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ABSTRACT

In this paper we report on a computer code (CULDESAC) developed to
model the flow of a mixture of two gases. This is the first stage in the
development of a code for modelling the detonation stage of vapour
explosions. We describe the equations governing this situation and the
numerical scheme developed to solve them. Calculations are presented for
a steady-state shock, transient simulations of shock tubes (in one case
containing different gases in each section) and detonations. We conclude
that the numerical scheme presented in this paper is suitable for the
simulation of compressible flows encountered in the detonation stage of
vapour explosions.
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NOMENCLATURE

c speed of sound

¢ specific heat at constant volume

e internal energy

h enthalpy

K constant in momentum equilibration term
P pressure

R constant in temperature equilibration term
T temperature

t time

v velocity

X space coordinate

Greek symbols

p density

A constant in drag work term
Y ratio of specific heats

B drag relaxation time

TT temperature relaxation time

Subscripts
1,2 Gases 1 and 2
i notation for either gas

s stagnation

(ii)



1. Introduction

If a hot liquid (melt) is brought into contact with a cooler volatile
liquid (coolant) in some circumstances the coolant may be vaporised so
rapidly and coherently that an explosion results. Such explosions are
known variously as steam explosions, vapour explosions or Molten Fuel
Coolant Interactions. They are of concern in the metal-casting industry
[1] and in the transportation of liquefied Natural Gas (LNG) over water
[2]. They are postulated to occur in submarine volcanisms [3] and are

studied in connection with nuclear reactor safety [4].

A large scale interaction involving melt and water is known to
require a well-defined sequence of events. Firstly, the melt and coclant
must mix together on a coarse scale with melt and coolant zones having a
typical dimension of 10mm. During this stage the melt is surrounded by a
vapour blanket so that heat transfer is relatively slow and there is
little pressure generation. If the vapour blanket collapses locally in
some region of the mixture this leads to high heat transfer rates and
fragmentation of the melt. This in turn leads to a rapid increase in
pressure locally. In some circumstances this pressure disturbance could
propagate as a detonation wave leading to fine fragmentation of the melt
and coherent energy transfer to the coolant. The high pressure cooclant can
then expand causing damage due to the high pressures or the impact of

material flowing away from the interaction zone.

Previous work by the present authors has concentrated on the study of
the coarse mixing stage. This necessitated the development of a
two-dimensional transient three-component (melt, water and steam)
incompressible multiphase flow code. The model and its validation is
described in references 5 - 11. The model of coarse mixing allows the
volume fractions and the melt length-scale to be calculated as a function
of time. Thus it can be used to determine the effect of varying external

parameters, such as ambient pressure, on mixing. The next stage in the



modelling of the vapour explosion phenomenon is to determine which mixture
configurations can support the escalation of localised interactions into
propagating detonations. Thus we intend to develop a multiphase flow
code to determine the behaviour of a prescribed pressure pulse applied to
a given mixture. This will allow us to determine which mixtures can be
detonated and which cannot because, for example, there is too much steam

or the melt fragments are too large.

Our previous modelling work was concerned with incompressible
multiphase flow. Clearly the extension to the detonation case reguires
the development of a computer code which can model compressible transient
multi-component flow. As in our previous work we intend to develop this
model in a number of stages. In this paper we describe the first stage -
a code (called CULDESAC) developed to model the flow of two gases. This
has enabled us to examine the accuracy and stability of our proposed
solution scheme and to gain experience in computing shock waves and

detonations.

In section 2 we describe the equations to be solved together with the
necessary boundary and initial conditions. 1In section 3 the solution
procedure is described. 1In section 4 we present some calculations of
flows involving shock waves and expansion fans. In section 5 we examine
the theory of detonations in gases and present some numerical simulations.
Finally, in section 6 we draw some conclusions on this first phase of

model development.

2. Mathematical Formulation

In this section we present the equations governing the behaviour of a
mixture of gases. We restrict our attention to a one dimensional duct

with a constant cross-sectional area. The governing equations are:
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The above equations describe conservation of mass, momentum and total
energy for each of the gas species 1 and 2. At this stage we will make

some observations about this system of equations which will prove useful

later.

(i) All the equations are hyperbolic so there is no problem of

"ill-posedness" as occurs in the multiphase flow formulation [12].

(ii) Equations (1) and (2) represent conservation of mass and we have

assumed that there are no internal sources or sinks in the solution

domain.

(iii) Equations (3) and (4) represent conservation of momentum for each
species. Note that each species only feels a pressure from its own
species (c.f. Dalton's law of partial pressure [13]) and the total

pressure is given by

P = Py + p (7)



(iv) We have ignored viscous terms. Since the flow is one dimensional
there are no shear forces and compression (or bulk) viscosity forces are
known to be small in most normal situations [14].

(v) The terms K(v2 - v1) and K(v, - v2) model drag between the species.

1
The chosen form ensures that Newton's third law is automatically satisfied
for any choice of K. There appears to be no general theory available to
describe inter-species drag, so that for the purposes of the present

paper we have made the following assumption

R QT ol (8)
P1 T P Tp

Equation (8) ensures that the drag is equal to zero if either species is

absent and T is a user-specified relaxation time.

(vi) Eguations (5) and (6) represent conservation of stagnation energy.
These equations were formed by adding the mechanical energy equations
(e.g. eguation 3 multiplied by v1) to the thermodynamic energy equation.
Note that the time derivative acts on e + 1/2 v2 but the convective term

contains h + 1/2 v2, where
h = e + P (9)
p

(vii) The terms involving K on the r.h.s. of equations (5) and (6) are due
to drag work. Their form ensures that the total energy of a closed
system is conserved. The parameter A takes values between 0 - 1 and is

otherwise arbitrary [15]. .In all cases we have assumed A = 0.5.

(viii) The terms R(T2 - T1) and R(T1 - T2) represent thermal
equilibration between the species. Again there is no general theory
available to determine R and we have chosen for the present calculations

to use the form

pyB,C_,C
R = 172 v1 v2 (10)
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where ?T is a suitable relaxation time.

In addition to the above equations, an equation of state and a
caloric equation are needed for each species. We have chosen to use

ideal gases so that

p, = (y; =M c.pT, (11)

and

e, = ¢ ,T. (12)

where = is the specific heat capacity at constant volume and y is the

ratio of specific heats.

2.1 Initial and Boundary Conditions

In the present work we have solved the above equations for two

different types of problems.

Firstly, we have used the model to obtain steady state solutions for
shock waves and detonations. In this situation all the variables are
specified at the inlet (i.e. p, p, T and v) and the exit pressure is
specified. This is sufficient to determine the solution uniquely. Any
suitable initial condition can be used and the chosen initial condition

determines only the location of the shock.

Secondly, we have used the code to examine initial value problems.
For example the code has been used to examine the flow of gases in a shock
tube. In this case initial conditions on p, p, T and v are specified and
suitable boundary conditions at the end of the tube are needed. In our
calculations we assume that the tube is closed at both ends so that the

velocity is set to zero. No other boundary conditions are needed.



3. Solution Procedure

A vast literature exists on the solution of the inviscid Euler
equations (the single component form of the present equations). The need
for accurate and robust schemes to solve these equations is due to their
importance in the aircraft industry. An excellent review of these schemes
and the philosophy behind them is given by Moretti [16]. For the present

purpose we will make a few general observations.

Numerical schemes can be split up broadly into two types: "shock
fitting" and "shock capturing". In "shock fitting" schemes the
differential equations are solved in the regions of continuous flow and
these regions are joined by using the Rankine-Hugoniot equations, hence
the term "shock fitting"™. 1In "shock capturing" schemes the equations are
solved throughout the solution domain and the location of shocks is
predicted by the scheme. For these schemes to work the equations must be
written in conservation form so that they contain the shock conditions.

It is this latter type of scheme which is of interest to us since we will
not know the shock position a priori; its position will depend on how

efficiently the detonation progresses.

The literature contains numerous novel technigques which attempt to
exploit the features of hyperbolic systems (in particular the existence of
real characteristics) to produce high order accurate schemes. These
schemes are often very complex and it is not clear how they would
generalise to a "common pressure" multiphase flow formulation. For this
reason we have decided to try the simplest first-order accurate scheme and
to see how well it predicts flows similar to those of interest in the

multiphase detonation problem.

If we use a first order accurate scheme for convective terms (i.e.
upstream differencing) the scheme will provide sufficient "numerical
viscosity" to capture the shock and ensure that there are no oscillations
in pressure downstream of any shocks. This is important as in the

ultimate situation of interest the downstream pressure and flow velocities



will determine the melt fragmentation rate which in turn determines the

amount of energy fed into the system.

3.1 Description of the Scheme Used

The partial differential equations described in section 2 were solved
using a finite difference method. A staggered grid was used with p, p
and T being stored at the cell centres and velocities being stored at the
cell boundaries. This is illustrated in Figure 1. All convective terms

were upstream differenced. The solution procedure will be outlined

below.

(i) Time advance the density equations using an explicit method. The

differencing was carried out as follows:
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Using results from a previous paper [7] we know that the above scheme will
always produce non-negative densities and that the mass of each species

will always be conserved in a closed system. The above scheme is stable

provided
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(ii) The next stage is to solve for the velocities. We use a completely
explicit scheme. The pressure gradient terms are evaluated at the old
time. The convective terms pv2 are differenced as (p\.a')nvn+1/2 i.e. the
mid-time velocity is transported by the mass flux evaluated at the old
time. This practice ensures that the Rankine-Hugoniot condition can be
satisfied for a steady shock, as in this case the same flux is used to
transport density, velocity and energy. The new velocities are evaluated
at the mid time for accuracy. Due to the convective term the new
velocities are linked to their nearest neighbours and a tri=-diagonal

(TDMA) solver is used to determine the new velocity field simultaneously

throughout the solution domain.

The finite difference form of the momentum equation for gas 1 is

given by
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In the solution scheme the usual principles of reciprocity are used i.e.

9. = o (22)

The above scheme was found to work well and to lead to very little
smearing of shock fronts. In an early version of the code we obtained
cell face mass fluxes from the product of the density stored at the face
and the average of the velocity stored each side of the face (i.e.

n
Fi+1/2 = Pit1 V549
not satisfy the Rankine-Hugoniot equations in their finite difference

+ vi)/Z). This was found to be very diffusive and did

form.

(iii) The energy equations (5) and (6) were solved using the same method
as that used for the density equations. The solution variable is

ple + 1/2v2) = pe . Thus exactly the same scheme as equation (13) was
used to determine (pes)n+1 noting that the flux term applies to the
stagnation enthalpy. The source terms arising from drag work and

temperature equilibration were evaluated at the o0ld time. Because the



scheme uses a staggered grid, v and e are not stored at the same

locations, and it was necessary to define

_ 5 &= AT &
s e, + 1/2 vi_19i + 1/2 Ve (1 Gi) (23)

With the definition it is a simple matter to determine e given es
.since the velocity field is time advanced before the solution of the

energy egquation.

Given the new energy field new temperature and pressure fields were

determined using equations (12) and (11) respectively.

4, Test Problems

The code was used to examine two test problems. One was the
steady-state solution of a shock wave given the upstream conditions and
the pressure ﬁump across the shock. The other was a transient problem,

the modelling of flow in a shock tube.

4.1 Stationary Shock

This problem allows us to determine how accurately the code can
predict a shock and to determine by how much the scheme 'smears' shocks.
The parameters used in the calculation are given in Table 1. This problem
only involves one gas. The conditions for the second gas were set equal
to the upstream conditions of the gas used in the simulation and all

coupling térms (1/TD and 1/TT) were set to zero.

Figures 2(a) - 2(e) show plots of the pressure, density, temperature,
Mach number and entropy for a simulation using 72 grid points. These
plots show that changes in quantities across the shock are not excessively
smeared and that the changes in density, temperature, velocity and
entropy are very accurately predicted. This is because the )
Rankine-Hugoniot equations are built into the steady-state finite
difference form of the conservation equations. The entropy rise is
monotonic and there is no over-shoot in the entropy at the shock front.
This is an important internal consistency check, since, unlike the Rankine

conditions, the entropy equation is not solved in the scheme. The entropy



of the gas is calculated from p and T after the solution is completed.
Thus we have produced a thermodynamically consistent scheme [17] without
using any particularly complicated practices. It is of interest to note
that the practice embodied in Equation (17) played a decisive role in

obtaining a monotonic (i.e. thermodynamically consistent) entropy profile.

4,.2. Shock Tube

Consider a tube closed at both ends and divided part way down its
length by a diaphragm. One section is filled with high pressure gas and
the other a low pressure gas (not necessarily the same gas as in the high
pressure section) and the diaphragm is then ruptured. This results in a
shock wave travelling into the low pressure gas and a centred rarefaction
wave travelling into the high pressure gas. 1In the idealised theory the
two gases are separated by a contact surface across which the pressure and
velocity are constant but the temperature and density, in general, are
not. Using the relationships for changes across shocks and in expansion
fans [18] it is possible to construct an analytic theory of the flow until
the time at which either the shock or rarefaction wave reaches a boundary .
Details of this solution are given in most standard textbooks on gas

dynamics (see, for example, [19]).

This system provides an ideal test for our code and indeed the
problem has been used extensively in code development. In this paper we
use two test problems, specified in references 20 and 21, which were used

in the validation of the SIMMER code.

In the first simulation the two gases in the shock tube are the same.
The parameters used in the simulation are given in Table 2. This
simulation is for a relatively weak shock with gas at 2 MPa expanding into
gas at 0.1 MPa producing a shock pressure ratio of 4.24. 96 mesh points

and a time-step of 20ps were used in the simulation.

Figures 3(a) - 3(d) show a comparison of the computed and exact
solutions for the velocity, pressure, density and temperature as a
function of distance at 0.02s after the diaphragm has been removed.

Figure 3(a) shows that the velocities of the shock wave and the head of



the expansibn fan are well predicted and that the calculated velocity is
in generally good agreement with the exact solution. There is no
overshoot in the velocity behind the shock wave as occurred in the SIMMER
calculation. The pressure field is in good agreement with the analytic
solution. The density is in generally good agreement with the analytic
solution except that the density jump across the contact surface has been
smoothed out by numerical diffusion. The temperature profile is very
close to the analytic solution showing the characteristic feature of the
heating of the gas by the passage of the shock wave and cooling of the gas

across the expansion fan.

As a second example we examine the case of a strong shock in a shock
tube containing two different gases. The conditions and parameters used
in the simulation are given in Table 3. 1In this case the pressure ratio
across the shock was 33.3. Figures 4(a) - 4(d) show a comparison of the
computed and the analytic solutions for the velocity, pressure, density
and temperature as a function of distance at 0.008s after the diaphragm
has been removed. Suitable relaxation rates were chosen to ensure that
the velocities and temperatures of the gases were the same in regions
where both species were present. It should be noted that the analytic
solution assumes that no gas flows across the contact surface whereas in
the simulation and in reality the gases will mix. Thus, in contrast to the

previous case, the analytic solution is only an approximate model.

Figure 4(a) shows that again the computed velocity field is in good
agreement with the analytic solution. The total pressure shown in
Figure 4(b) is also in good agreement with the analytic solution and the
mixing of the gases is clearly shown. The density and temperature plots
are not in such good agreement with the analytic theory because the theory
does not allow for the mixing of the gases. However, the agreement is
good in regions where only one gas is present. We may conclude that our
code has successfully modelled a very strong shock, where velocities of
order 2000 m/s are present. This is much greater (by a factor ~ 10) than
detonation velocities measured in vapour explosion experiments so we may
conclude that the numerical scheme used to solve the equations is

certainly adequate for the vapour explosion application.



5. Detonations

Detonations have been studied extensively in connection with the
rapid combustion of gases. 1In a detonation a shock wave propagates
through an 'unburnt' gas and raises its temperature. If the temperature
rise is sufficiently high combustion begins and the gas mixture will be
ignited by the shock wave as it moves. Thus combustion is propagated with
a supersonic velocity, a process known as detonation. A detailed study of

the process of detonation is given in section 121 of reference 22.

From the point of view of simple analytic modelling detonations are
very similar to ordinary shocks. The only difference is that energy is
added to the system at the detonation front, which is assumed to be very
thin. The amount of energy added is determined by the chemistry of the
gases involved. In the vapour explosion application the heat addition
behind the shock front will depend on how rapidly and finely the melt is
fragmented and how well the melt is able to transfer its heat to the

coolant.

Detonations are very similar to shock waves in that the jump
conditions, which determine conditions across the front, contain a free
parameter. For example, if the pressure, temperature and density are
known upstream of the shock (in a frame of reference at rest relative to
the shock) then the remaining guantities can only be determined if another
parameter is specified. 1In the study of shock waves this is usually the
upstream Mach number, which allows the pressure, temperature and density
ratios across the shock to be determined. It is well-known that provided
the upstream Mach number is greater than unity a solution to the equations

exists and the flow downstream of the shock will be subsonic.

The situation is exactly the same in a detonation (where it is
assumed that the energy release due to 'combustion' is known). However,
in detonations there is often an additional constraint. Consider, for
example, the case of a detonation wave moving away from the closed end of
a tube. The velocity is zero at the closed end. This can only be
achieved if a rarefaction wave separates the detonation wave from the tube
end. It is a necessary condition that downstream of the detonation front

the



flow velocity is equal to the local sound speed and in this case the
detonation can propagate independently of its distance from the closed end
of the tube [22]. This condition on the downstream velocity was first put
forward as a hypothesis by D.L.Chapman (1899) and E.Jouguet (1905) and has
become known as the C-J condition. It should be noted that the C-J
condition does not always have to apply but is generally present if the
detonation occurs in a bounded domain. Thus given the upstream conditions
and the amount of energy released at the detonation front the solution is
completely determined. 1In the next section we will present some sample

detonation calculations carried out with the code described in section 3.

5.1 Simulation of an Idealised Detonation

In this section we compare the results of a numerical simulation with
the analytic theory for an idealised detonation. In an idealised
detonation energy is released behind the shock front in a vanishingly thin
layer. We have simulated this in the code by adding a specified amount of
energy at one grid point and time advancing the solution until a
steady-state is found. The parameters used in the simulation are given in
Table 4. The simulation results were compared with the exact solution
obtained from reference 22. The exact solution is for a detonation
satisfying the C-J condition and this solution was used to specify the

correct downstream pressure in the simulation.

Figures 5(a) - 5(e) show the computed and analytic steady-state
profiles of pressure, density, temperature, velocity and entropy. The
figures show that the numerical solution is in very good agreement with
the analytic solution. The numerical detonation front is 'smeared' over
only two cells and the jumps in quantities such as temperature and density
are well predicted in the numerical simulation. The code predicts

pressure and entropy rises which are monotonic.

5.2 Simulation of an Extended Detonation

In the previous section we examined the case of an idealised

detonation where energy is input over only one grid cell. In the vapour



explosion application energy will be input over an extended region. Thus
we decided to carry out calculations where the energy was input over an
extended region. The same total amount of energy was input as for the
previous example but it was added uniformly over a distance of 0.21m,
corresponding to 20 cells in a simulation using a total of 96 continuity
cells. BAn analytic solution was obtained by solving the Rankine-Hugoniot

equations across each cell.

Figures 6(a) - 6(e) show a comparison of the calculated pressure,
density, temperature, velocity and entropy distributions with the analytic
solution for a simulation using 96 grid points. The analytic and computed
solutions are in good agreement in all cases with only slight differences
between them. These differences were shown to be due to grid error and
to decrease as the grid was refined by performing simulations with 48, 96
and 192 grid points. These showed that the finite difference solution was
converging to the analytic solution. The simulation using only 48 points
predicted the correct behaviour and was close to the analytic solution.
This shows that the essential behaviour of the system can be determined by

using relatively few grid points.

6. Discussion

In this paper we have described a compressible flow code which can
model the behaviour of two gases. We have shown that a first order
accurate finite difference scheme can be constructed in such a manner that
shocks and expansion fans are accurately predicted in a thermodynamically
consistent manner. This has been achieved by ensuring that the
Rankine-Hugoniot equations (in their finite difference form) are built
into the finite difference scheme. We have also shown that the code can
be used to model detonations and that it also gives accurate results in
this situation. In addition the code is very cheap to use. For example,

the transient shock tube calculations took less than 10cpuy seconds on the

Cray XMP.

The present work has been carried out in order to validate a finite

difference scheme in situations where there is a known analytic solution.



For this reason we examined a mixture of gases. In the vapour explosion
application we are concerned with modelling the propagation of detonations
through macroscopic regions of melt, water and steam. This will require
the use of a multiphase flow treatment which allows each finite difference
cell to contain macroscopic regions of each component, all at a common
pressure. The principles developed in this paper will be used to
formulate a finite difference scheme to study the behaviour of such

systems.
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Solution domain length
Number of grid points
Upstream pressure
Upstream.density
Upstream temperature
Upstream Mach Number
Downstream Pressure

(o]
v

¥

1m

72

1.2 x 105 N/m?2

1 kg/m?3

400 X

2

5.631 x 105 N/m2
300 J/kgkK

1.6

Table 1: Parameters used in the stationary shock calculation
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High pressure section

P = 2 MPa

p = 10.7 kg/m3
T = 413.86K

Y = 4/3

c, = 1355 J/kgK

Low pressure section

P = 0.1MPa

p = 0.738 kg/m3
T = 300K

Y = 4/3

cv = 1355 J/kgkK

General parameters

Length of shock tube = 44m
Position of Diaphragm = 22m
Comparison time = 0.02s
Number of grid points = 96
Time-step = 20ps

Table 2: Parameters for the weak shock simulation
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High pressure section

P = 20 MPa

P = 10.7kg/m3

T = 413.86K

Y = 4/3

c, = 13550 J/kgK

Low pressure section

P = 0.1MPa

P = 0.738 kg/m3
T = 300K

Yy = 4/3

g, = 1355 J/kgkK

General parameters

Length of shock tube
Position of diaphragm
Comparison time
Number of grid points

Time-step

44m
14.6m
0.008s
96

Sps

Table 3: Parameters for the strong shock simulation

- 21 -



Unburnt Gas

P = 10° N/m2
p = 0.6 kg/m3
T = 417K
v = 4382 m/s
= 1.4
B, = 1000 J/kgK

Burnt Gas

Y and cv the same as for the unburnt gas
107 J/kg released upon burning the gas
Downstream pressure = 4.95 MPa

Detonation satisfies C-J condition

General Parameters

Solution domain length = 1m
Number of grid points = 48
Time-step = 0.5ps.

Table 4: Parameters for the Idealised Detonation Simulation
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Fig.2(a) Pressure Profile for the Steady Shock Calculation
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Fig.2(b) Density Profile for the Steady Shock Calculation
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Fig.2(c) Temperature Profile for the Steady Shock Calculation.
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Fig.2(d) Mach Number Profile for the Steady Shock Calculation
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Fig.2(e) Entropy Profile for the Steady Shock Calculation
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Fig.3(a) Weak Shock Simulation, Velocity as a Function of Distance after
0.02s
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Fig.4(a) Strong Shock Simulation, Velocity as a Function of Distance after
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Fig.5(a) Pressure Profile for the Idealised Detonation Simulation
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Fig. 5(c) Temperature Profile for the Idealised Detonation
Simulation.
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Fig.5(d) Velocity Profile for the Idealised Detonation Simulation
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Fig.5(e) Entropy Profile for the Idealised Detonation Simulation
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Fig.6(a) Pressure Profile for the Extended Detonation Simulation
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Fig. 6(b) Density Profile for the Extended Detonation Solution



TEMPERATURE (K)

VELOCITY (m/s)

16000

]

14000

12000

T

| ANALYTIC SOLUTION

!

10000

8000

6000

4000

T

2000 -

I, ] | |
0.0 02 0-4 06 08 1.0
x(m)

Fig.6(c) Temperature Profile for the Extended Detonation
Simulation

5000

4000 ANALYTIC SOLUTION

—

3000~

2000

1000

0 | | | | J
0-0 02 0-4 06 08 1-0
x(m)

Fig.6(d) Velocity Profile for the Extended Detonation Simulation
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Fig.6(e) Entropy Profile for the Extended Detonation Simulation.






