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Abstract

A procedure is described for fitting a smooth curve to a given set of
data points in a plane. The curve is chosen so as to minimise the
integrated, squared local curvature along the total length of the curve,
open-ended or closed, as required. The form of each segment of curve

between successive pairs of data points is that of an elastica.

The interpolating curve has the properties that its shape is
independent of translations and rotations of the set of data points
relative to the co-ordinate axes, and position, inclination and curvature

are all continuous along its length.
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a Culham Report so that it may be easily referenced in the open
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1. INTRODUCTION

Suppose we are given an ordered set of fixed points in a plane
{(xj, yj); j =1, 2,...n} and wish to determine a "smooth" curve which
passes, in the order specified, through all of them. We may require the
curve to be open-ended, or closed, as illustrated in the figures at the
end. Also, we wish the construction only to make use of properties
intrinsic to the given point set; i.e. we stipulate that the shape of the
final curve shall be invariant under translation and rotation of the given

points relative to the co-ordinate axes.

In the absence of any a priori knowledge of the functional form of
the required curve, a reasonable procedure would be to choose, as the
solution to our problem, that curve (open-ended, or closed, as required)
which passes through the given points in the order specified and also

causes the functional
S
F = Jo K2(s).ds (1)

to assume a stationary value.

Here s 1is the distance measured along the length of the curve,
K(s) 1is the local curvature and § 1is the total arc length under

consideration.

As an aid to visualising the situation we can make use of the
following mechanical analogy. Consider a thin, uniform, flexible wire
constrained to pass, in the prescribed order, through the given points.
The total strain energy of the-wire will assume a stationary value in an
equilibrium configuration; it will be minimised when the equilibrium is
stable and maximised if the equilibrium is unstable. However, since the

strain energy per unit length of the wire is proportional to the square of



the local curvature, its equilibrium configuration will coincide with the
curve obtained by solving the variational problem associated with the
functional of equation (l). Furthermore, the continuity conditions
applying to an equilibrium configuration of the wire stipulate that
position, inclination and curvature will all be continuous along its
length. Thus, it is clear that we can consider the equilibrium of each
segment, between adjacent points (xj, yj) and (xj+1, yj+1), separately
and thence determine the complete smooth curve by applying these
continuity conditions in order to match each local solution to its

immediate neighbours.

2 ; THE FORM OF A SEGMENT OF THE CURVE

Consider any curve, with continuous curvature, passing through the
two points ; : nd (x, i and having prescribed
P (x5, ¥3) and (x50, Yi4q) & P
inclinations wj and wj+l at these points. Let ¢ be the inclination
at any point on the curve, measured from the positive x-direction as
angular origin; we then wish to determine that curve which minimises the

functional

sj~4-l

FJ v Z.ds (2)

s. ds

J

where

dx

ds

Cos

(3)

dy
ds

Sin ¥

Expression (2) may be written .explicitly in terms of x and y as



X.
Ly ax
F(y) = J (4)

X, (L+y'a)s'z

Assuming a co-ordinate system in which y 1is a single valued function of

x. The Euler-Lagrange equation for the function y(x) which minimises

F(y) is

dz LI d 5! 12
B p—=£ b+ {222 }-o0, (5)
dx2 (1 + y'2)s’z dx (1 + y'2)71/2

which, after two integrations and some algebraic manipulation, leads to

ay
K=—=2A,/Cos (¢ - ¢.) (6)
ds J ]

where A, and ej are constants of integration. This is well known as

an intrinsic differential equation of an elastica.

Equation (6) may be integrated to give x(s) and y(s) 1in terms of
elliptic functions or elliptic integrals. However, in order to facilitate
the separate treatments required according as there is, or is not, an
inflection point in the curve segment, we first write down the solution of
(6) in a form which encompasses both situations. It may be verified that

the expressions

S
R;(x - xj) = Cosej.i Kz(s).ds + 2.8in ej.{K(s) B K(sj)} (7)
i
S
2 “ e 5 2 & -
Aj(y yj) Slnej.i K?(s).ds - 2.Cos ej.{K(s) K(sj)} (8)
J

describe a curve passing through the point (xj, yj) and having the



proper. inclination at every point.

Equations (7) and (8) may also be expressed in the form

S
A2 .r.Cos(f - e.) = | K2(s).ds (9
] J S.
J
- A2 .r.Sin(@ - e.) = 2{K(s) - K(s.)}, (10)
j J J
where

ré = (x - x.)?% + - y.)?
J) (y yJ)
X - xj
Cos @ = = (11)
¥ o= ¥
and Sin 8 = J
r

When there is no inflection point within the curve segment under
consideration, the right hand sides of equations (9) and (10) can be

expressed in terms of ¢ without undue complication. Thus,

. v W - ej)/2
JS- K2(s).ds = A jw./EBETETT_EE).dw -2 /1 - 2Sin¢.dg
j J (¢j - ej)/2
. s Y - €. Y. - €.
i.e. JS.Kz(s).ds - 2, {502, . 1y . B2, —l—;——l)} (12)
j

where E(k,¢) 1is the incomplete elliptic integral of the second kind.

. - = 5 = e}, 13
Also 2{K(s) K(sj)} zxj{MCOS(w ej) /005(¢5 eJ)} (13)



so we obtain

y - €. Vi - &
r.Cos(8 - e.) = = {E(/Z, by. Bz, L)} (14)
i 7\3- 2 2
) 2
- r.Sin(@ - ej) = ? {yCos(vy - ej) = /Cos(wj— ej)} (15)

Thus the polar variables r and 6@ are expressed in terms of the

parameter , which varies monotonically between the values wj and

Yir-

]t

Now suppose that the curve segment under consideration contains an

inflection point where

i
(16)
At the inflection point the curvature vanishes, so that
Cos(u’/i - ej) =0
(17) |

i.e. Y. = ej + /2

Hence, although when s 1lies in the range (sj, si) equations (14) and

(15) are still true, on the other side of the inflection point, where

si <€ s < Sj+1 ' (18)
we have
s wi lIli
] K2(s).ds = A,/ VCos(¥ - e.).dy + A.J] VCos(¥ - e.).dy .
s, Iy, J Iy 4
J ]



2{k(s) - K(sj)} = - 2>\j {yCos (¥ - ej) + ,/005@]_ = ej)} .

Hence
9 i Y - e, Y. - €.
r.Cos(f - €.) = = . {2E(/Z, + Ty - E(/2, ——3) - E(/2, 1)}
j Rj 4 2 2
L1973}
and
. 2
r.Sin(6 - ej) = X} .{ YCos (Y - ej) & VCOS(¢j = Ej)} (20)

on the far side of the inflection point from (xj, yj). Notice that the
ambiguity of sign in equation (19) must be resolved by choosing the
positive sign when the curvature is positive in the range (sj, Si)’ and
the negative sign when the curvature in this range is negative. Thus, the
sign of T in equation (19) must agree with the sign of Rj. This is

A
also evident when we observe from equation (9) that

r.Cos (@ - ej) > 0 , necessarily. (21)

3. EQUATIONS FOR THE ASSIGNABLE PARAMETERS

For each segment of the curve, between a consecutive pair of points

(xj, yj) and (Xj+1’ yj+l) say, we have the two parameters }j and ej
which will, in general, be determined when the inclinations wj and

l‘bj+1

continuity imposes the conditions

are prescribed. Furthermore, the requirement of curvature

ocj_l

A. -VCos(y. - €, = A.¥Cos(y. - €.) (22
§-1 (\PJ _‘]-].) i (\UJ i )
at all interior nodes (xj, yi), where Gﬁ-l = 1 when no inflection
point exists in the interval between (Xj—l’ yj—l) and (xj, yj) and
aj_1= - 1 when an inflection 301nt does exist. If (xl, yl) and(xn, yn)
are end points of the curve we must have



Cos(wl-el) =0
and (23)
Cos(wn-en_l) =0

since the bending moment, which is proportional to curvature, of the
analogous, uniform, thin, flexible wire, vanishes at freely pinned ends.
We neglect, on mechanical grounds, the possibility of there being more

than one inflection point within the curve segment considered.

Supposing for the moment that . and 2 are known, A. and e,
PP g WJ ¢b+1 i i

may be determined by the equations

+1 e. V.- €.
r..Cos(8, - e,) = = {E(/2, J - E(yz, L3 )} (24)
h| J h| RJ 2
- rj.Sin(Gj- ej) -73 { /cOs(w - ej) . /cOs(wj- ej)} (25)

where, of course,

X1 .
Cos Qj N . S | (26)

Yiiq- Vs
Sin g, = 4t _°J
J Ir.
j

when an equilibrium exists between the j th. and (j+1)th. point, which
possesses no inflection point in that range. If it turns out that
equations (24) and (25) cannot be satisfied by real values of Aj and ej
we then test for the possibility of an equilibrium possessing an

inflection point by attempting to solve the equations



V. .- €. V. - €.
r.Cosll, - ) = {oB(y2, + 5 - Be2, 1y - mv2,d 35} o7
] J Rj : 4 9 2
; 2 +
r.Sin(d; - e;) = XJT{/cOs(q;jﬂ- €5 /Cos(¥y - ej)} (28)
firstly choosing the positive sign for L in equation (27), and if that

4
fails choosing the negative sign. If all three attempts fail to produce

real values of A, and ej we conclude that no finite equilibrium
exists, which satisfies the given boundary conditions. Notice that a
condition necessary for the existence of a finite equilibrium is obtained

by noting, from equation (9), that
Cos(@ - ej) >0

However, for small s, 0 = wj, so

Cos(¢j - ej) >0
< L (29)

and by symmetry |¢ (30)

j+1 Gj‘
Hence, from equations (29) and (30)

|¢ - le <7 (31)

j+1
This is also apparent from mechanical considerations since, if equation
(31) were not satisfied, the analogous flexible wire could only attain
-equilibrium by sliding itself through the constraining points and

expanding to infinity.

A simple condition, necessary for the existence of an equilibrium

having no inflection point, is given in the appendix.



4. PROCEDURE FOR FINDING THE ASSIGNABLE PARAMETERS

We can summarise the results so far in the form of a procedure for

finding the values of the assignable parameters.

Stage 1: Estimate the values of {wﬁ; j=1, 2...n}, bearing in mind

that ¢ will vary continuously along the curve.

Stage 2: Determine the assignable parameters Rj,ej, by the
following process. In each interval (xj, yj) to (xj+l' yj+1) we

define the functions

gy (e) = COS(aj - e){/Cos(¢5+l- €) - /cos(pj- €)} + Sin(ﬂj— €) %

Y., .- € V.- €
x {E(y2, 3Ly [ g (y2, )}
2 2

gy (e) = COS(Gj- e)-{/Cos(¢3+l- €) + VCos(wj- e} - Sin(ej- €) X

V. .- € V.- e
x {2 (v2, T) - E(y2, ¥ ) | g2, )}
4 2 2 ’

g4(e) = Cos(Gj- e)-{/003(¢3+1- €) + /Cos(ﬁﬁ- e)} + Sin(Gj- €) x

Y., .- € Y.- €
x 28 (v2, T) + E(y2, 3L ) 4 gry2, )}
4 2 2

These functions are all bounded and continuous if ¢ satisfies
E. € e € 1. (32)
J J

where



) -

wee
I

MaX(\Dj, ij

01

: (33)
) + =

3
I

Min(\bj ) ki/jﬂ

and by virtue of equations (29) and (30) we need only consider the
possibility of e 1lying in the range (Ej, nj). We then test for the
existence of one of the three possible types of equilibria by checking in

turn whether or not

By ()" gy (n)) <0 (34)
gy ()" By(n)) <0 (35)
By (£5)" By(n;) <0 (36)

As soon as any of inequalities (34), (35) or (36) is satisfied we
determine the root ej in (Ej, nj), by any of the standard techniques,
and thence find the corresponding Rj from equation (30) or (33), as
appropriate. If none of inequalities (34), (35) or (36) is satisfied the

procedure fails.

Stage 3: Scan through the points {(xj, yj); =1, 2 s n} to
find the point (xk, yj) at which the largest curvature discontinuity

occurs. Replace wk by

Y, + B¢
kT (37)
1+ 8
where ¢ 1is the solution of the equation
ak_l.k k_l¢C05(¢ - ek-l) - RkVCos(¢ - Ek) (38)

which lies closest to the original estimate ¢k’ and [ 1s a constant

-10-



chosen so as to ensure rapid convergence of the iteration. Values of g
between 1 and 2 seem to be satisfactory. Also, equation (38) is more

conveniently expressed in the form

2:Cos e, - A2 _-Cos ¢
k Ak-l k-1 (39)

Notice that R_l =0 = Rn’ if (xl, yl) and (xn, yn) are endpoints,
After adjusting the value of wk we must, of course, recompute the values

of A 1» €.1» A and €, by the methods of Stage 2.

Stage 3 is repeated until the largest curvature discontinuity becomes

acceptably small.
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APPENDIX: A necessary condition for no inflection point.

We have seen in section 4 that, when an equilibrium configuration

exists which possesses no point of inflection between the points (xj, yj)

and (xj+1, yj+l)’ the parameter Ej satisfies the equation
cOs(ej- ej){Vﬁos(wj+l— ej) . JCOS(wj- ej)} + Sin(Bj— ej) X
Y. .- €. .- €,
x {E(y2, X 3y - g(y2, LI} -0 (40)
2 2

Furthermore, we need only consider Ej satisfying

. L e. €. ;
o Bl

where Ej and nj are given by equation (33).

Now consider the function

€.
f(Y) = tan(Gj— ej)-E(/Z, )y + /Ebs(iff‘ej) (41)

If Ej is an acceptable (real) solution of equation (40) it is clear that
f(y) 1is continuously differentiable, and of bounded variation for all
lying between ., and ¢j+l' Hence, by the mean value theorem, there

exists ¢ (Gj, ej) satisfying

. X
Min(y,, ¥y,p) < € Maxhy, g, (42)
such that
] X _ _
(Ui - VPE W5 = £y, - £0) (43)

However, equation (40) may be written in the form

-12-



f(¢ﬁ+l) = f(¢5) = 0 (44)
so, appealing to equation (43), we find that

— Sin(y® - ¢.)
tan(Bj- eJ.)p/Cos(u'/x - ej) - '

/Cos(wx- ej)

i.e. tan(d.- e.) = tan(y - €

( j J) (¢ J)
so that Bj = wx + m7 (45)
where m is any integer.

Thus, a necessary condition that there be no inflection point in the

segment of curve between (xj, yj) and (X may be expressed

j+1’ yj+1)
as

"There exists an integer m, such that
Min(y,, . < 0. - m7 < Max(y., . "
Wy ¥3,0) < 0, Wyo V5,0

For our purposes the only values of m which could possibly be of

interest are -1, 0 and 1.

-13~






Examples of open-ended and clesed curves interpolating four fixed points
in various orders. The curves were constructed by the method described in
the text.
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