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Abstract

In this paper we describe a transient one-dimensional model of fluid
dynamics based on the solution of multiphase flow equations. The model
includes the provision for one fluid to be converted into another by a
'combustion' process. We present a comparison of the results from the
present model with those from our earlier work, using a multi-gas
formulation of the conservation equations, for the problem of two
different gases in a shock tube. Agreement is shown to be excellent if
the two species have the same velocity and temperature. If this is not
the case the two approaches can give very different results. We discuss
the fundamental differences between the two models and argue that it is
the multiphase flow model which is more appropriate for the study of steam

explosions.

In part II of this paper we apply the multiphase flow model to the

study of detonations.
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NOMENCLATURE

& speed of sound

c, specific heat capacity at constant volume

e internal energy

F. momentum exchange term due to species transformation
m

h enthalpy

K constant in momentum equilibration term

m mass transfer rate

P pressure

Q specific heat release due to species transformation
R constant in temperature equilibration term

T temperature |

t time

\' velocity

X space coordinate

Greek symbols

a volume fraction
p density
S effective density (= ap)
Y ratio of specific heats
T drag relaxation time
tT temperature relaxation time
xs mass transfer relaxation time
work terms in the stagnation energy equation
Q work terms in the thermodynamic energy eguation
Subscripts
1 burnt gas
2 unburnt gas
i notation for either gas

s stagnation



1. Introduction

In a previous paper [1] we reported on the development of a computer
code, called CULDESAC, to study detonations in gas mixtures. This code
models the hydrodynamics of a mixture of two gases using a multi-gas
formulation of the mass, momentum and energy conservation equations. In
this situation each gas feels only the pressure forces exerted by that
gas plus the interaction between the gases, which is accounted for through

mutual drag forces.

In this paper we report on a modified version of the code which
solves the multiphase flow equations for similar situations. In this case
a common pressure is introduced and the presence of either species is
represented by volume fractions. This approach allows the code to model
situations which occur when the different species are immiscible and
occupy macroscopic regions, so that we can model the passage of shock
waves through a mixture of melt, water and steam. In this approach, the
species interactions occur implicitly through the common pressure and

explicitly via inter species mass, momentum and energy transfers.

It must be noted that conceptually these two approaches are very
different. The multi—gaé theory can, in principle, be deduced from
kinetic theory. It is appropriate when the species can be regarded as
nearly perfect gases. The multiphase theory is a phenomenological,
continuum theory with no "fundamental” justification. 1In particular, the
constitutive relations of this approach have, at present, no basic
theoretical justification, but have an empirical character. However, the
multiphase approach is far more general and indeed must be used in
.engineering situations. It is therefore interesting to examine the two
approaches and to determine in what circumstances they give the same
solution. It is not a priori obvious that the results would be the same
in any 'like-with-like' comparison since the notions of a common pressure
for all the species and occupancy measured ﬁsing volume fractions are
alien to the gas dynamics approach. We show that the models only agree
under very special circumstances and advance reasons why the multiphase

flow scheme is to be preferred for the study of steam explosions.



In section 2 we describe the equations to be solved and compare them
with the equations used in our previous work. In section 3 the changes to
the solution scheme are described. Results from the computations are

given in section 4 and in section 5 we draw some conclusions.

2. Mathematical Formulation

In this section we present the equations governing the behaviour of a
multi-component mixture. The multi-gas formulation has already been
discussed [1]. We restrict our attention to a one dimensional duct with

constant cross-sectional area. The governing equations are:
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0 + oy =1 (7)

The above equations describe conservation of mass, momentum’ &nd total
energy for each of the components 1 and 2. The constraint equation
(Eq.(?)] provides a means of determining the common pfessure, as will be
shown later. At this stage we will make some observations about the
system of equations which will prove useful later.

(1) The symbol E is shorthand for ap - S represents the effective
density of the material in a particular region whereas p is the
thermodynamic density. Thus, p 1is the quantity which appears in the
equation of state of the material. Since « measures occupancy, ap is
the effective hydrodynamic density which appears in the equation of
motion. Equation (7) states that a unit volume is filled by the two

gases.

(ii) Equations (1) and (2) represent conservation of mass for each
species. We have assumed that species 2 is converted into species 1 so

that ﬁl > 0 . In the present calculations we have used the following

expression for ﬁl :
: 2
m, = — H(8) . (8)

The term H(O) is the usual Heaviside function which causes
transformation to occur only when 6 > 0. We have used both 0 = T-TD
and 6 = p-py so that transformation only occurs when a critical
temperature or a critical pressure is exceeded. The presence of the
factor Ez ensures that transformation stops when species 2 is no longer
present in a region and <1, provides a relaxation time. It is a simple

s
task to change the form of this term to model a mechanistic mass transfer

process.

(iii) Equations (3) and (4) represent conservation of momentum for each
species. Note that in this system of equations each species feels a
fraction of the total pressure force determined by the volume occupied by

that species. This is very different from the multi-gas formulation used



in [1] where the only pressure force felt by a species is that due to its
own molecules. The F terms represent transfer of momentum due to

m
species 2 transforming into species 1. We adopt the same practice as in

our earlier work [2] and set

F =m; v, (9)

(iv) We have ignored viscous terms for the same reasons as discussed in

reference 1.

(v) The terms K(v2 - vl) and K(vl - vz) model drag (or momentum
transfer) between species. We have used the same form for these terms as

used in reference 1 except that p is replaced by S so that

Py Pg
K=_ "~ = (10)

(El ¥ EQ)T
b

where T is a user-specified relaxation time. Again it is a very simple

matter to incorporate other expressions for this term.

(vi) Equations (5) and (6) represent conservation of stagnation enthalpy.
The form of these equations is very similar to the multi-gas case.
However, there are several new source terms which need explanation. The

terms -p EE are work terms due to the change of composition in a region.
t

The tempergture equilibration terms are modelled exactly as before with p

replaced by g . The & terms contain the drag work and the work due to

phase transformation. Their exact form is given in appendix 1. The terms

- ﬁl h, and ﬁlchz + Q) represent energy transfer due to the phase

change and we have assumed that when species 2 converts into species 1 the

specific heat release is Q .

(vii) We have again assumed, for the purpose of this paper, that both

gases obey the ideal gas law so that

p, = (Yi - 1)cvi P; 'I‘i (11)



and
e, =c¢C T, (12)

The method we describe can be carried over at the expense of algebraic

complexity to more complicated equations of state.

(viii) Equation (7) has no analogue with the multi-gas formulation. Its
presence is a consequence of defining volume fractions and a common
pressure. Some workers have tried using different pressures for each
species but this has proved to be an unpopular approach (see the review by

Stewart and Wendroff [3]).

Numerous workers [3,4,5] have shown that the system of equations (1-7) are
ill-posed (based on proving the existence of imaginary characteristics).
However, many other authors [3,6,7] have solved these equations without

encountering any problems. In our work we have not encountered any

problems.

(ix) Although all the previous comments refer to one dimensional flow in a
duct of constant cross-éectional area we have included an option in the
code to have a variable duct area. This has necessitated the inclusion of
'area-factors'" in the convective terms, so that terms, such as, EL-(BE]

1

/

L 9_.(EhA]. This allows the code to be used for

ox
axisymmetric calculations in 2 and 3 dimensions where the factors A are

are replaced by

simply x and x2, respectively.

2.1 1Initial and Boundary Conditions

We have always used the present code to model initial value problems.
Thus the initial velocity, volume fraction, pressure and temperature
fields were specified and the density was calculated using the equation of
state. 1In our calculations we assume that the solution domain is closed

at both ends, so that the velocity is zero. No other boundary conditions

are needed.



e Solution Procedure

The equation set described in section 2 were solved by a very similar
method to that used in the original CULDESAC code which solves the
multi-gas equations. We again use a finite difference method employing a

staggered grid. The solution procedure will be outlined below.

(i} Time advance the effective densities Sl and 52 using the same
explicit method used to advance p; and p, in the multi-gas
formulation. The source term in the species 2 equation is treated
implicitly, a practice (together with the positive faithful transformation

[8]) which ensures that Sl and Sz remain non-negative quantities.

(ii) The next stage is to solve for the velocities. Again we use the same
practice as employed in the multi-gas code. The convective terms are
differenced in the same manner as before so that the mid-time velocity is
convected with the old-time mass flux. This practice ensures that the
Rankine-Hugoniot equations are built into the solution procedure, giving
it good 'shock-capturing' properties, as will be shown in section 4. The
additional source terms due to phase transformations are treated

explicitly.

(iii) The energy equations (5) and (6) were solved using the same method
as that used for the density equations. We use exactly the same practices
as before to form the stagnation energy, solve for the new stagnation
energy and determine the new internal energy. The source terms &; and
$. and the terms due to heat addition by species transformation are

2
treated explicitly. The p EE term is backward differenced in time. The

ot
new temperature field is then determined by using equation (12).

(iv) The calculation of the pressure field is the main difference between
the multi-gas and the multiphase flow formulations. In the multi-gas
system the mass conservation equations time advance p and the energy
equations (plus suitable caloric equations) give T . The pressure is

then determined from the equation of state.

In the multiphase formulation the mass conservation equation gives

S (= ap) so that the pressure cannot be determined directly. Indeed it



is clear that a different procedure is needed as equation 7 (al Gy ™ 1)
has not yet been used. For the case of ideal gases we proceed as

follows. The equation of state gives:

o]
1

(y-—‘l)cv pT

pT

(y—1)cv
a

= G = (7_1)CVP_T (13)
P

Substituting (13) into (7) gives

T + (72—1)cv2 e, T2 (14)

P = (y,=Neg, oy T,

Thus p can be determined from equation (14) and then substituted into
equation (13) to determine « . This leads to an a-field satisfying the
constraint eguation (7) and constitutes a complete solution to the

problem.

It should be noted that the above practice is particularly easy if
the equation of state is linear in the density. If it is not the equation

could be linearised so that
p=p £(p7T) (15)

and the above practice could be employed by using the o0ld value of p in

f(p,T). If necessary this stage could be iterated for greater accuracy.

The above procedure is computationally simple (and cheap). Other
workers in the field use much more complicated procedures to determine the
common pressure. For example, Spalding [7] uses a pressure correction
procedure similar to that used in incompressible flow. Harlow and Amsden
[6] guess a pressure and volﬁme fraction field (from the previous time)
and use Newton's method to correct p and the a's in a process they

call equilibration. For the present purpose our procedure seems to work



well and to give results to the accuracy we require. We see no point in
striving for high order accuracy in the finite difference scheme when many
of the constitutive relations are uncertain. Furthermore, our results
show that quite accurate resolutions of shock and detonation fronts can be

achieved by the above simple and extremely stable solution procedure.

4. Computational Results

The code has been used to model situations with and without
transformation. The first case examined was a shock tube containing two
different gases. This allows a direct comparison of the multi-gas and
multiphase flow formulations to be made. The remainder of the cases
examined have been concerned with modelling problems where one fluid
converts into the other fluid, releasihg energy and leading to a
detonation. These simulations will be reported in part II of this paper

[91.

The simulation of a shock tube containing two different gases
reported in reference 1 was repeated using the multiphase flow code. The
geometry, finite difference parameters and gas properties were exactly the
same as those given in Table 3 of reference 1. The only difference was
that one pressure was specified in each region and the presence of a gas
was registered by setting a« =0 or 1 in each region. Again the drag
and temperature relaxation times were so short that there was a single

velocity and temperature at any location.

Figures 1(a)-1(e) show a comparison of the computed and the analytic
solutions for the wvelocity, pressure, density, temperatures and volume
fraction as a function of distance 0.008s after the diaphragm has been
removed. It should be noted (as explained in reference 1) that the
.analytic solution assumes that no gas flows across the contact surface,
whereas in the simulation and in reality the gases will mix. Thus the
analytic solution can only be expected to be valid in regions where only
one gas is present. The figures again show good agreement in the regions

where only one gas is present.

In addition, comparison of figures 1(a)-1(d) with figures 4(a)-4(d)
of reference 1 shows that the two different approaches give the same

results even in the region where both gases are present. Indeed if the



plots are over-laid the solutions are indistinguishable. Examination of
the two sets of egquations shows that if both the velocities and the
temperatures are the same the summed momentum and summed energy equations
are the same for both systems. Thus the above results show that the two
very different approaches used to solve the same set of egquations are

consistent and give identical results.

A more stringent test of similarity occurs if the two components are
allowed to have different velocities and temperatures. This is easily
achieved by reducing 2N and T from 2 ps to say 1 ms. The results
from such a simulation are shown in Figures 2(a)=-2(d) which show the
density, pressure, temperature and velocity profiles at the same time as

for Figure 1. The figures show a number of interesting features:

(i) The total density and the total pressure are the same for both

formulations as expected.
(ii) The pressure front is no longer sharp as in Figure 1(b).

(iii) The temperature and velocity fields predicted by the two schemes
are different. Although the predictions are qualitatively similar the
multi-gas formulation predicts higher velocities for the high pressure gas
and lower velocities for the low pressure gas. Consequently, the
temperature profiles predicted by the two different formulations are

different.

It is not difficult to explain the origin of this difference.
-Examination of the two systems of equations show that they would be

formally equivalent in the case of two ideal gases provided that:

(i) E in the multiphase formulation is identified with p in the

multi-gas formulation. This implies that o) = pl/[p1 + pZJ, i.e. the

volume fraction are in the same ratio as the partial pressures in the

multi-gas formulation.

(ii) The terms - a-ég in the multiphase momentum equations are
ox



oop

replaced by terms of the form - — .
ox
da ;
(iii) The terms - p — are dropped from the multiphase energy
ot
equations.

The only changes necessary to get identical predictions from the two
codes are (ii) and (iii), since the changes in (i) are merely of
nomenclature. The second change, to the pressure force in the momentum
equation is fundamental. The multi-gas formulation says that the pressure
force on a species depends on the presssure of that gas, whereas in the
multiphase case it is the pressure force which is partitioned rather than
the pressures. Note that the pressure force does not give rise to
vorticity in the multi-gas momentum equations but in the multiphase
formulation it leads to a vorticity generation term of the form
- grad a % grad p . There has been considerable debate on the form this
term should take [10,11,12]. The usual argument is that the «a must be
outside the pressure gradient so that there is not a force proportional to
the pressure level when the equations are used for incompressible flow.
Indeed, if we take the low Mach number limit of the present multi-phase
flow eguations we obtain the equations used in our incompressible flow
calculations [2]. This would not have been the case if the changes (ii)-

and (iii) had been made to the system. Details are given in Appendix 2.

Thus we may conclude that the multiphase and multi-gas formulations

represent Fundamentally different physical theories. The multi-gas theory

applies to mixtures of gases whereas the multiphase theory applies to
situations where the species are immiscible and each occupies macroscopic
regions. Thus the two different systems apply to disjoint sets of

" physical circumstances. They can only agree in situations where all the
species have a common velocity and temperature (apart from the trivial
case of only one species being present). Since, in practice, we wish to
model systems where each species occupies a macroscopic region and we
require our equations to have an incompressible flow limit consistent with
our earlier work, we will adopt the multiphase flow formulation for our

study of detonations to be presented in part II of this paper.

-10-



B Conclusions

In this paper we have described a one-dimensional multiphase flow
code. The mathematical basis has been explained and the solution
procedure described. We have shown that the multi-gas and multiphase flow
models are fundamentally different except in the idealised case when all
the species have a common temperature and a common velocity. Examinétion
of the multiphase flow equations used in this work has shown that they are
consistent, in the limit of small Mach number, with the incompressible
flow egquations used in our earlier studies of mixing. Thus we conclude
that this, together with their more general nature, makes them the
appropriate choice for the development of a model of detonations in a

melt-water-steam mixture.

In part II of this paper we will report on the application of the
model described here to the simulation of detonations. This allows us to
determine the types of solution the equations admit in the simple case of

only two components.
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Appendix 1: The form of the source terms &, and &,

Both the drag forces and the phase change reaction forces do work
which must be accounted for in the energy equation. However, there is a
degree of arbitrariness as to which phase this work should be added [3].
The only guiding principle available is that the total entropy of the

system should increase.

Multiplying the momentum equations (3) and (4) by vy and v,
respectively to form the mechanical energy equations and adding these to

their respective thermodynamic energy egquations gives:

0 o~ 2 o 2
2 (pytey + 172 v ) + —(py v (b + 1/2 v )
ot ox :
= -9%1 ¥ BT, ~ Ty +ﬁll(h2+Q) + Q)
ot
1 2
F g K(v2 —vl) t F. - —my vV, (A1.1)
m
and
d ~ 2 o 2
2 (pple, + 172 v3) ) + —(py vylh, + 1/2 v5))
ot ox
oa 5
==-p—2+R(T) - Ty) -m hy +Q
ot
1 . 2

m

‘where the thermodynamic energy equations were taken to have the following

form;

-14-



ot ox ot ox
=Q +R(Ty) - T)) + rhl(h2 + Q) (21.3)
and
6_(52 e,) + .9._('52 Vo e2) +p %2 + p a—(cc2 V2)
ot ox ot ox
= Q, + R(T} - T,) - :hl h, (A1.4)

Adding equations (A1.1) and (A1.2) and assuming a closed solution domain

with no inflow of either species we get

o ,~ ~ _ .
__(p1 e1S + py ezs) = 91 +my Q + v, K(v2 - vl)
ot
. Q 3 2 " 2
+ v, F. + 2 t Vv, K(vl - VZ) - v, F.-1/2 m, v, + 1/2 m; v, (A1.5)
m m

The term ﬁl Q 1is due to the energy released upon phase change and
can be ignored for the purpose of the present analysis. Thus to ensure

conservation of energy we must set

@ + 92 =-v K(V2 - vl) - vy F. = Uy K(vl - vz)
m

W 2 . 2
+ vy, F + 1/2 m; v; - 1/2 m; v, (A1.6)
m

Collecting terms and using equation 9 gives
Q + Q =K(vy = v)? + 1/2 m (v - v,)?2 (a1.7)
The above quantity is positive definite and vanishes only when each

species has the same velocity. It is not clear how much of this work to

add to each species so in the absence of any special reason we add half to

] G



each species. Using equation (A1.7) and comparing equations (A1.1) and

(A1.2) with equations 5 and 6 we see that
@l = 1/2 K(vl - v2)2 + 1/4 ﬁl(vl - v2)2 + a4y K(v2 - vl)
o B 2
+my vy Vy = 1/2 my vy
and
©, = 1/2 K(v] - v)2 + 1/4 m(v) - vy)? + vy K(v) = v,)

T 4 2
T —m vy

This completes the specification of the terms used in the energy

equations.

-16-
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Appendix 2: The low Mach number limit of the multiphase flow equations

In this appendix we take the low Mach number limit of the multiphase
flow equations given in section 2. We are only concerned with examining
the structure of the egquations and so we ignore the drag, temperature
relaxation and phase change terms. We start with the following set of

equations:

a—(ap) * a—( apv) =0 (A2.1)
ot ox

a—(apV} * -9-—(och2) = -2 (A2.2)
ot ox ox

a_(o:pe) o+ a_(apve) + p E + p a_(o;p) =0 (A2.3)
ot ox ot ox

Note that for the present purpose it is easier to work with the
thermodynamic energy equation. This is related to the stagnation energy
equation by adding the mechanical energy equation, as described in

Appendix 1.

We now expand p, p, T and v in terms of the Mach number M .

Let:
P po(‘l + M2 p,(x,t) + M Py(x,t) + ...
p=p (1 + M2 D (x,t) +M¥ py(x,t) + ...
T =T (1 +M2T (x,t) + M*¥ T _(x,£) + «u.
o 1 2
: & 5~
v = vo(vl(x,t) + M vz(x,t) + eee (A2.4)
Ypo
where c2=_2 and M = v _/C .
o o o
pO

We also have:

..17_



p = RpT where R = cv(y-1). (A2.5)

In the above expansion the gquantities 51 etc. are dimensionless and of
order 1. We take the limit by substituting the above expressions into
equations (A2.1), (A2.2) and (A2.3) and collecting terms of the same order

as M >0 .

Conservation of mass gives

iy 2qa¥p =0 (A2.6)

Bt ° ax

from the leading terms and

a_(aSl) * v %;(-(ac v, P+ v O (a¥,) =0 (A2.7)
ot ox

from the next order.

Conservation of momentum gives

1
o ~2 ~2 . ap
LR 2 (a vy) o povg L Y= -0y, o« 21 (a2.8)
ot ox ax
to leading order and
op B el € 83+ p 20 (aE 4 2 5
aPs 1V 2 ey 1%y 1 V2
ot dx
~l
= = pvl 22 (32.9)
oo
ox

~l o
to the next order, where p1 = p1/ y etc.

The energy equation vanishes identically to leading order and gives

S (c®)+v B (aFcF)+re(a¥,)=0 (A2.10)
vl o 17¢71 o 2

ot ox ox

to the next order.

]G



Equation (A2.10) can be rewritten using equation (A2.7) together with
the relation ;l = El + El . obtained by expanding equation (A2.5), using

equation (A2.4) and collecting terms, to give

3 ~ ? ~ ~ D ~ B o~~~
—(a chl) + —(a vy ?p Tl) =R _—(« pl) + vOR _;(plpl) (A2.11)
ot ax ot ox ’

The terms on the RHS represent work due to compressibility effects

and are usually neglected in incompressible flow since they are small

compared with conduction or other source terms.

Examination of this system shows that to leading order in the limit
as M > 0 we obtain the conservation equations for mass, momentum and
energy that we used in our earlier mixing work [2]. This would not have
been the case if the volume fraction has been inside the pressure gradient

vl R

term in the momentum equation or if the p EL. had been missing from the
ot

energy equation. Both these changes would have resulted in the pressure

level P, being present in the incompressible flow equations.
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Fig.1 a)Shock tube simulation, velocity as a function of distance after 0.008s.
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Fig.1 b) Shock tube simulation, pressure as a function of distance after 0.008s.
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Fig.1 d) Shock tube simulation, temperature as a function of distance after 0.008s.
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Fig.1 ) Shock tube simulation, volume fraction as a function of distance after
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Fig.2 b) Comparison of the predicted pressure fields.
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Fig.2 d) Comparison of the predicted velocity fields.
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