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1. INTRODUCTION:

It is now widely accepted that the transport properties of tokamak
plasmas are correlated with the low frequency (i.e. frequencies less than
1 MHz) electromagnetic turbulence observed in them. We have in previous
publications (e.g. Thyagaraja et al (1980), Haas and Thyagaraja (1986),
Haas and Thyagaraja (1987)) outlined an approach to the theoretical
calculation of transport properties such as particle and energy fluxes in
terms of the spectral characteristics of the turbulent fluctuations.
Until very recently, the only turbulence property measured in the

confinement zone of tokamaks has been the electron density fluctuation

=

= In the past year, however, a new heavy ion beam probe technique
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o
(Schoch et al. (1987)) has been used with notable success in TEXT to

n
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obtain varinus spectral properties and radial variations of both — and
n

o

EE— fluctuations. Furthermore, it has proved possible to estimate

T
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experimentally the particle and energy fluxes in the machine to the point
where a meaningful comparison can be made between the experimental fluxes
and those computed theoretically using the measured fluctuation spectra.

It is also possible, for the first time in this field, to compare the

L

n
theoretically predicted ratios of fluctuations (e.g. <(_E)z>/<(2§_)2> )
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o oe

with the measured values. The aim of the present report is to present a

comprehensive account of the theoretical analysis of the problem of



calculating turbulent tokamak correlations (Part I) and the application of

this analysis to an interpretation of the TEXT data (Part II).

The material is organised as follows: in Section 2, we consider the
basic physics issues relating to the problem and set up the model.
Section 3 gives an account of the mathematical and numerical analysis
needed to solve the equations. Section 4 contains a discussion of the
results obtained in Part 1. The subject matter of Part I is relevant to
all tokamak applications and is rather general. In Part 1II, specific
calculations relating to TEXT conditions will be reported and compared

with the available experimental data.

2. BASIC PHYSICAL CONSIDERATIONS:

Tokamak phenomena inveolve several disparate time-scales. The longest

time-scale is We assume, for simplicity that the external

tflat-top '

sources under the control of the experimenter are held constant (or slowly

varied) on this time scale. Somewhat shorter than t is 7
flat-top conf

which we take for definiteness to be the electron energy confinement time.
It is an experimental fact that v 7 >> 1 where »_ 1is the

e conf e
Braginskii electron collision frequency evaluated for demnsities and

temperatures in the confinement zone. It is also noteworthy that

cT n'
typically, the electron drift frequency Wpp = — | (where kl

eB n
o] o
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and pi is the ion larmor radius in the confinement zone ) is of order

100 - 500 kHz and comparable with v, - Finally, it is a fact of

observation in many tokamaks that almost all the power in the turbulence



f l— << l— . In

8y RDebye

view of these facts, we shall assume that turbulent fluctuation

spectra is contained in the range 1 - 500 kHz with kl

frequencies  are such that

CO~w, <Ko, << (1

conf

By virtue of this assumption, we are at liberty to consider
quasi-neutral turbulence, i.e. ﬁe(g,t) = Ei(z,t). Another parameter of

B where the fields are

crucial importance is the ratio B_ ./
pol’ “tor

respectively the average magnetic poloidal and toroidal field components.
Typically this ratio is about a tenth. For almost all tokamaks, it is
also permissible to assume that the drift velocities of each species are
small compared to the thermal velocities in Ohmic conditions. A much
deeper, and as yet untested, hypothesis concerns the nature of the
turbulent electromagnetic fluctuations. Specifically we assume that the
electric field E(r,t) in a tokamak characteristic of the electromagnetic
turbulent fluctuations can be decomposed in the following sense:

- A

E(x,t) = V@O + V3 - 5 §é¢ ey + E°¢ ey (2)
c 9t

where the terms on the right are to be understood as follows.

Eo¢ is the externally applied inductive (transformer) toroidal electric

field (e¢ is the unit vector in the azimuthal/toroidal direction) varying

on the time-scale We exclude transient phenomena such as

tflat-top



disruptions. ¢° is the 'mean' electrostatic potential. & is the

fluctuating electrostatic potential whilst A, is the fluctuating

¢

toroidal magnetic vector potential. We assume from now on that < P

denotes a Reynolds time average.

<>t.Limlet. (3)
t?= t o
By definition, < & > =0 (4)
The symbol '=' in (3) means that all frequencies higher than z.

tflat-top

are to be averaged away. We also assume that the total magnetic field

B(r,t) in the tokamak may be decomposed in the form,
B(r.t) = B (r) + B(r,t) (5)

where < E >t = 0 and QO(E).VQO = 0. Furthermore, the mean field go

g F ; e i o pol
is assumed axisymmetric and satisfies the ordering P / << 1
o tor

The assumption (2) implies (via Faraday's Law) that

-

B = curl K¢e¢ (6)

This is equivalent to assuming that B.e, is negligible compared to |§|_

¢

That this is a good approximation for low frequency (i.e. @ << @

Alfven)



can be seen from the total momentum balance equation and Ampere's law (see

Haas and Thyagaraja 1986).

We are now able to define the fundamental average of turbulence

theory. Thus if F(r,t) is any function of position and time,

T Iy ] F(x,t) das > (7)

SQO éo

Thus, F 1is surface-averaged over @o and then time-averaged. The most

<Bz>
T e

B2
-0

essential fact of tokamak turbulence is the smallness of If, in

addition to the above physical orderings and assumptions, we accept that
<B2> << gg , 1t becomes possible (at least approximately) to calculate
various turbulence correlations and transport properties of experimental
interest. Before proceeding to the actual details of the model and its

analysis, it is worthwhile to consider its motivation.

Suppose Qo , &, A¢ , Eo¢ and Qo are completely known as
functions of r and t . It is legitimate to ask how, given the steady

external sources, the plasma itself evolves. If we assume a pure,

electron-ion, fully ionized plasma, the exact kinetic equations for the

system are,

oF oF * aF
e L f_(§*+!ﬂ_) . . C(F,.F,)
ot or m c av
+ C(F,F)) + 5, (8)



oF, aF. BFi

* *
2 +v:—+SE (E +yxB) s — = C(F, .F,)
ot or m, e v
+ C(F,,F ) + S, (9
where Fe, Fi are functions of r, v at t. Si' Se are external

sources. The g* and Q* in (8), (9) are not merely those appearing in
(2) and (5) but are related to Fi and Fe via the full set of Maxwell
equations+. If g* and g* are known, in principle (8) and (9) may be
solved for Fi and Fe' Since we have assumed knowledge (in principle)
of only the low frequency projections of g* and §* (i.e. E and B
from (2) and (5)), it is necessary to consider reduced distribution
functions in which the higher frequencies are eliminated (this process is
known by the more descriptive title "filtering" in numerical analysis).
The problem of solving (8) and (9) for Fi and fe even when g*
and g* are fully known as functions of position and time is formidable.
Bearing in mind that as far as tokamak turbulence measurements are
concerned, experiment is at best only able to provide partial information
on the first few velocity moments of Fe.i (typically only n , Te and

Ti)’ we might consider the two-fluid Braginskii equations (Braginskii

* *
+ E and B  are produced not only by the plasma charges and currents

but in fact by all charges and currents, even those outside the plasma

volume.



(1965)) as a suitable starting point for the calculation of turbulent
correlations. This is indeed the basis of some of our earlier work
(Thyagaraja et al (1980), Haas and Thyagaraja (1984)). However, as
already pointed out in these works, the Braginskii equations do not
describe parallel heat transport correctly when Vehe Te kl where l"

is the parallel wavelength of turbulent fluctuations. Typically, Au

varies rapidly in the vicinity of the resonance (k' - (229) for a given
qR
m, n mode). It is therefore necessary to treat the parallel motions at

least using a kinetic description. The perpendicular wavelengths are such
that a fluid-like description is a reasonable approximation.

(klpe << klpi < 0.3 1in TEXT, for example).

In this work, we shall be exclusively interested in the behaviour of
passing electrons and ions subjected to electromagnetic quasi-neutral
turbulence typical of many tokamaks ranging from TEXT to JET. Thus, we
neglect trapped particle effects and the geometrical complexities of an
axi-symmetric toroidal configuration and consider a periodic cylinder
model. We are seeking a description which generalizes Braginskii theory
in the sense that parallel electron (and ion) motions are treated
kinetically and reduces to the appropriate fluid equations when parallel
moments are taken. We remark that such a description, which for want of a
better word we term "parallel kinetic theory", is roughly half-way between
Braginskii theory and the so-called "drift kinetic" theory due to Cheung
and Horton (1973) and Sivukhin (1965). This latter theory is derived from
Egs.(8) and (9) by reducing the velocity space to v, and vy where v
is the particle speed parallel to B and vy that perpendicular to B.

The "gyro angle" indicating the orientation of the vector ¥ is



eliminated in this description which is appropriate if w << W g0 Oeel
klpi' klpe << 1. 1Indeed, the description of a plasma using drift kinetic
equations is general enough to include particle trapping and pressure
anisotropy effects. However, in turbulence one has to deal with a
spectrum consisting of many hundreds of modes of oscillation of E and
the solution of the drift kinetic equations is nearly as formidable
(especially if collisions are included, as they have to be) as solving
Egs.(8) and (9). At the present time mo experimental measurements
relating to pressure anisotropy under turbulent tokamak conditions exist.
The role of trapped particles in the presence of turbulence is also
unclear (Dobrowolny et al (1973), Molvig et al (1982)). For these
reasons, we have chosen to present our method of calculating turbulent
correlations in terms of the aforementioned "parallel kinetic" description
involving a 4-dimensional phase space rather than the 6-dimensional
p-space of the complete kinetic equations or the 5-dimensional one of
drift kinetic theory. It should however be clear how the method extends
(at the expense of enormous computational complexity) to the higher

dimensional descriptions which necessarily include particle trapping and

pressure anisotropies.

We now consider the basic equations of the theory. Given
F (r, v, t) satisfying Egs.(8) and (9) we may always define the reduced
particle distribution functions £ _.(Z, ¥ t) as follows:

e,i

e,i

b = B(r,t) (11)

-8 -



and & is the Dirac delta function. If dV denotes a volume element at

dv dv

r and dv a velocity interval (v - —, v + ——n), f ., dv dv
= I 2 9 g, i — i

gives the number of electrons (ions) within dV having a velocity v,

parallel to b at time t . From the definition (10) it is obvious that

[ £, 4 (@.v,.0) vtuldv" - | [F _(v")“ §(v.b - v )dv dv,

3 [ e,i
n
= JE,; ey 2)
In particular,
ne’i(z,t) = J Fe,i dE = I fe,i dV" (13)

Starting from Egs.(8) and (9) we can derive the equations satisfied by

e,l

L]

f . correct to O(klpe,i) by following the standard techniques
described in Hastie et al (1967) making use of the definition, Eq.(10).
Indeed, Cheung and Horton (1973) use this direct method to set up the
"drift kinetic" equations satisfied by the distribution functions

g 5 (r,v ,v?,t). From the definitions, it is obvious that the fe : are

e, I )

simply related to the Be by the relation,

- 2 2
fe,i(z’v"t) J' Se.i (E,vﬂ uvllt) dvl (1&)
Cheung and Horton (1973) also demonstrate that their drift kinmetic
equations derived directly from Eqs.(8) and (9) (at least in the

collisionless case) are equivalent to the equations derived by Sivukhin



(1965) from the so-called "guiding centre” description of charged particle
orbits. We make use of these standards results and the relation (14) to
derive the following equations (see Appendix I for the complete derivation

and a discussion of the limitations) from Sivukhin's equations.

of
e
. + V. {(vb+y (r,8) +¢ (v, AE1E D
o afe Dfe
- e +J s 8(y.b-v)d (15)
m ov Dt coll &
e 1
Bfi
P + V. {(vb + v (r,e) + e (Ev, E)E ]
" afi Df,
+ZE — = —* + [ s 8(w.b - v)dy (16)
m, ov Dt lcoll
1 I
where,
Vp 7]
v (t) = S(E+—")xb
B en,
1
| (17)
c VPi
v ;{z.€) = —(E-—")xb
B en,
L i
cTe fe v:
g lzvt) = — [Van(-2) xb+ (1L -— ) x(bx (curl b xb))]
eB Te vtzzhe
(18)

< 16 =



2
& me,i ne,:'L vthe,i J (19)

. (r,t) are transverse fluid fluxes in the sense

We note that £ . v
e,i —le,i

that [ f v . (r,t)dv give the correct transverse Braginskii

e,i =le,i *= i
2-fluid particle fluxes in the respective continuity equations in the
leading order. It is shown in the Appendix I that [ f, ; Sle ¢ 9V, @8re
identically zero. The € therefore represent transverse kinetic

transport effects which cannot affect particle transport but can lead to

perpendicular transport of parallel momentum and energy. The functions

Vie i are the corresponding parallel fluid velocities:

n v, . = | fe,i v, v

e,i 1e,i i’

Df
The exact treatment of the collision operators T , starting

Dt coll

with the Landau forms in (8) and (9) is complicated. Fortunately,
low frequency turbulence in tokamaks can be treated with adequate accuracy
using the approximate "parallel collision operators" introduced in our
earlier paper (Haas and Thyagaraja (1987)). These approximate forms are
constructed by analogy with the Fokker-Planck operator of Brownian motion
theory (Van Kampen (1983)) and Greene's BGK model (1973) (see also the
discussion by Braginskii (1965)). The key properties of these are
contained in the following observations: 1) The model operators have the
same conservation properties as the Landau forms. ii) They imply the
Boltzmann H-theorem (for the £, and fe). iii) The collision

i

frequencies entering them are the Braginskii values (i.e. functions only

- 11 -



of temperatures and densities rather than vua) chosen to give the correct
parallel resistivity (Spitzer-Harm). iv) The operators are purely
differential operators in v, space unlike the Landau forms which are
integro-differential operators. v) The model operators imply relaxation
to local Maxwellian fe'i's as do the exact Landau operators. Of these
assumptions, the third (velocity independence of the collision
frequencies) can be easily relaxed, if desired. For treating thermal

electrons and ions (as opposed to runaways or fast ions) the present

approximation is justified.

For convenient future reference, we list the forms used in our

analysis, together with a summary of the principal moments.

0 afe -
C|(fe'fe) = Ve = { v%:he —_— (v“ ) vIe)fe }
Bvil BVH
d { afe =
C'(f ,f.) = v . — { C2 —_—+ (v, - v )E
e'"i ei v, the v, ' 1 e }
| (20)
2§ o, IRTA
C'(f,,f,) m v, ., — { v2 — 4+ (v. - v )f
i'7i ii av thi 3v [ [ S &
i [
@ {o b }
C'(f, f) mw v, — {C . —+ (v. -v)f
i'"e ie avl thi av, ' 1’1 i
v is the Braginskii electron-electron 90° collision frequency.

-12 -



mE me
v.,=(—=)"2p ; w. =Zp _ ; v = (21)
m

ii ee ie el ee el
m, .
i i
v - 1— I dv. v f n - J dv £ i
ne o e ! i
n
e
1 Te
2 = - v 2 - e
Vihe ™ J gy, by - Tt b (22)
e De
Pe = T4 Te |
v - L Jdav v £ n. = Jdv f
i o ’ i 1 i
T,
i
1 Ty
2 = -y 2 )
Vihi ™ I dv vy = ¥ygd fi = o (23)
i i
P - n. Ti _I
|
01, mowl wmdE. s v owm = (v. +v..) (24)
the the thi ’ I 2 Ke i

It should be noted that the equations (20) correspond to Greene's (1973)
BGK model with his f parameter set to zero. For other choices,

C'(fi.fe) is not well-defined for general tokamak conditions (when

Ti > Te' for example).

(25)

o
g

Je m - €en_ v - en

e —le e ie

= 13 =



b ¥ (26)

j; = en; v, *+eny i

i ! i
Equations (25), (26) result from J fe,i Cle.i dv. = 0.

1 2

By ™ ;me J dv, v, (v, - Vi) fe 2
Pe 1 - 2 £
getot = Qen ¥ ;_ ® ; Te J (vu B vle) e Sle dv, (27)
1 .2
Qi ™ E m, fav, vy, - V) kp 2
Py 1 -2
Q; eot Qi * ¥y '2_ =y I v, = vni) fi £l av, (28)
Vpi
XJ'i(rlt)-_c"(__E_'_—)xE
|§‘ en,
i
c Ve,
Ve (Z.) = — (E+— ) xb (29)
|§| ene

Ele,i(E'v|'t) are defined by equations (18).

- 14 -



afe e afe
— 7 V'(Vu B+ e ™ Eie)fe s

at m ov
e I

= C'(f_,£) + C'(£f_,£;)

+ Z (30)

afi o Bfi
—— + ¥(v. b+y . +e, )E + —E —=
5t i 1.3 Lde L m, i av,

= C'(fi,fi) + C'(fi,fe)

+ Zi (31)
E = +V@ + V& - 138 A ; + E ; (32)
= o e e O 9 op ¢
B = §O(r) + curl(A¢ e¢)
(b = E/|Bl) . (33)
n, = n, (34)

- 15 -



In the following, we shall sometimes use v¥ . = ¥V .+ c .
—le,i -le,i =le,i

Thus, given Zi , Ze . B Eo¢ and & (for example) Equations (30),
(31) determine fi and fe and K¢ when use is made of the relations

(29), (32) and (34) together with the various definitions.

Before proceeding to an analysis of the above equations for realistic
tokamak conditions, it is useful to clarify certain points which appear to
cause confusion in the literature. Firstly, it is important to notice
that neither the exact kinetic equations (8), (9) nor the approximate ones
(30), (31) are complete descriptions of tokamak turbulence. Whilst
Faraday's law and Poisson's equation (in the low-frequency approximation
n, = ne) have been taken into account, Ampere's law has not. It is
equally important to recognise that provided ¥ (or equivalently K¢ ) is
known as a function of position and time (for example from an exact
solution of the complete nonlinear system including Ampere's law or from
experiment), fi , fe and K¢ (eguivalently $ ) calculated by solving
the above equations are in fact consistent with the full set of
equations. A concrete analogy may be useful here: the motion of the
earth around the sun can be calculated given the motions and masses of the
other planets without solving the n-body problem. This partial solution
is, of course, consistent with the whole! In this respect, the above
system describes the response of the plasma to arbitrary electrostatic

(or, alternatively, if K, is specified, electromagnetic) fields.

¢
Ampere's law not only describes the magnetic fields produced by the
plasma, but in principle, the magnetic fields due to all currents (even

those outside the plasma volume for example). It is therefore a

- 16 =



misconception to think that some inconsistency is necessarily implied by
the solution of the response equations. The procedures involved in the
present problem are exactly similar to the standard methods of treating
dielectric response functions (c.f. Loudon (1981)) and no less consistent.
The principal qualitative conclusion is that knowledge of sources and the
detailed knowledge (as a function of r and t ) of a single
electromagnetic quantity (&(r,t) or K¢, say) is sufficient in principle
to calculate all other plasma fluctuations, means and correlatioms.
Indeed, since we have so far not used the smallness of E/lEI, the above
statement is fully consistent with the nonlinearities contained in the
response equations (29) - (34). This conclusion is ultimately based on

the validity of the decomposition (2.2) where only two rather than three’

independent electric potentials are needed.

A second important point concerns the relationship between fe i and

the drift kinetic distribution functions ge,i(g, Vo vi, t). It is shown
in Appendix I that the equations (15) and (16) (apart from the collision
operators) may be deduced from the drift kinetic equations provided
pressure isotropy is used as a moment closure hypothesis. If the drift

kinetic equations are approached from Sivukhin's guiding centre point of

view, the total transverse flux of fe i differs from that given in (15)

+ In electrodynamics, there are of course four potentials, but due to the -

gauge condition, only three are independent in general.

- 7 -



or (16) by a solenoidal term. Since the divergence operation annihilates
a solenoidal field, the equations are actually identical. It is
well-known (Cheung and Horton (1973), Lehnert (1964) and Sivukhin (1965))
that the solenoidal term is due to the magnetization currents in the
guiding-centre description and must be added to the guiding centre flux to
give the true particle flux. When this is done, we arrive at exactly the
forms given by Egs.(17) and (18). The advantage of this form is that a
direct comparison with fluid theory and the tramsport equations used by
experimentalists becomes possible. In tokamak turbulence, the E X B
drift is smaller than the thermal velocity of particles and from Lehnert

(1964) it is clear that the transverse particle flux must always include

Vp_ .
the —°%'! contributions. It should therefore be emphasized that
ene,i
Egs.(15) and (16) are entirely consistent with and derivable from the

standard drift kinetic theory under the assumed conditions.

It is apparent from the above discussion that our theoretical model
embodies the essential features of Braginskii two-fluid equations in the
description of motions perpendicular to the magnetic field at a point in
the plasma, and of the collisional Fokker-Planck equation in the parallel
direction. Such a hybrid description (which may be usefully termed

nparallel kinetic theory") is necessary since A >> q RO (where A

e,i1 e,1l

, are the electron and ion parallel mean free paths in a tokamak) whilst
klpe << k_Lpi € 0.5. The present simple model can be easily generalized
(at the expense of greater computational complexity) by improving the
closure approximations and the forms of the collision operators (by
inclusion of spatial diffusion of momentum and energy to simulate finite
larmor radius effects) with no increase in conceptual complexity.

However, all such generalizations seem unwarranted at the present time.

- 18 -



A final point of some importance concerns the nature of particle
transport implied by the present theory. It is readily seen that the
exact kinetic equations (8) and (9) are consistent with the law of
conservation of charge for arbitrary functions g* and g*. This is true
by virtue of the conservation properties of the Landau collision integrals
and the overall neutrality of the sources (i.e. jSedX = Isidz Y. A
similar statement may be made about the reduced kinetic equatiomns (30),

(31):
Theorem

For an arbitrary specification of & (or equivalently K¢) fi' fe

and K¢ (equivalently & ) satisfying (30), (31) and (34) imply j(r,t)

(defined by (24), (25), (26)) such that
V.i = 0 (35)
provided | Ei dv, =~ = J Eédv“

The proof of this result is immediately obtained by forming the electron
and ion continuity equations (by integrating (30), (31) over dv'), making

use of the conditions n =n , | Eidvl - Zédvl together with the
i e

conservation properties of the collision terms. It is useful to note that
(35) must hold at every instant t locally at r for arbitrary ¥(r,t)
In deducing this result, we need not make any use of the smallness of &

or even that its time average exists. The proof applies even if ¢ is

5 1B =



unbounded as a function of t . We assume of course that ;E— << w and

pe
1] QU S
l$| kDebye

An immediate and important corollary of (35) is obtained by
considering the case when ¥ corresponds to an arbitrary spectrum of

turbulence in the sense that the flux-surface averages

<§>-I$ds-0

and <|§|2>¢0 - é |$lz §§ = P (t)
o ]

o

exist (note that we need not assume anything about the existence or
otherwise of time-averages Eq.(3)). The integrals are taken over a @o
surface (by assumption, the éo surfaces are equivalent to mean magnetic
flux surfaces forming a closed, nested family). In this case, we
integrate Eq.(35) inside the volume enclosed by a flux surface @0 and

apply the divergence theorem to get the result (for each t )

Vo I Vo

i.—2-ds = .

e |vcz | ® |vq> !
o o [s]

/ ds (36)
d

o
In other words, the (instantaneous) electron and ion fluxes out of any

closed surface (in particular a mean magnetic flux surface) are equal for

an arbitrary specification of the % spectrum. This means that every

- 20 -



solution of the reduced kinetic equations (30), (31) and (34) is
consistent with instantaneously ambipolar particle fluxes. Of course, an
additional time-average does not change the result. The key point of this
discussion is that ambipolarity (or more generally the equation (35)) is
entirely a property of the equations (30) and (31) given appropriate
sources and Eq.(34). It has nothing to do with the mechanisms, nonlinear
or otherwise, which produce the fluctuations ¥ . As we have seen, &
are not merely due to self-generated external fields. The above result
guarantees that the current densities produced in the plasma in response

to & (or equivalently K¢ ) are always solenoidal.

3. ANALYSIS OF THE MODEL:

3.1 Mean Transport Equations

The model equations formulated in the previous section must be solved
for physical conditions corresponding to real experiments (e.g. TEXT).
The solution is greatly simplified if we ignore the complications of
toroidal geometry and employ (as in Haas and Thyagaraja (1987)) a periodic
cylinder model. Thus, we assume cylindrical flux surfaces and employ
r, 8, z co-ordinates where z 1is related to the azimuthal angle ¢ of

the toroidal system as usual ( - ¢ , where R is the tokamak major
R

radius). In what follows, a denotes the limiter radius. The theory
is not applicable as formulated in the 'limiter shadow' (i.e. when

r 2 a). The Boz field is taken as uniform. We shall make use at

various points the ordering Boa(r) << Boz' We recall that

.21 -



B2 = B2_ + B2, =~ B2 and b = - mb +F where b = —2 and
o oz of oz |B| (] o IB|
5.5
||

As we have previously indicated, it is immaterial (from the point of
view of analysis) which fluctuation spectrum is taken as prescribed. For
calculational convenience, we choose (as in previous publications) to
regard the K¢ spectrum as 'primary'. Of course, what is compared wih
experiment at the end of the calculation is in effect a turbulent
correlation function or a transport property. The 'primary' spectrum is
merely a useful theoretical object in obtaining quantities of experimental
interest.+ 1f desired, it is a simple matter of algebraic manipulation to
treat the ¢ spectrum or even the ﬁe spectrum as the 'primary' spectrum
and obtain the turbulent correlations. |

1t is first useful to explain the way in which the primary spectrum
(of K¢ = I-:z, say) is specified. Let H(x,t) = H(r,6,z,t) be an
arbitrary function of position and t ; We define the average <H> by

the relation,

1 t dt 2 27R
<H> = Lim = j d8 [ H(r,6,z,t)dz (37)
t o 47R o o

t+tflat-top

* This is similar to the situation prevailing in quantum theory, where the
wave function itself is not directly related with experiment but used to

calculate cross-sections, which are.
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where it is assumed that the average exists. Now, all plasma properties
must be periodic functions of 6 and 2z (periodicity length 27R ). If,
further, we assume that these properties are typical of stationary tokamak
turbulence, averages such as (37) certainly exist and any plasma property
F(r,8,z,t) admits the well-known (see Yaglom (1962) for a statement of the

conditions and proof) spectral decomposition,

F(r,6,z,t) = <P + F(r,8,z,t)

o« o e i(mf + EE + wt)
= <P+ [dt 2 2 e dfh Sr,m) (38)
- M=-® N=-0 ?

where <F> = 0, and dFm n(r,w) is the (Stieltjes) spectral function.
The stationarity of turbulence implies that the correlation functionm,
<¥(r,0,z,t)F(r,0+6' ,z+2' ,t+t')> is a function only or ', z' and t'

and has the expansion

<F(r,0,z,0)F(r,0+6"' ,z+z"' ,t+t')>

-

-] -] -} : '."LZ' .
- Ja 3 5 GlmE' ¥ =g Fat ).:15ml (r,0) (39)
-0 M= = n—-m ?

The Stieltjes function dSm n is non-negative and is called the power

spectrum of ¥ . In particular, the relation

s 9% &



a

~ @

© @
<F2> = [ do 2 5 ds (r,w) (40)
- m=-® n=-o o, 0

is called the Wiener-Khinchin theorem. These relations clearly show the

following:

(1) A complete experimental knowledge (including phase information) of

F(r,8,z,t) 1is equivalent to a knowledge of the complex Stieltjes function

drF (r,0) and conversely,
m,n

¥

{11) A complete experimental measurement of <F(r,8,z,t)

F(r,6+68' ,z+z',t+t')> is necessary to obtain ds_ n(r,w).

A a

(iii) While a knowledge of dFm can, in principle enable dSm n

1

1

be deduced, the converse is false as phase information is lost on

averaging (c.f. Eq.(39).

-

Since theory requires in general a specification of dFm n(r,m) and

E]

experiment, at best, is able to supply only certain partial moments of

a

dSmn(r,w), additional theoretical modelling hypotheses are required
before a contact between theoretical predictions an; observations can be
made. These additional assumptions are spelt out in detail in Part II.
For the present we simply assume that every fluctuating quantity F
admits the ordinary Fourier representation

- @ mi(m8+g—z+wt).

F = 2 > | e Fm’n(r,w)dw (41)

M=-® =-0 -
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Let us consider some general results relating to Eqs.(30) and (31).
In Eq.(30) we set f_m <f >+ Te ; <f> 1s a function r and v,
whilst <fe> = 0. We do not necessarily restrict Ie to be small

compared with <fe> at this stage. It is evident that <fe> (and <fi>)

satisfies,

159 * %
= —(rf v, <Erfe> v > <E>+ <vlerfe> H

r 9r

- C'(<fe>, <fe>) + C'(<fe>, <fi>) + < Eé >

+ <C'(EE,Ee) + C‘(Te,?i)> (42)
h *
where, Yo = Yje * Ele-

Equation (42) and its ion counterpart relates the distributions <fe>

and <fi> to the sources and to the turbulent correlations. Provided the
T
ordering |B| << 1 holds and implies the ordering — << 1, <f>

T
conf

and <fi> can be obtained as a function of v, to sufficient accuracy.

It is evident that the correlation terms and the source term in Eq. (42)

<f > <f >
e

whilst the principal collision terms are Of ),

are of order
.

T
conf e

We may therefore substitute the expansion,

= U5 .



<fe> - foe(r,vn) + fle(r'vu) + .. (43)

T
e

(where fle/foe = /. )
conf

into Eq.(42) and obtain, (using me/mi << 1, L + vei)

o afoe
p S { y2 € 4 (v. -v_ ) _}=0 (44)
e 3v o the Bv" [l ole’ oe
[ -] [= -]
Here, no(r) - J <fe> dv = | foe dv"
-0 -
[=-] (= -]
Mo Yone ™ I <fe> v, 9y = J Vi foe av,
-] =-CD
[=-]
2 . 2
Be "5 Yo the ™ "o "oe ™ {m me(vH vone) <fe>dvn
(=]
= 2
- {m m. (v, L foedvu'

(ve is evaluated using n, and Toe from the Braginskii formulae).

Equation (44) implies that (together with the moment relations)

n_(x) (v,-v_ )2
o 1 exp { . i oile } (45)

a 25 the

i -

oe - 4
Var o the

« OB =



It is very important to note that at this stage, the moments no(r),

vo"e(r), L the(r) are undetermined. To determine them, we substitute
(45) and (43) in (42) and observe that fle satisfies the equation,
of
) le
v — { v2 —Z + (v, -v__ )E }
e Bv" o the av" ] one’ "le
* ~%
-1 E—(r{ v <BT >+<v, >f +<%v, T >}h
[ Ir'e ler”™ “oe lere
r or
& a<fe> 3
- = v 2 2B E )
ol 1
m ov m oV
e I i
o<f >
- 9——{(02 vz ) + (v -v ) <f>}
ei o the o the olle oli e
avu av“
) oF,
- G - P, B — { 3, — + (v, - v"e)'fe } >
Bv" d
i a{ afe )
-v <« —{C2 — 4 (v -V ) > (46)
el 3v the av 0 i e
[l [
we have introduced the 'effective' collision frequencies »__, v . to

ee el

formally simplify the collision terms in (42). Integrating Eq.(46) over
» from -= to o , the left hand side vanishes identically and we

obtain the radial transport equation,

- 9T -



[=-]
1328 ~ o~
e R A

(=-]
- | < Ee > av,

-

Multiplying (46) by BV, and imposing the subsidiary conditions

(=] @
J £109v, = J v £ dv, = 0, we get the second radial transport

-0 -0

equation,
19 -
2% (rfcb_ J m vzE dv >+<vV >n m Vv
r ar r’_ e e ler o e ole

@

+ [/ m v £ <ec¢ > dv
o & I Toe ler ]

@
*

+ < | Vier e Yy Ee dvII >})

-0

- -eE n -e<E n>+m v (v - v n
ol © [ e el( oni one) [+]

[ =]
+m < v dv >+m v . <n(v, . -V >
e J@ ze H [ ] e el ( 11 Ile)

Finally, we multiply (46) by L. m, vz' and impose the subsidiary
2

(47)

(48)

condition | vi £ dv = 0 in addition to the others and obtain the
-0
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third radial transport equation.

© m P m

8 (r{<B_ | £v3IT av >+<v, >—=4+<v, >-=n
r I e I ler . ler
r or - 2 2 2
@ m mme &
& i C iy
+ Vi < Cler ” foe dvu +< Vi Vier ?e dv" >})
-o 2 - 2 :

= EO" Jpia S E" +P . +P

>
e el aux

i

where Pei are electron-ion transfer terms (both turbulent and

o] ve

non-turbulent) and P° = |/ m L2F % a9
aux e , = I

The three corresponding ion-equaticns are:

19 i ~ -
. g; (r{< B, {m v E av >+ <y >n +<V A i3]

= [ < Z; > dv,

= DY

v
o ole

(49)

(50)

(51)



[=-]
13 (r{< 6. ) m, v2E dv >+<v, >0 W V.
r R § [] liz o i oni
r or -

-]

+ {m m, v, foi <clyp dvI

w
o
+< Vi {m m, v, Ii av, >}

@
- +eE n +e< Eu o>+ m pie(vone - voui) +m, < {& Ei v, dv >
My Peg S n(Vie - Vied * (52)
© m, P o
13, (r{ <6_ |/ 2V E dv > +<vV,,_ > O ey, > La v,
r " S | lie Lix o oii
r or -o 2 2 2
~* i, Y-
+< | v v Ii dv, > + < f vy L Ii dv, >}H
- 2 = 2
- E_j +<E J.>+P +pt (53)
ol ~oii [ ie aux
Since the sources always satisfy the neutrality condition
[--} =}
{n< Ze > dv, = {m< Ei > dv, = SP(r), (54)
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we must have,

19 ¢
L - Er {m v"(?i . ?e) dv, >+ <V, -V, >n

er [o]
r or

+ < (;.Lir - GJ.er) n>})=0
(55)

Clearly Eq.(55) is a corollary of Eq.(36) and is therefore valid for

arbitrary A, . We can now write down the expressions for the various

¢

fluxes.

Particle flux (ambipolar):

+<n1 ;i > (56)

Electron Energy flux Q.
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o m P m
Q (r) =<b_J ZvE av >+<v > (22 +=n vz )
le S, e 1 ler 2 2 o ole
u:nme ® . L
& yv2 s &
+ | L A T dv, + < J Vie w fe dv, > (57)
- 2 - 2

which may also be written in the more transparent form

Qle(r) - < Br (Geu ¥ G“(pe + % me 1 GI;)) =

©m
1 T 2 € 52
+ < vler(pe + ; m D vue) > + < {w - WE gy fe dvu > (58)

I dvu Vi (< fe >+ fe)

- -
where, Vv -
he
[+ -]
{m dvu( < fe > + Te)
1 [=-]
= -V 2
Qen = 2 Be J v“(v“ vne) (< fe = Te)dvl
=00

p, = m, {w o, - G'e)z (<f >+ fe)dv'

e

Ion energy flux Qli :
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® my Poi ™4

= o i3 oL .. T 2
Q)4 () < Er S v Ei dv, >+ < v > + o, N ]
) 2 2
®© m. ® m,
+ J Lv2f  <c,.. >dv +< [ ¥, . 2 vz E av > . (59)
I Toi lir i li i I
- 2 -0 2

The total radial flux of parallel momentum is

@

Hl(r) =< Er {m vﬁ(me fe +m, fi)dv“ >

o
+ v (< ¢ >m f +<c,. >m, £ .) dv
{m u( ler e oe lir i 01) 1
+ n m < Vv > v + ., < V. > v %
o{ e ler one T B4 lir oili }
[==] (=<
I 5 T v owwx [B T. dv. > (60)
+ < v m v VvV Ve e W 5 v
- le e "1 "e I - i g R R { il

In view of the ambipolarity identity (55), only 5 of the 6 transport
equations are independent. If the turbulent responses fe and fi can
be calculated qua functions of v, Sr (ox K¢ ) and the five moments

(r) . v (r) » Vv, 4,:(¥) , the transport

no(r) , v (x) ,

v
ole oli o the

equations can be used to obtain the radial variations of the moments in

terms of Zi , Ze , and Eon and Bz . Note that we have neglected the
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classical transport fluxes in comparison with the turbulent omes in the
above discussion. They may always be retained if desired by a suitable

modification of the C' collision terms.

3.2 Turbulent Correlation Functions

Up to this point, we have made no real use of the ordering
Ifel << foe . In the present section, not only is this small amplitude

assumption used directly but also the orderings me/mi << 1 and

Voks >> (vue)drift . Let us recall that the basic equations (30) and (31)
are nonlinear, even if & and K¢ are assumed to be completely known.
Introducing the formal decomposition f . = f + b4 consequently

e,i oe e,i
leads to nonlinear equations for Ee = From the previous discussion, it

L

should be clear that foe ; are determined by the sources and turbulent

’

correlations which involve the fe i and their moments. Thus, even if &

(say) 1is completely known as a function of position and time, the
is a

solution of Eqns.(30), (31) and (34) for foe,i ' Ee’i and

A
]
formidable, nonlinear boundary value problem. The ordering IEI << 1
implies that a perturbative solution of this problem is worth exploring.

The principal ideas of such a perturbation theory will now be discussed.

We assume temporarily that foe § are completely known as functions

of v, and r . In fact, the v, dependence of £, is known (c.f.

r

Eq.(45)) to leading order in -re/rc The spatial dependence is

onf °
manifested through the mean plasma properties such as no(r) . Vo the(r)

etc. If we substitute the decompositions for fe i into Eq.(30),

s 34 =



Eq.(31) and Eq.(34), we obtain the set of non-linear equations satisfied

by I‘e,i

Setting |§| = e << 1, we may formally consider the perturbation

series,
T . oe et D r® .
e,i e,l
¢ = ¢ 5(1) + €2 5(2) *

where, by definition Tili . fézi are 0(l) functions. It is obvious

that all turbulent correlations of interest (e.g. the radial energy flux

©m
< Er =2 i ?e v > in Eq.(49)) are power series in e with leading
- 2

term 0(e2). It follows that if e is indeed sufficiently small and
there is no accidental vanishing of the leading order correlation, the
first term in the series should be sufficient. The adequacy of the
leading order approximation to a turbulent correlation function is not
asserted a priori. As is customary in all perturbation theory, it is a
matter for a posteriori verification and comparison with experiment. It
should be pointed out that in the present instance, there is no a priori
reason to believe that the perturbation expansion is singular or even
asymptotic. Thus, it is entirely possible (although a rigorous
mathematical proof is lacking) that the power series for fe,i in € is
convergent for sufficiently small values of ¢ . The calculation of
higher order (in |5| ) correlations will be seen to be straightforward
although extremely laborious. Restricting ourselves to the leading order,
it is plain that a solution for fifi consists in expressing them and K¢

as linear
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functionals of & and foe,i . However, their dependence on the mean
moments, frequency and wave numbers can be very complicated. Once
obtained, evaluation of the various turbulent correlations is a matter of
straightforward algebra. These correlations themselves now become
functions of the specified spectrum of & (or K¢, whichever is chosen
as 'primary') and the plasma mean properties. The mean transport
equations must then be solved to obtain these properties in terms of the
prescribed sources. This general procedure is entirely independent of the
origin and dynamical evolutionary characteristics of the spectrum. For
instance, it does not matter whether the primary spectrum is obtained
experimentally or comes from the solution of some nonlinear equatioms.

The only requirement is that it must correspond to saturated, small

amplitude, low (w << @ .) frequency electromagnetic fluctuations.
ci

The leading order calculation referred to will now be presented. For
convenience, we drop the formal perturbation parameter 6 and the

superscript 1 in féli , it being understood that fe ; below refers

only to the leading order. We also assume that the collision frequencies

v , ¥ T are functions only of the mean density and

ee el ie ii

temperatures. We then find that Ie and Ti satisfy the following

linearized kinetic equations.
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ot of . af

_liv b .VE + vi VEf +v B ok L5 od
I =o i —loi i nor lir
8t or or
e £ of
FVE e — =
m, ov
i I
of
1 3] { w2 i
- - — . — + (v v O }
v B othi 3 ] oui’ i
i
of n
1 9 =5 ol i
*— 5 Vi =y g
T I n
i I o
Te ) ~
- ~=i% £, (62)
e “oi
m, 7_ 0V
e I
m 172
In the above equations, 7, =T, (—i) and energy equilibration
m
e

between species is neglected. Furthermore, the following definitions are

employed.
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v -_]:_jvf,dv .e'i+j(~.-v .
e, i " e,i 1 ole,i k ol ,e,i
o -@
(o} -
X Te,i dv
(63)
32 pe,i ) ne,i
the,i =
P..; N
oe,1i o

It is clear that for a specific mode (m, n, w) the following relations

apply. We take the phase factor to be exp{i(me % I wt) }.

R
% e T : P. 3 n,
vy, = oi im { e ® B S S A (64)
- eB T £ n
o ol Poi oi o
cT . P i n
<* - ce im ¢ e & s L& &) (65)
ler =
eB r T P f n
o oe oe oe o
o 1
P. P
~%* ol im o "1 ol "1 -~
T e
Poi poi o
e T "' P p'_n
T3 5 s—ming B8 22]snE (67)
wde eB r n n “le
o Poe Poe "o
~ Ee Ee é
where V.c x C N(—= - =)+ = & to the order considered
=le © =loe ler
P n T
oe o oe
Boe dno
(—<<1, B <<1; n' means — , etc).
b o
Boz dr
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E = b .v®-122% (68)

I 2 c dt ¢
Er-LHK¢ ' (69)
B r
(s}

rB
BV ow Tk ow LmRE) g o OEy (70)
i ' R R B

q of

Equations (61), (62) and the quasi-neutrality condition ﬁi - ﬁe

constitute a set of three coupled linear equations for the unknowns

Ee' fi and & (assuming A¢

The solution of these equations is greatly simplified by observing that

or Sr as the primary spectral quantity).

Gui is 0(5Ile mel’zfmil,z). This means that ;ui may be neglected in
Eq.(61) which involves only fe , & and Sr explicitly. If this
equation is solved for Ee treating both & and Er (temporarily) as
known, equation (62) can be reduced to an equation for Ii (;ne being
eliminated using the solution of Eq.(6l) obtained previously). If this is
solved and the results substituted in the quasi-neutrality condition, we
get the explicit relation between & and Er . The key to the solution
of Eq.(61) is the fact that for any given @, m, n mode, it can be solved
by separation of variables. The velocity-space collision operators
involve Weber functions in their exact solution but are readily solved
numerically. However, for many practical purposes and for obtaining

insight into the nature of the solution, it suffices to consider a BGK

approximation. We accordingly present the method for the BGK model. Let

- &0 =



us consider Er(r,B.z,t) . to be specified by,

B, = F_(r)e R + C.C | (71)

where Fm &r& is for the present an arbitrary function. Note that for

convenience we take m to be positive such that k’ - m e ng ;7 @ may

Rq

be any real frequency. To avoid cumbersome notation in what follows, we

i(mo - £ + wt)
simply write Er for the complex amplitude Fm n ot B :

other fluctuations follow the same conventions. In place of Eq.(6l) we
write the linearized BGK equation (having of course the identical
conservation properties and moment equations as Eq.(61))

*

* .,
inf +ik v T +1ik.v F +v B £ +¥v £
e non e ='—loe “e I r “oe ler “oe

e E of n P n 2.
T 2 AL LR 1)} ¢
e “oe oe
m_ oV T n P n 2
e ] e o oe o
v n
1 1 olle e
» = Ee - (— Y ;—) X foe
Te Te Vothe "o
v -V n w2
where X = ...!_.___L.e , foe - _0 i e x /3 (72)
Vothe Vothe ¥ <7



; . . d ; ;
The spatial derivatives — must be evaluated with care since ns

v
i othe
and L functions of r . In the following, we ignore terms of
Voie
order ... (of 0(10-2) in most tokamaks) and neglect vé“e terms.
vothe
Setting Te - @e £ o0 we find that me satisfies the following
equation.
im cToe p;e
(iw + ik v + ik.v + ik v x) ¥ *t— — —
I ole ='=loe I othe e e
r eB p
o oe
2 - 2
+ (vone + vothex) B (l_ P ) + Vier (l- + = )
I Y A A
e ve e ve
P n_ p!
im oe e 1-x2 e “oe
g =, e | — (1-x%) e }
£ =B Poe Kve Do Poe
rBo %
+ 9.5+ { ik -S_Sr}.‘;-
m, m C othe
n P n 5 v ~
_1_{f.+(_2-_e)(_x__1)_}-l_(_2'le)9_x
Te "o Poe T 2 Te Vothe T
me
- — (73)
.
e

= 49 =



r].I L]
1 o othe
where — m — - —

]
. 1 othe Vothe Vothi
’ - O e— ’ - — ’ s =
A n v A v ¢ *
e o othe ve othe ce ci
v! T' pl n' T
We note that _gthe - 1 _oe and 2F 2 g 08
Vothe 2 Toe P

It is convenient to put the solution of Eq.(73) into the following form

(this also applies to the more general Fokker-Planck Eq.(61))

e Azl (74)
y e e e e
In Eq.(74), the functions A %’ A Y’ A W and A z depend only on
r, o, m and n and not on x whilst ie, etc are defined as follows:
% - s (75)
1+ (19e + 1k" vothex)fe
o 25
Y, x2X (76)
We - *X 7
5 L 35
Ze X Xe (78)
m croe p;e
= w+k v + k,.v o m— —
1 ore —L'=loe
reB p
o ‘oe

(79)

s &3 =



Substitution in Eq.(73) gives the following expressions for the

undetermined co-efficients.

e -~ S -~ 1 3ne R
Ay = (vler * Vole r)/ke + v'!le - 2= § === }
2T n P
o oe
im CToe Ee 1 Ee pée
+ — {2 = -= =1 (80)
r eBo Poe Rve s Poe
P n
e ~ 1 e e
A y © (vler * Ysua Er)/ ve . { - - }
27 P n
e oe o
., T P
_im “oe g 7e 1y (81)
r eB P A
o ce 've
a® Sr+ikv # wr g L Jore) i (82)
W = Toth ;_ W othe T i — r . v 0
e oe Pe e othe o
e Sr
Az = Yothe ;— LB
ve

At this stage, the solution is only formal since the A's involve the

velocity moments of Ie (eg , etc). To complete the solution

]

=} l:ﬂ
rd |m"Ul

o oe

(this is where the fact that Eq.(73) is really an integral equation in the

variable x becomes manifest) we proceed as follows:
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Since, T = ¥ f ,
e e

oe
E T @ o
e e e 5 -x2/ e -x2/
—-— { a7 {m X, e 2 dx + AT {m Y, e f2ax
o V27
-] [--]
e - -x2/ e 5 -x2/
+Aa ] W e 2dx + A", | 2 e 2dx } (84)
-0 =0
‘p-" T @ 2 = 2
e _ e e - 2 mXES e 5 g o"%2/
and = . fx X {m X, x* e 2dx + A7y {m Y, x* e 2dx
oe Vit
(-] -]
e = 2 X2/ e 5 s X2/
+ A, {m W, x%e 2dx + A, {m z, x* e 2dx} (85)

Note that the integrals are all of the form (this is special to the BCK

model)

il
& xk e X /zdx

I - J (86)

-» 1 + :L(.Qe Y. + kll ¥ the

fe X)

It is shown in the Appendix II that such integrals can be expressed in
terms of the well-known plasma dispersion function. They depend only on
the local collisionality parameters (more precisely Knudsen numbers)

ﬂe T, and k' Vothe Te *
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Returning to Egs.(84) and (85), we assume that the integrals have been
evaluated and taking into account the relations Eq.(80) to (83), we derive

the following two linear inhomogeneous equations.

Te g +§E - PRy A (87)
11 12 i, S 1
P T
o oe oe
n P
e ,e e e s i A e
P T
o oe oe
The co-efficients Sil , 5;2 etc are explicit functions of the integrals

Ik and other mean properties (the complete formulae are listed for
reference in Appendix III). In particular they are functions of @ , m

and n at each T .

From (87), (88) we derive the explicit relations

Ee ne e§ ne
L= 4L 5 (89)
n e T g &
o oe T
P P P
_%-L;@H.esr (90)
oe e Toe' Br
—_— e e e
n, — 1 %12 $11 312
where L¢ - + (91)
—:— e Se se Se
e o 7R 21 22

s Lk =



e e e e
n A% § L4
™ & i 22 " il 22 (92)
B, Ay 849 $21 322
pe Pe
and similar forms for L¢ , L
e 1Y
2

It is plain that Te and all its moments are explicitly expressible

as linear combinations of ¥ and Er . In particular,
Lou
_ Lven ed @ Vel 5 (93)
e d Lb r
e T r
oce

v v
el el

where the co-efficients LQ , Lb are fully determined. (See
e

Appendix III for the details.) Substituting in the ion counterpart to

Eq.(72) we obtain, in exactly similar fashion the expressions for mi and

Ai etc. These in turn lead to

X

L R Y. ny
— =Ly —+1L Br. : (94)
n i T . r

(o] 0ol

The quasi-neutrality relation reads,

e ed Te i e§

== % Lb + Lb B (95)

e T i

= LT s



Thus, we obtain,

3 - {L'-1°)5, (96)
r T 7
ne ni
{ EL¢ - eLé- }
e i
T T .
oe 01l

It is clear that Eq.(96) is entirely symmetric (in a formal sense) between
¥ and Br . Hence the claim that for the purposes of the present
calculation, it does not matter which spectrum is chosen as primary. It
is also evident that the solution is now complete. The rest of the
calculation is a routine evaluation of the turbulent correlations. As an

example, using Eq.(96) and (89), we may write for each mode (m, n, w),

o~

n
e
(=@ = &, (1 By Crimno) (57)

o
m,n,w

This in turn leads to the spectral relation,

< (=) > - m%n {m |A‘m.n,m|2|5r|z o (98)

expressing the total density fluctuation power at I in terms of the br
spectrum and the response functions Am v ¥ I1f desired, it is clearly

possible (c.f. Eq.(96)) to re-express this relation in the form,
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T 2 2

&
2 = B Pl 1B
n -
(o]
= Bn,é(r) < |§l3 > : (99)
where Bm no °ore simply related to the A's . Examples of such

relations are given in Part II.

3.3 Some Extensions and Generalizations

It is useful at this point to indicate certain simple generalizations
of the calculational method. We recall that Eq.(72) for fe and
consequently ﬁe (Eq.(73)) involve the approximation 5“1 << Gua . If
this is relaxed, the electron and ion kinetic equations become fully
coupled. However, the method of variables separation still works and we
obtain in lieu of Egs.(87), (88) and their ion counterparts a linear

inhomogeneous system in 6 unknowns. This is compactly written in the

form,

b
t(omn,r).X = A% B oAl B, S (100)

T
ce
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where the column vector X =

ol
L]

o

!5|:‘H
[

o

ot
[N

n n

b
and the column vectors Qé , A T consist of quantities like l@e . Lbe
T

etc. The 6 x 6 matrix § as well as éé and ébr are functions of
w, m, n, and r (via no(r), Toe(r) etc.). The formulae giving the
matrix elements } are readily derived from the kinetic equations making
use of the representations Eq.(74), Eq.(A.I1.10) and are analogous to

those in Appendix III. Clearly Eq.(100) can be solved for X using

Cramer's rule and the imposition of quasi-neutrality yields the connecting
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relation between EE and Er and generalizes Eq.(96). 1In part II we
Toe
show that for typical TEXT conditions, the results obtained by this more

general solution agrees closely with the simplified approach.

For calculational efficiency and for presentational purposes we have
chosen the BGK approximation to the collision operators. So long as
runavay electrons and/or fast ions are not involved, the BGK model should
be a good physical representation of the collisional processes involved in
turbulent transport. It has the great advantage of allowing the explicit
construction of the electron and ion velocity-space response functions
X, Y, ... %, Yi .. etc. In Appendix IV we sketch the outline of
the solution procedure when the Fokker-Planck differential operators such
as C'(fe, fe) are used, rather than the BGK approximations in the
kinetic equations. We shall demonstrate in Part II explicitly that the

results are not greatly changed for TEXT conditions by using the more

general Fokker-Planck operators.

In this report we have been solely concerned with the
self-consistent, collective motions of plasma electrons and ions subject
to small amplitude, quasi-neutral electromagnetic fluctuations. It is a
trivial extension of the method to take into account the response of
additional charged species of impurity ions. Suitable account should be
taken of the mass and charge of any impurity species when formulating the
collision operators in the kinetic equation for that species. When this
is done, the treatment is verbatim the same as that for the plasma ions

(Appendix II). The mean properties of the impurity ion species then
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follow from transport equations amalogous to Egs. (51), (52) and (53) when
proper account is taken of the impurity sources, charge-exchange terms,

classical collisional fluxes and suitable boundary conditions.

There are no conceptual difficulties in extending the methods
described to toroidal geometries. The real difficulty in such problems is
the linear mode coupling induced by toroidicity and the variation of mean
quantities such as Bo¢ on a mean flux surface. The Fourier spectral
representation in poloidal and azimuthal angle is more complicated and the
solution of even the linearized kinetic equations not straight forward.

If a/Ro is small, a regular expansion in this parameter about the
cylindrical case is feasible. Otherwise, the problem must be dealt with
purely numerically. Since, even in the present case, numerical
calculations are essential this may'not be a great disadvantage. The

treatment of trapped particles and pressure anisotropy require a more

general approach based on the drift kinetic equations.

Finally, although the eigenvalue problem implied by the linearized
kinetic equations (61), (62) and the full Maxwell equations (including
Ampere's law) is of no interest in this report, it can be approached quite
simply, using the results obtained. All that is required is that
should be treated as a complex eigenvalue to be obtained simultaneously
with Er(m,n,w,r). Thus substituting the expression for II obtained in
terms of Br from the above analysis in the parallel component of
Ampere's law we get the required dispersion equation. The resultant low
frequency dispersion relation includes two-fluid dissipative drift wave

theory (and of ny R modes) and resistive micro tearing as special
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cases. Effects such as ion-polarization drift and off-diagonal

contributions to the ion-stress tensor can also be readily incorporated if

desired.

4. DISCUSSION AND CONCLUSIONS

In view of the algebraic complexity of the problems considered in
this report, it is easy to lose sight of the essentially simple and
rigorous conceptual framework of the method. It is useful to summarize
the basic ideas involved. The problem of characterizing the low frequency
(w << wci) response of a fully ionized, strongly magnetized plasma to an
arbitrary spectrum of electromagnetic fluctuations is very similar to two
well-known problems of classical physics. In the classical theory of
dielectrics (Loudon 1981) the response of the bound electrons of a medium
to electromagnetic waves is calculated by solving the equation of a damped
harmonic oscillator (the Lorenz model of the atom). The currents induced
by the motions of the electrons is expressed (in the simplest cases, as a
linear function of E ) in terms of a dielectric susceptibility function.
This function depends in general on the frequency and wave number of the
electromagnetic mode involved. This is entirely analogous to the response
functions such as ie introduced in this paper. The important point of
this analogy is that the calculation of the response function depends only
on the solution of the equations of motion governing the electrons and
ions and not on the nature or origin of the electromagnetic fields (i.e. a
solution of Maxwell's equations subject to initial and boundary

conditions). In particular, such a calculation is not inconsistent with
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any principle of physics. It is, however, incomplete in that the

electromagnetic field must be specified.

The second problem of classical physics which is analogous to the
problem of turbulent plasma correlations is the Einstein-Langevin Brownian
“motion theory (see the article of Uhlenbeck and Ornstein in Wax (1954)).
In this theory, the correlation functions and diffusional properties of a
Brownian particle are calculated using a Langevin equation. In this
equation, the response of the Brownian particle to myriad collisions with
a 'thermal reservoir' of gas molecules is represented phenomenologically
by a Langevin force. Although the Langevin force is usually specified as
a random function of time with a white noise spectrum, in reality it must
of course be obtained by solving a nonlinear, N + 1 body problem. In
fact, it was shown by Einstein and Langevin that essentially all
properties of physical interest can be obtained from their response
function theory with a carefully chosen prescription for the Langevin
force without ever dealing with N + 1 body dynamics. If desired, the
plasma turbulence problem can be seen as a Langevin-Einstein problem in
which the kinetic equations satisfied by Ie and Ii play the role of the
Langevin equation whilst the primary spectrum (Er say) serves that of the
Langevin force. Detailed experimental knowledge of § or Er spectra
can yield experimentally verifiable correlations and predictions. Indeed,
any future theoretical method of obtaining the spectrum itself must
include a response theory (not necessarily restricted to first order in

amplitude) of the type presented in this report.
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In conclusion, we have presented a method of evaluating the low
frequency response of a tokamak plasma to an arbitrary spectrum of
electromagnetic fluctuations provided certain ordering relations are met.
Although only tokamaks are considered, the results apply with nearly
trivial modifications to pinches as well. The basic principles of the
method are simple, and essentially rigorous. Concrete application to TEXT

and verifications of internal consistency of the scheme are considered in

Part II.
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APPENDIX I

Derivation of the "parallel” kinetic equations

for electrons and ions

Let Fe(z.g,t), Fi(g,g,t) be the complete ( 6 dimensional phase
space ) distribution functions satisfying Eqs.(8), (9). 1In the following,

* *
we let b= B (r,t). We assume that B and E have been "filtered”

Iz
|

so that IQ/B

P =1 = n ”
<< “ei,%e |V§/1§I < Pyt NS B The "reduced

distributions fe(z,v",t), fi(g,vn,t) are formally defined as follows:
£ (x.,v,,t) = J F (r,v,t) S(ETE - v,) &y (A.1.1)
fi(g.v“t) = J Fi(g,g.t) 5 (v.b - v")d33 (A.1.2)
where & is the Dirac delta fuﬁction.

Given Egs.(8), (9) the task is to derive the equations satisfied by
fe, fi. Since these reduced distributions are moments of Fe with
respect to &(v.b - v.), the equations for fe and fi may be generally
written down (taking account of the r, t dependence of b ) without any
approximations using the "equations of change” given by Lehnert (1964;

see Eq.(5.11) et seq.). As usual, the problem is to close these equations

since they involve the "fluxes”

L (f) = JF v 8 (v.b - v, )d3y (A.1.3)
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L) = | Fi'w_r §(v.b - v )d% (A.1.4)

The fluxes in the parallel direction give no difficulty and are

immediately written down as
F(f)bb = v bf (A.1.5)

To derive the perpendicular fluxes which are necessarily of higher order
in P kl’ Py kl’ than the parallel fluxes, we must either solve Egs.(8)
and (9) to this order and explicitly substitute in (A.I.3), (A.I.4) or
derive the "equation of change" for Ee itself. However, the ordering
Py kl‘ Py kl << 1 applied to this equation together with a relation
between | Fe vZ 6(v.b - vu)d3g and the moments of fe gives an
expression for Ee(fe) to the required order. The "moment closure"
relation is essential in both approaches. The calculations are tedious
though straightforward and follow well-known procedures (Lehnert (1964),
Hastie et al (1967) and Cheung and Horton (1973)). The advantage of these
two closely related methods is that the evolution equations satisfied by
£, fi are deduced from the complete kinetic equations correct to first

e

order in = without any prior knowledge of orbit theory.
B

Instead of following the procedures outlined above, we give an
alternative derivation, based on the fact that only first order accuracy
is really needed. It is well-known that under the conditions considered,
one can derive from the Vlasov equation a kinetic equation satisfied by
the guiding centre distribution function ge(g,t,vu,vi) where ¥ is the

parallel guiding centre velocity and vy is the perpendicular speed
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m v?
related to the magnetic moment x through & = —E—é . In the
2B

collisionless case, Sivukhin (1963) shows that g satisfies the

following kinetic equation in a 5 dimensional phase space.

og .
Gl . 0 ;
—<+2 . {r g, } % 3 g b, & b+ — {9}e, } =0 (A.1.6)
2
ot dr ap“ ap 1
where p, =m, Vv, » P =W v, ( v2 << c¢?) and the quantities R , ﬁn A

pi satisfy the phase space incompressibility condition,

& o qri+L g, 3+% 81} -0 (4.1.7)
% %, api
where R , ﬁ" and ﬁi are explicitly expressible in terms of r , P,

P, - b, E and B . (Equations (12.1)-(12.3) op. cit.) From
Eq.(A.1.6) we see that it is straightforward to derive the equation
satisfied by the reduced guiding centre distribution Ge(z, v, t)

defined thus:

Ge(z' v“

, ) = | ge(z, Vi vi, t)dvi (A.1.8)

We must plainly have, at least in the absence of collisioms,

aGe ) d
—+~—.{J§gedvi}+—{If)'gedvi}-o (A.1.9)

at or op,

where the integral of the last term in (A.I.6) over dvi vanishes by

: &0 =



virtue of the boundary condition at infinity. Let us now evaluate

J R g, dvi and J P, 8, dvi to the order nmeeded. From Sivukhin we have

(the electric charge is -e )

cm v?
R = v, b+Z(Exb) - ——= (b.curl b x b)b
B 2eB
cm vi 1 cm v:
- —— = (b x VB) - (b x (curl b x b)) (A.I.10)
2eB B e B

Clearly the third term is in the same direction as the first and is much
smaller (since kl P, << 1 as is |§| and pe/a) although it is

convenient to retain it for the moment. We now obtain the flux in the

form

(x, v, t) (A.1.11)

where
¢ M 1 c
- - Z (b xVB) [ g v?av?+ Z(ExDb)G
e 2eB B e 1 1 B e
cm v:
- ————— (b x (curl b x _lg))Ge (A.1.12)
e B
cm,
- (b.curl b)b J g, vi dvi
2eB
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The moment | Be vi dIZ is not yet expressed in terms of Ge and its
moments. We have a classic moment closure problem. For the purposes of
turbulent tokamak transport, we assume pressure isotropy in leading order.

Thus, we set

2 2 = 2
| g, vi davi 2 vz, (z, t£) G (x, v, t) (A.1.13)
.2
2 = -
where vthe(E’ t) = | v, =~ 2) € v, /| G, dv, (A.1.14)
when the same assumption is made in ﬁ", {Sivukhin Eq.(12.2))
. 2 = i 2
i p, g, dvi = e E +m Vi V.b (A.I1.15)

In the collisional case, the right hand side of (A.I.9) will contain
averaged collision operators. The exact derivation of these is extremely
complicated. Liftshitz-Pitaevskii (1981) discuss some special cases. For
our purposes, the model operators of the Fokker-Planck (or Greemne's BGK
forms) given in the text should be adequate. I1f further accuracy is
needed, the Landau-operator can be used after eliminating vy and the
gyrophase variables. We are now in a position to write down the equation

satisfied by Ge(g, v

E)s

= B =



BGe N " cm vﬁ
g d% B8 +=(E R\, » —— b= feurl b = b]E
at ox B e B ©

o

C me c me 1
= 2 = Sl 2
(b.curl b) b — e S P o = (b x VB)vZ, G}
3 eE“ dGe
oo f [ e vz . V.b)G, | - coll (A-1.16)
Bv" m, dt

We now make use of a basic principle (proved by Lehmert (1964) to first

order in o ) of plasma physics: the reduced guiding centre distribution
B

G (xr, v., t) defined by (A.I.8) and the reduced particle distribution
t) (A.I.1) are equal and furthermore fe satisfies (A.1.16).

However, as is well-known, the flux of particles is not identical with the

flux of pguiding centres but differs from the latter by a purely solenocidal

term (magnetization flux). Both these results are proved by Cheung and
Horton (1973) explicitly. This statement implies that the flux of

particles is given by
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cm

i
I = f {v b+S(Exb) - —22 (b x VB)v2
e e ] B e the
c me [od me
- (b.curl b)b — v2 - v2(b x (curl b x b)) }
= == the Y= = =
e B e B
cm v2
+ curl(p —=—2¢ £ ) (A.1.17)
e B

where the last term is the well-known (Lehnert (1964), p.58) magnetization
density of the guiding centres at r, t with parallel velocity v,
Indeed, if we had followed the two direct derivations of the equation for
fe indicated earlier, we would have obtained (A.I.17) and (A.I1.16). Note
that the solenoidal term does not affect the time evolution of fe (since
in conservation form, the divergence operation annihilates it) or the
averaged particle or other fluxes over closed surfaces. However, if the

particle currents are needed (for example, for use in Ampere's law) the

current density must be evaluated using (A.I.17).
We can now write down the equation for fe (same as that for Ge ;

Eq.(A.I1.16), but with (A.I1.17) for Ee) in a form which makes comparison

with two-fluid theory easy:
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—+—. {v, D +v (O +k (£, v, t)]}

e E Df

) I
2 | U= +v2  V.b)E }=—
ov m the ¢ dt

(A.1.18)

coll

vp
(E+—2)xb (A.1.19)

where, gle(g,t) =
en

W o

and

e 1l "
kie = - — — (Vne vthe) xb f
eB n

|
[

Cc

2
.curl b)b Vs fe

—~
1o

eB

[u)]

i
= 2
(b x VB)vZ, £

eB B &

o

- — v2 (b x (curl b x b))f
o= - =""Te
eB

cm véh £ i
+ curl (B ———22_ % (A.1.20)

eB

Using standard vector identities it is convenient to rewrite Ele
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cm f
e e
1—C_Le = ;g_ {v (fe v%he) - LV (ne v?:he) }—=13xpb
e
c m véh vﬁ
+—= B f {(1-—= ) (bx (eurl b xb))}
eB vihe
c Te f v:
- fe[(Vln(—e)x§)+(1,-—)(}gx(cur113xg))]
eB n v2
e the
= fe Cle tx; Voo t) (A.1.21)
c TE £ vﬁ
where Sl = { (V ln(—g) xb) + (1L - — ) (curl Q)l } (A.1.22)
#g ne vIz:he

It is obvious from (A.I.22) that

! Kig o = ! fa Bl By = @,

Thus the transverse flux Ele does not contribute to particle
transport and hence the continuity equation implied by (A.I.18) is the
same as the usual two fluid equations. Having completed the derivation,

we conclude with a few remarks. The term v2 V.b is an effect of the

the
uB longitudinal force. It is required conceptually as can be seen from
taking the vII de moment of (A.I.18). As shown in Lehnert (1964)
(p.120), this term combines with V.b | fe v: dvn to give the correct

longitudinal fluid equation (parallel momentum). For passing particles,

V.b is negligible, under typical magnetic turbulence conditioms.
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The wvelocity gle(g,t) is the transverse electron macroscopic or
fluid velocity in lowest order. As Lehnert (1964) (p.119) remarks, when
the drifts are small compared with the thermal speeds, the transverse
fluid velocity cannot be taken simply to be the E X B drift velocity.
Since | gle dv" =0, it is clearly a kinetic effect. If we are

interested only in electron transport fluxes in the longitudinal

direction, the v b 1is needed to treat these kinetically and is a

I
dominant effect. The transverse particle fluxes could be legitimately
treated in the fluid approximation. This effectively means that
Ele(z’ Vo t) in (A.I1.18) is replaced by its velocity space average,

i.e. 0. This is clearly a moment closure approximation. The equation

(A.1.18) with gle(r, Vo t) set to zero and V.b = 0 has been used by
us (Haas and Thyagaraja (1987)) in earlier work. In the present work we
retain gle (Egs.(15), (16)). There is no need to write down explicitly
the ion equation as the derivation is the same. In this instance, it may

be worthwhile to carry terms to higher order in Py since klpi £ 0.3 in

TEXT. These finite ion Larmor radius corrections are not discussed. In

Df Df.
any event, with suitable forms for the - s — the present
Dt coll Dt coll

equations generalize Braginskii equations as far as parallel transport is
concerned. They are consistent with, and derivable from (with appropriate
moment closure) either the full kinetic or the Sivuﬁhin form of the drift
kinetic equations (which were shown to be equivalent to the particle drift

kinetic equations by Cheung and Horton (1973)).
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APPENDIX II

The BGK Moment Integrals

Let us first consider the integral

© -x2/
1 - 8 PR (A.11.1)
-2 1 + i Qe L i k. Voeh TeX
The parameters Qe T ku Yorin T OF° real. It is clear that by

simple changes of variable (always permissible since the denominator of

the integrand cannot vanish for real x ) we may write

@ _tz
1 - V2 L (A.11.2)
- 1 + 19872 + ilk'|vothefe/2t
-t2
- var 1 TelTar (A.11.3)
ilkllvothe7e/2 L/2 = t -3
+ i(1l + iﬂere)
where § =
I kl‘vothe're'/2

(I
Clearly Im(}) > 0 for any value of Ik.‘
[
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From one of the definitions (Fried and Conte (1961)) of the plasma

dispersion function, we have the result

- i /or (1418 7,2

z }
° Ikn|Vot:1'ua‘r¢=.‘/2 IkulvotheTeVZ

If we put ne'e = a and lkllv

t)l:lne"rta‘/2 = b

2|/2‘I 7 {i(l"l'lﬂ)} ]
b b

Io(a.b)

From (A.II.1) we also have

k2 2 Lo k

ab

Thus I, can be expressed in terms of the derivatives of Z.

k
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Appendix III

The Response Matrix Elements

The purpose of this Appendix is to derive and list the formulae for

n
] e :
the structure functions 1@ etc. To write these in a compact form, we
e

introduce the following notation:

@ e @ €
S-S I N R
=50 m 10 - m 12
[=-]
s -x2 £ ® 2 e
i . © X2, 8 . ) | Y x% e X2/, & L 5 etc.
- /2_11' 20 =, {2—'_ 22
o ) e ® .2 e
J ﬁe e xz/z 2. - > o We x2 e x /2 EE— - X etc.
Ll m 30 - m 32
@ e [--] 2 e
J ie e-xz/z - 2 . | 2e x2 e % /2 B - Z etc.
- m ho - m 42

From the definitions, the quantities > are evaluated readily in terms

e e —_— e
of the integrals Ik . In order to derive 511. 512, = 39 Al , we

substitute the relations (80) - (83) (taking account of Eq.(65) and (67)

into Eq.(84) and collect terms. We obtain the following formulae:

= J0 =



Se - 1"‘—.2
11 2 10
e
2 = =3
2 10
c T
— oe
;1 = Te
e B
o
+ T

e
A - T v /he 5 471 v /A2
10

1 e ole

Lk { vDthe/?\e i} (2)(

e othe

N =

r

ik

e c T .
im 1 s oe im 1 S

I vothe

v e
l s 51 ole )S

vothe 50

+ 7
A 10 %e B, r A, 20

30

e

e ole Ve 20

£ wce €
y 3z
n vothe 30
e
A2
V€ 40
Vore
-(—) 2
vothe 32
e

s "Il =

(A.1TI1.1)

(A.I11.2)

(A.IT1I.3)

(A.I11.4)

(A.III1.5)

(A.111.6)



o = 'l'e + Te -_——
e B r A 12 e B r A 22
e ve
e
+ T, 1ku ¥ stha > (A.II1.7)
32
e
AZ = Te voue/?\e 2?2 * Te voue/?\ve 232

row
(A ce
* Te { vothe/ke = = A ) } 232

m Vv
othe

* Te(vothe/kve) zzz (A.111.8)
The treatment of the ions is identical. Thus we Start from the linearized
ion kinetic equation (62) and using the same type of variables separation,
derive equations for Wi = Ti/foi . Since ;le is involved, we assume

that the electron kinetics have been determined and re-express Fue in

terms of E§— and Br' This enables the deduction of the ion response

T
oe
i N 5:l
matrix elements 511 etc and finally we obtain — , — 1in terms of
n P
(5 ol
EEL i Br . The rest of the solution proceeds as described in the text.
Toe

The formulae for Sil etc are very similar to (A.III.1)-(A.III.8) except
that the electron velocity fluctuation V'e must now be taken into

account.
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Appendix IV

The Fokker-Planck Approach

As an example of the Fokker-Planck approach let us consider equation

v v
(61) for ¥ . Putting x = — %€ and ¥ =T f , and introducing
e e e oe

v
othe

the (m,n,w) mode notation, we find that @e must satisfy the following

differential equation (in lieu of Eq.(73)).

. cT P’
(i & GE %, bk +ik % . ¥ ¥ + 2 S 90§
1 ol ='—loe I othe e e
r eB P
o oe
1 X - 1 x2
(v + v ) B (—+=—)+¥v, (—+>)
olle othe Ty N ler N N
e ve e ve
P o p'
im oe e 1-x2 e "oe
+ 12 (= %) . = o0
s EBo Poe Rve Ve Poa

~ e r. @w o X

+V.Vle+m—{lk"§-;-—;—5};—-
e othe
2/ vz v
- LG s B, ey
T ox ox
e
P n v n
%—(—e - By ey - R BN By (A.IV.1)
€ Poe no Te vothe nb
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We introduce as before the decomposition

- e =5 e - e = ,e
me = Te{xeAx ¥ YeAY * WeAW + zeAZ} (A.1V.2)

- It is easily seen that the functions Xe, .. satisfy the system

ie
-y 2 52 v
(& (% 8y . %oy v, + ik, v r) Ye
dx dx @ W
A
| & ]
1
xz
-y 2
_— x (A.IV.3)
xa

The co-efficients A: etc. are given by Egs. (80) - (83) except that in

A: and A§ the terms proportional to . are slightly different. It is
T

e
plain that the main difference between the Fokker-Planck and the BGK
approaches is that in the latter, we replace the differential operator

w2
E—{e * /2 9—} by -1 in Eq.(A.IV.3). This equation is solved for
dx dx

specified & 71 _+ kv
e e

r_ by a conservative difference scheme which is
i othe e

carefully chosen to ensure that the conservation properties of the
differential operator is preserved as much as possible. The rest of the

calculation is similar to that described earlier.

s M =






Available from
HER MAJESTY’S STATIONERY OFFICE

49 High Holborn, London, WC1V 6HB
(Personal callers only)

P.0.Box 276, London, SE1 S9NH
(Trade orders by post)

13a Castle Street, Edinburgh, EH2 3AR
41 The Hayes, Cardiff, CF1 1JW
Princess Street, Manchester, M60 8AS
Southey House, Wine Street, Bristol, BS1 2BQ
258 Broad Street, Birmingham, Bl 2HE
80 Chichester Street, Belfast, BT1 4JY

PRINTED IN ENGLAND



