SS can be made,

= 8 for discharge 24591,
these lie

IIT), which is encouraging.

To compare the various systems we normalise their exponents with

respect to characteristic

40

0.7 at
L

and 1.0 at

frequencies. The Lorenz system has a

45.92.

A1P of

r These values are comparable with

_15_



a MNP of 0.8 for DITE discharge 24591. The other discharges have

K1P = 3. Naturally the key point is that A1 is positive, implying that
nearby trajectories diverge exponentially and supporting the strange
attractor interpretation. Further, the larger the trajectory divergence,
the smaller should be the maximum useful delay time, hence it is not too
surprising that A for discharges 26246 and 28030 depend sensitively on

1

T. However, the K1 estimate for 24591 also shows a strong tg-dependence

- see further discussion in Chapter 5.

3.6 Kolmogorov Entropy Estimation

Strictly speaking, this section should be part of Chapter 2, but its
results relate to the Lyapunov spectrum. For our purposes it is not
necessary to define the Kolmogorov entropy K . We shall be concerned
with the related K, entropy which satisfies K; € K (Grassberger and

Procaccia, 1983c). Since it is rigorously true that XK < I (hi > 0), with
i
equality in many cases (Eckmann and Ruelle, 1985), K, also provides a

lower bound for the sum of the positive Lyapunov exponents. A working
definition of K, is

g JnC (r) - AnC (x)
£§n n n+1 (3.8)

where the suffix n on the correlation function (see (2.1)) denotes that
it is calculated in an n-dimensional space, and the normalisation of ¢

is independent of n .

Our principal difficulty is that n of up to about 20 are required
for a reliable estimate of K, (Grassberger and Procaccia, 1983c), yet it
should be evident from Chapter 2 that Cn(r) for DITE data is badly
distorted when n » 6, essentially because of the poor statistics.
However, it provides a further cross-check on the poorly determined values
of ki . Some indication of the reliability of the results obtained is

given by comparing estimates of K, at different n .

No sensible estimate for K, is yielded by discharge 24591. For

discharge 26246, coil 2, two sets of estimates were obtained at points

-16-



loglo(nk%/ro) =0 and 0.2, the first being 9.3, 9.4, 8.3 and 8.1 ms™ !
and the second 6.4, 6.6, 6.2 and 5.8 ms~1 (n = 3 - 6 in each case). This
is to be compared with A1 = 25 ms~! from Section 3.5. The K,

estimates grow steadily as r diminishes to values where C;(r) always
increases with n , and thus their interpretation is not clear. Repeating
the analysis for the magnetic signal from discharge 28030 yields

Ky = 14 ms"l (loglo(n%%/ro) = 0.2) against a A1 = 35 ms~ 1,

Although no values for Ai, K, or K have been published for the
Lorenz data considered in Chapter 2, we can still check that the K2
estimates decrease above zero with increasing n as theory predicts. It
transpires that the estimates behave correctly only for
loglU(n /ro)< - 1. Moreover it is theoretically impossible that
h1 > K,. It seems we must attach a very low level of significance to the
K, values found above. Nevertheless the indications that K, > 0 are of

value in that they provide further evidence that the systems studied are

chaotic.

4. Phase-space Reconstruction

We shall be principally concerned with the method of Broomhead and
King (1986). Before considering their technique, we illustrate what can
be gained by reconstructing a trajectory using a delay co-ordinate system
(which can be used even when the newer technique fails). Fig. 9 exhibits
the magnetic signal from discharge 28030 using delay co-ordinates. There
is evidence for some coherent structure even in two dimensions (Fig. 9a)
and Fig. 9b, a 3-D stereo plot makes this more apparent. This is
consistent with the derived exponent v = 1.8 for the discharge, whereas
the large v signal from discharge 27649 appears completely

structureless even in 3-D.

We remark that the portrait of an attractor in delay co-ordinates
depends strongly on the choice of delay time <t . There is no
quantitative and little gualitative information to be gained from plots

such as Fig. 9, which essentially serves only to support the case for low
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v for discharge 28030 made in Chapter 2. The Broomhead-King method

removes the arbitrariness in the choice of co-ordinates.

4.1 Description of the Method

The technigue described here was proposed by Broomhead and King
(1986). The idea is to find the co-ordinate system of smallest dimension
ds with respect to which a trajectory does not intersect itself.
However, it turns out that we can only find a bound dM for ds such

that d - 1)/2 £4d <d .
( M M S M

Rigorous theory based on the calculus of manifolds proves the above
result for dM which is referred to as the embedding dimension. Why this
is the state of affairs can be partly understood from consideration of the
perimeter of a circle. Clearly this constitutes a one-dimensional object,
since it is only a line segment bent upon itself. However, unlike the
line segment, the topology of the circle is such that we cannot describe
it in a Cartesian co-ordinate system Rk of dimension k 1less than two
(and there are one-dimensional shapes which, consistent with the above
bound, can only be realised in R3). Nonetheless, frequently ds = dM.

The Broomhead and King reconstruction (1986) always takes place in a

Cartesian co-ordinate system. It entails forming the trajectory matrix

T

Lt

-1/2

T =N, (X0 Kpreeer X )y (4.1)

[
1 N,

where N, is an integer just less than N if we use delay co-ordinates.
The orthonormal basis required gi.i=1,--,n, is obtained by diagonalising

T " . " 5 ; . 8
g=£. T~ (where suffix superscript T denotes matrix transpose), i.e. it satisfies

T T T

T-. T . o, =5, O, i=1,ec0,n 4.
~ = . i A 1 3 [ ’ ’ ( 2)
where the s, are real since V 1is symmetric.

To explain why we choose oi in this way, we need some results from
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linear algebra. First, note that arbitrary vectors in the dM—dimensional
vector space spanned by the X, (dM < n) can be generated by multiplying
(4.1) by N;-dimensional vectors. In particular, a € RNl may be found so

T. a = a Cy ] L. = l;o-l;d ] (4-3)
g M

where the Oi are so far arbitrary and the ¢, are orthonormal vectors.

If dVl < n, Dby standard results there exist vectors Ei' i = dM +
I\
1,+4,n, to complete the basis and there must also be corresponding and

distinct vectors -a. such that T. a, =0, 1 =d + 1,...,n. The
~, &~ M

additional <, therefore correspond to qi = 0.

We will now show that for an appropriate choice of Or S, = 9
Multiply (4.3) by its transpose to give

T T L

E’j. 2 r£- E‘i = Gi Gj 6].-:', Ly = 1;---,!’1, {4-4)
where §,. 1is the Kronecker delta, but the summation convention is not

< T y .
employed. The N; X N; matrix U =T . T 1is real symmetric and
therefore has orthonormal eigenvectors Ei' i=1..,N;, forming a basis

for B L. mnge
Ueb =T .T.b =p b, i=1..N], (4.5)
> ~

the Ei satisfy (4.4) if cg = pi, i=3j €n, i.e. we may identify ai
and Ei for i < n. If now (4.3) is multiplied by 2? , the
left-hand-side may be simplified using (4.5), when a further

multiplication by T gives

pu T-a = @, E.lln‘s.cﬁlj_' l=1,---'n- (4-6)
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Hence, using (4.3), we have

T T T
- T B = =0, 4= 1,000,n .7
oi(g T . ¢, 0 c:) 0, 1 1. ,n (4.7)

Thus we only need choose ui(= cﬁ) = Si to ensure = ci, each i.

0,
~.

From these results, the first dM of the oi span the space in

T.o,|, the projection
A

which the ﬁi lie and from (4.2) |Gi| measures
of the trajectory matrix on 9 The trajectory may therefore be

reconstructed as

(4.8)

a3
a1
]
Il —:
)30
&
843
w3

The set of values of arranged in descending order is known as the
singular spectrum. In practice, all of # 0 due to the presence of
noise. However, white noise is easily discriminated because it increases
each cf by a constant amount. Thus spurious components may be rejected
by finding the point at which the singular spectrum flattens (Broomhead

and King, 1986).

The distinction between the method of this section and those in
Sections 2 and 3 is that it probes only the smallest scales of a
trajectory. A little thought convinces one that if the components of the

X (delay co-ordinates assumed) are so spaced as to sample the
large-scale structure of a trajectory then the Ei can fill a space of
arbitrary dimension n . The lag time has to be so small that vectors fi
can be constructed that are not affected by the global changes in the
trajectory (and so it is not necessary that n be as restricted as in
Chapters 2 and 3). The difficulty is then that all the components of each
vector are nearly the same. 21 is thus always approximately (1,1,..,1),
and an order of magnitude more power (as measured by 0?) is assigned to
the first projection 2.21 than to the second. Components (projections)
which are required to ensure the trajectory is non-intersecting may

therefore easily either be lost in the noise or badly contaminated by it.
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4.2 Application to Test Problems

We illustrate the method using a data-set constructed by sampling the
function fe(t) = exp(3[t - 1/2])sin(60xwt) on the interval 0<t<1 at 3000
equally spaced times. There are 30 oscillations in the data, hence 100
points sample each period. The exponential ensures the amplitude varies
by a factor 20, from 0.16 to 3.2 in the root-mean-square. In delay
co—-ordinates fe maps out a spiral, dS = 2, and we should expect this to

be the embedding dimension.

Fig. 10a plots the singular spectrum for the spiral showing indeed
that only two of the of are significantly different from zero and Fig.
10b shows the resulting reconstruction. The other components of the
signal, apart from the first two, E'Ei’ i=3,+..,n, consist of noise at

the level of the precision of fe (24-bit).

Now we add to each data-point in the sample of fe a random number
sampled from a Gaussian distribution with zero mean and a root-mean-square
(r.m.s.) of 0.25. The singular spectrum from Fig. 10¢c still indicates
only two components, but now the noise floor has risen to be only 0.5 in
the logarithm below the smaller "real" component. It is evident that
significant components of the signal could be lost in the noise. The
phase space reconstruction in two dimensions (Fig. 104) shows many
(spurious) intersections, thus it incorrectly suggests dS > 2. Only when
the noise level is reduced to an r.m.s. of 0.05 can we be reasonably sure
of the validity of a two-component interpretation and then only for the
last 10 or so oscillations, i.e. a signal-to-noise ratio (S/N) of at least
about 30 is needed. This ratio applies to a two component signal - more

components will demand even better S/Ns.

Another lnteresting application of the technigque is to the sawtooth
function fs(t) = rem(t,tR) - 1/2, where tR islthe repetition time and
rem(t,tR) is defined as the remainder from division of t by tR. fs is
discontinuous when rem(t,tR) = 0. A sample N = 3000 was constructed
for 0 <t € 30 comprising 30 teeth, i.e. tR = 100 At. Fig. 11 shows
the resulting singular spectrum, from which it is not possible to infer

how many components are present.
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This difficulty is caused by undersampling of the switch-back phase
of the sawtooth. Although this is a rather extreme example, spectra like
these are the usual outcome of attempts to analyse data which are not
sampled at a rate at least as fast as that suggested by Broomhead and King
(1986). They advocate a At at least ten times shorter than the
timescale corresponding to the smallest significant spectral content.
Since the latter (even for smooth oscillations) typically corresponds to a
timescale of P/10, this gives a bound At < P/100. A rather smaller At
is desirable so that sub-samples with greater effective At may be
constructed to verify that all the significant spectral content has been

captured.

4.3 Application to DITE Data

Although much of the DITE soft X-ray data listed in Table I is
apparently suitable for analysis on the basis of number of
samples/oscillation, our experience above with fs(t) implies that the
Broomhead-King method will not produce meaningful results. None of the
discharges studied so far have sufficiently large P/At . Magnetic data
collected prior to disruption on discharge 27512, sampled at At = 2ps,

is suitable.

A data-set consisting of 2550 points was produced using coil 3 (see
Fig. 4a), starting at t = 509.5 ms, and terminating 0.5 ms before the
discharge disrupted at t = 515.1 ms. The singular spectrum, shown in
Fig. 12a, can be demonstrated to be independent of n > 4 and effective
A . However, it seems that the third largest component is significant,
for the reconstruction in two-dimensions clearly intersects itself. The
third component is however so noisy (c.f. the second component of the
noisy fe signal in Section 4.2) that a 3-D construction is useless. The
Broomhead-King method therefore tells us only that dM > 2. It is
interesting that the noise level ~ 10~2 is of the same order as the
recording error in_ the data, i.e. the detectors (colls) are not

responsible for the level of noise shown in the figure.
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4.4 The Method as a Filter

Section 4.2, and in particular Fig. 10, have given the impression
that the Broomhead-King technique is easily defeated by noise. However if
one is seeking only to filter, i.e. reduce the noise content in a signal,
the story is quite different. Indeed, the pedigree of the technique lies

in the field of signal processing (Pike et al, 1984).

The drawback of the phase-space reconstruction technique is that
components of intrinsically different size have to be glven the same
welght. However when the significant components are used to reconstruct
the signal as a function of time, this is not so. The point is made by
Fig. 13, for the noisy fe data set. It is apparent that the two
component reconstruction (bottom) 1s much smoother. The basic oscillation
remains identifiable even though the S/N = 1 for the first part of the
data. Since the Broomhead-King method is very undemanding of computer
time even for large samples, it clearly deserves attention as a filter,
especially when little is known about the statistics of the noise

affecting a signal.

5. Summary and Discussion

The main conclusion of the paper is provided by Tables VIII and IX,
where are listed the data requirements for the four methods.and their
computational costs respectively, based on controlled studies of Lorenz
system data. Broadly speaking there are two different types of
requirement: the methods of Grassberger and Procaccia (1983b) and Wolf et
al (1985) are much less demanding than those of Broomhead and King (1986)

and Sano and Sawada (1985) in terms of both sampling rate and total sample

size.

Of the four, the only one which we might not expect to give good
results for DITE data is that of Bréomhead and King (1986): it is
defeated by the low precision (8-bit) at which measurements are recorded.
Even so, it can provide a useful estimate of the complexity and noise
content of signals. BAn application to JET data, which has higher

precision, would be of interest.
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Analysing DITE data, the first three methods perform rather worse
than would be expected from the control studies, and we should like to
understand why. One possibility is simply that the structure of the
attracting trajectory in DITE discharges is more convoluted than that of
Fhe Lorenz system and hence the data requirements are more stringent.
This is contradicted by the fact that we 52 get good estimates for the
Grassberger and Procaccia exponent v in the case of discharges 24591,
26246 and 28030, at least for larger values of the separation «r. v 1is
the most robust of the three measures, but even so it is curious that
especially in the latter two discharges, the rv line is followed for a
relatively much smaller r-interval than in the control data-set, of which

the truncation error was if anything larger than in the DITE data.

Is the kink in C'(r) (see e.g. Fig. 5) due then to errors in
measurement that are large enough to survive truncation? This seems
unlikely for two reasons: (a) the Broomhead and King technigue suggests
any noise is smaller than the truncation error, and (b} the consistent
form of the energy spectrum E(w) at high frequency w for the DITE
signals. Fig. 14a, b and c¢ show typical power spectra; the E(w) <« u;2'5

dependence apparently holds for all the discharges (except 24591 where
the sampling is not fast enough and 27792 which is peculiar in other
ways), at least to within the uncertainty =+ 0.5 of measurement. In

particular, discharge 27649 (Fig. 14c) shows the same feature, although no

exponent v could be assigned.

The indication is that there is a certain level of turbulence always
present in DITE discharges. Superimposed on this we are seeing
large-scale mode activity that can be explained in terms of a system with
only a few degrees of freedom. The separation in amplitude between the
two types of behaviour is sufficiently small that C'(r) kinks and it is
difficult to infer Lyapunov exponents reliably. Nevertheless the
non-integer values of v , plus the fact that one Lyapunov exponent is
consistently positive all support the contention that the large-scale
activity is chaotic and a strange attractor is present. The oddity of
this result is that there is no reason why such a system of low degree
should not yield the entire power spectrum in Fig. 14 (c.f. Fig. 14a and

Fig. 14d).
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It is possible to compare our dimensionality results with ones from
TOSCA and JET (Coté€ et al, 1985; Robinson et al, 1986). Like Coté€ et al
(1985), we find v = 1 - 1.3 for sawtooth oscillations in soft X-rays
(DITE discharges 27649, 28030), that it is difficult to assign v to the
large amplitude irregular activity following disruptions (discharges
26246, part B, and 27792) and that steady state (flat top) discharges may
have Mirnov activity resembling white noise (discharge 27649). The Mirnov
signals from DITE discharges 26246 and 28030 which are modulated (albeit
irregularly) at the frequency of the sawtooth have low V only for log)
C > -1, much as in corresponding JET discharges. However, in this range
of C, DITE has v = 1.6 -— 1.8 compared to v = 1.3 - 1.4 for JET. We
have not so far found any DITE results that compare with the TOSCA or JET
(notably Shot 3069, Robinson et al, 1986) findings of a v = 2.5 over 3
factors of ten in C(r), for some of the higher amplitude, flat top Mirnov

activity. Discharge 24591 is the only one for which C(r) has a constant

logarithmic slope over a comparably sized interval.

To explain these latter discharges some form of nonlinear MHD
modelling, perhaps using the FORBAK code (Eastwood and Arter, 1986), might
well be fruitful. It is likely that these interactions fit the pattern of
"weak" turbulence, where only a few modes interact to give irregular
behaviour, as shown in hydrodynamic experiments by Brandstater et al

(1983) and Guckenheimer and Buzyna (1983).

We note particularly also the recent work of Ciliberto and Gollub
(1985a,b) where a phenomenological model is found to reproduce many of
the features of a surface wave experiment including approximately the same

v . While it is clear that relatively simple nonlinear dynamical systems
can reproduce even guite violent, irregular, bursty behaviour (e.g. Fig. 4
of Fujisaka and Yamada, 1985), little attention has been paid to systems
which may have a significant non-deterministic component, such as are

represented by the other types of discharge.
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Data-set
Lorenz
(Section 2)

DITE discharge
24591

DITE discharge
26246(part A)

DITE discharge
27649

DITE discharge
27792

DITE discharge
28030

Lorenz, rL=40

(Section 3)

Lorenz, rL=45.92
(Section 3)

DITE discharge
27512

Table I

Descriptions of data-sets studied

Characteristic Sample interval Samples/ Size

time(s) ms ms Oscillation

0.75 0.1

(dimensionless) (dimensionless) 7.5 2000
0.1-0.2 (Magnetic) .025 8-16 1920
0.1 (Magnetic) 010 10 1800
0.3,4 (SXR) 60,400
0.1 (Magnetic) .005 20 3894
0.01,0.3 (Magnetic) .002 5,150 2046
0.05-0.1,2 (SXR) 5-10,200
0.1 (Magnetic) .010 10 2700
0.5 .035 14 4000
0.45 0.1 4.5 1998
0.1-0.3 (Magnetic) 002 50-150 2550
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Table II

a) SS method applied to c(t) from Lorenz equations (2.3), o = 16, ry = 40
and RL = 4. N = 4000, Ki = (1.37,0.00, -22.37) (Shimada and Nagashima,
1979). Ne(t,e) = NAt/O measures how many estimates of the hi are
averaged to give the values in the final column. Underlined Ay

indicates apparent convergence, otherwise the final iterate is given.

R e omee /s M Ne A
1 .025 3 2 3 2000 6, -0.6, -6
2 .025 3 2 4 2000 - P -1, -15
3 .025 3 2 6 2000 248 -1, -15
4  .025 3 2 15 2000 2.8, -1, -17
5 .015 3 2 6 2000 5, -2, -32
6 .05 3 2 6 2000 1.1, =14
7 .05 3 2 15 2000 Dall 4 -0.8, =16
8 .05 3 1 15 4000 2.5, ~lxd;: =23
9 .05 3 3 15 1300 1.6, -0.4, =10
10 .05 3 4 15 1000 1.8, -0.3, -6
11 .05 3 5 15 800 240, 0.07, =-4.5
12 .05 3 8 15 500 Bod; 0.5, -3
13 .05 3 10 15 400 2.8, 1.0, -1
14 .05 3 20 15 200 2.0, 1.0, =0.5
15 .05 1 4 15 1000 2.5, -0.2 -6
16 .05 2 4 15 1000 2.0, -0.2, -6
17 .05 4 4 15 1000 T8, -0.4, -4.6
18 .05 5 4 15 1000 by 0.2, -6
19 .05 7 4 15 1000 4.1, -0.3, -6
20 .05 1 4 15 1000 3.2, 0.1, -5
b) As (a), but using a(t) from the Lorenz equations.
Run E T/ At B/ At M Ng ?\i
1 .025 3 2 3 2000 4+7; -0.4, =20
2 .05 3 1 15 4000 1.2, 0.1, =-23
3 .05 3 B 15 2000 13, 0.0, -18
4 .05 3 4 15 1000 1:3, 0.0, -9
5 .05 3 5 15 800 1.4, 0.1, -6
6 .05 1 2 15 2000 1.8, -0.8, -21
7 .05 2 2 15 2000 1.5, -0.2, -20
8 .05 5 2 15 2000 1.7, -0.2, =19
9 .05 7 2 15 2000 3.9, -0.4, -12
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Table III
Lyapunov exponents (in units of ms~ 1) from SS method applied to

(a) Magnetic signal from discharge 28030, n = 2

T/ A B/At = 1 2

1 21, -65 19, =32
2 27, =59 19, -26
3 44, -44 24, -19

(b) As (a); but with n = 3

/At B/At = 1 2

1 41, -5, =75 33, 3.5, =43
2 62, 14, -59 25, 2, =30

3 83, 26, -58 43, 16, -32

(c) As (a); but with n = 4

/At B/At = 1 2

1 35, 11, -4, -25 27, 13, 1.5, -16
2 66, 40, 19, -16 20, 7, -0.8, =15
3 75, 46, 24, =13 39, 24, 14, -4

(d) Magnetic signal from discharge 24591, coil 1, n = 3

T/ A 6/At = 1 2
1 12, -3, =26 1, -0.5, -18
2 18, -1, -34 7, —=1.5, =14

(e) Magnetic signal from discharge 24591, coil 4, n = 3

/A /A = 1 2
1 20, 0, =25 17, 3, -14

2 36, 14, -23 15, 1.2, -12
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WSSV method applied to c(t)
4. Ay = 2.16

ry = 45.92 and RL =

(a) n =
Run

O ~N0bh W=

(o]

(c) n
28
29
30

I

1]

h-

0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02

0.02
0.02
0.02
0.02

0.02
0.02
0.02

in

0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002

0.002
0.002
0.002
0.002

0.002
0.002
0.002
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Table V
Largest Lyapunov exponent (in units of ms™~ 1) from WSSV method applied to

(a) Magnetic signal from discharge 24591, coil 1, n = 3

/A /At = 2 3 4 6 10
1 11 ] 9 7 5.5
3 10 5 5:5 4 3.5
5 13 11 7 5.5 3.6
7 17 9 6.5 7 3.0

(b) As (a) above, but n = 4

/At O/AE = 2 3 4 6 10
1 7 5 5 4.5 3.5
3 ‘ 5.5 3.5 4 3 2.0
5 6.5 5 3.5 2.7 2.1
7 11 4 4.5 4 2.0

Table VI
Largest Lyapunov exponent (in units of ms~!) from WSSV method applied to

(a) Magnetic signal from Part A of discharge 26246, coil 1, n = 3

/At O/At = 2 3 4 7 12
1 34 33 27 17 12
3 34 16 20 12 10
5 50 35 25 18 11
7 45 26 10 il

(b) BAs (a), but n = 4

T/At B/AE = 2 3 4 7 12
1 21 19 17 13 9
3 16 11 12 6
5 27 19 15 11 7
7 22 15 12 6

Table VII
Largest Lyapunov exponent (in units of ms~1) from Wssv method applied to

(a) Magnetic signal from discharge 28030, n = 3

/A B/A = 2 3 4 7 12
1 44 40 29 18 12.5
3 52 18 28 17 -1
5 50 - 34 21 15
7 38 28 12 12

{b) As (a), but n = 4

T/ At B/ At 2 3 4 7 12
1 26 20 19 12 8
3 27 12 16 11 8
5 41 29 22 15 11
7 14 7 8
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Table IX
Computational Costs of the Data Analysis Technigques

Technique Indicative parameters Typical cost Scaling

(CRAY seconds)

Grassberger &

2

Procaccia N = 2000, n = 4 8% nN

2_
Wolf et al N = 2000, p = 4, 10 nN p *%*

n=3

2_.
Sano & N = 4000, p = 2, 43 nN p *%*
Sawada n=3,{M=4)
Broomhead
& King N = 3000, n = 10 %% n2y

*Code for calculating v employs CRAY masking and merging routines.

Other computations performed using FORTRAN 77 only.

*oxy 2 scaling assumes whole data-set needs to be searched to find M near
neighbours (in the SS case) or a single close neighbour (in the WSSV
method). This may be a gross overestimate for some data Ffor which a

scaling with N-exponent closer to one might be more appropriate.

***Takes 7s on PRIME 9950.
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(a)

(b)

X X
X X
X X

Fig.1 The Grassberger and Procaccia exponent » equals
the dimension of everyday objects: (a) for the perimeter
of an ellipse, the number of points within a radius » of
a given one increases proportionately as r, (b) for the
square sheet, a quadratic dependence is obtained.
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Fig.2 C'(r)=d logC/d log(r/ro} plotted against
lagio¢/ro) for the c-component of the Lorenz system
(2.3) at parameters listed in Chapter 2. (a) is drawn
for varying dimension n as indicated in the legend
(7/At=6), while (b) and (c) are for varying values
of the lag-time 7/At recorded in the legend (n=4).
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Fig.3 C'(r) plotted against logio(r/r,) for random data: (a) for
dimensions 2<n=<#6, (b) for dimensions 6=<n=<10.
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Fig.4 Situation of DITE diagnostics in tokamak minor cross-section: (a) the numbers mark the
locations of the Mirnov coils which lie inside the vacuum vessel, (b) shows the line of sight from

which soft X-ray signals from discharge 27649 were collected and analysed.
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Fig.5 C'(r)=d logC/d log(r/1,) plotted against
logio(1r/1,) for coil 1 of DITE discharge 24591:
(a) is.drawn for varying dimension n as indicated
in the legend (7/Af=6), (b) for varying 7 (n=4)
and (d) for varying sample size N(n=4 and
7/At=6). (c) is drawn for 4-dimensional vectors
constructed out of the signals from coils 1, 2, 3
and 4.
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Fig.6 C'(r) plotted against logo(r/To) for (a) soft
X-ray signals and (b) Mirnov data from DITE
discharge 27649. 7/At=4 and the varying
dimension n is indicated in the legend.
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Fig.7 C'(r) plotted against logio(r/ro) for (a) soft
X-ray signals and (b) Mirnov data from DITE
discharge 28030. 7/At=2 and the varying
dimension n is indicated in the legend.
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(a)

(b)

Fig.9 Delay co-ordinate space reconstructions of the Mirnov signal
X(t) (in arbitrary units) from discharge 28030. (a) shows X(t) plotted
versus X(t+ 7) where 7=3A¢ (for clarity only the first 1000 points are
shown) and (b) shows points (X(t), X(t+ 7), X(t +27)), 7=TA¢, joined
in 3 dimensional space (only the first 500 such points are shown).
(b) is drawn for stereoscopic viewing. This may be done using any
of the usual stereoscopic viewers or, without such paraphernalia, by
relaxing the eye focussing muscles, letting each eye look at only one
drawing. (To achieve this decoupling, it may be helpful to place a

.card vertically between the eyes, parallel with the nose, in order to

cut off the left-hand drawing from the sight of the right eye, and vice-
versa). Those who have neither the equipment nor sufficient ocular
accommodation may simply consider the diagram as being
duplicated.
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Fig.10 The growing oscillation f,(t) of Section 4.2 analysed by the Broomhead-King
method: (a) shows the singular spectrum, a plot of logo(0:/00) versus ir, where 7= At
and an embedding dimension n=10 has been used. (b) shows the 2-D phase space
reconstruction, P plotted versus P, where the projections P;= Lcji=1, 2, correspond

. 1
to the two largest o; shown in part (a). do= 2 ¢; is a convenient normalisation

1=
for o; and the projections are scaled so as to fit the unit interval. (¢) and (d) are as
(a) and (b), except that more noise has been deliberately added to the signal as described
in Section 4.2
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Fig. 11 The singular spectrum, logio(ci/o,) plotted versus ir, for the
sawtooth function fi(t) of Section 4.2, 7= At and n=10 were used - there
is no indication that the spectrum is resolved.
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Fig.12 (a) The singular spectrum, logo(o:i/0o)
plotted versus ir, for the Mirnov signal from
DITE discharge 27512. 7= At and n=6 were used.
(b) 2-D phase space reconstruction of the
signal from discharge 27512, using the (scaled)
projections P; and P, corresponding to the two

largest o; shown in part (a).
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Fig. 13 The signal f,(t) with noise added as in Section 4.2 is shown top, to compare with its reconstruction
(bottom) using the projections P; corresponding to the two largest o; shown in Fig. 10c. The vertical

scale is in arbitrary units.
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(a) (b)

slope -2.5

(c) (d)

Fig. 14 Power spectra, logio P plotted against logio
w, where P is the power spectral density function
and w is frequency for (a) soft X-ray data and (b)
Mirnov data from DITE discharge 28030, (c)
Mirnov data from discharge 27649, and (d) the c-
variable of the Lorenz system at the parameters
listed in Section 3.3 Pis in arbitrary units, while the
normalisation employed for w is such that a spike
at ws corresponds to an oscillation of duration
10™“sms (or dimensionless time units in (d)).
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