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ABSTRACT

A possible consequence of a severe accident in a nuclear reactor is the
raising of the temperature of structural components beyond their design
range. This report reviews the methods for predicting the response of
structures at high temperature with particular reference to the steel
structures of PWRs and LMFBRs. The fundamental aspects of these methods
are equilibrium, strain/displacement relationships and material
constitutive laws. Of particular interest here is the effect of
temperature on time dependent deformation under stress (creep) and on time
independent plastic deformation (yielding). The analysis methods available
fall into three categories, viz empirical, analytic and numerical.

The empirical method normally involves reducing the three variables
stress, time and temperature to two and is often used in design basis
calculations where its limitations can be accommodated with large safety
factors. Methods of partly overcoming these limitations have been
considered here and this approach offers a useful first step in assessing
the high temperature response of structures.

For simple structures the analytical method gives workable solutions and
all the important phenomena can be included, i.e. temperature dependent
yielding and ductile and brittle creep. Analytical solutions have been
derived here for homogeneously stressed structures (eg a thin sphere under
internal pressure) for general temperature and load excursions. However
the analytical methods become cumbersome for more complex structures.

Finite element, finite difference and boundary element numerical methods
are commercially available and the former in particular can be applied to a
very wide range of structural problems including those likely to be
encountered in a severe accident. These methods do however involve large
computer codes which have some limitations and it is questionable whether
their potential modelling accuracy would be justified here,

The structural materials in LMFBRs and PWRs are mainly austenitic stainless

steels and low alloy ferritic steels. Data for these have been gathered in
generic forms and parameters derived for use in simple constitutive laws,
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1. INTRODUCTION

This review has been done within the General Nuclear Safety of Reactors
(GNSR) Programme to provide background information to help in the study of
hypothetical severe accidents involving nuclear reactors (beyond design
basis accidents). In particular the review has addressed the problem of
determining the response of steel structures in PWRs and LMFBRs operating
at temperatures above that for which they were designed due to, for
example, relocation of molten fuel following a core failure. To predict
the course of such an accident requires structural models which are
realistic rather than conservative and are simple enough 'to be included
with other models to represent the whole accident progression. It is
anticipated that such modelling will require considerable simplification of
the structure, the loads and the temperature profiles. Thus methods of
estimating the errors introduced will be assessed. Structures consisting
of pressure vessels under internal pressure, plates loaded out of plane,
hollow cylinders loaded radially and axially, and simple frameworks will be
considered as representitive of reactor internal and boundary structures.
This presentation of the review has been divided into these four

sections:-

(a) A general examination of the features of high temperature response of
relevant materials and the types of failure mode to be expected

(section 2).

(b) A review of methods of modelling structures at high temperatures

including an assessment of any model limitations (section 3).

(c¢) An assessment of the available materials data for these models. Since
it is likely that data will be scarce in the beyond design basis
region of interest here methods of data extrapolation will be assessed

(section 4).

(d) A recommendation of the models most suitable for use in severe

accident studies (section 5).



2. GENERAL ASPECTS OF THE HIGH TEMPERATURE BEHAVIOUR OF STEEL STRUCTURES

2.1 Introduction

At all temperatures all materials will fail in a time independent fashion
if the applied stresses are high enough. In steels the failure mechanism
can be either brittle fracture or ductile yielding. In the former little
or no plastic deformation precedes failure which takes the form of a crack
propagating across the structure. Ductile yielding however involves
significant pre-failure plastic deformation and structural failures of
this type are characterised by large permanent distortion such as plastic
hinges in bending components or necking of tensile stressed components.

The dominant mode depends on :-

(a) The material and its condition e.g. extensive cold working and

exposure to neutron radiation promote brittle behaviour.

(b) The temperature - low temperatures promote brittle behaviour.

(c) The rate of straining - high rates promote brittle behaviour.

(d) The size of the structural sections and the defects present in them.
Structures with thick sections which contain large defects are

susceptible to brittle fracture.

Brittle fracture tends to be more serious as it results in abrupt failure

of structures with little or no warning and is normally avoided by either:-

(a) ensuring that if brittle failure is dominant then a large safety

margin on failure exists (e.g. by keeping stresses low) or
(b) ensuring that ductile failure dominates.
The nuclear structures in PWRs and LMFBRs are designed on the basis of (b)
[1] which has the advantage over (a) in that even in the event of an

unforeseen overload brittle failure is avoided.

Note that this type of low temperature brittle failure is distinct from the

brittle creep failures which occur at high temperature and which will be
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described below. Both forms occur at small strain but the former is
transgranular, giving a smooth fracture surface whereas the latter is
intergranular and has a 'frosty' fracture surface. In this report brittle

failure will refer to the high temperature form unless stated otherwise.

It seems reasonable in this work that low temperature brittle fracture will
be avoided since we are concerned with accidents which result in an
increase in the structure's temperature which reinforces the ductile
dominance. A possible exception to this, not considered here, is explosive
loading which could possibly promote low temperature brittle failure by
increasing the rates of straining. Time independent deformation and
failure of materials can be illustrated by means of a plot of strain versus

stress at constant temperature (figure 1(a)).

2.2 Creep

For absolute temperatures above about 0.3 Tm’ where Tm is the absolute
melting temperature, metals subject to stress display time dependent
deformation known as creep. If the stress is sustained creep results in
the failure after a finite life of structures that are operating at high
temperature. There are a variety of creep mechanisms and the dominant ones
will depend on the stress and the operating environment as well as the
material and its temperature. Creep induced deformation and failure of
materials is normally illustrated by a plot of strain, ¢, against time, t,
at constant load and temperature (figure 1(b))). Three stages in the
deformation are usually observed. In the primary stage, or stage I, € t?
where n < 1 and the deformation process is similar to yielding where
dislocation movement allows plasticity to take place. This stage is often
ignored in analyses or simply replaced by an initial value of strain. 1In
the secondary stage, or stage II, a dynamic equilibrium between thermally
induced softening and strain induced hardening is reached and € ~ t!, This
stage is also known as the minimum creep strain rate stage. Failure may
occur at the end of stage II or after a subsequent stage III, or the
tertiary stage, in which e t" where n > 1. The transition from stage II
to III may be due to structural changes due to thinning of the creep
specimen or metallurgical changes due to high temperature ageing. The
failure mode can be ductile or brittle according to whether the governing
mechanism in.stage II is power law creep or diffusional flow creep

respectively [2].



Power law creep

This is so-called because the stress dependence of the strain rate is given
by & o" where o is the stress and n a constant. It is due to thermal
activation which permits dislocations to climb over obstacles which would

be insurmountable at low temperature,

In some materials (e.g.low alloy steels) this type of creep has two forms.
In the high temperature form the thermal activation is dominated by lattice
diffusion. In the low temperature form diffusion of dislocation cores
becomes dominant. The two forms result in different stress dependence of
the strain rate i.e € » 0n+2 in the high temperature regime and & o" in
the low temperature regime and hence the boundary between these regimes [2]
depends on stress as well as temperature. It is notable that in high alloy
steels, such as austenitic stainless steels, only the high temperature form
occurs as the alloying components appear to resist movement of the

dislocation cores.

Diffusional flow creep

This type of creep is due to movement occurring at grain boundaries due to
diffusion of matter around or through these regions. Again two regimes are
possible and are characterised by temperature. The high temperature form
is due to lattice diffusion and is also known as Nabarro-Herring creep. In
the low temperature form grain boundary diffusion dominates and this is
also known as Coble creep. Both regions of diffusional flow creep are
characterised by a linear dependence of strain rate on stress i.e. € » o!,
at constant temperature, and only dominates over the power-law creep when

the stresses are low.

2.3 Deformation mechanism maps

The various mechanisms described above can be conveniently illustrated
using these maps. Figure 2 from data in [2] shows maps for stainless steel
type 316 and pure iron. These materials are representative of the
austenitic stainless and the ferritic low alloy steels used in PWRs and
LMFBRs. The maps indicate the dominant deformation modes for the materials
at constant stress and temperature in the virgin state. The ordinate

cs/p is the shear stress normalised to the shear modulus and the abscissa
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is the absolute temperature normalised to the absolute melting temperature
(T/Tm). Contours of constant strain rate are indicated. On the stainless
steel map regions representing (a) the raw creep data used in constructing
the maps, and typical operating regimes for LMFBR components for (b) design
basis conditions and (c¢) possible severe accident conditions. It is
interesting toc note the extrapolations from the raw data necessary to cover
both design and beyond design basis regions. 1In particular for this study
we are interested in the response of materials up to melting but the raw
data exists only for typically T < 0.65 Tm. There is however some raw data
given in [2].for pure iron up to 0.9 Tm which supports the basis of the
extrapolations used in constructing the maps at least to this point.

These maps can be used to estimate the variation of yield stress with
temperature providing the variation of the shear modules, p, or alterna-
tively the variation of Young's modulus with temperature is known. Young's
modulus falls steeply with temperature as the melting point is approached
and the actual value at melting is sensitive to the extrapolation used.
Moreover the extrapolations cannot be checked since there are no data
beyond T = 0.9 Tm. This is an important point here since the failure mode
- melting versus yielding - may be sensitive to the meodelling and if this
is the case reliable results cannot be obtained. The uncertainty in the
value of Young's modulus at melting can be gauged from the data given in
[2] and [3]. From [2] these values divided by the room temperature value
are v 35% for stainless steel and 13% for low alloy steels. From figure 3

based on data in [3] the corresponding figure is < 5% in both cases.

It may seem at first sight that the materials data base could be usefully
extended to avoid extrapolations into the high temperature region. However
the impracticality of performing the necessary measurements can be demons-
trated by considering the measurement of say the yield stress of 304 stain-
less steel at 1000°C (0.75 Tm). This would require an applied stress of
some 50 MN/m? which would result in creep deformation of » 1%/minute at
this temperature which would swamp the measurements of yield deformation.
Measurement of the Young's modulus is somewhat more practical however at
these high temperatures since it can be inferred from velocity of propaga-
tion of elastic waves. It is interesting to note that extrapolations into
the design basis region are also commonly required but for the opposite

reason i.e. design basis creep rates are likely to be so small (typically



less than 1% strain in 30 years) that measurements over practical test

timescales are not possible.

2.4 Types of Failure at High Temperature

The maps of deformation processes described above can be supplemented by

maps which give details of failure modes. Fracture-mechanism maps [4 and

5] use the same axes as before and indicate failure modes of specimens
tested assuming that load and temperature remain fixed throughout the test.
Figure 4(a) is a map for 304 stainless steel from data in [4] and is
qualitatively typical of austenitic stainless steels. Contours of constant
time to failure (c.f. contours of constant strain rate on the deformation
maps) are shown. An alternative form of the map is reproduced in figure
4(b) where the normalised stress is plotted against time with isotherm
contours. Note that the boundaries between failure modes are not always

abrupt and in some cases mixed failure modes can occur.

These maps exhibit many features of the deformation maps but give important
additional information due to the results representing the whole specimen
life rather than the initial deformation excursion. In particular dramatic
changes in cross-section occur prior to failure in some regions and long
term changes in micro-structure sometimes occur due to prolonged exposure
at high temperature. Both of these effects are absent in the deformation
maps. The failure modes relevant to stainless steel and other face
centered cubic (f.c.c.) metals are ductile fracture, trans-granular creep

fracture, inter-granular creep fracture and rupture.

Ductile Fracture

This corresponds to the yielding region in the deformation maps which
starts with deformation due to dislocation glide and proceeds by voids
nucleating at inclusions which then elongate and finally link as the
intervoid connections shrink due to the specimen necking. In the case of
cylindrical specimens the voids link into sheets which give the
characteristic cup-and-cone fracture surface. This surface is fibrous and

trans-granular.



Trans-granular Creep Fracture

This mechanism is initiated by creep deformation when T Y 0.3 Tm and
progresses through void nucleation and growth in a similar way to ductile
fracture. There are differences however due to (a) stress levels being
generally lower which may delay nucleation and (b) diffusion which may
influence void growth. However the fracture surface and ductility are

similar.

Inter-granular Creep Fracture

At lower stresses and higher temperatures the creep mechanism is dominated
by diffusional flow at grain boundaries and this leads to growth of voids

there which ultimately link causing inter-granular fracture. This failure
mode is characterised by low ductility (i.e. very little specimen necking)

and long times to failure compared with trans-granular creep fracture.

Rupture

This occurs when necking is able to progress until the specimen cross-—
section has shrunk to virtually zero. It really represents a structural
(i.e. specimen dependent) rather than a material failure and occurs when
all other modes are prevented due to suppression of either void nucleation
or void growth. It commonly occurs in f.c.c. metals at high stress and
high temperature which allow dynamic recrystallisation to occur and this
suppresses nucleation. This process occurs during forging. It also occurs
at high temperatures if dissolution of precipitates, such as carbides in

304 stainless steel at T > 0.75Tm, removes the void nucleation sites.

2.5 Applications to this study.

These maps can be very useful aids to understanding the behaviour of
structures at high temperature but the following restrictions should be

noted:-

(a) The deformation maps give information only about the initial

deformation changes for material in its virgin state.



(b) The maps generally relate to constant load, constant temperature tests
on uniaxially stressed tensile cylindrical specimens since these are used

to generate the bulk of creep data.

The effects of variations in temperature and stress experienced by real

structures can however be accommodated by using a cumulative damage law.

This states that failure will occur when:-

t
[ at/e (om = 1 (2.1)
(o]

where tf(o,T) is the failure time measured in a constant stress o, constant
temperature T, test but is assumed to hold for cases where o and T vary
within a single test ([6] and [7]). Note that normally in creep tests the
load is kept constant and the stress increases as the specimen necks, but
as this occurs towards the end of the specimen life the effect on te is
minimal. This law is derived from the assumption that the rate of change
of some parameter which characterises damage, e.g. strain, depends only on

time through the variation of stress and temperature i.e.:-

€ = f(o(t),T(t)) (2.2)
and e(fail) = constant (2.3)

Integrating this from € = 0 to e(fail) and putting tf(o,T) = e(fail)/f(o,T)
gives (2.1). Robinson [8] discusses this assumption and gives some
evidence of support from experiments on steels but note the following

restrictions:-

(a) If the excursions of stress or temperature cross a mechanism boundary
the form of the damage will change and the law will be invalidated,
although clearly if the damage in all regions except one is minimal the

error will be small.

(b) The form of equation (2.2) changes if unloading takes place and so
the law cannot be used in the form above if stress or temperature varies
cyclically (fatigue loading). This should not affect the present study
however since a severe accident would normally result in monotonic

variations and failure would occur, if at all, before unloading started.



The law can also be used to extrapolate creep data to high temperatures
provided the form of f(o,T) or tf(c,T) for the whole of a region can be
determined from tests in one part and the extrapolation does not cross a
mechanism boundary. The Dorn form of the creep strain variation with
temperature [9] provides a convenient and commonly used way of doing
this:-

€ Vv exp(-Q/RT) (2.4)

where Q is the activation energy and R the universal gas constant. The
constant of proportionality and possibly Q will vary with stress but this

variation can be determined at manageable temperatures.

Effect of test specimen

The maps are based on cylindrical specimen tests which have uniaxial and
homogeneous (up to necking) stress systems and in general cannot be

rigorously applied to other structures. In particular:-

(a) Deformation geometry influences the relation between deformation and
stress. In some structures the stresses reduce initially as deformation
proceeds (e.g. a flat plate loaded out of plane) whereas in the tensile

creep test the stresses are independent of deformation until necking.

(b) Inhomogeneous stress systems can result in a different type of failure
mode. For example a ductile beam loaded in bending cannot fail by necking

- it merely distorts into a tight curve or hinge.

(c¢) Multiaxial stress systems (e.g. a sphere under internal pressure)

influence the behaviour but these can be related to uniaxial tests. This

will be described in section 3.

Thus in all but the simplest cases the interpretation of creep tests to
real structural behaviour involves a separate analysis which has three
stages. Firstly a constitutive law which allows strains to be computed
from stresses and any other relevant parameter must be deduced from the
tests. Secondly the appropriate failure criteria must be developed and
finally these must be incorporated into a model of the structural
behaviour. There are many ways of applying these stages and these will be

described in detail below. However even at this stage two very important
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conclusions can be drawn from the creep data for steels and the associated

maps which are pertinent to the present study:-

(a) A severe accident which increases the structure temperature will make

ductile failure more likely even if the stresses also increase.

(b) A critical time exists below which brittle creep failure cannot occur

at any temperature or stress and this failure mode can thus be excluded

from studies of brief events. This time is "~ 5 hours for 304 stainless

steel and ~ 15 hours for pure iron.



3. MODELLING OF STRUCTURES INCORPORATING HIGH TEMPERATURE BEHAVIOUR

3.1 General features.

Any analysis to determine the response of a structure to applied loads

involves four stages:-

(a) Equilibrium. For static or quasi-static responses of structures the
internal stresses, Gij’ must be in equilibrium with any internal body
forces, fi’ and any surface tractions. In cartesian co-ordinates, X,

these are given by three equations [10]:-

+ f. =0 (3.1)

(b) Strain displacement relations. For homogeneous displacements u, of a

continuum there exists a strain tensor, Eij’ which characterises the state

of deformation of real solids and is related to the displacements through
[10]:-

1 aui auj 1 auk auk

572 Gx; ") Yz ox, St
3 i i i

Note that Eij is independent of the rigid body components of displacement
and that the off-diagonal terms used in [10] have been multiplied by % to
make € a tensor. Equation (3.2) is valid for arbitrarily large
displacements in Lagrangian co-ordinates but the displacements themselves
cannot be arbitrary - they must satisfy continuity. A small displacement

approximation is given by dropping the second order terms. The strain

tensor must satisfy the following compatibility conditions [10]:-

8%e,, Bley, 5 8%e,, 8%ey, 3 ?531 +8€12 8¢, ) et
+ = ————e— . = - etc.
2 2 ’
3x, ax 9x,9x%, . 9x,3x, ax, dx, 8x, ox, (3.3)

Note there are other definitions of large displacement strain such as the
natural (or logarithmic) strain which will be used in sections 3.2, 3.3 and

the appendix.

(c) Constitutive law. This relates stress to strain and any other

relevant parameters e.g. strain rate, é, temperature, T, and time, t. 1In

._ll_



the case of uniaxial stress this can usually be expressed by a function

which in principle can be determined from uniaxial stress tests:-

€ = f(o,¢,T,t, etc.) (3.4)

In some cases, e.g. creep recovery, the strain may depend on the history
of the previous loading and the function f(..) will then involve a
convolution integral. Also the form of £(..) will in some cases depend on

whether the material is being loaded or unloaded.
When multi-axial stress systems are encountered it is not practical to
extend the function f(..) to cover all possibilities so theories have been

developed to relate multi-axial constitutive laws to uniaxial tests.

Multi-axial constitutive laws

The simplest constitutive law is based on linear elastic behaviour which
characterises many materials deforming at low temperatures with small
strains. This is known as Hooke's law:-

o, . AT) (3.5)

Opq = Digapa Bpy = Mg
where Dijkl is the matrix of elastic constants and aij are the expansion
coefficients. These can be made temperature dependent if necessary. In
severe accidents however we are concerned with materials that do not obey
Hooke's law because at high temperature materials become weaker, the
elastic limit may be exceeded and time dependent deformations may occur.

I.e. we must consider plasticity and creep.

The constitutive law for non-elastic behaviour was originally formulated
for the case of pure plasticity but the same derivation has subsequently
been applied to combined plasticity and creep (see for example [11]). The
law stems from Druker's postulate - "the work of any additional action on
the displacement that it produces is non-negative for a closed cycle".
Although similar to, this is not related to, the laws of thermo-dynamics.
In effect it asserts the existence of materials which are stable when
loaded and dissipate energy when subjected to non-elastic deformation. The

postulate can be expressed as:-
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= *
$ (0j5 = 055%) deg; 20 (3.6)
where oi.* is the initial stress state. By suitable choice of integral

path it can be shown that:-

.20 (3.7)

where the strain has been separated into elastic and non-elastic

components

e..=¢e..S+e. D (3.8)

From these it follows that (a) the non-elastic strain increment, deijn.
is normal to the surfaces oijeij = constant, (b) these surfaces are convex
and (c) that a potential & exists such that:-

de..” = 3¢/00. . (3.9)
1] 1]

In general ¢ will depend on the stress, oij' the material properties and
the other parameters which characterise the material in the uniaxial case.
The potential, ¢, is related to the dissipation of energy which is a scalar
and can only depend on the three scalar invariants of the stresses
(Oii’oijoij'cijgjkcki)' Normally in plasticity theory the equivalent
invariants o, Oy 6 are used so that:-

¢ = d(o, O 9) (3.10)
o= L o (3.11)

3 Tii ’

2_3 21 .3 , ,
B =2 %j %q "~ 2% %¢" 2% uy 3120
_ 2 _ 265~1Tm

o, =0+ 30 cos [6 3 ] (3:153)

Here o0..” is the stress deviator o.. - 1 6.. O (6.. is the kronecker

ij i3 3 7ij "kk "Tij

delta tensor) and o, are the principal stress components. Physically o is

the mean or hydrostatic stress, o, is proportional to the maximum shear
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stress on the octahedral plane (ie the plane making equal angles with axes
parallel to the principal stress directions, figure 5(a)) and 6 is the
angle in this plane between the direction parallel to the maximum shear
stress and the intersection with the 1 axis. It is commonly observed in
metals that non-elastic deformation is incompressible which implies that
the dependence of ¢ on o can be ignored and that the ¢ = constant surfaces
in principal stress space are co-axial with the line o, = 0, = o, and can
thﬁs be conveniently plotted on a plane perpendicular to this line (m

plane). See figure 5(b).

Two main theories have been developed to account for the dependence on the
remaining two invariants and in both cases these have been reduced to a

single scalar on the basis of experimental observation [11].

In the Von Mises theory ¢ = @(00) and the ® = constant surfaces are
circular cylinders perpendicular to the m plane and intersect the o,, o,
plane in an ellipse. In the St. Venant theory (or Tresca theory for the
purely plastic case) @ = ¢(cog(8)) where:-

g(e) = %3 cos (8 - %) % <8< %E etc. (3.14)
Here the ® = constant surfaces are regular hexagonal prisms which intersect

the 0,,0, plane in an irregular hexagon (figure 5(c)).

The theories are based on the premise that the magnitude of the non-elastic
deformation is governed solely by either the shear strain energy density
(Von Mises) or the maximum shear stress (Tresca). A review of experimental
evidence in [11] indicates that the Von Mises theory is slightly more
accurate but the difference between the two is small and any errors in
either case are likely to be small in comparison with others in the
analysis of real structures. The choice between them is thus normally
based on ease of application. In this work the Von Mises theory will be

used unless stated.

The uniaxial deformation can now be related to the multi-axial case using

the Von Mises theory:-
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n_1 d¢ .
deij = 200 doo (30ij 6ij Ckk) (3.15)
= S S SR < g
where doo = f(3 deijdeij) = deo

These are known as the Prandtl-Reuss flow equations. In the uniaxial test

o = 0,, and the significant strain increment , de_ = 2 de so that
o o 3 11

measurements of €, and o, under the appropriate conditions give the

required data.

{(d) Failure criteria

The stages above define the structural problem in sufficient detail
for solutions to be obtained, at least in principle. In the cases of
interest here these solutions will be in the form of time variations of
displacements, strain and stress. It remains to decide when failure is
deemed to occur. At high temperature this is most likely to be due to a
ductile instability or brittle creep as described in section 2. The onset
of a ductile instability can be found from the solutions by the condition
€ or 0 - » and this has been demonstrated in the examples in the appendix.
There will be a stage beyond this condition in which the structure actually
fails by rupture or ductile fracture but this normally occurs very quickly
after the instability starts and no attempt has been made to model this
here. The onset of brittle creep failure must be examined by other
criteria. One method uses a damage parameter (Kachanov method) and will be

described in detail in section 3.3.2.

3.2 Empirical approaches

It is clear from the above that analysis of even moderately complicated
structures at high temperatures is likely to be very involved. Also the
material data available to the analyst is likely to be associated with
short time tests which may need to be extrapolated for design basis studies
to service conditions lasting many years. For these reasons, approximate
methods of estimating the response of creeping structures have been
proposed. These are based partly on theory and partly on experimental

observations and provide very useful tools for obtaining rapid estimates of
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structure performance. For design basis calculations these are often the
only methods used since the errors associated with the approximations can
usually be accommodated by use of conservative design safety factors.
However even for severe accident studies these methods are also of interest

if only as a preliminary to a more involved analysis.

The methods involve reducing the three primary independent variables (viz.
time, temperature and stress) to two so that certain creep conditions e.g.
creep rupture, can be presented on a single graph. The raw data for the
methods are normally based on creep tests performed at constant temperature
and constant load. The validity of the subsequent extrapolations to
structures in which the temperature and load may vary are discussed below.

There are three basic assumptions to the methods:-

(1) There are two types of independent creep deformation and failure viz.

ductile or brittle.

(2) A simple analytical form of the constitutive law for the creep strain

for each type of deformation exists. i.e.
éc = g(o0,T,t) where g(..) is of known form, (3.16)

(3) The product of secondary stage creep rate and time to failure is

approximately constant independent of stress and temperature, i.e.:-

éc tf = constant = €* say (317
The third assumption is based on experimental observations but also has a
theoretical basis and is illustrated in figure 6(a). It implies that the
strain at the end of the secondary stage of creep where the strain rate is
approximately constant depends only on whether the deformation is ductile
or brittle. A simple theoretical basis for this in the ductile regime at
constant temperature was demonstrated by Hoff using a simple power law form

of the creep law and ignoring plastic deformations (e.g. [6]), i.e.:-
(3.18)

where B and n are constants. The time to failure, Les is given by:-
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€f
b = J de/(Bc") (3.19)

€
o}

For a round bar in tension undergoing constant volume deformation and using
the natural strain formulation gives de = dl/1 = - dA/A where A is the

cross—sectional area and 1 the length of the bar. Thus:-

Af n-1 n
g 155 = J = &7 daze 27) (3.20)
A
o
where P is the tensile load on the bar and is assumed constant. Ao and Af

are the initial and final cross-sectional areas respectively. If purely

ductile failure occurs then Af << Ao and thus:-
te = (AO/P)n/(nB) = (né(t = 0))-1 (3.21)
This corresponds with (3.17).

When the failure is brittle the strain at failure is governed by the
accumulation of deformation at grain boundaries which precipitates failure
when these boundaries have deformed by an amount dependent only on the
grain size [12]. Hence for a given material and grain size the strain at
failure is constant, and since the strain rate will be approximately
constant at constant stress and temperature in the non-ductile regime,
(3.17) follows directly. Note however that the creep strain at failure is
not always constant since the secondary stage in the ductile regime will be
followed by a third stage in which the strain rises steeply. A plot of

creep strain to failure versus failure time for steels would normally be as

shown in figure 6(b).
The form of the function g(..) determines the method and more than 20 have
been proposed [12]. Some of these have been examined in [11] and details

of four are given below.

Larson-Miller. This is the most commonly used correlation and is based

on:-—

. Bo-Q
€. = A exp ( RT ) (3.22)
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where A, B and Q are material constants. From (3.17) and (3.22) it follows

that:-
T [C + log(tf)] = p = F(o) (3.23)

where C is a constant, t_ is conventionally measured in hours and F(o) is a

linear function of o. pfis known as the Larson-Miller parameter and by
suitable choice of the constant C can be used to characterise creep failure
of many metals by plotting p against o or log(c). C for steels is in the
range 16-24. Figure 7(a) shows a Larson-Miller plot for austenitic
stainless steel from data in [13] and is typical of many steels. The two
straight portions of the plot represent ductile failure (at high stress or

low p) and brittle failure (at low stress or high p).

Manson-Haferd. These authors proposed a similar method to Larson and

Miller's but included an additional constant to give more flexibility with

the following expression:-

T - Ta
log(tf) i log(ta)

= F(o) (3.24)

where Ta and tf are constants,

Manson-Succop. This correlation is given by [12]:-

CT + log (tf) = F(o) {3.25)

C is a constant. This correlation has been examined by Clauss [14] who
found it gave better results for steels than Larson-Miller. In particular
Clauss noted that Larson-Miller correlations produced a small but definite
systematic error since points of short life always lie above the
correlation and those of long life always below it. Figure 7(b) and 7(c)
from data in [14] illustrate this using data from Timken 35-15 stainless
steel. This is an important point here since the Larson-Miller
correlations appear unsuitable for use where large extrapolations from the

raw data may be required.

Orr, Sherby and Dorn. This method is based on the Dorn form of the creep

strain equation:-
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¢ = (0/0 )" exp(-Q/RT) (3.26)
where oC,Q and R are constants. From (3.26) and (3.17) it follows that:-

* -
tf exp (-Q/RT) = 6 = ¢ (G/UC) n (3.27)
The Dorn parameter, 6, can be plotted against ¢ as for the Larson-Miller
case. Figure 7(d) and 7(e) from data in [11] compare Larson-Miller and
Dorn correlations for stainless steel and indicates the superiority of the

latter for this material.

Use of empirical methods in severe accident studies.

When applying these methods to severe accident studies the following

limitations should be noted:-

(1) The methods are usually aimed at design basis conditions and in
particular the raw data used may have been obtained at only moderate
temperatures. Higher temperature data may result in different constants in

the correlations.

(2) The methods of predicting failure are based on constant load tensile
specimens in which the stress remains constant until either necking takes

place or brittle failure occurs.

In a design basis calculation this second point would not normally be a
limitation since the deformation of the real structure should be small over
its design life. 1In a severe accident however large deformation may

precede failure and the stresses may alter considerably.

This can be illustrated by considering the static ductile failure of the
four types of structure shown in figure 8. The creep tension specimen is
shown in figure 8(a). The axial load P increases linearly with axial
deflection, u, until this becomes so large (? specimen length) that the
cross-sectional area reduces significantly and the specimen necks., P

reaches a maximum value and failure follows,.

The cantilevered beam in figure 8(b) shows similar behaviour initially but

now the stresses change through the thickness and necking cannot occur. A
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plastic hinge forms at the root of the cantilever and the structure
continues to deform, without reaching a maximum load, until some other

mechanism takes over, e.g. transfer of the load to another structure.

The built-in beam of figure 8(c) is also similar to case (b) for small
deflections as P ~ u for small u but when D < u < L where D is the depth of
the beam the behaviour changes. The stress system transfers from the
bending case of (b) to the membrane case of (a) due to geometrical
stiffening afforded by the axial constraint. For u L thinning of the

section occurs and a maximum load is reached as in case (a).

For some structures this geometrical non-linearity can be of opposite sign
such as for the Euler strut shown in figure 8(d). Here a drop in stiffness

occurs at moderate deformations. This is known as buckling.

These four types of behaviour have counterparts in structures formed from
plates and shells. For structures operating at high temperature these
deformation stages can be traversed at constant load due to creep and
ductile failure will occur at similar deformations to the static cases
above. However if brittle creep is dominant failure may occur at an

earlier stage.

It is thus evident that the nature of the large deformation behaviour of
the structure must be considered when analysing severe accidents which from
the points discussed in section 2.4 would be expected to result in ductile

failure.

3.3 Analytical Models.

3.3.1 Introduction

In this section the methods available for analysing structures which
exhibit creep and permit analytical solution are reviewed. By analytical
solution it is intended to include methods which generate solutions
requiring simple numerical methods to compute the actual results, but not
methods using numerical techniques a priori. These will be covered in
section 3.4. It is necessary first to categorise the analytical methods
according to the type of structure being analysed, the nature of the loads

and the types of solution generated. Here we consider bars, beams,
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plates, shells and axisymmetric solids. From these components most
practical structure can be produced. Analytical solutions for general
solid structures not covered by these are very rare even without the
complication of creep and with such structures only numerical methods can

be used.

The next categorisation that must be established is whether the structure

is statically determinate or indeterminate. This depends both on the

structure and the nature of the loads. In a determinate structure (e.g. &
bar in tension) the internal forces or stresses can be determined solely on
the basis of equilibrium with the externally applied loads, whereas in an
indeterminate structure (e.g. a beam built-in at both ends) application of
equilibrium alone leaves a certain number of unknown forces (or moments)
which can only be found by considering the compatibility of the structure

and its supports.

A third categorisation must be made as to whether the solution which is
generated will be steady state or transient. Steady state solutions are
much simpler and apply to cases where the loads and the stresses are
independent of time. The material must be deforming in the secondary creep
regime where the creep strain increases linearly with time and thus the
strain rate (and hence the stresses) are time independent. This is a
somewhat restrictive class of solution but actively pursued in most texts
on creep because of the simplicity of the steady state solutions. In
particular structures such as plates loaded out of plane will show
different behaviour for small and large deflections due to geometrical
non-linearity as discussed section 3.2 and this excludes a steady state
response. Also the third stage of ductile creep, where the stresses

increase due to reductions in cross-sectional area, cannot be included in

steady state solutions.
3.3.2 Bars

In structural terms a bar is a prismatic body loaded at its ends to produce
an homogeneous stress system. Only tensile loads will be described here.
Compressive loads eventually lead to distortion which destroys the stress
homogeneity - this is known as creep buckling and will not be covered here
although the methods described below can be extended to cover this

phenomenon. A bar in tension is the simplest structure to analyse and it
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is possible to include all the important effects due to creep, some of
which have to be abandoned or simplified in other structures. It is
necessary to assume however that the stress system remains homogeneous.
Thus when necking occurs due to failure as a result of ductile creep the
homogeneous solution ceases to be valid, but many important results can be
obtained from the solution up to this point. In particular the
combinations of load, time and temperature to failure can be predicted and

the pre-necking deformation.
To illustrate this consider a material with a constitutive law given by

superposition of a time independent plastic strain EP, and a time dependent

creep strain €.

1 uls =g, (0,T) + €. (o,T,t) (3.28)
If the length of the specimen is x, with an initial value X then the
increment in strain caused by an increase in x is given by de = dx/x
(natural strain). Hence allowing for large deformation:-

e = Qn(x/xo) (3.29)

From the condition of incompressibility, the cross-sectional area A, with

initial value AO, must satisfy:-
XA =X A (3.30)
oo
Hence A = Ao exp(-e) and the true stress, o, is given by:-

o =0 exp(e) (3.31)

where o - L/Ao is the nominal stress, i.e. the load, L divided by the

initial cross-sectional area. Hence if the temperature, T, is constant

i o=k (—cl;——E) (3.32)

Once the dependences of plastic strain and creep strain rate with stress
are known this equation can be integrated to give the stress (or strain)

variation with time:-
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o e
t=f S a-o0R (3.33)
o (o]
(o]

€ O
c

Typical solutions are illustrated in figure 9(a). The special case

described by Hoff is generated by ignoring the plastic strain (i.e.

€_ = 0) and assuming a power law for the creep strain rate i.e.
g o \n
€. = B (oc) (3.34)

This gives a solution for the strain which tends asymptotically to infinity

as t approaches tH where:-

-1 (¢c,n
t, = (c ) (3.35)

A more realistic response can be obtained by including a plastic strain

term based on another power law i.e.:-

g .m g .\n
€ = (G_) + I B (‘E“) dt (3.36)
P c

This gives a solution which is illustrated by curve 1 in figure 9(a).
Beyond point D the solution ceases to be valid as & < 0 implies unloading
and equation (3.36) is only valid while loading occurs. In fact point D
represents the onset of necking because small variations in cross-sectional
area will mean that this point is reached first at one particular section
of the rod, the deformation then becomes unstable at this section (& -+ =)
and the necking process takes over. This will occupy very little

additional time and so the failure time is given closely by the time at D,

tD where:-
m mn/m %.n mm %0 . m
tD = tH [1- pe— ( E;) e (E;_) ] (3.37)

This analysis assumes that failure is dominated by ductile creep. A means
of analysing situations in which brittle creep behaviour is possible was
formulated by Kachanov. The method is described in [7] and is based on the
hypothesis that ductile and brittle creep occur as independent mechanisms.
This is justified by the fact that brittle creep failure is due to the

accumulation of internal voids at grain boundaries which at least to a
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first approximation should be independent of the ductile creep process
which involves movement within the grains. The mechanisms can however be
linked indirectly by the applied stresses since ductile creep can cause
reductions in cross-section which increases the stress, which in turn can
affect the brittle response. Kachanov considered the brittle creep voids
as a reduction in the load carrying area of the structure and introduced a

damage factor D where :-
D = (A-Ar)/A (3.38)

A is the apparent cross-sectional area, with initial value AO, and Ar is
the reduced area representing the material remaining when the internal
voids are taken into account. D=0 corresponds to material undamaged by
brittle creep and D=1 corresponds to brittle creep failure. It is now
necessary to model the variation of D with time and in the simplest model

proposed by Kachanov this becomes:-

b _ ¢ 5"

= m (3.39)

Note that the stress o, is still the load divided by the apparent area
which is consistent with the ductile analysis, and the term o/(1-D) is the
load divided by the reduced area which is assumed to govern the progress of
brittle creep as reflected in equation (3.39). C and v are material
constants which would be determined from constant load, constant
temperature creep tests performed in the brittle regime such that the
change in A is negligible.' In such cases the stress, o, is constant and

equation (3.39) can be integrated from D=0 to 1 and t=0 to t to give:-

B,

")

t. = (1l +v)-1C-t o (3.40)

B
The combination of brittle and ductile creep behaviour can now be modelled
for the case of a bar in tension. To illustrate this here we will only
consider creep strain, the fuller case where plastic strain is included
gives similar results and is given in [6]. Using the results from the
example above the stress variation with time in the absence of plastic

deformation can be shown to be:-
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t -1/n

o — — —
= = L= )] (3.41)
o H
Substituting this into the Kachanov equation gives:-
dD _ ey ™M Yoo _oE 0 VN
it (1-D) COO (1 (tH)] (3.42)

Separating the variables and integrating this from D=0 to 1 and t=0 to thp

where tye is the time to brittle failure taking into account ductile stress

changes gives:-

t (n-v)t -
BY o g T = By (3.43)

This result is valid provided brittle failure occurs before ductile
failure, i.e. the failure time tf = tBD’ provided tBD <-tH, otherwise the
failure is ductile and tf = ty- The dependence of failure time on initial
stress, O_ is illustrated in figure 9(b). The form of this curve is
commonly observed in experimental results (c.f. figure 7(a)) which normally
exhibit two regimes, a ductile one at high stress with doo/dtf small and a
brittle one at low stress with doo/dtf large. Note that for ductile
failure the brittle and ductile components do not interact, the Kachanov
equation serves only to establish the limit of ductile failure, but in the
brittle regime the solutions interact and tBD is different from the pure
brittle failure time ty although these converge asymptotically as g = 0.
This absence of interaction has also been verified experimentally by
'aging' materials to near failure in the brittle regime. The ductile
failure performance of these materials, from further tests in the ductile

regime, was then found to be comparable with 'unaged' stock [12].

The methods illustrated here for analysis of bars can be generalised to any
structure with an homogeneous stress system such as thin walled tubes or
spheres under internal pressure. It is also possible to include the
effects of temperature changes in time which influences the creep and
plasticity material properties. These general solutions are described in

the appendix.
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3.3.3. Beams

The simplest case of a structure with a non-homogeneous stress system is a
beam under pure bending. When analysing beams analytically the assumption
that plane sections remain plane as the beam deforms is almost invariably
used. This is sometimes known as the St. Venant hypothesis. This
considerably simplifies the analysis and appears to give accurate results
provided the beam is thin compared with its length. This hypothesis has

equivalent formulations for thin plates and thin-walled shells.

The simplest creep solution that can be obtained for a beam is the steady
state statically determinate solution. In this case the bending moment in
the beam is a known function of position (i.e. M=M(x)) and the stresses in
the beam are a time independent function of the strain rates which are also
time independent (i.e. o = s(€)). From the St. Venant hypothesis plane
sections must remain plane and hence the displacement and the strain must

vary linearly across the beam. Thus:-

k is the curvature of the beam and y the distance from the neutral axis.

The bending moment, M is given by:-

M=/ ys(ky)dA (3.45)
A

Here A is the cross-sectional area of the beam. Once the form of the creep
law and the shape of the beam cross-section have been specified this
equation can be integrated. For power law creep (eguation 3.34) and a

rectangular beam of depth d and width b this gives:-

no_ .,.
(M/Hn) = K/Kn (3.46)
where Hn = nbdzoc/(4n+2) and kn= 2B/d. B was defined in equation (3.34).

Thus given the bending moment distribution M(x) it is possible to determine
the change in curvature and hence the deformed shape of the beam. For the

cantilevered beam shown in figure 9(c):-
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M(x) = P.(2-x) (3.47)

and if the deflection is not too large so that dw/dx << 1 then k =d?w/dx?
and
3 o
83w _ [P(R x)]n (3.48)

3x23t n- M
n

This can be integrated using the boundary conditions w=dw/dx=0 at the

built-in end at x=0 giving

n+2, P \n (1-(/0))"H2 x 1
Mn) CEh @2 T T @i (@2 (3.49)

The term in square brackets indicates the shape of the deformed beam which
grows linearly with time. Note that this shape is in general different
from the corresponding elastic case which would be given by putting n=1 in
(3.49). This type of analysis can be readily extended to include initial
elastic and plastic deformation which would simply appear as an initial
deflection to be added to w from (3.49), but plastic and elastic
deformations which change with time are excluded. It is possible to
ineclude variations of material properties and temperature with x and t
provided the variables can still be separated and the integrals above
performed analytically., Thus non-steady state solutions including ones in
which the load varies with time can be generated. However the material
must always be deforming in the linear region of the creep curve and the
onset of ductile failure cannot be modelled with this approach. The

deflections simply increase until the solution becomes invalid.

Property and temperature variations through the thickness cannot be so
easily accommodated unfortunately because these would influence the
position of the neutral axis and invalidate equation (3.46). If it known
that brittle failure is going to dominate then this can be analysed by
independently applying Kachanov's equation. From this the damage factor D
can be computed over the beam and the D=1 surface, which will start at the
outer fibres where the stress is largest, found and its progression through
the beam computed. Failure will occur when there is insufficient material
left to prevent plastic collapse. The failure mode appears as a crack on

the tensile stress surface and propagates into the body of the beam as
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shown in figure 10(a). This case was analysed analytically by Odgvist

[71.
The reader should note that from this point the analytic analysis becomes
much more complicated hence only the basic equations are given below.

Fuller details can be obtained from the references quoted.

Statically Indeterminate Beams.

These cases are most conveniently analysed using the creep potential
described in section 3.1. This can be generalised from stress/strain rate
systems to moment/curvature rate systems [11]. Thus a potential & per unit

length of beam, can be defined such that:-

. _ 80
R = 2 (3.50)
For power law creep ¢ is given by:-
K_M
_ M . ntl n'n
o(M) = (ﬁ;) T+l (3.51)

The potential for the whole beam & can be found by integrating ¢ along the
beam length. To do this it will be necessary to include the redundant
actions (which could be moments and/or shear forces) as unknowns. In this
form the problem is identical to that of non-linear elasticity and the
corresponding variational theorems can be used here. In particular it is
possible to apply Castigliano's theorem [15] which relates a generalised

deflection rate (or rotation rate) g, to the corresponding action Q:-

g e £3.52)
The redundant actions Q,,Q, etc. would normally correspond to zero
deflection or rotations (e.g. a beam built-in at both ends)

and thus:-

— =—=¢tc =0 (3.53)
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This will yield a set of non-linear equations from which the redundant
actions can be found. The methods used in the statically determinate cases

can then be applied to give the deflections throughout the beam.

Axial Force Cases.

When an axial force N, is present it is necessary to introduce the
extension, €, of the beam centerline. The St. Venant hypothesis can still

be applied and thus:-

N=_ s(é + ky)da M = 1) s(&_+ ky)ydA (3.54)
A A

The neutral axis is now located at the point o A where €, + ﬁyo =0. A
major problem now arises in analytical analysis since these equations
cannot in general be decoupled to give éo and k as functions of N and M.

However two approximations are commonly used to overcome this.

In the first it is assumed that ¢ is a function of a single parameter R
which has an assumed dependency on N and M. R is chosen so that when the

axial force is absent R=M and the pure bending case is given exactly. From

equation (3.50):-

. _ do 3R
R = 4R oM (3.55)
Similarly
. _ d¢ 3R
€ aR BN (3.56)

For power law creep ¢(R) is given by:-

M
_ (R ntl ., n
¥R = GO Ry T (3.57)

In [11] it is shown that the best approximation is obtained when

k2N2d2 n/ (n+l)

4 (3.58)

vhere k = [—2=]

R, o= 0 )
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This also gives exact results for the case M=0.

In the second approximation the decoupling of éo and k is achieved by
replacing the real beam by a beam of "ideal I section" See figure 10(b).
The section consists of two infinitely thin flanges separated by a web
which carries the intersecting force but does not participate in the
bending and axial extension. The flanges each have a finite area equal to
half the real beam area and the flange separation dI' is chosen to give the
best approximation to the creep behaviour of the real beam. This
idealisation means that the stresses are uniform in each flange. If these

are o and o, then:-
u 2

N = A M= Ad {3.59)

For a rectangular beam of depth d, and for power law creep, the power
dissipations for the cases M=0 and N=0 can be made exact by choosing:-
n ]n/(n+l)

de. =d =

1 Intl (3.60)

For power law creep the extension and curvature rates are given by:-

g;o = % [IN"+ M| n-1 (N'+ M) + |N"- M'l“'l (N"=- M)] (3.61)
L R e O I R ' Ll S ' I E WP
i

where N'= N/(Boc) and M° = 2H/(BdIOC).

An example which can be solved by these methods is illustrated in figure
11(a). Note however that the solution can only be obtained by direct
integration of the equations above when the moment due to the axial force
itself is small compared to the other moments. In the case shown in figure
11(a) this implies that Nw << qf . This ceases to be valid at large

deflections and the problem becomes geometrically non-linear.
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3.3.4. Geometrically Non-Linear Cases

Geometrical non-linearity seriously complicates the analytical treatment of
creep problems because the ratio N/M changes with deformation. It is
possible however to obtain solutions in some cases by making appropriate
approximations. The example shown in figure 11(b) is described in detail
in [11] and the main features of the method are given below. The structure
shown is a beam fully built-in at both ends so that as the lateral
deflection develops due to the load g, the beam must stretch axially and
this produces an axial force. The solution is facilitated by using the
ideal I section model, by assuming that n=3 (although other odd values of n
can be used) in the creep power law and by assuming a particular form of

the deflected shape i.e.:-

w = c(t) sin (mx/1) (3.63)

The extensional strain and curvature rates are:-

& = BNTL(N)Z + 3(M)7) & = 2%5; [3(N°)2 + (M7)2] (3.64, 3.65)

The kinematic relations including the necessary non-linear term are:-

82w du 1 9w
= — = — — —) 2
& ax? €o ox * 2 (ax) (3.66, 3.67)

The bending moment M which is given by (Nw + qfx - gx?/2) is approximated

by the first two terms of a Fourier series:-

2
M= Nw o+ 12380 sin (X (3.68)

Substituting the expressions for k, €, and M into equations (3.64, 3.65)
gives:-
GD2 e sin B =B (1 - o) (B2 + (1 - N2 sint (F) sin (B

sin? (%5) sin (E%J (3.69)
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.a_ﬁ' E 2 = 2 E{ — ‘ ‘Y2 - ‘ = H

ax T () c¢ cos (77) = BN"((N")? + 3(1 - cN"? sin? () (3.70)
These equations can be integrated in x using the weighting function
sin(mx/?) in the first and noting that u = o at x = 0,8 to give:-

d

(3D & = B (1-eN) (3(N)2 + % (1-cN’) 1) (3.71)

(%%)2 cé = BN (2(N")2 + 3(l-cN°)2) (3.72)

These non-linear coupled equations in c¢ and N° can now be numerically
integrated in time to give the solution which is illustrated in figure
11(c). Rabotnov in [11] was able to show that this solution converged on
the separate solutions valid for either small or moderately large
deflections which gave support to the approximations used. Note how the
axial force, N’ increases with time as the lateral deflection develops as
expected but then reaches a maximum before approaching an asymtotic value.
In fact the behaviour at very large deflections becomes inaccurate because
of additional non-linear terms in the kinematic relations which were
ignored above. This example serves to illustrate the complicated nature of
analytical solutions to creep problems particularly those associated with

geometrical non-linearities.

3.3.5 Axisymmetric Solids

Practical structures in this category are typified by thick-walled
cylinders and solid discs under radial or tangential axisymmetric loads and
their analysis is possible using analytical methods since only one space
variable is involved i.e. radius. The general methods will not be
described here but one of the examples analysed by Rabotnov [11] may be of
use in evaluating approximate methods. In this he considers the failure by
creep of a rotating solid disc using three methods to evaluate the expected
failure life., The results are compared with a series of test

measurements,

The stress distribution in the disc is statically indeterminate and changes
with time making life prediction difficult. However because the problem
has only one space dimension an "exact" solution is possible within the

limitation of small deflections (in this case this means that the
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deflections must be small compared to the radius and that the transverse
strains should be small so that significant thinning does not occur). In
the approximate methods the stress distribution is assumed constant with
time and corresponds to either (a) elastic behaviour or (b) ideal plastic
behaviour. In case (b) this corresponds to a limiting case of power law

creep where n -+ @, and the stress distribution is simply Oy = constant.

The results of all three methods were compared with the experiments by
using the maximum stress predicted together with a cumulative damage law to
predict creep failure from standard uniaxial test results on bars. The
"exact" method gave good results, typically within 5% of the experimental
results. The plastic approximation gave reasonable results (within 30% in
general), and for very ductile creep failures where the limitation of small
deflection was violated, was comparable with the "exact" method. The
elastic method gave the largest errors in general (predicted stress up to
1.9 times too high) but, as expected, gave reasonable results (within 30%)

when the failure mode was brittle creep.

3.3.6 Plates and Shells

Only a very limited number of analytical solutions exist for creep of plate
and shell structures. The basic problem arises from the nature of the
creep potential function ¢ described in stress and strain rate terms in
section 3.1. To have any chance of analysing plates and shells it is
necessary to formulate the function ¢ in terms of the plate or shell stress
resultants i.e the moments Mij and the membrane forces Tij’ where i=1,2 and
j=1,2 correspond to orthogonal directions in the plane of the shell or
plate. The alternative would be to consider the problem as a general solid
and deal in terms of individual stresses throughout the thickness of the
plate or shell which would result in impractical spatial variations.
However the resulting function ¢(Mi,, Tij) exists in six dimensional space

]
for which only certain regions have known solutions.

It is instructive to note here that a similar problem arises in pure
plastic analysis of plates and shells but there it is usually only required
to find the collapse load i.e. the combinations of Mij and Tij which lie
on the ¢ = constant surfaces, the exact form of the deformation i.e. the

direction of the normal to the ¢ = constant surfaces, is of secondary

_33_



importance. Limits on this collapse load can be readily found by bounding
¢(Mij,T.j) with simple surfaces from within or without to give lower and
upper bounds respectively. By contrast in the creep problem the initial
target is normally to predict the deformation rates which reguires
knowledge of the true ¢ surfaces. Thus analytical solutions are only
possible for specific combinations of Mij and Tij and even these usually
involve some numerical integration of the resulting equations. To

illustrate this two important cases taken from [l1l] are described below.

Creep of a circular plate in bending

In this case a plate loaded normally and axisymmetrically is considered in
which the creep deformation is steady state and the deflections are small
(in this case less than the plate thickness) so that the in-plane membrane
forces, Ti" can be ignored. Thus Mij and Tij reduce to a radial moment

Mr’ and a circumferential moment Me (M_, = 0 by symmetry), which for a Von

T8
Mises multi-axial creep theory must obey:-

M_ = (4/3)QH /& )[R+ % ¢,) (3.73)

My = (4/3) QU /%) [k + 3 k] (3.74)
M2 = M_P o+ M- MM (3.75)

koz = (4/3)[kr2 + kez + krke] (3.76)

K. and Ky are the radial and circumferential curvatures respectively and

the kinematic relations are:-

=

¥ =53 & (3.77, 3.78)

H [
o-lm
o]

w is the normal deflection and can be eliminated to yield the compatibility

condition

S (rk) - k=0 (3.79)
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The eguations of equilibrium are:-
& (M) -M +1N_=0 (3.80)
dr r ] T ’
-2 (rN_) + qr = 0 (3.81)
dr T '

Nr is the shear force in the plate and q the distributed normal locad. Thus

the seven unknowns M_, M, M , K K , K,, N_ can be found by integrating
T & "o o e T

with radius, r, the seven equations above and applying the appropriate
boundary conditions. Note that this gives a universal solution, i.e.
independent of material creep law. This is a common feature of steady
state creep problems [1l1]. However the interpretation of the solution in
terms of deflection etc. requires the creep law and its parameters to be
inserted a-posteriori. For example the central deflection rate w for a
freely supported plate of radius b and thickness d under a uniform load gq

and made from a material obeying power law creep with n=3 is given by:-
w=0.87 x 10-3 (Bd2/32b)(qb2/Mn)3 (3.82)

Creep of Moment-free Axisymmetric Shells

This example represents an important class of structures in which solutions
to the creep problem are practical since the resultants Mij’ Tij reduce to

a meridional force N,, and a circumferential force N,. See figure 12. The

equations of equilibrium are [11]:-

1 2
I - sin (8) + q, = 0 (3.83)
N, N,
R_1 + R_z + qn =0 (3.84)
R, = — ds/df is the radius of curvature in the meridional direction and R,

1
= r/Cos(8) the one in the circumferential direction. 9, is the pressure

normal to the shell surface and q the traction along the meridian. If the
1
deflections are small the equations above are linear in N, and N, and can

be solved to give:-
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_ 1
N, = - fcose

r(qn sinb + q, cos@)ds

N, = - (R,/R,)N, - qun (3.86)
This direct solution for N, and N, reflects the fact that axisymmetric
moment-free shells are statically determinate. The kinematic relations

are:-
€, =—-— 4 €, = % (u sin® - w cos8) (3.87,3.88)

€, and €, are the meridional and circumferential extension strains
respectively and u and w are the corresponding deflections. Using the
creep law in the form € = énv(o/cc) and applying the Von Mises theory for a

shell of thickness d, gives:-

&, = & VN /(do)) NN, J/N_ &, = & v(N /(do ) [N, MN,1/N_
(3.89,3.90)
where Nz = N2 + N2 - N,N, (3.91)

Thus the strain rates can be found and the corresponding displacements

computed from:-

R

e ez)ds/cose (3.92)

u=cose [ (e, - 3
1

w = uTanb - R,e, (3.93)

It should be emphasised that the solutions obtained in this way are only
valid while the deflections are small compared to the radii of curvature
and while the shell thickness remains sensibly constant. Thus the full
analysis of a large deformation ductile creep failure would be impossible
with this method.
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3.4 Numerical Methods

3.4.1 Introduction

It is evident from the previous section that structural problems involving
creep are very difficult to solve analytically. This, together with the
advances in recent years of computer hardware has prompted the development
of many numerical methods which are capable of handling such problems. The
methods fall into three categories viz. finite difference, finite element
and boundary element methods. In the finite difference method the basic
equations describing the deformation of the structure are expressed in
equations which are solved by discretisation in terms of the co-ordinates
of the mesh nodes. In the finite element method the structure is divided
into a set of elements interconnected at a FINITE number of nodes. The
displacement is approximated by analytic functions within each element and
the problem is expressed in terms of the nodal displacements. In the
boundary element method a similar set of elements is produced but the
structural equations are expressed in terms of functions on the surface of

each element.

The methods were all originally developed for linear structural problems
but many versions are now available which support non-linear features in
particular the effects of large deflections and material non-linearities of

plasticity and creep.

It should be noted that all the methods require large computer codes which
may be difficult, or even impossible, to interface with other codes which

may be used to model the non-structural parts of severe accidents.

Although increasing in popularity the boundary element method is still very
little used at present and has not been considered further in this study.
The finite element method is by far the most popular at present, mainly
because it permits a much wider choice of structure shape and topology to
be modelled compared with the finite difference method. However this
generality comes at the expense of certain limitations in the behaviour of
some elements which can lead to errors if incorrectly used. Thus finite
difference codes still have a role to play and one major code (BOSOR) is

described below.
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All the methods use the basic principles described for the analytical
methods in section 3.1 i.e equilibrium, compatibility and a constitutive
law, although the equilibrium condition is commonly expressed in an
equivalent variational form. Generally the methods involve large computer
codes which in most cases have been developed by specialist organisations
on a commercial basis. Thus the user would not normally have access to, or
detailed knowledge of all aspects of the method, but he must be wary of
any limitations which may not always be advertised by the code developers.
In particular for severe accident studies the potential user of any
particular code must bear in mind the following points before undertaking

an analysis:-

(1) The types of structure that can be analysed.

(2) The form of the creep or constitutive law used and what temperature

variations are permitted.

(3) The form of the strain/displacement relations used and whether these
include the appropriate non-linear terms to account for effects such
as out-of-plane stretching and transverse thinning of plates and
shells.

(4) The compatibility of the results presented with the appropriate
failure criteria so that a failure as well as a creep analysis can be

performed if desired.

3.4.2 Finite Difference Code BOSOR

BOSOR (Buckling Of Shells Of Revolution) is a series of codes that have
been developed by Bushnell [16] initially for buckling analysis of thin
shells used in the aerospace industry, but for more general applications in
later versions. The code represents the displacement of shell structures
using a finite difference mesh in the meridional direction together with a
Fourier series in the circumferential direction. This semi-analytic
approach restricts the analysis to axisymmetric shells (non-axisymmetric
loads are permitted but only for linear analyses) but is otherwise very
general and has been widely used and verified against experimental results.
Of particular interest here is the version BOSOR5 which includes the

effects of large deflections, plasticity and creep.
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The creep law used in BOSOR5 is of the form:-
¢, = Bo't, (3.94)

Here B, m and n are material constants and te is an effective time which
can be used to allow the strain rate to exhibit time hardening or strain
hardening behaviour. Putting n=0 gives the simple power law creep used in
the analytical analyses above. To allow for temperature variations in time
and space it would be necessary to vary the parameter B accordingly. This
does not appear to be a feature of the version described in [15] but

could, in principle, be easily coded.

Equilibrium is expressed by the equivalent Principal of Virtual Work
[15] g

oU = {01 (e - e, - e~ eg) [DI{be)aV = oW (3.95)

U is the shell strain energy over its whole volume V and W is the work done
by the external forces. e, Ep' €. and € are the tdtal, plastic, creep and
thermal strains respectively and D is the elastic stiffness matrix. If the
N degrees of freedom of the finite difference mesh are q; then for
equilibrium:-

fte —e -e . -ed D) av - -0 (1=1,2 3.0

P 9 8y (3.96)

This gives a set of non-linear equations in qilwhich are solved iteratively
in BOSOR5 using the Newton-Raphson method. The mesh can have nodes both
along the meridian and through the thickness of the shell so that the
progress of any plasticity through the structure can be fully modelled.

The St. Venant hypothesis is used to reduce the total strain variation
through the thickness to four components viz. membrane extensions and
curvatures in both directions. The strain compenents in equation (3.96)
are expressed in terms of the displacements by assuming that (1) the creep
and thermal strains are independent of q; and can thus be treated as
initial strains and (2) the plastic strains are determined by the "tangent
stiffness" method which allows the plastic strain to be determined from the

slope of the plastic stress strain curve (assumed to be in the form of a
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get of experimental points g o). The tot2l strzin includes non-linear

p,
terms which allow for out-of-plane stretching and should allow for
transverse thinning although the latter was not represented in the examples

given in [16].

To obtain the solution the loads or time steps are applied in increments
and a "subincremental" method is used. Thus each load or time increment is
divided into a set of subincrements in which the plastic and creep strains
can vary while the load is held constant. This increases the reliability
with which problems involving non-linear plastic and time dependent
material behaviour can be solved and greatly reduces the number of load
increments and the computer time needed for satisfactory results.

Compared to the finite element codes described below BOSOR5 is a
relatively small code (v 10000 program lines) which could be adapted to

interface with other programs.

3.4.3 Finite Element Methods

It is not possible here to describe the finite element method or the codes
(of which some 500 now exist) based on it in any great detail. Attention
will be restricted to a brief outline of the method and the codes and any
aspects of particular relevance to severe accident studies. Further

details can be obtained from the theoretical text by Zienkiewicz [17], the
relevant user and theory manuals, and the review of general purpose finite

element codes by Fong [18].

The equilibrium of a structure can be formulated by considering its

potential energy ¢ which is given by:-
=U-W (3.97)

U is the strain energy and W the work done by the external forces.
Equilibrium occurs when ¢ has its minimum value which becomes a variational
problem when, as in the finite element method, U is an integral of unknown
functions. U is expressed in terms of nodal displacements, 4. and the

displacement field within each element.

Each element displacement field is described by functions (known as shape

functions) and the values of q; at the nodes attached to that element.
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These shape functions are simple analytic functions, commonly polynomials,

which can be integrated using Gaussian quadrature to give U in the form:-
T
U= %{qi} [K]{q,} (3.98)

[K] is the stiffness matrix and in the simple linear elastic case the

solution is given by:-

T .
(g7 = [KI-2(Q;) (3.99)
Here Qi are the forces applied at the nodes.

The method is very versatile and can, in principle, be used to model any

structural problem. However limitations do exist, and the user should be

particularly aware of:-

(1) The choice of shape function can affect the solution and some
elements, notably plate and shell elements, can give spurious results
in certain cases. If in doubt, it is necessary to perform element

tests to check for convergence, compatibility and stability.

(2) It is easy, particularly with the automatic mesh generators now
normally used, to generate a well defined problem which cannot be
solved because it would be impractical due to excessive requirements
of either computer core storage, disc storage or processor time. This
is particularly true for non-linear problems and a rough check (based
on the anticipated band-width and number of load increments etc.)

should be made of the likely computational resources needed before

proceeding.

It is clear that quality assurance is important in connection with these
analyses and an organisation NAFEMS (National Agency For Finite Element
Methods and Standards) has been set up to assist in this [19]. 1In
particular NAFEMS have produced a set of bench-marks for testing the
methods although at present these are limited to linear cases. Culham is a
member of NAFEMS. Also in connection with this problem research into

a-posteriori error analysis is underway, which if sutcessful should provide
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ematiec yay of checlking whether the solution obtained from a finite

element analysis is correct.

Some aspects of the codes which are likely to be of interest here are

described below.
PAFEC (PAFEC Ltd., Strelley Hall, Strelly, Nottingham NG8 6PE)

The development of this code started at the University of Nottingham in
1965 and since 1976 has been continued by PAFEC Ltd. The code is widely
used in the U.K. and is the only finite element code currently available on
Culham computers. The code includes a creep law which can be expressed as
a general function of the form éc = f(o,t,e) using a user supplied sub-
routine, but general temperature variations cannot be easily accommodated -
only element to element variations in the creep constant are allowed. It
has a comprehensive range of elements and geometrically non-linear and
plasticity as well as creep problems can be solved. Unfortunately no two
of these can be combined within a single analysis and thus the code is of

limited use for the present study.

The following codes have all been developed in the USA, are used worldwide
and include general purpose facilities notably large deformation,

plasticity and creep.
ANSYS (SASI, Johnson Road, P.0O. Box 65, Houston Pa 15342)

This code has been developed since 1972 by Swanson Analysis Systems Inc.

It is aimed mainly at the nuclear industry and is very popular because of
its user-friendliness although some limitations have been found in certain
elements. One general relevant limitation here is that it cannot be used
for large strain analysis. This means that whilst large deformation can
be modelled, such as out-of-plane stretching of plates and shells, if these
result in large strains the method is invalid and cannot be used for

example to model the effects of cross-sectional thinning or necking.

ABAQUS (Hibbitt, Karlson and Sorensen Inc., 35 South Angell Street,
Providence, Rhode Island 02906)
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This is a relatively new code developed since 1979 mainly for the oil and
nuclear industries., It is a powerful code, rapidly becoming popular, and
is currently available on the CRAY2 at Harwell. It includes
fluid/structure interaction which may be of use in severe accident studies.
It does not appear to have any limitations which would restrict its use
here although examination of the user manual indicates that the general
non-linear material facilities cannot be used with general shell elements -
only axi-symmetric shell elements. It has automatic load incrementing
facilities and user defined subroutines for non-linear material

properties.

ADINA (ADINA Engineering Inc., 71 Eiton Avenue, Watertown, Massachusetts
02172)

This was developed by Professor Bathe of M.I.T. in 1976 for generalr
applications and is now marketed by ADINA Engineering Inc. It has only a
small element library, although this should not be a limitation here, and
includes fluid/structure interaction. It is aimed at the more academically
orientated users who in the past have obtained the source code and adapted

it to suit in-house facilities.
MARC (MARC, 260 Sheridan Avenue, Suite 314, Palo Alto, California 94306)

MARC has been developed since 1971 and is aimed at the nuclear industry.
It appears to have no limitations of particular relevance here although it
is not as widely used as the other codes. It does have user defined

subroutine facilities for non-linear material properties.

Before using any of the codes in a severe accident study it would be
necessary to compare facilities offered at the time (since the codes are
continually developing) with the requirements of the study, in great
detail. In particular the limitation found with PAFEC, with which the
author is familiar, concerning permitted temperature variations may also

exist in other codes.
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4. MATERTALS DATA

It is not possible here to provide comprehensive data for all the materials
under all appropriate conditions. Firstly there would be logistical
problems, secondly not all the existing data is available in the open
literature and finally some regions of interest here are of no concern in
the design basis conditions which largely dictate what material tests are
done. Thus the intention here has been to present "generic" data which can
be used in a wide range of severe accident studies. Then if necessary
individual studies could be refined by using data more closely matched to

specific examples or from data generated especially for this work.

In particular all the data given below are for unirradiated materials. It
is known that neutron irradiation influences the mechanical properties of
all materials in ways that depend on the neutron dose and on the
irradiation temperature - in some cases the behaviour is complicated and
difficult to quantify. Notably the creep ductility of structural materials
is reduced by prolonged exposure to neutron irradiation and this may
influence their high temperature failure mode in a severe accident [20].
Thus the material properties needed to analyse a severe accident which
occurred towards the end of a reactor's design life may be different from
the non-irradiated properties below which would correspond to a severe

accident early on in a reactor's design life.

The reactor components of interest here are the reactor vessel and the
internal core supports. In an LMFBR the operating temperature is high (up
to 650°C) but stresses can be kept relatively low since the internal
pressure is small (<1 MPa). For these reasons, and because of their
corrosion resistance, austenitic stainless steels are used for both vessel
and internal structures. The types used are AISI 304 or 316. The internal
structures of a PWR are also made from these materials (304 in the case of
Sizewell B) primarily because of corrosion resistance. The high internal
pressure (15 MPa) in a PWR however demands a stronger material for the
pressure vessel but one which only needs to operate at a relatively low
temperature (<320°C). For these reasons ferritic steels are used here
(AISI 508 series) which derive their high strength at moderate temperatures
from a precipitation of carbides of the minor alloying constituents (e.g.
Cr,Ni,Mn or Mo). Water-side corrosion resistance is achieved by cladding

the inside of the vessel with a thin layer of stainless steel. The bottom
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head of a PWR is penetrated by instrument tubes which may play a part in
the course of a severe accident. These are manufactured from Inconel (type
ASME SB166 or 167 (also known as Inconel 600) in the case of Sizewell B)
containing 15% Cr 8% Fe and 75% Ni.

From section 3.3 it was noted that a reasonable model of material behaviour
at high temperature can be obtained from simple constitutive and damage

laws :-

m
L}

(c/op)m + [ B(c/oc)ndt (4.1)

an/dt = [o/(1-D)1" o, ¥t (1+0) (4.2)
Here o_, B and o, are temperature dependent, and o, and v are temperature
independent, material properties (tk is introduced to simplify the units in
the damage equation and here ty = 3.6x10% seconds). The temperature
variation of B can be fitted to the Dorn equation described in section 3.2

i.e.:-
B = exp(-Q/RT) (4.3)

T is the absolute temperature in Kelvins, R is the universal gas constant
(8.314x10-3 kJ/mole.K) and Q the activation energy which characterises the
creep process. In table 1 a tentative list of these parameters is given
for 304 and 316 stainless steels, a generic low alloy ferritic steel and
Inconel, based on data obtained from the references cited in the table.

When applying these parameters the following points should be noted:-

(1) The choice of parameters for the stainless steels and Inconel is made
relatively simple since these materials exist as single phases over
all temperatures up to melting. This partly accounts for their
suitability for design basis use at moderately high temperature

(<1000°C) and hence the abundance of creep data on them.

(2) By contrast the ferritic steels used in PWR pressure vessels undergo a
phase change at 700-800°C (a~7y) and are not designed for use above
600°C. This is below the creep range and thus very little creep data

exists on these steels. The parameters quoted in the table have
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(3)

(4)

(5)

he ferritic steels 1%Cr-Mo-V and 2¥%%Cr-1%Mo
which are well described in [2]. This approach seems justified since
for temperatures above the phase transition, which is the region of
primary interest here, all low alloy ferritic steels loose their
intrinsic "low temperature" strength. Their properties then become
similar to pure iron in its y phase and it is from this material which
the data in [2] has been derived for low alloy steels at high

temperatures.

The variation with temperature of the 0.2% proof stresses (P.S.) has
been based on an assumed constant scaling factor between it and the

dynamic fracture stress, , which is given for all temperatures in

o

DF —
[4] or [5]. The value of cp is given by inserting e_ = 2x10 - (i.e.
0.2%) and o = P.S5. in the plastic power law i.e.:-

(op)m = (P.5)™x 2 x 10° (4.4)

The brittle creep properties are based on the measurements of O at
the temperatures indicated. For 304 stainless steel the property of
the similar grade 321 has been taken and the low alloy ferritic steel
in the o phase is based on the 1%Cr, 0.75%Mn, 0.35%Mo, 0.25%5i, 0.15%C
alloy in [6]. The variation of Ok with temperature has been modelled
by comparing the brittle creep failure time, tys based on the

assumption t éc = €*, a constant (see section 3.2) with the failure

B
time given by the Kachanov model (see section 3.3) i.e.:-

tp = €X(€ )71 = (l+v)-1 C1 oo'“ = tk(ok/oo)“ (4.5)

B

It is further assumed that éc follows an exponential variation with
temperature i.e. éc = A o, exp (- QB/RT) where A is a constant and QB
is the activation energy for brittle creep taken from [2]. Hence

Op = %o exp (+ QB/URT) (4.6)

where %o is a constant.

The values for o, have been obtained by fitting equations (4.1) and
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(6)

(7)

(8)

(4.3) to data given in [2] or [6].

The values for m and v are based on the approximation given in [6],

i.e. for many materials m = 0.9 n and v = 0.7 n.

In the absence of complete data on Inconel 600 the activation energies
Q and QB are based on pure nickel, and n is based on Nimonic 75 which

has similar properties to Inconel 600;

All data are based on materials in their annealed condition with the
exception of the low alloy steel which in the a phase is heat treated

to give it characteristic strength at moderate temperatures.
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5. RECOMMENDATIONS

Four approaches are summarised below which can be used to estimate the

response of a structure in a severe accident.

ical Approach

This is the simplest possible method and can be used at an early stage in a
severe accident study to estimate the response. Its accuracy may be in
doubt and would normally be checked by a more lengthy analysis undertaken

later. The inputs to an empirical approach are:-

(1) An estimate of the temperature and loads on the structure and their

time/space variations.
(2) The relevant material data.
(3) An estimate of the stresses in the structure.

The stress estimate should be made and processed in two ways. Firstly
fully elastic behaviour can be assumed. The stresses can then be
calculated using standard techniques. The creep life of the structure can
then be estimated from stress/temperature/life correlations and a
cumulative damage law as described in section 2.4. This is essentially the
classical design basis approach, recommended in the design codes, and is
usually associated with creep correlations based on the Larson-Miller
parameter. Here however it would be more appropriate to consider using
the Manson-Succop or the Dorn parameters. The possibility of the structure
surviving the accident (i.e. creep life longer than accident duration) and

the possibility of failure by melting should be included.

The consistency of this approach should then be checked by estimating the
strain at failure from either the constitutive law or a deformation
mechanism map for the material. The map should also be used to check that
the analysis has not been invalidated by crossing of mechanisms boundaries
during the accident. If the failure strain is small then the stresses will
indeed have been elastic and the method consistent. - The definition of
"small"™ will depend on the nature of the structure, and for example would

correspond to deflections out-of-plane being less than the thickness for a

_48_



laterally loaded plate or built-in beam. Small strain creep failures
correspond to low stresses and long exposure times to high temperatures
where brittle failure is to be expected. In a severe accident however it
is more likely that the strain at failure would be large and this would in
general negate the elastic approach. The elastic approach would still give
valid results however if at large strains the stresses remained unchanged

e.g. for a bar in tension at moderate deflection.

If invalidated the elastic approach should be supplemented by an estimate
of the stresses based on fully plastic behaviour. This corresponds to a
large ductility approximation and the resulting stress estimates can then
be processed as for the elastic case. Consistency in this case will now
correspond to strains at failure being large. The practicality of a fully

plastic analysis will depend on the details of the structure but many

solutions exist (e.g. [21]).

The empirical approach has the advantage of decoupling the structural and
creep effects and allows rapid estimates of the creep life to made. The
refinements described above should add little to the complexity when
compared with the classical design basis approach, and give further

information about the mode and deformation at failure.

Analytical Approximations

In effect the empirical method above estimates the response of a structure
by using the response of uniaxial creep tests under similar conditions of
local stress and temperature. It would be expécted to give good results
when the failure mode is by brittle creep or by ductile creep in which the
stresses are uniform across the structure thickness. The analytical
methods described in section 3.3 provide a more fundamental approach which
combines material and structural behaviour. For homogeneously stressed
structures a comprehensive analytical treatment is possible and the results

are given in appendix 1.

For other structures, notably plates and shells and all geometrically
non-linear structures, the analytical approach is very complex and rather
severe restrictions have to be applied to facilitate solutions. It would
be necessary to judge the usefulness of these against specific examples of

severe accident studies.
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Numerical Methods

The general ﬁurpose Finite Element codes (notably ANSYS, ABAQUS, ADINA and
MARC) and the axisymmetric Finite Difference code, BOSOR, offer facilities
which cover the regions of interest here. It is questionable however
whether
of (1) the difficulties of interfacing such large codes (particularly the
Finite Element ones) with the rest of the severe accident analysis, which
in itself would require large computer codes and (2) the limited material
data available. They may however be of use in stand-alone calculations if
the accuracy of other methods available is in doubt. It is noted that

ABAQUS is available on the Harwell Cray 2 computer.

Physical Models

Very little attention is paid now to estimating structural responses using
physical models.. This is mainly due to the recent improvements to the
numerical methods described above which have largely displaced other
approaches. However physical models can still be of use and, as in this
case where the structural behaviouf can be very complex, may offer
advantages over the numerical methods in terms of speed, accuracy and cost.
Physical models can also give insights into structural and material
behaviour which may be overlooked in other metheds. In the severe accident
applications here, a physical model would have to be scaled down to a
manageable size and it may also be desirable to change the material to one
with a low melting point (e.g. lead). This would permit creep behaviour to
occur at modest temperatures. It would be necessary to check that the
change in scale and material does not change the failure mode. This
problem is often encountered in physical modelling and is discussed by
Baker [22] and Booth et al [23].

In conclusion it is recommended that the empirical approach should be used
as a first stage in estimating the response of a structure in a severe
accident. The self-consistency of this approach should then be checked and

the failure mode and deformation at failure estimated.
It is also recommended that a further method should be used to verify the

results of this by using either analytical methods, numerical methods or

physical models. These additional methods are considerably more complex
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than the empirical one and the choice will depend on factors beyond the
scope of this study, in particular the details of the severe accident and

the desired accuracy of the results.

Future Work

Following this review the next stage should be to verify whether the
methods recommended are practical and verifiable. Although this could be
done against artificial bench-marks it would be better to consider specific

examples of severe accidents provided these were not too complicated.
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Table 1

MATERIAL PROPERTIES

304 316 Low Alloy
Units|Stainless|Stainless| Ferritic Steel Inconel
Steel Steel |a phase 7y phase 600
Temperature Room temp./
Range K 300/1680 |300/1680 |300/1033|1033/1753|300/1666 |phase change/
Reference [2] [2] [2] [2] [4] melting point
o MN/ 11947127 [1061/100 |1194/587 587/89 1000/152|Note 3
DF
Reference |m? [5] [5] [5] [4]
0.2% P.S. " 235/25 275/26 600/295 295/45 276/42 |Note 3
Reference [24] [24] [3] [25] :
o L 590/63 659/62 1897/932(932/142 |3452/525|Note 3
P
o (t =
k k
3.6x108) i) 14.7 10.8 11.8 2.71 1.17 Note 4
Reference [6] (6] [6] [5] [25]
Temperature 800°C 815%C 600°C - 1000°C 980°C
Q kJ/ 167.4 167.4 173.7 159.0 133.9 Note 7
B
Reference |mole [2] [2] [2] [2] [2]
o} MN/ 0.41 0.38 0.04 0.076 0.00140
ko
mz
Q kJ/ 279.6 279.6 251.1 269.9 282.0 Note 5, 7
mole
Reference [2] [2] [2] [2] [26]
o MN/ 7.25 10.3 6.7 11,2 0.724
c
m2
Reference [2] [2] [2] (21 [6]
n 125 7.9 6.0 2.73 Note 6, 7
Reference [2] [2] [2] [2]
m 6.75 7.11 5.4 2.46
"] 5.25 5.53 4.2 1.91

NB Notes 3-7 appear

on page 46 of the main text
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APPENDIX 1

FAILURE OF HOMOGENEOUSLY STRESSED STRUCTURES AT HIGH TEMPERATURE

Al. INTRODUCTION

Many of the important features of structural failure at high temperature
can be illustrated using idealised examples for which analytical or simple
numerical solutions can be found. Here solutions have been found for
structures in which the stresses and temperature are uniform in space, at
least up to the onset of failure, and failure is precipitated by either
ductile or brittle creep. This family of solutions covers bars in tension
and thin walled spheres and cylinders under internal pressure. Where such
failures are due to increasing load without creep deformation analytical
solutions already exist (e.g. [Al]). Here these solutions have been

extended to cover failure induced by creep deformation at constant load.

The problem is defined by:-

(a) Structure and nature of the loads. Here this implies a statically

determinate structure with homogeneous, but time dependent, stresses

and temperature.

(b) Strain displacement relationships. As iarge deformations and large

strains are possible these must be based on natural strains (i.e. dei-

dx./x. etc.) rather than engineering strains (i.e. de.= dx./x. ).
i"7i i i'Tio

(¢) Failure criteria. For ductile behaviour failure occurs when the
structure becomes unstable due to the combination of material and
geometrical non-linearities. For brittle behaviour the Kachanov
damage model will be used [A2] to determine when the material has

become sufficiently damaged by brittle creep to precipitate fracture.
(d) Material constitutive law. This relates the strdin, €, to the stress,

o, and any other relevant parameters e.g. temperature, T time, t,

elasticity, strain rate or previous loading history. Since we are

~ Bal =



interested here in structures undergoing inelastic deformations slowly
and monotonically, it is reasonable to use a simple constitutive law
based on superposition of a time independent plastic strain, and a

time dependent creep strain.
i.e. € = ep(o,T) + ec(o,T,t) (Al)

Here we will use a power law form of the plastic strain and the Dorn

equation [A3] for creep strain. Thus:-
m F n
e = (o/0))" + ] (o/0 )" exp(-Q/RT)dt (A2)
o

where R is the universal gas constant and o_, > Q, m, and n are material
properties. Here we are interested in bi-axial as well as uniaxial stress
systems which for non-elastic deformation involves defining a significant
stress and a significant strain, which can be used to relate plastic and
creep deformation in multiaxially stressed structures to uniaxial stress

and strain measurements. The Von Mises criterion will be used here.

A2. ANALYTICAL SOLUTION FOR DUCTILE CASE

The Von Mises significant stress, o, and strain increment, de, are given by
[Al]:-

%

o = [%(0,-0,)2 + ¥(0,-0,)2 + %(0,-0,)?] (A3)

%

de = [£ (de,~de,)? + 2 (A4)

2 (de,~de,)? + 2 (de,~de,)?]

and the associated flow rule which determines the strain increment

direction is given by:-
(20,-0,-0,)/de, = (20,-0,-0,)/de, = (20,-0,-0,)/de, (A5,A6)

where o,, de, etc. are the principal stresses and strain increments

1
respectively. For further details of this see section 3.1 in the main

report.
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Consider the case of a thin walled sphere of radius r, thickness h, under
internal pressure p, in which directions 1 and 2 are in the sphere surface

and direction 3 is radial, then equilibrium requires that:-

0, =0, =% 0,=0 (A7, A8, A9)

The strain displacement relationships here are:-

de, = de, = L and ge, = (A10, All, Al2)

From (A5-A9) it follows that de, -2de, and hence from (A3) and (A4) o=0,

and de = 2de,.

dp do, dh dr
From (A7) P_ = '0—1 + = T (A13)
Hence SE .52 .2 de (Al4)
P (o] 2
; : - 3 (e-
and integrating c = [exp(2 (e eo))]oop/p0 (A15)

where subscript o denotes initial or reference value.

Equations (Al4) and (Al5) relate the stress, strain and load which will
yield a solution when either stress or strain is eliminated using the

constitutive law.

The analysis of the bar and cylinder are analogous and all the solutions up

to this stage are summarised in table Al and can be expressed by:-
o = [exp(rc(e-eo))]cop/po (Al6)

where 7o the 'critical subtangent' is a structure dependent constant (given
in table Al). The creep independent increasing load solution can be
readily derived from (Al6) since failure will occur when the maximum

pressure is reached i.e. when dp = 0 or (noting B = 0 here):-

Q

DWQJ

mlQ
1

TS, (A17)
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The subtangent y is a strain dependent material propertyw and for a power

law plastic strain assumption the point of instability is given by:-
Yy =7 e, = Umy, o= cp(mrc)‘i'm (A18,A19, A20)

lc is a structure dependent constant (see table Al). Note that for the bar
case p should be replaced by L/AO where L is the axial load and AO the

initial cross-sectional area of the bar.

Failure due to ductile creep deformation

We now consider the case of a structure loaded initially to less than
critical conditions but then allowed to deform at constant load due to
creep. For simplicity at this stage a linear temperature variation with
time will be assumed. The definition of ductile instability requires to be
extended novw since variation with time must be considered [A2] i.e.
instability occurs when either:-

-0 or oo (422, A23)
where F, u and t represent load, displacement and time respectively. In
the creep independent case instability was reached when (A22) was satified
but in the creep case (A22) is always satisfied since we have defined
dF = 0 (and du#0) and instability will now occur when (A23) is satisfied.
This in effect means that the structure passes through an extended neutral
equilibrium until (A23) is satisfied. Thus instability occurs when dt/du=0
or here €, & -~ » wvhere (°) denotes time derivative. Differentiating the
constitutive law assuming temperature independent plastic properties (the
more realistic case where cp is allowed to wary with temperature is
discussed below) gives:-

g

¢ = m<g—)m o+ (g—c)“ exp (-Q/RT) (A24)

P

and the time derivative of (Al6) gives:-

- Ab -



& = Tcéoo exp (Tc(e-eo)) (A25)
From (A24) and (A25)

a
é [exp(-nrc(e—eo)) W A exp(rc(e-eo)(m—n))] = (59)n exp (-Q/RT) (A26)
C

Thus é » « when e-er=€ - (m‘(c)'1 1n(m7c€o) (A27)

For a linear temperature variation T = To + Pt equation (A26) can be

integrated from € To to €1» T noting that

t T
[ exp(-Q/RT)dt = s-ijT exp(-Q/RT)AT = TB-'E,(Q/RT) -T_B~! E,(Q/RT,) (A28)
o}

o]

where E, (Z) is the exponential integral function - J t-%exp(-Zs)ds. The

solution is then given by

g(Q/RT) = f(e)) (A29)

where g(Q/RT) = (op/cc)nﬁ-l{TEz(Q/RT) - T,E, (Q/RT )] (A30)
n/m _1 n/m, . "o il

and f(eo) =g [E?f(l—(mrceo) )+ p— (1—(mrceo) m ] (A31)

c

For the constant temperature case B -+ 0 and (A30) reduces to

(o]
g(Q/RT) = t(EE)“ exp (-Q/RT ) (A32)
&

Thus given the material constants and the initial strain eo,f(eo) can be
evaluated from (A31) and solutions found for the temperature when the
instability occurs using (A29, A30) for finite heating rates, or the time
when the instability occurs using (A29, A32) for the constant temperature
case. For cases of interest here Q/RT >> 1 and the exponential integral
function can be approximated:-

1

i.e. E,(Z) = 217 SXP (-2) for large Z (error<l% for Z>10) (A33)

_A'S_



The functions g(Q/RT) and f(e_ ) are illustrated in figure Al for the case
of a sphere (Tc = 1.5) with T; = 0 and with materials data based on type
304 stainless steel for which the following have been taken:- Q = 279.6
kJ/mole (R = 8.314 x 10-3 J/mole K), Op = 223 MN/m?, n = 7.5, m = 6,75 and

T = 1680K. Note that the variation of cp with temperature has been
m

ignored at this stage and the single value at T = 0.75 Tm used instead.
From these, failure maps have been produced of initial strain versus
temperature for the B = 0 case and initial strain versus normalised heating
rate, BR/Q, for the case To = 0 (figure A2). 1In both cases a creep induced
failure zone is bounded by instant plastic instability for large initial
strain, and by melting for large initial temperature or large heating

rate.

Temperature dependent plastic properties

Above it was assumed that the plastic properties were temperature
independent which is not realistic for most materials. The more practical
case where m is temperature independent but 0P=0p(TJ is considered below.

Equation (A24) now becomes:-

z=n (M2 (D (-q/RT) - 2 (™l ©p a1 (A34)
€M o o) o (Q o ‘o dT dt
P c P
then substituting the previous expressions for o and & which are not
affected by op (equations (Al6) and (A25) we obtain
%.n m ,om ESE dT
(;:) exp[(n-m)rC (e—eo) - Q/RT) - = (E_) aT at
¢ = PP (A35)

o
exp(-mrc(e—eo)) - my, (Eg)m
P

This can be integrated numerically to give e(t) for arbitrary cP(T) and
dT/dt once T(t) has been specified. This equation is valid provided &>0

and the instability occurs when é -+ o,

. A Soymy , ..
i.e. when e =€ = mr ln[mrC (op) ]+ €5 (A36)
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Normally dop/dT < 0 and €1 will fall with temperature.
A3, Brittle Creep Case

In the analysis above it has been assumed that the material possesses
infinite ductility since no restriction was placed on the strain
accumulated before the instability occurred. However failure may occur
prior to this instability due to loss of ductility. This creep induced
embrittlement occurs in most materials after prolonged exposure to stress
at high temperature and is commonly due to accumulation of internal voids
caused by vacancies diffusing to grain boundaries. If severe enough these
voids coalesce and cause complete failure characterised by an intergranular
fracture surface. It is assumed that this process is independent of
ductile creep which involves movement within the grains. A means of

analysing this behaviour was formulated by Kachanov [A2] who introduced a

damage factor, D, where

1

dD _ oV
ok(l—D) tk(1+\J)

at

(A37, A38)

D = (A—Ar)/A and [

where the material cross-sectional area, or thickness, A is reduced to Ar
by internal void formation. Oy and v are material constants. Note that
the stress, o, is still based on the area A. Failure occurs at t = tBD

when D=1 and this is given by:-

1 v _ 1 _ ¢BD, o, v _dt
I* ()" 4D = 7= —£ (== £ (1) (A39)

If the brittle failure time tBD is less than that for ductile failure tD
(evaluated from the condition e-€; in section A2) then the failure time is

t Otherwise the failure is ductile and ty gives the failure time.

BD®
The right hand side of (A39) can be evaluated as a function of time using
the expression for o from equation (A16) and the value of strain € for the
general case from the numerical integration of equation (A35). A method of
doing this is described in [A4].

Note that o, varies with temperature for most materials and this can be

k
included in a numerical integration of equation (A39).
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Table Al
SUMMARY OF STRUCTURAL PARAMETERS

SPHERE CYLINDER BAR
L
I *
e\
f@ L 2
2
Ar
S " {
AREA L
A
ZERO HYDROSTATIC
END LOAD END LOAD
Oy pr/2h pr/h pr/h L/A
0,/0 1 1 2/43 1
o,/o 1 0 1/V3 0
0,/0 0 0 0 0
de,/de % 1 v3/2 1
de,/de % % 0 %
de,/de -1 % -V3/2 %
Te 3/2 3/2 . V3 1
L 2h /1, b s 2h /¥ 3, 1
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