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Abstract

In this paper we present an extension of the model described in parts
I and II of this investigation. We have added further equations to the
model to enable us to study droplet laden gas flows. Results are
presented for cases with and without fragmentation and are compared with

the analytic theory which is valid in the limit of small particle size.
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Nomenclature

[ -

H = ‘o e C*

o

We

sound speed or heat capacity of dust

drag coefficient |

constant in boundary layer stripping model
specific heat at constant pressure

specific heat at constant volume

internal energy

enthalpy (= e + p/p) or heat transfer coefficient
constant in the momentum equilibration term
lengthscale

mass transfer source term

pressure

constant in temperature equilibration term
temperature

time

velocity

Weber number

space coordinate

Greek symbols

Q)

a volume fraction
p density
E effective density (= ap)
Y ratio of specific heats
) surface tension
r source term in length-scale equation
Subscripts
D droplets
DG dusty gas
effective fluid (gas + fragments)
F fragments

gas



1. Introduction

In a series of earlier papers [1,2,3] we have described various
stages in the development of a computer code, called CULDESAC, to study
the detonation phase of a vapour explosion. Our previous work has been
concerned with the development of an efficient numerical scheme to solve
transient, one-dimensional, compressible multiphase flow equations and the
application of these equations to model detonations in two component .
mixtures. Our study of detonations [3] showed the importance of
determining the sound speed correctly in multi-component systems, since
the sound speed plays a very significant role in the propagation behaviour

of a detonation.

In a vapour explosion [4] melt particles are fragmented when a shock
wave passes through a mixture of melt droplets and fluid, causing a
differential velocity to develop between the components. The large
droplets then fragment and the fragments transfer their thermal energy
rapidly to a volatile liquid, causing vaporisation of this liguid, and a
self-sustaining detonation may develop [4]. Thus it is important to check
that our model predicts sound speeds in droplet laden flows correctly and

can account successfully for fragmentation.

In this paper we describe our model and present results for droplet
laden gas'flows, for cases with and without particle fragmentation. In
section 2 of this paper we describe the equations being solved, together
with the form of the constitutive relations currently implemented in the
code. 1In section 3 we present results obtained from our code and compare
them with analytic solutions, where they are available. In section 4 we

draw some conclusions and outline our plans for future work.

2. Description of the Model

We consider a gas containing large droplets of an incompressible
liquid. These droplets are fragmented by the relative motion that is
caused as a shock wave passes through the mixture [5]. The model has been
developed in such a manner that two fundamentally different fragmentation

process can be studied. The first corresponds to catastrophic breakup



which occurs at very high Weber numbers [6]. In this case the particle
length-scale is diminished until the Weber number of the particles is
reduced to a critical value. In the second, which corresponds to a
boundary layer stripping mechanism, particles are continually stripped
from the larger drops [6] and we assume that these fragments
instantaneously attain thermal and mechanical equilibrium with the

surrounding fluid.

Thus the model consists of 3 components: gas (G), droplets (D) and
fragments (F). The following equations determine the behaviour of the

system:

Conservation of Mass

o) 0 s
EE(QD) + e (VDub) = my (Droplets) (2.1)
514 ) + E_ (v ) = m (Fragments) (2.2)
ataE‘ ox c% D
D s ayFd w ) =0 (Eas] (2.3)
ot % x c%%

Conservation of Momentum
g ( v.) + 2 ( v2) = - P 4 K(V_-V_) - m_V_ (Droplets) (2.4)
3 D’ T DD % G 'D DD

d ® 5
Et“((“s'pn * aGpG)VG) * E((“FPD N aGpG}VG)

= - (aF + qs)-%g + K(VD - VG) + ﬁDvD (Gas + Fragments) (2.5)



Conservation of Energy

o) 1 2 o) 1 2
'E(pDaD(eD * 2 VD)) * '&(pDaDVD(hD Ty VD))

2
= - _.___aaD+R(T—T)-Iﬁ(h +VD)
P 3 c D DD 2
+ VD K(VG - VD) (Droplets) (2.6)
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da_ da Vg
= - - + - + o 2 T
P = P s * R(T) = T) + 1 (h + —)
- - 2
+ VG K(VD VG) + K(VD VG) {Gas + Fragments) (2.7)

In addition we have

e == .
aF aG + cx_D 1 (2.8)
The droplet length-scale is determined from
o] 6] _ .
5 (% Ip) * xlgVply) = - @y Iy + T (2.9)

where [I' is the fragmentation source term (described in Section 2.1).

We also have the following eguations of state

pD = pF = constant (2.10)



(2.11)

D vD "D
eF = TG | (2.12)
P =P, S (YG - 1) TG (2.13)
and eG = ch TG (2.14)

At this stage we will make a few comments on the above system of

equations:

(i) The mass conservation equations for the droplets and fragments
provide a simple means of time advancing the volume fraction of each

. and

species. Equation (2.3) can then be time advanced to obtain Pe %

a. and P can be obtained using equation (2.8).

(ii) The momentum equations are very similar to those used in our previous
work. The egquation for the gas and fragments was obtained by summing
the respective momentum equations and putting the two velocities equal.

These equations were time advanced exactly as before.

(iii) Both energy equations are written in stagnation form and the energy
equation for the gas and fragments was obtained by summing the respective
energy equations and setting their velocities and temperaturgs to a common
value. If the two remaining energy equations are summed all the source
terms vanish and the total energy of the system is conserved. We have
chosen to add all the irreversible work arising from drag and mass
transfer to the gas phase eguation. 1In the present model the volume
fractions can be obtained directly from the mass conservation equations

so that the pressure work terms can be centre-differenced in time.

(iv) The pressure is obtained using equation (2.13) after the
temperatures have been obtained from the internal energies using equations

(2.11), (2.12) and (2.14). Note that because the droplets are assumed to



be incompressible the properties of the droplets play no part in
determining the pressure field. In the present work we have used an ideal

gas EOS but there is no reason why other equations of state could not be

used.

We employ exactly the same solution procedures as in our earlier work
except that we take advantage of the fact that the volume fractions can be
determined from equations (2.1), (2.2) and (2.8) above. The length-scale
equation is time advanced in exactly the same manner as that described in
reference 7. We will now turn our attention to determining suitable forms

for the constitutive relations.

2.1 Constitutive Relations

To close the model we have to provide expressions for the drag and
temperature relaxation terms, and the particle fragmentation rate. If the
volume fraction of droplets is a there are 6ab/n Lg spherical droplets

per unit volume. The drag force on a single droplet may be written as

2
D
“—Z v v (VG-VD) (2.15)

DpE D G

where

= + .
P~ %P 7 %Fp (2.16)

’

is the effective density of the fluid which is dragging the drops. Thus

the total drag force is

3 °pPg
T DT T

3 |vD- \'

(¥, =~ %) ' (2.17)

ql b

and comparison of equatidn (2.17) with the RHS of equation (2.4) gives

K = — [ — v -V (2'18)



In the present work we have used a constant value for cD although it is
a simple matter to make CD a function of, for example, the droplet

volume fraction as described in reference 8.

Similarly if the heat transfer rate is specified as the product of a
heat transfer coefficient and the temperature difference between the

droplets and gas we obtain

o

D

where h is an appropriate heat transfer coefficient. We have chosen to
specify a constant value for h in the present study although it could
easily -be modified to account for the specific situation of interest, for

example, it could be convective heat transfer or convective film boiling.

To simulate catastrophic breakup we set both ﬁD and I' to zero.
At the beginning of each timestep the Weber number, a dimensionless
measure of the ratio of the destabilising force due to relative velocity
effects to the stabilising effect of surface tension, was determined. If
the value of the Weber number was below a critical value (Wecrit) the
length-scale was not changed. If it was not, the length-scale was reduced

so that We = Wecrit' The Weber number is defined as

-V )4
Ve V) Tp

We = = (2.20)
D
so that we set
g We
L, = _D orit (2.21)
2
v -
Pe Ve Vp!

for We > Wec and equation (2.9) was then used to track the particle

rit
lengthscale. This model assumes instantaneous breakup but could easily be
modified to allow for a finite fragmentation rate. This has not been done
as a boundary layer stripping model is thought to be more appropriate to

vapour explosions [9].



The boundary layer stripping model used in this work is the same as
that developed by Carachalios et al.[Q]. They suggest that the mass

stripping rate from a single fragment is given by

= - 2 1/2 .
cer Vg VGl'n:LD (pyag) (2.23)

A&

1
where cfr nug. Multiplying eguation (2.22) by the number of drops per

unit volume and comparing the result with equation (2.1) gives

my = a c . _']SD_-(pE/pD) (2.23)

where all the constant terms have been included in cfr so that cfr ~ 1.
Equation (2.23) predicts that the breakup rate is proportional to the
relative velocity, the square root of the effective fluid to droplet
density ratio and iﬁversely proportional to the droplet diameter. These
are the convential quantities used to non-dimensionalise breakup time data
[6]. As fragmentation occurs, the density of the surrounding fluid is
increased by the addition of fragments and thus the fluid has more inertia

to fragment the drops.

The length-scale of the droplets is changed by the mass loss due to
boundary layer stripping. For spherical drops it is easily shown that the
mass stripping rate given by equation (2.22) implies a length-scale

source term given by:

I ;
I' = 3 mDLD (2.24)
which is not surprising, as equation (2.24) implies that a droplet's
length-scale changes at one third the rate of its volume. No information
is required about the size of the fragments since these are assumed to

equilibriate their velocity and temperature instantaneously with the

surrounding fluid.

We have added a modification of our own to the above boundary layer
stripping formula to ensure that as the Weber number falls to a value of

12 breakup is terminated. Boundary layer stripping occurs for the Weber



number range 100 < We < 350 [6]. For Weber numbers below this some small
fragments are produced due to bag and bag-and-stamen breakup. Thus we
introduced the following simple function to multiply the constant Cer in

equations (2.23) and (2.24)

We < 12

1l
o

f(We)
(2.25)

1 - exp(-(We-12)/20) Wwe > 12
This function ensures that stripping is gradually decreased from We = 100
to We = 12. Clearly any simple prescription could be used and the above

expression could be modified if improved data becomes available.

This now constitutes a complete description of the model and we will

present some results in the next section.

3. Computational Results

In this section we present the results obtained from the model
described in the previous section. We have used the code to model droplet
laden gases with and without droplet fragmentation. The test cases
described in this paper are based on similar test cases performed by Jones

and Jones [10].

3.1 Equilibrium Conditions

If the droplets are very small they will have the same velocity and
temperature as the gas at all times. 1In this case there is a
. well-established theory of the behaviour of dusty gases [11]. A mixture
of dust particles and gas can be modelled as an ideal gas with modified

properties. The density of the gas is given by

= + 3.1
PG %% T %o (3:1)

and the modified ratio of specific heats is given by

+ kC
. _ ch K
DG C + KC

vG R

(3.2)




where k = DD (3.3)

and c¢ is the heat capacity of the gas. The modified sound speed in the

gas is given by

2
o2 - Re 5
DG m3i1+x)

This equation shows that the presence of dust can effect the sound speed

Yoo ~ 1 and g is

reduced because of the 1 + ¢ factor in the denominator. Physically, the

significantly, since for large dust fractions

reduction in sound speed occurs because of the greater inertia of the

gas.

We have carried out a number of calculations to examine the behaviour
of our model in this situation. Our starting point was to repeat the
shock tube calculation reported in reference 1 to provide a base case
calculation. The parameters used in the calculation are given in

Table 1.

The calculation was then repeated with a 1 kg/m3 of dust added to the
gas. The properties of the dust are given in Table 2. Equations (3.1)
and (3.2) were used to calculate the analytic solution to the problem in
the same manner as described in reference 1. The same calculation was
carried out using two different routes. 1In the first, the dust was
treated as fragments in equations (2.1) - (2.14), so there was no neea to
specify a particle size and by construction the dust and gas had the same
velocity and temperature. In the second, the dust was treated as
droplets with a very small size (10um) and the drag and temperature
relaxation rates were set to a high value. Both solutions were found to
be in good agreement with the analytic theory (which is in good agreement

with experimental data [11]) and with each other.

Figures 1(a), (b), (c) and (d) show a comparison of the computed
pressure, velocity, temperature and density with the analytic solution
(obtained using the first method). Agreement is seen to be very good with

no overshoots at the shock front. The density and temperature solutions



are slightly smeared by the numerical method but the results are good
considering the coarseness of the grid. We have carried out a fine grid
simulation, using 800 grid points, to demonstrate the consistency and
convergence of the numerical scheme. The fine grid solution for the
density is given in figure 1(d) and shows that the numerical diffusion is
considerably reduced. Comparison of these results with those obtained in
our earlier study shows that both the shock front and the rarefaction wave

are moving much more slowly in the case of a dusty gas.

We repeated the above calculation with the dust density increased by
a factor of ten. The calculated pressure and velocity fields are compared
with the analytic solution in figures 2(a) and (b). Again there is good
agreement between the analytic and computed results. Comparison of
figures 1(a) and 1(b) with figures 2(a) and 2(b) show that the presence of
the dust causes an increased pressure jump at the shock front and slows
down the motion of the system significantly. These test cases provided a
good check of most of the features of the code. In the next section we
will examine the effect of introducing slip between the drops and the gas

and the effect of fragmentation.

3.2 Non-equilibrium Conditions

If the droplet size is increased the droplets and the gas can move at
different speeds and have different temperatures. We have carried out a
simulation for the same initial conditions as used above but where the
droplets had a diameter of Tmm and no breakup was allowed. The other
properties used in the simulation are given in Table 3. Figures 3(a), (b)
and (c) show the pressure, velocity and temperature fields as a function
of distance for the same time as for the previous examples. The
equilibrium theory analytic solution is also shown for comparison
purposes.* The figures show that there is no longer a steep pressure
front and that the droplets and gas have different velocities and
temperatures. These differences can be reduced by decreasing the particle
size or increasing the drag coefficient and heat transfer coefficient.

The results show that the droplets are accelerated less than the gas by

* Note that the analytic solution is no longer an exact solution of the
problem under non-equilibrium conditions but serves as an approximate
guide.

-10-



the shock wave. Also the gas is heated by the shock and cooled in the
rarefaction wave whereas the droplets change their temperature very

little.

We repeated the above calculation with the particle size determined
by instantaneous breakup to a lengthscale determined from a critical Weber
number of 12. The drag coefficient was not changed, although it should be
increased when fragmentation occurs [6]. (It was kept fixed here so that
only one quantity at a time was varied.) Figures 4(a), (b), (c) and (4)
show the pressure, velocity, temperature and droplet diameter as a
function of distance for the above case. The figures show that breakup at
the shock front reduces the relative velocity between the gas and droplets
and brings the solution closer to that predicted by the equilibrium
theory. The breakup results in higher heat transfer rates and a reduction
in the temperature difference between the droplets and the gas. Figure
4(d) shows that these droplets are fragmented from 1mm to 0.2mm in a very
short distance behind the shock. Breakup is less rapid across the
rarefaction wave with an initial reduction in particle size to 0.6mm
followed by an extended region of further fragmentation which produces

0.2mm diameter droplets.

In the final test case the boundary layer stripping model was used.
FigureslS(a), (b), (c), (d), (e) and (f) show the pressure, velocity,
temperature, droplet diameter, fraction of the drops fragmented and Weber
number as a function of distance. Figure 5(a) shows that the pressure
profile is very similar to that produced in the case of a dusty gas. -This
is because droplet fragmentation is very rapid in the regions of the
shock and expansion wave. Figure 5(b) shows that the velocity is
equilibrated more rapidly in this case compared with the previous case.
This is because the effective fluid causing breakup has an increased
density, due to the presence of the fragments, resulting in a high drag
force between the species and smaller drops for the same critical Weber
number. Figure 5(d) shohs that there is rapid fragmentation at the shock
front and the rarefaction wave. The droplet diameter plot shows a region
of larger diameters in the zone close to the contact surface. This region
contains the droplets that were close to the contact zone originally where

the relative velocity was less. This region is of very little physical

-.1 1-



significance since figure 5(e) shows that in this region virtually all the
droplets have been fragmented. Figure 5(f) shows a plot of the Weber
number against distance. The plot indicates that the Weber number is
increased above the critical Weber number at the shock front and at the
nead of the expansion fan. Between these zones the Weber number is
decreased both by fragmentation, until the critical Weber number is
reached, and then still further by drag as the relative velocity is

reduced to zero in some places.

Comparison of the three different cases presented above shows that
fragmentation changes the solution considerably. Reducing the particle
size causes an increase in the drag between the droplets and the gas,
which reduces the relative velocity and the solution becomes closer to
that for a dusty gas. Boundary layer stripping increases this effect
because the fragments increase the inertia of gas causing even lower
relative velocities. Thus the choice of fragmentation model changes the
sound speed in the mixture (since this depends on the relative velocity,
particle size etc.) and will effect the propagation behaviour of

detonations.

The results presented in this section show that the code gives
results in good agreement with the analytic solution for the case of very

small particles. For larger particles the code gives physically sensible

results which are in gualitative agreement with those of Jones and Jones

[10].

4. Discussion

In this paper we have described the mathematical framework of our
proposed model of the detonation stage of a vapour explosion. We have
used this model to examine droplet laden gas flows for cases with and
without droplet fragmentation. Our results are in good agreement with

analytic theory and previous work.

The next stage in the development of our detonation model is to
replace the ideal gas equation of state with one suitable for water. The
model could then be used to examine fragmentation and detonations in

melt/water mixtures.

-12-
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High Pressure Section

P = 2MPa ,
T = 413K,

= .7 kg/m3
P 10 g/m

Low Pressure Section

= 0.1MPa,
T = 300K,
= 0.738 kg/m?

Gas properties

ch = 1355 J/kgK,

Yo = 1.333
General
Length of shock tube = 73m
Position of diaphragm = 36.5m
Number of grid points = 80
Time step = 20 us
Comparison time = 0.05s

Table 1 : Data for the shock tube calculation.
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Specific heat of dust 1300 J/kgK
Density of dust = 705 kg/m3

{Increased to 7050 kg/mj in second calculation)

Volume fraction of dust = 0.0014138

Table 2 : Properties of the Dust.

Diameter of droplets = 1 mm

Mass density of droplets = 705 kg/m3
surface Tension = 0.4 N/m
Drag Coefficient = 0.4

Heat transfer coefficient = 1000 W/m 2K
Critical Weber number = 12

Constant in boundary layer stripping model, cfr = 1.0

Table 3: Properties used in large droplet simulations.
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Fig.1(a): Pressure against distance for dusty gas simulation
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Fig.1(b): Velocity against distance for dusty gas simulation
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Fig.1(c): Temperature against distance for dusty gas simulation
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Fig.1(d): Total density against distance for dusty gas simulation
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Fig.3(b): Velocity against distance for Imm droplet case
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Fig.4(c): Temperature against distance for instantaneous breakup case
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Fig.4(d): Droplet diameter against distance for instantaneous breakup case
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Fig.5(d): Droplet diameter against distance for boundary layer stripping case
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Fig.5(e): Fraction of droplets fragmented against distance for boundary layer
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Fig.5(f): Weber number against distance for boundary layer stripping case
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