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1. INTRODUCTICN

These series of reports discusses a two-dimensional magnetohydrodynamic
programme cal led THETATRON, which is intended to follow the behaviour of a
p-pinch plasma in the (r,z) plane. The programme, which is written in
Fortran II for the IBM 704, 709 or 7090, and in S1-Fortran® for Stretch
(IBM 7030), is a joint project of the Culham Laboratory and of the Institut

fur Plasmaphysik, Garching.

It is evident that in any real C.T.R. device, at least two dimensions
are required to describe the behaviour of the plasma. This follows from
the use of a (vector) magnetic field satisfying div B= 0, combined with the
finite size of the apparatus. For example in the linear z-pinch or g-pinch,
variables may depend on (r,z) only; in a toroidal device on (r,6) and so on.
Some success has been obtained with approximate one-dimensional calculations
on plasma magnetohydrodynamics{l), in which functions are only allowed to
depend on the radial co-ordinate r, their variation with the other co-
ordinate being regarded as small and therefore neglected. But many phenomena
are known which are strictly two-dimensional; for example end-loss, axial
contraction or formation of closed field loops in the O-pinch, and the
operation of conical plasma guns. Again, in a toroidal devicg it may well
be a poor approximation to neglect variation with the azimuthal co-ordinate
6, since even with (say) a 6:1 aspect ratio the magnetic pressure varies by
a factor 2 across a diameter. Therefore it seems worthwhile to attempt to
extend the numerical calculations to two-dimensional magnetohydrodynamics.
This is especially so because the physical phenomena which occur in two
dimensions are not so easy to understand intuitively or to calculate ana-
lytically as those in one dimension, and at the same time they are difficult
to observe in the laboratory, so that useful information might be gained
from 'numerical experiments' on a computer. (It may also be remarked that
many plasma devices, and virtually all instabilities, involve all three
space dimensions, and if these are ever to be tackled numerically it is

obviously desirable to gain experience with two-dimensional problems first.

% S]1 is a dialect of Fortran written for Stretch by A.E. Glennie and his co-

workers at A.W.R.E., Aldermaston, in conjunction with IBM (United Kingdom).



Also phenomena governed by Vlasov's or Boltzmann's equation may involve from

two to six dimensions in phase space.)

To make the first two-dimensional programme as simple as possible the
linear g-pinch was chosen, since this needs for its description only two
field components (B,,B,)} and two velocity components (v,.,v,). In addition
there is only a single current component jg, which is always transverse to
B so that only the transverse electrical resistivity is required*. The
conical B-pinch gun can be treated as a special case. (The cusp has the
same field, velocity and current components, but would require the present

programme to be re-written).

In formulating the calculation several physical and numerical problems
arise, many of which are likely to appear in any two-dimensional magneto-
hydrodynamic calculation. These problems and the limitations and possible
extensions of the programme are discussed in this part of the report, which
deals with the basic differential equations, boundary conditions and numeri-
cal methods which are employed. Subsequent parts will describe the differ-

ence equations and their programming in more detail and will discuss some

results.

2. DIFFERENTIAL EQUATIONS

This section describes the basic differential equations which apply
throughout the plasnfa, It is assumed that the region of interest is azimu-

thally symmetric about the z-axis, (cylindrical polar co-ordinates being

denoted by (r,8,z)), but its precise shape depends on the boundary conditions,

which are discussed in section 3.

The plasma is supposed to be fully ionised. This is to some extent a
practical limitation, since p-pinches are sometimes operated with incomplete
ionisation at the start of the main implosion, and also the ionisation is
likely to remain incomplete in the two regions beyond the ends of the coil.

But ionisation phenomena are very complicated and it would be unwise to

¥ Compare for example the toroidal pinch, with co-ordinates (r,0,¢).
Although functions may depend only on (r,0), each vector B,v,j has

all three components, and both parallel and perpendicular resistivi-

ties are needed.



include them here until they have first been studied with the one-

dimensional partially-ionised programme which has been written at Culham,

We suppose that the plasma can be described by four variables, density
p, total particle pressure p or temperature T, and velocity v =(Vr, vz) and
the magnetic field by two variables B= (By, By), i.e. six in all. All
functions are to be independent of 0, and Bg,vg are taken to be zero.
Magnetic field lines and particle stream lines are thus confined to (r,z)

planes.

To simplify the THETATRON programme as much as possible, ion and elec-
tron temperatures are taken to be equal, and no distinction is made between
temperatures parallel and perpendicular to the magnetic field. The specific
heat ratio is'% for both species. Heat conduction and energy loss by radia-
tion and ionisation are ignored, (although an empirical formula for energy

loss could be included if required).

In some O-pinch situations it would indeed be desirable to distinguish
between Te and Ti‘ since they can be widely different, and to allow for
energy exchange between them. This is not difficult and is done in the one-
dimensional programme. In the two-dimensional case heat conduction by

electrons along the magnetic field should probably be allowed for.

It is questionable whether one ought also to distinguish between paral-
lel and perpendicular components of the ion temperature, T"’i and Tl,i' All
the radial shock and adiabatic heating goes into T,, while motion along the
lines of force depends on T,. Exchange of energy between these degrees of
freedom by collisions is often quite slow so that one might expect T, to be
much larger than T , but rapid relaxation may occur by some ingtability
mechanism., The introduction of two ion temperatures would make the two-
dimensional programme rather more elaborate, but it can easily be incorpora-
ted into the one-dimensional programme and this has recently been done by
Fisher. Comparison with experiment may eventually show whether any rapid

interchange of energy must be postulated, or whether the two temperatures

are in fact quite different.

The basic differential equations used in THETATRON are therefore:



5}
3§+(x-&7)p=-p2 % (2.1)
ov
p{—:+(x‘2)x}=-vp+_1XB. (2.2)
%% + y-¥p =-vyV-v+ (y - Dpi?, {2.3)
2B . :
5? = -V xE, with E + v x B = pj, (2.4)
VB =0, (2:5]
where
i=2x§‘ (2.6)
We note that
; s : 3B, 8B,
i = (0,jg,0), where jg = -~ (2.7)

In (2.2) and (2.3) certain artificial viscous terms, representing com-
pressional and shear viscosity, have been omitted. These allow for shock
heating and ensure numerical stability, and will be discussed in part II.
Equations (2.1) - (2.6) are expressed in c.g.s. electromagnetic units, except
for the current j, (where a factor 4n has been omitted in equation (2.6)),
and correspondingly the resistivity p. Since only jg # 0, all currents are
transverse to B, and it is appropriate to use Spitzer's formula for the

transverse resistive diffusion coefficient

ML 1.29 log A 13
=== ——%;— x 10 e.m.u. (2.8)
. ..o, (2)
log A is taken to be 10, and T is in K 2
In equations (2.1) - (2.3) we use
1l 9 Vg
¥ =55 (vl + === (2.9)
TR . (2,10

since there is no 6-dependence, and note that

ixB = (jgB,, 0, - jgBy) . (2.11)

This gives the equations to be solved for p, ¥ and p. The magnetic field
equations are obtained by eliminating E from (2.4) and (2.6), and using (2.5),

which gives

B, (yv.VB=-BY )+ (B Vy-F x (i) (2.12)

or in components



aB oB 2B ov av
T z r T T a ;
+ + = - +v - B,—= —=
oB, oB 0B v
— —z o _ 13 —z _ 1 9, ;
at T Vrg, t Vi - Ba (3 ar(rvl.))HE!r = o (prjg) . (2.14)
Equation (2.12) implies
2 . s
= (¥+B) =0 (2.15)
if
V+B =0 (2.16)

Therefore if (2.16) is satisfied initially it remains satisfied for all time.
However it is not obvious that this will still be true when (2.12) is solved
only approximately, by some difference scheme. This question is discussed

in Part II.

3. BOUNDARY CONDITIONS ON THE MAGNETIC FIELD

In a real 6-pinch, the physics is complicated by the fact that magnetic
lines of force run from the hot plasma inside the coil, along the tube into
colder gas, and also through the insulating wall into the surrounding space.
The plasma is therefore coupled, though perhaps only rather weakly, with
cold partially-ionised gas beyond the ends of the coil, with the walls, and
with a 'vacuum' magnetic field extending (in general) to infinity. This
situation is difficult to make physically precise, and correspondingly

awkward to treat mathematically,

The boundary conditions to be used for THETATRON therefore need rather
careful discussion, and we shall find it convenient to use a physical model

which is somewhat different from 6-pinches so far used in practice.

GENERAL PROBLEM

The general class of problem, of which THETATRON solves a special case,
concerns the behaviour of a plasma in an apparatus which has azimuthal
symmetry (so that it is consistent to assume that all functions are indepen-

dent of 6), and in which moreover Vg, Bg are zero. This class includes for

example
(a) Linear 6-pinches, (with and without mirrors),
(b) Conical 6-pinch plasma guns,

(c) Cusps
(d) Multistage compressional mirror machines.



As a matter of fact there is no reason why this type of calculation
should not be extended further to include an azimuthal field BO' (linear

pinch with electrodes, cusp with central rod), or even an azimuthal velocity

Vg (rotating plasma), provided that all functions remain independent of the
co-ordinate § itself. But such extensions will not be considered in this
report.

IDEAL APPARATUS

We first suppose that an ideal apparatus of this type contains plasma
confined within an insulating tube I, whose inner wall is a surface of
revolution about the z-axis 1r =0, defined by the function r =ry(z). (This
function must be continuous but need not be single-valued, i.e. the tube
wall might bend back on itself.) Outside this tube are placed one or more
solid conductors C; as indicated in Fig.l, each conductor being a solid of
revolution. With each C; there is associated an azimuthal e.m.f{. Vi(t) which

may be an arbitrary function of time. The conductors are treated as perfect.

In practice, it is only possible to apply an azimuthal e.m.f. to one of
these conductors by cutting a longitudinal slit in it, and connecting this
slit via leads to a condenser bank for example. However, it is possible,
by means of suitable conducting shields, to make the asymmetric effect of
these leads on the magnetic field negligible in the physically-interesting
region within the tube I, (although precautions of this type are not normally
taken in present experiments), and so we may assume that our ideal azimuthal-
ly symmetric apparatus is logically consistent. Then each conductor C; is
equivalent to a single-turn coil which encircles a flux ®;, varying with
time according to

dd.

- -V, (3.1)

dt
Since B is tangential to the wall of each conductor, the flux &; through
each cross-section of a conductor C; must be the same, (al though different

in general from any other flux Cj).

COMPUTATIONAL DIFFICULTIES

Two difficulties now arise in a numerical calculation, the first being

physical and the second mathematical:
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(i) The interaction between plasma and wall, and also with any
neutral gas which may be present in the tube, e.g. at the

two ends, is not known,

(ii) In order to determine the magnetic field, it is necessary to
solve field equations everywhere outside the conductors C;,

and not only within the plasma, (i.e. within the tube I).
for .example
W. Within the walls of the insulating tube I.

X. Between tube and coil, (if the coil radius varies, as when

mirrors are used at the ends).

Y. Beyond the ends of the coil,

Z, At the back of the coil.
The field lines evidently behave like elastic strings which can transmit
forces from regions W-Z into P, and therefore a full numerical calculation
requires the solution of the 'vacuum' equations

divB =0, Curl B =0 (3.2)

throughout W- Z, in addition to the magnetohydrodynamic equations in P,
This combined insulating region W- Z is of infinite extent and complicated
geometry, which makes it awkward and inefficient to introduce an external
space mésh for solving equations (3.2). 1In addition to this the equations
are elliptic, which means that physical influences can propagate from point
to point with unlimited speed® so that some implicit method of solution is
needed. But implicit methods are time-consuming and difficult to programme
in two dimensions, and it seems unreasonable to have to use them for the
physically-unimportant insulating regions, whilst one can at the same time
use a much simpler explicit method for the plasma itself, (because of the

finite Alfven and magnetosonic speeds - see section 5).

It is probable that this purely mathematical difficulty could largely be
avoided by solving (3.2) with the aid of Green's functions for the insulating
region(3), instead of using a space mesh. DBut there still remains the physi-
cal problem of the end regions E, which are also traversed by field lines

emerging from the plasma, and which presumably contain gas which is only

partially ionised, the degree of ionisation depending on the distance from

* Because the displacement current has been dropped from the second equation

(3.2). But the velocity of light is virtually infinite for our purposes.

- § =



the main plasma P. An accurate numerical solution in these regions E
would seem to require a partially ionised programme, but again it seems
unreasonable to use this degree of complication in the unimportant regions
beyond the ends of the tube, if the main body of the plasma P can be

treated with the much simpler full-ionised equations.

Finally, it is evident that some of the plasma which escapes from region
P along the magnetic field lines will hit the wall I beyond the ends of the
coil at a point such as D (Fig.2), and it is not clear what boundary condi-

tions apply here.

In all three cases, the difficulty is that the physically-interesting
region P is coupled, though rather weakly, with other regions such as W-Z,
E or the wall at D where it is either technically awkward to solve the equa-
tions numerically, or even hard to see physically what is happening at all,
To avoid this problem we have set up a model of the 8-pinch in which the
boundary conditions are much simpler, but the behaviour of the plasma in P

should remain essentially the same.

MODEL USED IN THETATRON

To avoid any insulating region, the O-pinch conductor is assumed to be
periodic and of infinite length, as shown in Fig.3. O03A;Az202 corresponds to
the region inside the coil of the real apparatus. (This might for example
have a mirror at either end, as indicated.) The conductor is assumed to be
symmetric about the midplane 0A, and so only the half-region P need be calcu-
lated. Q represents a region of weaker field beyond the end of the coil,

which is also included in the calculation.

This arrangement excludes Y and Z of Fig.2. To remove X we assume that
the insulating wall I is shaped to fit the conductor, and W is avoided by

supposing that I is only infinitesimally thick.

If r.(z) is the conductor radius, symmetry requires

-
dz
At A and A;. Boundary conditions on the magnetic field are
B, =0 on conductor AAjx
B. =0 on axis 004,

Br =B, =0 on midplane OA,
B_.= =0 on endplane 0;4,.
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Since div B = 0 the total flux ® is independent of z, and it satisfies

do
dt

where V is the voltage applied to the coil from some external circuit.

= -V (3.3)

The magnetic field will on average have a magnitude

B,(z) ~ (ro(2))7%,

and since the magnetic pressure varies as BZ, and forces perhaps as Bz/rc,
the dynamical effect of the magnetic field in region Q on the plasma in P
should be comparatively small, if the radius of the conductor is made suffi-
ciently large at the endplane 03zAz. Therefore the misrepresentation of this

field need not matter too much.

The endplane corresponds to the rather indefinite boundary between
plasma and neutral gas in the real O-pinch. Boundary conditions on p and

p will be discussed in section 4.

4, BOUNDARY CONDITIONS ON DENSITY AND TEMPERATURE

It is assumed that the region P + Q of Fig.3 initially contains plasma
which is fully ionised, and has some density and pressure distribution
polr,z), polr,z) = p (r,z)T,(r,z)
which may or may not be uniform. We normally assume also that the initial
magnetic field has a z-component which is independent of r, and proportional
to (rc(z})-z, although this field is not exactly in equilibrium. (B is

determined from B, by the condition div B = 0).

When the magnetic field at the conducting wall rises, due to the dis-
charge of a current through the coil, the plasma is pushed inwards by the
excess magnetic pressure, and the density in the outer region near the wall
will then become almost zero unless some new plasma is created. Since it is
observed in practice that the region outside the discharge is usually a good
electrical conductor{4), we shall suppose that new plasma is continually
created very close to the wall in such a way that the wall density is main-
tained approximately at or above some minimum value p_. . This newly-
created plasma continually moves inwards as the implosion proceeds, forming

the region outside the main pinch. For inward motion we assume in fact that

(gt + At) = Ppig) = e VI (o (8) - pin) (4.1)



where A is a suitable characteristic length which determines the scale of
the plasma boundary, v is the normal velocity at the wall, At is the time-
step and py is the wall density. This technique, which is based on an idea
of Colgate, Ferguson and Furth(5), has previously been used in the one-
dimensional programmetl). I't has the advantage that the Alfven and magneto-
sonic speeds never become too high, (which would have the effect of increas-

ing the maximum permissible timestep - see section 5).

For outward motion, the coil wall is allowed to absorb the plasma, and

we set

2t = - Y'Y - pyl¥-y), (4.2)
where (E- !) is assigned the value belonging to the point one mesh interval
inside the plasma, and Yp is evaluated by using a one-sided difference

formula,

Various boundary conditions have been tried for the temperature, but it
has been found most successful in the two-dimensional pProgramme simply to

fix the wall temperature Ty at its initial value, e.g. T, = 2eV.

The same boundary conditions on p and T are used for the endplane 0zAz
of Fig.3; i.e. the escape of plasma is treated as absorption by a fictitious
wall. Since the temperature on this plane is maintained at T, the plasma
pressure will be very small, and therefore the plasma will escape freely
almost as if into a vacuum. This is not quite correct because in a real O-
pinch the gas would pile up and resist the outward motion by its inertia; |
however if Oz3Az is some distance from 0zA, the error is not likely to be
serious. The boundary conditions at OA are determined by the symmetry, in

the case of a standard 6-pinch.

In the conical B-pinch both ends are treated alike, i.e. plasma is
allowed to escape. It is clear that in a real device of this kind condi-
tions at the narrow end must be very complicated. Fig.4 illustrates how the
magnetic field lines will be most compressed near the narrow end of the coil
N, while just behind they bend back rapidly so that the field is greatly
reduced, and the shock is directed mainly in the negative Z-direction. (We
assume that the insulating tube is open; if it is closed at N conditions

will be even more obscure.) N is initially the region of maximum plasma

- 13 -
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pressure, but the plasma will rapidly shoot out backwards, since there is
little to prevent this, and either move into weakly ionised gas or hit the

wall,

In using the THETATRON programme to describe a conical 6-pinch we again

make OA a symmetry plane, as shown in Fig.5, so that

dr_.(z)
c
-:0 BI‘=0

dz
This is not unreasonable since in the real device there must be a point near
N where B, = 0. However the plasma pressure will now be always small on the
plane 0A, which unlike 03Az is not very far from the physically interesting
region P, Plasma will therefore shoot backwards at this end as it should,

but one cannot hope to calculate the details correctly.

It would be easier to understand the operation of a conical 6-pinch if
it were constructed as in Fig.6, with a short cylindrical section MN separat-
ing the actual gun region from the open end. Then the boundary conditions

at M would not be so important.

— AXIS

OPEN END

CLM-R 29 Fig. 6 Gun with cylindrical stub.



5. _NUMERICAL _METHCDS

EXPLICIT CALCULATIONS

A time-dependent calculation may be made explicitly or implicitly.

Suppose that we are given functions fi 3 on a space mesh at time t, and

require to find new functions f? . at t + At. In the explicit method, space
’

derivatives occurring in the differential equations are expressed in terms

of differences at t only, and df/dt as
% - f.

af _ i, % (5.1)
dt At
so that we get a relation
* %
£ 5 =kz6 Ay ke fi,e (5..2)
which enables fr . to be found at once. In the implicit method space deriva-

tives are expressed in terms of differences at both t and t + At in

general, and we get a relation

3 (A.. i + A f ) (5.3)
k,&

which has to be solved for f?

¥

The explicit method only allows a numerical influence to propagate a
distance A (space mesh) in time At, and hence the calculation permits a
maximum propagation speed CP = A/At. Physically it is clear that the solu-

tion cannot be correct if this C, is less than the actual Alfven speed,

P
1
2
C, = (B2/4xp)?,
or the magnetosonic speed 2
1
C = _E_ + IE)§
m 4mp P ;

because the interaction of different regions of the plasma cannot then be

treated adequately. Therefore we get restrictions on At of the kind
At < A/C,, A/Ch , - (5.4)

and the timestep will be reduced by strong magnetic fields such as are
commonly used in the 8-pinch, or by low densities (e.g outside the main
discharge). Mathematically it is found that the solution goes unstable if

(5.4) is not satisfied.

Other stability conditions on At can be given a physical interpreta-

tion in terms of the propagation of influences by diffusion (resistive,



viscous), and particle velocity.

The implicit method imposes no restriction on the speed at which
influences can propagate, and correspondingly there is no stability condi-
tion on At. However it now becomes necessary to solve (5.3). In one
dimension (5.3) leads to a simple 3-term recurrence relation which can
readily be solved explicitly by a form of Gaussian elimination(é'a}. This
technique has been used by Hain et al (loc. cit) to solve the equation of

motion, field equations and heat conduction equations in the one-dimensional

Pinch collapse programme. In two dimensions (5.3) can no longer be solved

explicitly, but it is possible to use an alternating direction method(g) in
which (say) the r-direction is first treated implicitly by the Gaussian
elimination process just as in one dimension, while the z-direction is
treated explicitly, and then the two treatments are interchanged. The
Gaussian process stricly applies only to linear equations; in our problem
the equations are non-linear and therefore the solution would have to be

iterated.

Despite this possibility, we decided to use a fully explicit method for

all equations because it greatly simplifies the difference formulae. Unless
the alternating direction technique allows a much larger timestep, it is not
necessarily worthwhile in practice because of the greater complexity and
hence longef computation time for each step. There is a range of problems
involving rapid flow velocities and short timescales for which the explicit
THETATRON programme will be efficient, but eventually it will be necessary

to use an implicit version.

LAGRANGIAN OR_EULERIAN FORMULATION

If a fixed or Eulerian space mesh is used, there is a difficulty in the
treatment of the convective term v . V{ which appears in all equations, It
is not possible to centre this term in the obvious way in an explicit calcu-

. . df
lation, i.e. to express ax 2°s

f, -1, (5.5)
2Ax

Richtmyer quotes a one-sided method by

-
=
g
—
—
1
b—

d

1]

-~ X

because this formula is unstable 7)

Lelevier, which uses



ax T e (v < 0)

; " (5.6)
df  Ti "i-1
iz ———E;——— , (v > 0)

This is stable, but evidently df/dx is being evaluated a distance * Ax/2 from

the required position. Therefore an error term is introduced, so that an

equation
df of
gE T vy (5.7)
becomes
af _ _  af . lvlAx 83%f
ot vV ax o 2 2 (5.8)

ox
Unfortunately this leads to a fictitious diffusion in each equation, which

is often much larger than the true diffusion due to heat conduction or

resistivity. The effect could be reduced by using a smaller Ax, but this is

impracticable in two or three dimensions.

One method of avoiding fictitious diffusion is to use a Lagrangian mesh,
which moves with the fluid, since the term v+ Vf then disappears from the
equations. However this is quite awkward in two dimensions, especially for
problems in which consideraﬁle distortion of the fluid takes place, and so

we decided to retain the Eulerian mesh for simplicity.

It is in fact not difficult to avoid the error term in (5.8), while

still using an explicit calculation. We do this by representing df/dx as

£ w 4y
df i+l i-1 " At Qi (5.9)

o

dx 2A% 2Ax 3t !

where the star as before denotes the value at t + At. (5.9) can be evalu-

ated because f?_ is already known when ft is being calculated,. (and the

1

same applies for any number of dimensions). This technique, which may be

termed the angled-derivative method, is quite convenient because at each

stage f? can simply be written into the store location previously used for

f. .
i

The angled-derivative method is stable, and the amplification factor for
each mode has modulus unity as it should, since (5.7) simply corresponds to
a wave moving with velocity v with no change in amplitude or shape. But it
is now found that in practice the third-order error terms are serious. In

fact for each mode eikx, equation (5.7) is solved approximately in this

- 18 -



difference scheme as

%{ = - v(mgg) g—fc (5.10)

where £ = kAx. For the shortest possible mode £ = = (or A\ = 2Ax), the
factor (Sin E/E) is zero and the mode cannot propagate at all. Other modes

have their velocities reduced.

Another failing of the second-order-accurate angled-derivative method is
that there is now no guarantee that an everywhere-positive function remains
positive, and p, T can in fact become negative unless precautions are taken.
This is not particularly surprising, since equation (5.7) is linear and so
the condition p(x) = 0 has no absolute significance. But the one-sided

method does guarantee p > 0, since it corresponds to linear interpolation,

% _ _ YAt vAt vAt
£ = (1 -—Ax) £, idemoll SIRY (v >0, % 1)

Ad hoc precautions have been taken in THETATRON to keep p, T positive, but

it is not yet clear what is the best thing to do.

A fundamental problem is the following. In magnetohydrodynamics narrow
regions develop where the functions vary quite rapidly; e.g. shock fronts,
current sheaths, plasma boundaries, layers where the magnetic field changes
sign, neutral points where cutting and rejoining of magnetic lines takes
pPlace. In two dimensions it is just not possible to use a uniform mesh with
spacing A fine enough to accommodate these phenomena, since the amount of
computation time varies as A‘3 or A_4. Therefore short-wavelength Fourier

components with A = A have substantial amplitudes, and such components can

never be treated accurately with any difference scheme.

In the case of a shock, the region can be widened artificially by
increasing the viscosity, with negligible effect on the rest of the calcula-
tion. (Von Neumann method, Richtmyer 1957, p.208). It would be desirable
to do something similar for the other phenomena, but it is not yet clear
how. An alternative would be to crowd mesh points into regions of rapid
variation. This is done in the one-dimensional programme, but has not yet

been attempted in THETATRON,.
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