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ABSTRACT

In this report an introduction to turbulence modelling is presented, with applications
to heat transfer in a molten pool. The turbulence closure problem is discussed and
some approximations and methods are given for determining certain unknowns in the
transport equations. Three methods of closure are given. These are: the k — € model;
the algebraic-stress model and the full Reynolds Stress model, this last being the most
general of the three. Finally, we apply two of these closures to the problem of a strongly
convective flow. We show that these provide a turbulent solution in the limit of steady-
state and no mean flow. However, it is an open question as to whether the physics of
a strongly convective flow can be realistically modelled by such closures.

September, 1989






1. Introduction.

For many years, researchers in fluid mechanics have been interested in
the regime of high Reynolds number, in which it has been known since the
time of O. Reynolds (1883) that the flow becomes turbulent at high velocities
(or equivalently, low viscosity). In many fluid flow problems, particularly in
engineering applications, one often only encounters turbulence which is gen-
erated by shear in the flow, in which the important quantity is the gradient of
the mean velocity field. However, in the study of the safety of nuclear fission
reactors, one is often more concerned with buoyancy-driven flows and in this
case, it is the Rayleigh number Ra, defined in equation (1.1) below, which is
the important quantity.
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Where,

B is the coefficient of thermal expansion,
g is the gravitational acceleration,
AT =T - T is a temperature difference across the fluid,
L is a length scale,
« is the thermal diffusivity
and v is the coefficient of kinematic viscosity.

The Rayleigh number is a dimensionless quantity which expresses the ratio
of convective to diffusive transport of energy.

In a fission reactor, one is concerned with the highly unlikely possibility
that a nuclear core may suffer prolonged loss of cooling. In this scenario a
significant fraction of the core may melt, leading to the formation of a molten
pool within the reactor pressure vessel. It is therefore of interest to study the
natural convection heat transfer within such pools, with the aim of predicting
the heat flux to surrounding structures or coolant. The Rayleigh numbers for
these events are expected to be of the order of Ra = 101! — 10!2, and the flow
is almost certain to be strongly turbulent at such high Rayleigh numbers. In
the past investigators have modelled heat transfer from the flow based on the
representation of the heat transfer coefficient by a Nusselt number, Nu. In



turn, the Nusselt number is calculated by the use of correlations of the form,

Nu=CRa", (1.2)

where C and 4 are constants to be determined by fits to the experimental
data. These correlations are extrapolated from the scarce experimental data
which are generally given for Rayleigh numbers many orders of magnitude
less than those required and often for a much simplified geometry (cf. Turland
and Morgan, 1985).

Faster computers and more efficient codes, however, should allow one to
model the heat transfer directly from the Navier-Stokes equations, probably
with the addition of equations describing the turbulence. However, there are
problems associated with this approach. When a fluid is strongly convecting
(large Ra) and is contained within rigid walls, then the mean flow will be
restricted to a narrow boundary layer around the walls (Wild, 1983). Out-
side this layer, the fluid is expected to be essentially stagnant, with the only
motion being provided by small, convective cells of turbulent fluid having a
random distribution of velocities. In a scenario of this type, one would ex-
pect the mean flow to be approximately zero everywhere except within the
boundary layer. (There is an assumption here that the flow is fully turbulent,
so that the mean flow really can be distinguished from the turbulent quan-
tities.) Difficulties arise because existing turbulence models are constructed
in such a way that a non-zero mean flow is assumed. Nevertheless, a study
to determine if the codes presently available are able to model the molten
pools better than current heat-transfer correlations is being undertaken by
the author. To this end, it has been necessary to review the current state
of turbulence modelling and this is the purpose of this paper. Throughout
this report, we are concerned only with the study of natural convection. We
assume that the term “convection” is synonymous with “natural convection”,
although of course this is not true in general.

In section 2, we derive the turbulent transport equations from the Navier-
Stokes equation and discuss the turbulence closure problem. In section 3, we
look at methods of closure and in section 4 we use these to study the problem

of buoyancy driven turbulence. Finally, we present the conclusions in section
5.



2. Conservation Equations in Turbulent Flow.

A turbulent flow is generally assumed to be one in which the physical
quantities describing the flow vary in an irregular, non-repeatable way. The
flow is then assumed to be chaotic, but with a character which must still obey
the basic conservation equations of classical fluid mechanics. In describing a
turbulent flow, one begins with the equation of continuity, the Navier-Stokes
equation, and one or more equations describing the scalar fields (i.e. changes
in chemical composition, heat transfer etc.). The physics of the flow is then
contained within the solutions to these equations, together with the appro-
priate boundary conditions, and in general these solutions will comprise the
variables velocity Vi, pressure P density 5, temperature © and chemical con-
centration Z, where a tilde indicates that the variable may exhibit turbulence.

In what follows, we will impose the assumptions of an incompressible
fluid and an isotropic concentration of one chemical species. We can thus
replace the turbulent density j by a constant density p and the equation in
E decouples from our set of equations. (These assumptions are reasonable,
since in our application we are dealing with liquid UO,, and for the present
no other material is involved.)

Noting that we sum over repeated suffixes, the equations describing the
flow are:

=0 (2.1)

) + el (23)

Here, the independent variables are the co-ordinate vector z; and time 1.
We have assumed a constant specific heat capacity ¢, and the_ﬂuid ViSCcos-
ity and thermal diffusivity are denoted by p and I" respectively. F; is the body



force and Se is a volumetric heating term.

In order to model the turbulence it is convenient to think of it as consisting
of a (random) fluctuation superimposed upon a mean quantity. Furthermore,
the fluctuations are considered to be only local and since they are assumed
random, we would physically expect their time average to be zero, if one in-
tegrates over a sufficiently long time. Thus, if one writes, for the velocity, say,

f}i = ‘f: + v, (24)

where v; is the fluctuation in velocity, then the mean velocity V; is formally
defined as,

to+T/2 _

Vit =z [ Vedt. (2.5)
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This last equation is valid for both stationary and non-stationary mean
flows, providing that over some characteristic averaging time T, the change in
V; is small. Thus, the mean quantity may still be a function of time providing
the time-scale of change is very much greater than T'. If this is not the case,
then the time average defined above would not be a useful variable in studying
the turbulence, and one must resort to some other method. In this report,
however, it is assumed that formulae such as (2.5) above will always be valid.

One may also define the mean of other physical variables, and in general,
the average of a variable @ is defined as,

(o) = %ft & dt, (2.6)

and we can always write



=3+ (2.7)

From now on, we will always denote fluctuations by a lower case character
and the time average mean defined above by the upper case equivalent. At
this point, we should also note that the taking of a derivative with respect to a
spatial variable commutes with the averaging process. That is, we may write,

8¢ _9¢
33,‘ B 6:0;’ (28)

where ¢’ represents a product of fluctuations, so that the average is non-zero.

Returning to equations (2.1) to (2.3), we may replace each quantity with
a tilde above it by the relevant fluctuation plus mean. Furthermore, we re-
member that, by definition, the time averages of fluctuations are zero and
that the average of a mean is just the mean. We may average equations (2.1)
to (2.3), denote an averaged quantity by an overbar (if the quantity is not a
mean) and write:
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Equation (2.9) above is just the continuity equation for an incompress-
ible fluid. Equations (2.10) and (2.11), on the other hand, are identical to
the Navier-Stokes and heat transfer equations respectively, except that they
contain additional transport terms due to the turbulent fluctuations. In the
first of these equations, momentum (per unit volume) is transferred from
one point to another by the gradient of the so-called Reynolds stresses, 7;7;,
whilst in the latter, it is the heat which is transported by the turbulent scalar



heat flux v; 6. Note that this quantity is really a vector and the name is
merely conventional.

These equations form a set of five simultaneous partial differential equa-
tions. However, the variables number fourteen (in three dimensions and as-
suming that the quantities F; and Se can be written in terms of the other
variables) and are: the six components of the Reynolds stress (the Reynolds
stress tensor is symmetric), three components of the scalar heat flux, three
components of the mean velocity, the pressure and the temperature. In order
to completely specify and solve the problem, one must either derive further
equations in the unknown elements, or somehow approximate them in what
would hopefully be a physical way. The latter of these is the most practi-
cal route, since, as we shall now see, the derivation of further equations in
the (unknown) turbulent quantities leads to the origin of further unknowns,
and the set of equations is again not closed. This problem has long troubled
turbulence modellers and is at the root of all lack of progress in turbulent
modelling. It is known as the Turbulence Closure Problem.

In order to model the turbulent quantities and hence determine the fluid
flow, one would often prefer to work with transport equations in the Reynolds
stresses and scalar heat flux in addition to the turbulent equivalent of the
Navier-Stokes and heat transfer equations. In this way, one obtains more
information regarding the fluctuations and about their transport through
the fluid than one would get by, perhaps more naively, approximating them
by some product of a length scale and a shear, as is done in the so-called
zeroth-order closure (see, for example, Bradshaw et. al., 1981). The methods
analysed here are thus two-equation models, with a second-moment closure
scheme (although we do refer to one equation models for completeness).

To derive our transport equations, we first of all take the Navier-Stokes
equation (2.2), multiply by v, replace V; etc by the sum of a fluctuation and
a mean, average and add to the result the analogous equation with ¢ and k
interchanged. We then obtain the Reynolds stress transport equation (2.12)
below:
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Terms on the left-hand side of (2.12) have been grouped according to
convention and in the best way to illustrate physical processes. The terms
grouped above Py represent rates of creation of 7; 7z by the mean shear, whilst
G;i represents rates of creation by the body force f; or fi. The first of these
terms needs no approximation in the level of closure which we are considering
here, and providing the only body forces present are linear in velocity or
temperature, then G, can also be left in its exact form. (Linear body forces
include gravity and rotation. In the former, the Boussinesq approximation is
generally imposed in order to represent f; in terms of 6.)

The d;x represent diffusion, as can be seen by integrating this term over
a volume bounded by rigid surfaces. The integral vanishes, indicating that
these terms make no contribution to the dissipation or production of the
Reynolds stresses, but serve to redistribute the stresses (Leslie, 1973). The
terms @ likewise do not contribute to the production of Reynolds stresses,
rather they attempt to make the stresses isotropic by removing contribu-
tions from the cross terms T;7;. They have no effect on the turbulent kinetic
energy, k = v;v; / 2, since the trace of ®; is zero, from the equation of conti-
nuity. Finally, e; represents removal of energy by viscous forces, and much of
turbulence modelling is based upon determining a reasonable approximation



for these terms.

We thus see that again we have encountered the turbulent closure prob-
lem, where in deriving a transport equation for the Reynolds stresses, we
have produced further unknowns in the form of the terms denoted by @,;,
d;; and ¢;;. These terms must be suitably approximated before any further
progress can be made in solving these equations. We look at this problem
further in section 3.

The transport equation for the scalar flux contains similar terms, and is
derived by multiplying equation (2.3) by v; and adding it to equation (2.2)
multiplied by #. The result is given in equation (2.13), where we have ne-
glected the heating term Se for simplicity. The remaining terms have a
similar physical interpretation to the analogous ones appearing in equation
(2.12). P represents the production of the scalar heat flux by the mean
velocity and temperature gradients, whilst G, is again the production due
to a body force. The quantity d; is clearly diffusive, whilst €;¢ is taken to be
dissipative, since this is the only term which can limit the growth of v; 6. Fi-
nally, &, is again assumed to redistribute the scalar heat flux evenly among
all the elements.
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The unknown terms in equation (2.13) are: Gy, ®.6, di¢ and €. Again,
we must make suitable approximations in order to fully specify the problem.

We now have the necessary basic knowledge and equations to allow us to
begin a study of turbulence closure, and we will do this in the next section.
We should perhaps first mention, however, that in deriving equations (2.12)



and (2.13), we have generated the most general turbulence model available
at this level of closure, and for many problems, the amount of detail which
the solutions provides us with may not be necessary. Often it is sufficient to
work with the turbulent kinetic energy, defined by k = 7; T; 0;/2, and in section
3 we will consider such models.

3. Turbulence Closure Schemes.

In this section, we look at some of the approximations which enable us
to close the turbulence equations of the previous section. Unfortunately, the
nature of the turbulence closure problem does not allow a general method of
closure, since many schemes rely on experimental results. Therefore, approx-
imations can be made only for specific problems.

Turbulence modelling is made more difficult for strongly convecting flows
for two reasons. The first is that very few experiments have been performed
for high Rayleigh number flows, and even those results that do exist are often
for Rayleigh numbers far below those required for strongly turbulent flow
(see section 1). However, Goldstein and Tokuda (1980) attained a Rayleigh
number of 10** for water and derived a Nusselt number correlation based
on their results. It is difficult to ascertain the relevance of this correlation
to the flows under consideration in this report and the reason for this is
that, in our application, the boundary conditions must be taken into account
when deriving a heat-transfer correlation. Turland and Morgan (1985) and
Turland (1989) summarised this problem and noted that different correlations
can exist for different boundaries, even though the Rayleigh number is the
same. It is for this reason that a more general model must be developed and
why we are considering turbulence closure schemes in this report. Reviews
of some of the experiments which are relevant to the type of problem we are
considering may be found in Turland and Morgan (1985).

The second reason why turbulence modelling is difficult in our application
is really a consequence of the first, and is that, for many years, models have
been constructed on the basis of shear-driven turbulence, for which there
are numerous experimental data available in the literature. Those wishing
to study convection-driven turbulence are therefore at a huge disadvantage,
since there is no convenient starting point. They either have to invent a
whole new set of turbulence closure schemes, which presumably would be
based on current, shear-driven turbulence models, or they must apply the



current models in the hope that they give “reasonable” results.

Thompson et al. (1985) and Wilkes and Thompson (1986), for example,
studied the double-glazing and analogous problems using standard models.
They found that there was an incompatibility between these models and
results from a boundary layer analysis (George and Capp, 1979). This is
perhaps not surprising. On the one hand, boundary layer theory provides
one with a solution by asymptotic expansion of the equations describing the
convecting fluid, whilst on the other hand, a turbulence model is used which
has little relevance to the flow it purports to model. The reason is, as we have
stated earlier, that the current turbulence models are based on a shear flow,
which is not necessarily the strongest driving force present in these types of
flow. Nevertheless, such models may be convenient in studying qualitative
properties of the flow, and this is one of the uses to which Thompson et al.
and Wilkes and Thompson put them.

In the remainder of this section we will study three representative turbu-
lence closure schemes, noting that they are all based upon shear-generated
turbulence. Their relevance to high Rayleigh number flows is not discussed
until section 4.

3.1 The k£ — ¢ model.

The starting point for this model is the equation for the transport of the
Reynolds stresses, equation (2.12) of section 2, with the indices k and 7 equal.
Summing over repeated indices, we obtain an equation in the turbulent ki-
netic energy per unit mass, defined in three dimensions as

k=(v}+ v+ 0%)/2 (3.1)

The transport equation for the turbulent kinetic energy is:
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The physical meaning of the various terms in this equation correspond to
the analogous ones in equation (2.12) of section 2. Note, however, that the
pressure-strain terms ®;; are identically zero due to the equation of continuity
(see also section 2). Furthermore, the buoyancy terms are generally neglected
and, in this case, an equation in the scalar heat flux v, § is not required.

In this approximation, the unknown terms which have to be modelled in
order to close the equation are the diffusion, the viscous dissipation and
the Reynolds stresses, ©;7;. The first of these consists of two contribu-
tions, one due to viscosity, v (0 k /dz; ) and one due to turbulent diffusion,
v; (vi v + pd;j/p). In order to estimate the turbulent diffusion term, it is al-
ways assumed that it takes the same form as the diffusion due to viscosity,
so that

2 ok
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In equation (3.3), o, is a turbulent Prandtl number which is used to fit the
model to experimental data and the important concept of the kinematic eddy
viscosity v, has been introduced. For dimensional reasons, v, is taken to be
proportional to the product of a velocity scale and a length. If the velocity
scale is assumed to be proportional to the square root of the turbulent kinetic
energy (Kolmogorov, 1942; Prandtl, 1945), then one can write:

ve=c,k? L, (3.4)

where ¢, is an empirical constant and L is a length scale assumed to be
characteristic of the turbulence and is often called the mixing length (see, for
example, Spalding and Launder, 1972). Equation (3.4) is the Kolmogorov-
Prandtl relation.

The viscous dissipation is usually replaced by ¢, where ¢ is defined as

_p 2% P
- 8:,- 31.'3'

€ (3.5)

and we must derive a further relation in € so that we have closure. In the one-
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equation models, one does this by assuming a high Reynolds number flow,
so that dissipation is independent of the kinematic viscosity v. The quantity
€ is then a function only of k£ and the characteristic length, L (Launder and
Spalding, 1972). Dimensionally, we must have,

e=k3?/L. (3.6)

The reasons for choosing to replace an unknown dissipation ¢ by another
unknown L are largely because L is more easily estimated from experiment
and from physical reasoning.

Unfortunately, such one-equation models, like the zero-equation model
briefly discussed in section 2, do not contain information about changes in
the length scale L. For example, dissipation processes can destroy the smaller
eddies, thus increasing the relative number of large scale eddies. Also, advec-
tion plays a role in transporting eddies downstream, so that the length scale
at any point is dependent upon the size of eddies upstream.

For this reason two-equation models are to be preferred over one-equation
closures. The k — ¢ two-equation model involves an equation in the transport
of turbulent kinetic energy, k and one in the dissipation, e. The Kolmogorov-
Prandtl relation is still employed in order to specify the turbulent viscosity,
and equation (3.6), relating € to k and L, is used so that the dissipation
equation is written in terms of ¢ rather than L. The Kolmogorov-Prandtl
relation then becomes:

vp=cuk® Je. (3.7)

The equation representing the variation of the dissipation is complicated
and will not be given here. Readers are referred to Harlow and Nakayama
(1968) for more information. Suffice it to say that the equation contains
several new correlations which have limited physical interpretation and for
which rather drastic approximations have to be made. Hanjali¢ and Launder
(1972) proposed the following approximate form for this equation:

12
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where we have taken into account the molecular viscosity v. The constants ¢;,
and ¢y, are assumed to be universal constants whose values, together with ¢,
and the Prandtl numbers o, and o4, are determined from experiment. There
seems to be good agreement between the values of these quantities (compared
in Bradshaw et al., 1981) and, like Rodi (1987), we will take the values of
Launder and Spalding (1972).

This formalism is complete only when approximations to the Reynolds
stresses have been made. Boussinesq (1877) hypothesized that the Reynolds
stresses could be modelled by writing:

Viv; =~V (3.9)

A modified form of the original Boussinesq hypothesis appears below and
is to be preferred for two reasons. Firstly, the new equation is valid when
i = j. Secondly, the Reynolds stresses are supposed to be symmetric under an
interchange of the indices 7 and j. However, in the original Boussinesq equa-
tion, 7;U; # T; U5, and the hypothesis is not valid unless the extra constraint
is imposed that the mean shears are isotropic. The more recent approxima-
tion does possess this symmetry property under an interchange of indices and
is

av, 8v;\ 2
%V =~ (5;; +'3—£') + 3 kéi;. (3.10)

With all these approximations, the k£ — ¢ model becomes:
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and these equations (3.11) and (3.12), along with equation (3.7) and equations
(2.9) to (2.11) of section 2, form a turbulence closure model.

3.2 Inclusion of Scalar Heat Flux in the k — ¢ Model.

If one wishes to include the body forces in the above model, then one must
make further approximations. If the only body force present is gravity, then
the terms f; v; are usually calculated via the Boussinesq approximation, in
which density fluctuations are only taken into account when multiplied by a
gravitational acceleration, g;. Thus, it is assumed that the force fluctuations
are due to buoyancy, which in turn is induced by the action of gravity on
small, local variations in density. These fluctuations in body force (per unit
volume) are then assumed to be given by:

fi=p'9:i (3.13)

where, p' is the fluctuation in density.

One can replace p' by a temperature fluctuation by using the coefficient
of thermal expansion, 3, which is assumed constant and is defined as

0

= (3.14)
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If py is the density at the reference temperature Oy, then multiplying through
by g; and replacing the derivative by (5 — po) /(O — ©y) gives us:

pﬁ(®+0—@o)g,-=—p’g,-5—f,- ’ (3.15)

since the “reference” density po must be the same as the incompressible den-
sity p. Multiplying through by v; and time averaging gives the relationship
that we require:

fivi=—Bpvibg. (3.16)

In order to model this equation, many authors make an analogy with the
Boussinesq hypothesis (see, for example, Launder, 1976), and write

s 28
v; 60 = g (3.17)

and the equations are again closed.

The equations describing the turbulence are the same as equations (3.11)
and (3.12) of the previous sub-section, except for an addition of one term in
each. The new equations are:

t  ’8z; = "\dz; 8z ) Bz,
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where ¢z is an extra constant to be determined. The merits of this type of
closure for convective flows will be discussed in section 4.

3.3 The Algebraic Stress Model

The algebraic stress model (ASM) can be thought of as a generalisation
of the eddy-viscosity model discussed above. The Reynolds stresses are still
represented by algebraic formulae, but now, the approximations are more
broadly applicable. The model was developed for computational efficiency
and the basic idea involves replacing the derivatives in the Reynolds stress
and scalar heat flux transport equations (equations (2.12) and (2.13) ) with
algebraic formulae. In this way, all numerical integrations and the need for a
model of the diffusion are avoided.

The starting point of the model is to assume that the time variation and
“net diffusion” (that is, advection plus diffusion) of the Reynolds stresses
can be expressed in terms of transport of kinetic energy. Rodi (1972, 1976)
suggested the following relationship:

0v.v;

TH + diff (v;7; ) = k (Z]: diff (k )) (3.20)

where diff indicates the “net diffusion”, and is defined by

o7 v;
diff (%75 ) = Vi ;zzj - 4
(3.21)
ak
dtﬁ.( ) amk - d,‘.‘.
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Here, d;; and d;; represent the diffusion of U; U; and k respectively, as expressed
in equations (2.12) and (3.2).

Now, the transport of turbulent kinetic energy can be expressed in the
following form, according to equation (3.2) and the second of equation (3.21):

g’: +diff(k)=P+G—e¢ (3.22)

where P and G represent the production of turbulent kinetic energy due to
shear and body forces respectively and e is the dissipation. Note that these
three quantities do not contain any terms which need to be integrated.

We can substitute equation (3.22) into equation (3.20) in order to model
the transport of Reynolds stresses. We obtain:

3'0,

£ +dzﬁ'('v,'uJ)=Rj+G;5+‘I’;5+e,-j=L£J—1(P+G—E), (3.23)

the first equality being due to equation (2.12). The analysis is complete if the
unknowns ®;; and ¢;; can be modelled. These terms have been approximated
in Launder (1975) and Gibson and Launder (1978). The resulting quantities,
as with the F;; and G;;, do not contain any terms which require integration.
We can therefore substitute the approximations for ®;; and e;; into equation
(3.23) and rearrange the last two equalities to obtain an algebraic relation-
ship in the Reynolds stresses. The result is:

NI BT EE.
nv; =k §6;_,°+ - Pr .
¢+

In a similar way, the scalar heat flux can be modelled by writing
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and the scalar heat fluxes are then given by (Gibson and Launder, 1978;
Rodi, 1987):
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Note that the algebraic stress model requires the k — ¢ model in addition to
equations (3.24) and (3.26), since the quantities k and e still occur in these
algebraic formulae. However, the advantage of this model is that information
is obtained regarding transport of the Reynolds stresses and scalar heat flux.
In order to close the model, a relation in 82 is required. However, we will
defer an analysis of this quantity until a later section.

3.4 Full Reynolds Stress Closure

This scheme represents the most general model available at this level of
closure, and should perhaps be preferred for this reason. The advantage of
this closure is that it provides one with the greatest amount of information
regarding the transport of the Reynolds stresses and scalar heat flux, some-
thing that the k — ¢ model cannot possibly do. However, there are at least
six extra equations to be added to the seven of the k — ¢ model and the
computational time will be greatly increased.

As before, the method involves making approximations to the various
unknown terms in the transport equations. In a Reynolds stress closure, these
unknowns are €;;, €, ®:;, ®is, dij, die and Gy, according to the discussion in
section 2. The contributions from each of these quantities will of course
depend upon the properties of the fluid and the geometry of the problem
one wishes to study. A general set of approximations cannot be constructed
which will model every flow. Therefore, in order to simplify the equations,
one often chooses to work in the regime of high Reynolds number flows, and
this is what we shall do in the remainder of this report.

Choosing a high Reynolds number flow has two important effects. Firstly,
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the viscosity becomes less important in the transport of the large-scale turbu-
lence. Secondly, the small-scale turbulence is independent of the structure of
the mean flow or any large scale turbulence that may be present. In this limit
of high Reynolds number, the small scale turbulence tends towards isotropy.
Information regarding direction which the large-scale turbulence possesses on
account of the mean velocity field is not passed down to the smaller scales
(Bradshaw, 1976; Tennekes and Lumley, 1972).

Unfortunately, these properties have been attributed to turbulence driven
by a mean shear and are not necessarily applicable to buoyant flows, although
it is not clear why such flows would be non-isotropic in the small scale. How-
ever, the mathematical simplification offered by an isotropic flow is an im-
portant factor to take into account and, for this reason, we assume that any
inaccuracies which the assumption of isotropy may introduce are small. Be-
low, we make approximations for each of the unknown terms in equations
(2.12) and (2.13) based upon this assumption, treating each term in turn.

3.4.1 Dissipative Terms, ¢;;, €

Since the large-scale motions are essentially independent of viscosity and
since viscosity is important in determining the structure of the small scale
turbulence, it seems reasonable to assume that the dissipative terms ¢;; and
€ig are isotropic. Now, isotropy requires that properties remain constant fol-
lowing a reversal of any co-ordinate. However, the term g% £ changes sign
if the co-ordinates z; are reversed, indicating that these correlations are not
isotropic, contrary to our assumption of high Reynolds number flow. Hence,
the only value that the ¢, can take is zero:

P o oan

The dissipation terms ¢;; must also be isotropic. In this case, we must
have i = j (no summation), and we can write:

€; = % 66,'_,' (328)

where,
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(3.29)

We note that this definition of ¢ is identical to that of section 3.1. In order to
model this quantity, therefore, we use the equation representing its transport,
equation (3.19) of sub-section 3.2.

3.4.2 Pressure-strain and Pressure-scalar Correlations, &;;, ®;s

The pressure strain correlations are important in promoting isotropy. The
cross terms in the Reynolds stress tensor are limited only by these correla-
tions, since the quantities ¢;; are zero for i # j (see above). The @,; thus
remove contributions from 7;7; if ¢ # j, whilst these terms do not affect the
turbulent kinetic energy. Instead, they serve to evenly distribute the diagonal
elements 7;7; (no summation) so that these three quantities are equal (Hinze,
1959).

Many models have been proposed for the pressure-strain terms. We will
only present a summary here and for more information, readers are referred
to Launder (1987), where an excellent review of this subject can be found.
The starting point of all models is the consideration of a Poisson equation in
the pressure fluctuation. This is obtained by taking the divergence of equa-
tion (2.2) and subtracting the divergence of equation (2.10), resulting in

19°p & oV; dv; a6

poz? ang‘m_f(ij B U’v’)+26m5 dz; +ﬁgi8_..~:;'

(3.30)

Taking the usual solution to Poisson’s equation, multiplying through by
Ov; [ 8 z; and time-averaging gives us:

p Bv, _ / 32 (Vem Un ) " 8v; +9 av.\' ( O vn )' 8v;
p8z;  Am 02,0z, | Oz; oz, 0z ) Oz;
06 ov; 1 ‘

axm) azj](mk—ai)df' (3.31)

+ﬁgm(
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Here, a prime indicates that the quantity is to be evaluated at the co-
ordinate vector z;, whereas all other terms are evaluated at z, and the inte-
gration is carried out over a volume 7' (z}).

This equation demonstrates the processes responsible for the pressure-
strain correlations and is very important for this reason. All approximations
to the @,; must be based upon these processes, and it assumed that this will
also be true for the pressure-scalar terms, $;5. There appear to be three
agencies responsible for these correlations and these involve: (i) derivatives
of Reynolds stresses, (ii) a mean strain, and (iii) a buoyancy force. On this
basis, it seems reasonable to write:

@i = @i+ Pip+ Bijs
(3.32)
Qe = Pipr + Pioz + Piss,

where ®,;;, ®,5; etc. represent contributions to ®,; and ¥, respectively due
to each of the processes discussed above.

Rotta (1951) appears to have been the first to attempt an approximation
of the term ®;;;. Even today, his model is adopted in nearly all calculations
and is:

.1 =—¢ -IE (er - 'g di; k) . (3.33)

Where, ¢, is a constant. The equation is valid for ¢ = j, in which case ®;;; = 0
as required. The constant factor 2/3 is used in order to reflect the isotropy of
the diagonal terms of the Reynolds stress tensor. If the number of dimensions
were reduced from three to two, then this factor would be replaced by 1. In
deriving this equation, Rotta suggested that a return to isotropy must be
proportional to the level of anisotropy.

A similar model for ®,5, was proposed by Monin (1965) and is:

€ —

‘I’gﬂ = —Ci1¢ E Vg 9, (3.34)
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where ¢4 is again a constant.

Contributions due to the mean shear are generally modelled by the so-
called isotropization of production model, in which

1
q’ijz = —C2 (P.J — §Pkk 5.‘,‘) . (3.35)

The idea behind this model is that the production due to a mean shear must
be made isotropic by terms such as ®;;, and was first considered by Naot et
al. (1970) (also see Launder et al., 1975). An analogy to this model can eas-
ily be made so that the term ®,4; can be approximated. The corresponding
equation is then

— 0V
@ggg = C20 Uy 6 5;: (336)
Here, as before, ¢, and cz¢ are constants.

Finally, the buoyancy terms ®;;3, ®,6; can be modelled according to Laun-
der (1975) as:

1
@5 = —c3(Gi; — 3 6:5 Grr) (3.37)

.05 = — €30 Gig, (3.38)

where ¢3 and c3¢ are constants. The values of the various constants appearing
in these equations can be found in Gibson and Launder (1978).

3.4.3 Diffusive terms, d;;,d;s

The diffusive terms are the most difficult to model, since the behaviour
of the different contributions to these terms is little understood. At present,
the only reasonable method appears to be that suggested in Launder (1987).
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The method is known as the generalized gradient diffusion hypothesis, and
involves approximating unknown correlations of the form T; Xaig (where 45
represents a term in the diffusion of the quantity ¥) by writing:

|

k__8
€

UV Uy (339)

@

PR Cu
Ve Xdig = ——
% z

Here, c, and o take the definitions of section 3.1.

Often, researchers prefer to use a less complicated form known as simple
gradient diffusion. Here, the correlation v;w; is replaced by the turbulent
kinetic energy k. This results in an approximation to the diffusion which is
computationally less expensive than the full form given above. However, it
has the disadvantage of being less general, since it no longer contains the
“cross-stream” diffusion terms of the form

o (i X ) (3.40)

where we take m # n and m,n = 1, 2, 3.

The simple gradient diffusion hypothesis is given by:

__ k0%
Uk Xdif = v, ¢ O’ | (3.41)

The quantity c, k%/e is of course the turbulent eddy viscosity introduced in
section 3.1. This method of modelling the diffusion is thus equivalent to
that of the k — ¢ model, where the sum of a triple-velocity correlation and
a pressure-velocity correlation were assumed to behave in a similar manner
to a molecular viscosity term. In section 4, we will use the simple gradient
diffusion when modelling the turbulent diffusion, since it is analytically less
cumbersome than the generalised version.

If we now consider the diffusion of the Reynolds stresses, we take ya5 =
(viv; + pbs; /p+ pbix / p) and x = v; v;. The generalised gradient diffusion
hypothesis then gives:
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Uk e, k v v
— (pviv; LN ) = ——— — . .
P (pviv; +pba +pbix) o Wl g (3.42)
where o,, is a turbulent Prandtl number for the Reynolds stresses.
In the case of the unknown correlations in d;¢, we have
O 0v; a9 v, 0
vkv,-9+I‘0-l+vv,-—=—£‘1EvmaL. (3.43)
0z T O € g

3.4.4 Buoyancy Term, Gg.

According to our discussion of section 3.2, the term G can be written as

Fi0=—Pg:6". (3.44)

The G, thus contain the unknown correlation 02 and there are essentially two
ways in which to model this term. The first method is to solve the transport
equation in 67, which is obtained by multiplying the thermal energy equation
(2.3) by 6 and averaging to get:

— 4V ==20v,— —— _— [— . 4
4 ) B2, (3.45)

62 a6’ —80 8 (— _06° 50 06
— i Vs 02 —-T —
at 62:; 823{ 33!,‘ 33; 61,‘

The first term on the right-hand side of this equation represents pro-
duction of 82 and does not need to be approximated. The next two terms
represent diffusion and dissipation respectively. They do need to be mod-
elled, and we can do this for the diffusive term by writing, in the usual way,

92
ool 5 By 0

;— 3.46
Ty € Y 6.7:_,— ( )
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where ogg is a turbulent Prandtl number for 2.

The dissipation has been modelled by Monin (1965), who assumed that

g (3.47)

where cg is a constant. The equation in the transport of 2 becomes:

86? 862 _ ,—00 a c, k 06? €=
ot +Kaz,-”'26”‘ax,-+az.- (0'99 f'v‘v_,+1“6,,)azj _c”k6°
(3.48)

The second method of modelling 87 is due to Monin (1965), who assumed
that the production of this quantity would be equal to its dissipation. Thus,
if we approximate the dissipation as before, we can write:

o~ o - O (3.49)

Hence, if cg = 1/cgg, then

- k— 00
s cspl Dol i
Cop P 'U-,eami. (3 50)

S =

In this report, we choose to use the transport equation in order to model
82 for two related reasons. Firstly, Monin’s (1965) model does not take into
account diffusive or transient behaviour of 62, whereas we lose no generality
in using the transport equation. Secondly, since we are dealing with a full
Reynolds stress closure, we wish to make as few approximations as possible.

We can now re-write the transport equations (2.12) and (2.13) of section
2 and include the equations in §? and ¢. With all the above approximations,
these equations are:
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Reynolds stress equation:

3?+Vk 36'6:;'1:} = - ('U-'Uk g:; + ;0 kg:;) - B (9.'W+915,-_9)
; (v,v, 6,-_,-k)—cz (P‘-,-—%ﬁ,-ijk)
( 5;;' Gkk)
+— [ u6H+a" fm.w) a(fl”‘] —2¢6; (3.51)
Scalar-fluz equation:
2l v B - (wm i 4w lE) - peT
—C1e v,l? + €20 V5 ﬁ—g-gi — ¢30 Gio
-1-6i [(&r(l‘-}-v) -c—éwcvr) 86?] (3.52)
Equation in 62:
36T+V giﬁ —26v; gg Bi:?c. [(I‘Ekl p— %v.- vj)g—i_j}—cniﬁ_ (3.53)

Dissipation equation:

9¢ 9 _ 0 [(Véij'}'&k-vi_vj)
o, €

n € av; .
32'. JB:L‘J' 6::,-

dz; ez *k

~cacciey Bgivi0 (3.54)

and the model is now closed.
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The amount of computational work required for a Reynolds stress closure
of this type is increased dramatically over that required for a k — e model.
In the former, we must solve sixteen simultaneous partial differential equa-
tions: five in the transport of the mean quantities, six in the transport of the
Reynolds stresses, three in the transport of the scalar heat flux and one each
for the quantities 8% and e. This compares with only seven equations for the
k — e model, with a decrease of more than a factor of two.

3.5 Large Eddy Simulation

The large eddy simulation involves modelling the large scale turbulence.
The techniques used are so different from the closures previously discussed
that a full discussion of them would require a separate report. However, we
will briefly mention the basic method just for completeness. The technique is
analogous to that of averaging the transport equations, as was done in section
2. However, in this case, the variables describing the flow are separated not
into a mean and fluctuating quantity, but rather into large- and small-scale
components. We can write the velocity V;, for example, as

Vi=V.+V/ (3.55)

where V; represents the fluid velocity (see section 2), V; is a large-scale com-
ponent of the turbulent velocity and V; is a small-scale turbulent velocity.
The quantity V; can be separated from the small scale velocity by taking a
convolution of V; with a filter which has the relevant cut-off in its spectrum:

V= f G(z —2') V; dz’ (3.56)

where z and z' are co-ordinate vectors and G(z — z') is the required filter.
Biringen and Reynolds (1981) used a Gaussian filter of the form

Gz-z')= ( )3 ezp [—m ol (z — z')% ) A% (3.57)

>R

where o is a constant and A is the required filter width. Equation (3.55) is
substituted into equations (2.1) to (2.3) of section 2, and in order to complete
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the model, the small-scale quantities are written in terms of the large scale
variables. A coefficient of kinematic eddy-viscosity, v}, is often employed in
order to accomplish this and a sub-grid scale model is introduced. In this way,
an exchange of energy from the larger to the smaller scales is represented.
This so-called ‘energy cascade’ is characteristic of turbulence (cf. Bradshaw,
1976) and in some sense is a dissipation imposed upon the larger eddies. The
quantity v; then represents the coeflicient required in order to model such a
dissipation.

The large eddy simulation would possibly be of use in modelling strongly-
convective flows of the type under consideration in this report; however, little
work has been done with this application in mind. We will therefore defer
any further analysis of the subject. Further details of the technique of large
eddy simulation may be found in, for example, Clark et al. (1979) or Biringen
and Reynolds (1981).

8.6 Divect Simulation

Direct simulation is the final method of determining a turbulent flow that
we shall discuss in this section. The method does not depend upon deriving
a turbulence closure scheme, but involves a direct numerical solution to the
basic equations describing the flow (equations (2.1) to (2.3) in section 2). The
reasoning is, of course, that the solutions which one obtains must implicitly
contain information regarding the turbulence and, once these solutions have
been found, no further work need be done.

However, the method as yet does not provide information regarding the
structure of fine-scale turbulence. The reason for this is that, in order to
resolve such structure, very fine grids are required on which to solve the
equations. Schumann (1987), estimates that if the amount of available com-
putational time is T, then the number of grid points, N must be limited by
N ~ Tf, where N is an estimate for the solution to one variable and in one
direction. This estimate must vary, however, depending on the computer.
The use of super-computers would be expected to increase this value of N.

In order to resolve the small-scale turbulence Schumann (1987) supposes
that one would require a grid of 512° points. Grotzbach (1986a) studied
Rayleigh-Benard convection using direct-simulation and a 64 x 64 x 32 grid.
He reports that 38.2 hours of IBM-3033 cpu time were used. This size of
grid does not, however, model the fine-scale turbulence, Furthermore, the
Rayleigh numbers used are only of order 10° - many orders of magnitude
lower than those required in our application. Intuitively, one would expect
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that larger Rayleigh numbers implies the presence of turbulence on a small
scale. It is expected therefore that one would require finer grids than those
of Grotzbach. We conclude, therefore, that the direct simulation technique is
not of relevance to our particular problem, since it is likely to take too much
computer time and cannot at present provide us with the necessary details
of the structure of small-scale turbulence. We will not mention this method
further in this report.

4. Application of Closures to Strongly-Convective Flows

In this section, we examine if the turbulence models of the previous section
can be applied to the problem of a high Rayleigh number flow. We emphasize
at this stage that the analysis of this section is very idealistic, with many
assumptions being made. Furthermore, it will not be clear whether or not
many of the more complicated physical processes can be modelled in this
analysis. We only wish to show whether a turbulent solution exists in a
particular situation where there is no mean flow. A general flow of this type
will not be examined.

In establishing whether turbulence closure schemes are relevant to this
type of flow, one must consider full-Reynolds stress closures since these are the
most general of the second-order models. If these do not model the flow more
successfully than a Nusselt number correlation, then no lower-order closure
will be able to do so, and there is no further point in examining turbulence
modelling. If the Reynolds stress closure is successful, then one should also
study two-equation or, perhaps, lower-order schemes, since these may be more
favourable than a Reynolds-stress closure because much less computational
time is used in solving the equations which describe the turbulence.

Therefore, the models we will be studying are the £ — ¢ and the full
Reynolds stress closure. We need not include the algebraic-stress model for
several reasons. These models are less general than a full Reynolds stress
model, although of a higher-order than the k — ¢ model. The former of these
should contain details of all the relevant physical processes, whilst the latter
is simpler to work with, both analytically and computationally. The algebraic
stress model, however, comes somewhere between the two.

Furthermore, by studying the equations describing this closure, it is not
obvious how this method would be preferable over the &k — ¢ model. In our
application, we assume that the mean flow is zero. In this situation, the
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ASM provides exactly the same processes for generating the scalar heat flux
as in the k — ¢ model, with the addition of terms in 7;7; and 82. Physically,
it is not clear why these terms should be the only ones which contribute,
and the central assumption in generating these models still appears to be
that the main force in driving the turbulence is shear, rather than buoyancy.
(This is not, of course, unreasonable, since almost all of the applications of
these models deal with flows in which the shear has a strong influence on the
turbulence.) Therefore, we will not consider algebraic stress type models any
further in this report. We should perhaps emphasize, however, that algebraic
stress models have been very successful in modelling other types of flow, and
the comments made here should not be applied to these situations.

In modelling a highly-convective flow we make several assumptions. The
first is the assumption of a zero mean velocity, in accordance with the discus-
sion of section 2 and is based upon experimental results. This simplifies the
equations significantly, with the advective terms and the F;; being identically
zero. Obviously, before making this assumption, it is necessary to ensure
that the flow is turbulent, so that the mean flow can be separated from the
turbulent fluctuations. In this case, it is assumed that any velocities which
are generated due to the convection will not consist of an overall mean, but
will be due only to random motion. Secondly, we assume that the flow is
two-dimensional, with one vertical and one horizontal direction being given
by y and z respectively. This is for mathematical simplicity and is in fact con-
trary to our understanding of the structure of turbulence, since turbulence is
essentially a three-dimensional phenomenon (see, for example, Tennekes and
Lumley, 1972). More work is required regarding this subject, to establish
whether the results of this report are significantly affected by the neglect of
the third spatial variable. Thirdly, we physically require that the gravita-
tional acceleration g; acts in the downward direction only and can be written
as g; = —g. We also assume that, for the smallest scales of motion present,
the turbulent kinetic energy k is isotropic, so that k = v for i =1 or 2 (no
summation), in accordance with the discussions of section 3. Finally, in the
next two sub-sections we make the assumption of zero diffusion. In shear-
driven flows, this would be reasonable, since the eddies which characterise
the turbulence are generated mainly by shear. However, the assumption is
again made here for mathematical simplicity and in order to illustrate the
importance of diffusion in convection-driven turbulence. Therefore, we begin
by looking at the k — ¢ and Reynolds stress models neglecting diffusion, and
go on later to consider these models with diffusion. For this purpose, we use
the simple gradient diffusion hypothesis outlined in section 3.4.3.
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4.1 The k — ¢ model without diffusion

The closure scheme which we require is given in section 3.2, equations
(3.18) and (3.19). However, we vary this a little, by not using the Boussinesq
hypothesis to model the scalar heat flux, 6 v; (equation (3.1 7)) and 62 (equa-
tion (3.50) ). There are several reasons for not wanting to use the Boussinesq
hypothesis. Although most of them are not applicable here, we will mention
them at this point, since they will be required later. The first reason is con-
cerned with the mean temperature gradient. If this gradient is present in only
one direction, then information regarding the scalar heat flux perpendicular
to this direction will be lost. Secondly, the hypothesis has been shown to be
inconsistent with the boundary layer solutions of George and Capp (1979).
If we assume that the solutions of George and Capp are correct, then we
must also conclude that the Boussinesq hypothesis cannot be used in this
case. Finally, the hypothesis contains no information regarding the diffusion
or dissipation of the scalar heat flux, whereas we see later that the former
of these processes at least ought to be included in a convective fluid with no
mean flow. Therefore, this author feels that it is better to use the transport
equations for these quantities, especially since this is an analytic treatment
and nothing can be gained by their neglect.

With the assumption of zero mean flow (V; = 0) and no diffusion, the
equations describing the transport of the turbulence are:

% =pBglvy —¢ (4.1)
6?:—1&:5,-,—3—2-%(1—%9)/39-9_25:‘2— Cwém (4.2)
‘96_? _ _zmg-g e T (4.3)

% =C1,63e£ﬂym—q¢§- (4.4)

In deriving the second of these equations, we have approximated the Reynolds
stress by the modified Boussinesq hypothesis, equation (3.10). This illustrates
a very important point. By using the Boussinesq hypothesis with no mean
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flow, we are effectively saying that all of the Reynolds shear stresses are zero,
since the only non-zero components of the stresses are k §;;. This is clearly not
the case. Even though the re-distribution terms ®;; attempt to destroy the
Reynolds stresses, these quantities do appear in the terms representing the
production of the scalar heat fluxes (see the full Reynolds stress closure) and
in neglecting them, we may be losing some important physics. (In the caseof a
zero mean flow, the Reynolds stresses would presumably be produced through
the action of the mean temperature gradient. A model for them should
therefore be based upon such a mechanism.) The fact that the Reynolds
stresses are zero, therefore, must be a consequence of an incorrect closure for
this particular problem. '

We can examine if 2 non-trivial turbulent solution exists by studying the
steady-state solutions of the above equations. Therefore, we set all deriva-
tives with respect to time equal to zero and write the equations in terms of
components to get:

Bguvf—€ = 0 (4.5)

80 —
—kﬁ—g-c,aime =0 (4.6)

80 — —
—k—@-l-(l—cag)f?’gﬁ—cw%vzﬁ = 0 (4.7)

__ 90 _—080 -
—2019%-—21)298—9’-—@9%32 = 0 (48)
BomBs — el = 0 (4.9)
C3eC1e P g V2 k C2e L = . "

Equation (4.5) tells us that #gv,6 = e. Substitution of this result into
equation (4.9) gives ¢ = 0, where we assume that ¢z c;c # c2. Equation
(4.5) then gives v, § = 0. These quantities being zero implies that all other
turbulent correlations are zero, providing that the mean temperature gradient
is a function of both z and y.

We may also examine circumstances where the mean temperature is a
function of only z or y. The first of these is trivial and again suggests that
all turbulent quantities are zero. In the case when the gradient is a function
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of y only, we find that ¢ and v, 0 are zero, as before. However, v; 0 is now ar-
bitrary, since ¢ and 8 © /9 z are identically zero. We may take v; 6 to be zero
also, without loss of generality. The final two quantities are related through
equation (4.7), which gives,

k= =Bg(1~cs)0 (4.10)

We know that g > 0, and if we assume that ¢z is a universal constant which
is less than unity (see, for example, Bradshaw et al., 1981) and that the
equation of state is such that # > 0, then there are two possibilities:

(1) 80 /0y <0

In this case, we have that either k or #2 must be negative definite. However,
this is contrary to physical reasoning, since these quantities correspond to a
summation of squared turbulent quantities, and physically these ought not
to be negative. The only value that k or 62 can take, therefore, is again zero.

(i) 80 /8y > 0

This is a stable temperature stratification. Again, one would expect the
quantities k£ and @? to be zero, since there is now no convection to drive
the turbulence. For example, if one considers a box of fluid with heated
top and cooled bottom, then a fluid with initial constant temperature will
merely re-organise itself so that it is stably stratified in temperature. Any
perturbation which develops as it does this will die away with time. Therefore
the steady-state must be the one with k, 62 = 0. However, this is an intuitive
conclusion, and apparently cannot be proved in this analysis, since both k and
62 appear to be arbitrary. Note, however, that if one had used the original
Boussinesq hypothesis, equation (3.9) of section 3.1, then the first term on
the left-hand side of equations (4.6) and (4.7) would be zero. The “expected”
value of 82 = 0 would then follow automatically, regardless of the sign of the
temperature gradient.

These results show that the model must be incorrect, since we know from
experimental evidence that convective flows can be turbulent. We conclude,
therefore, that this turbulence closure is not useful in describing this type of
flow.
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4.2 Full Reynolds stress model without diffusion

The previous model was unsuccessful in showing evidence of steady-state
turbulence with no mean flow. If this closure is similarly unproductive, then
we have established that we must at best include diffusion in the model, and
at worst have to invent a new closure for these flows. With the assumptions
described earlier, the steady-state form of equations (3.51) to (3.54) of section
3 is:

Bguvaf—e = 0 (4.11)

€

(1-c)Bgub-a-vo = 0 (4.12)

k

XC) 80 .
—k-a—z—vlvza—y—cwivlé' = 0 (4.13)

a0 00 € —; —
—ka—mE—CwEOQG—}-(I—039)]3962 =0 (4.14)

— 00 — 00 -
—29026—1’—29111%—@9%02 = 0 (415)
Bguab~ — € _ g (4.16)

C1e C3e P G V2 k C2¢ k — . .

The first and last of these equations again indicates that the quantities ¢ and
v, 8 are both zero which in turn implies that v; 6 is also zero. If the mean
temperature is dependent upon only z or only y, then we again find that
there will be no steady-state turbulence.

If the temperature varies in both directions, we find that k, 7;7; and 62
are indeterminate and are related by

— 00
ngﬁgﬂza—y = k [

(B)-G)] e

Oy
80 0\’
-1 V2 ‘a—y = k (a) . (4.18)



In our application, we are concerned with a pool of molten material confined
within a container. The pool is expected experimentally to have a mean flow
which is approximately zero. However, if a horizontal temperature gradient
exists, then a mean flow should appear, since there would be no term to
balance the subsequent horizontal forces. In other words, the mean flow
would be due to a resultant force acting on the fluid. Therefore we take a
mean temperature which varies in the vertical direction only. In this case, the
turbulence model suggested in this section indicates that no turbulence will
occur in this application and we again have a situation in which the turbulence
closure does not appear to represent the flow correctly. We should also note
that, at the boundaries at least, the dissipation must remain non-zero. If this
were not true, then there would be no viscous dissipation to halt the growth
of the turbulent kinetic energy in the main part of the flow.

For these reasons we must include diffusion in the closure. In fact, one
would presume that diffusion must be included purely on physical grounds
anyway. In shear-driven turbulence, there is no need for diffusion to be
present, since turbulent energy is transported around the fluid by the action
of the mean velocity field upon the Reynolds stresses. In our application,
we have no such mechanism and diffusion must be important for this reason.
The results of this and the previous sub-section have merely confirmed this
hypothesis.

4.3 k — ¢ model with diffusion

Given a steady-state and the assumptions of previous sections, the equa-
tions describing the model are:

ﬂg'ﬂza—f-{-'é%[( +;—Z€3) %] = 0 (419)

_k‘;@ c1”£m+5_ (I‘+u+a—:;) %E:] = 0 (4.20)
—k%g"F(l"‘Caﬁ)ﬁgﬂ—Cw%?

+—éz—k[(r‘+u+;—’;k;) %Z] = 0 (4.21)
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These equations are obviously very complicated, and it is not easy to de-
rive any useful physics from them. However, the most important diffusion
terms ought to be those in the turbulent kinetic energy and the scalar heat
flux. (The scalar heat flux determines the density variation, whilst the density
variation influences the velocity field and hence the turbulent kinetic energy.)
We can simplify further by working in the regime where the term represent-
ing the diffusion of the scalar heat flux is much less important than that in
the turbulent kinetic energy equation. We do not wish to know at this point
whether such a regime exists, since we are presently concerned with showing
that our model can predict turbulence under some conditions. With these
assumptions, we have the following, much more manageable set of equations:

— 8 c, k?\ Ok
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Again assuming that the temperature varies in a vertical direction only, elim-
inating v, 6 between (4.24) and (4.26) gives a relationship in 6. We can
substitute this into (4.27) and use (4.28) to derive a pair of simultaneous
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equations in k and e:
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where A = ¢3, ¢1. / C2e-

In deriving these equations, we have been careful not to divide by any
correlation, in case that quantity is physically zero. In the limit of zero
diffusion, the first of these equations provides us with exactly the same result
as in sub-section 4.1 that € = 0, whilst the second vanishes to zero identically
(assuming that e goes to zero at least as quickly as k).

Eliminating the k-diffusion term from equations (4.29) and (4.30) allows
us to determine ¢ as a function of k, providing that solutions are taken far
from regions where k and ¢ are zero. In this case,

00
62=—k2(2(1—639)+Ac”)ﬁga_y/CwCaa. (4.31)

We should note here that a derivation of equation (4.31) does not rely
upon the form of the diffusion, the only requirement being that the diffusion
be non-zero. It is the inclusion of the diffusive term in equation (4.24) that
allows the viscosity to be non-zero. The values generally given for the various
constants in equation (4.31) (Bradshaw et al, 1981; Launder, 1987) reveal
that they are all greater than zero, and cg < 1. Also, the dissipation in
equation (4.31) must be positive definite (it is the average of the square of
a real quantity) and this will be true only if the temperature gradient in
equation (4.31) is negative. This is exactly the situation in which one would
expect there to be turbulence, and is the opposite of what we have found in
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previous sub-sections. However, whether equation (4.31) has any real physical
interpretation is uncertain.

Equation (4.29) is also interesting, since it indicates that if € is non-zero,
then the diffusion is proportional to the dissipation. This equation is anal-
ogous to that of steady-state heat transfer with a sink and represents the
diffusion of turbulent kinetic energy to a region where it can be dissipated.
Furthermore, we can re-write equation (4.24) in terms of v, and the dissi-
pation only and we again find that diffusion is not explicitly present in our
system of equations (4.24) to (4.28). Note also that, since we have neglected
all other diffusive terms, we should be careful not to place too much emphasis
on the above results. However, the inclusion of further diffusion terms should
still provide us with a non-zero turbulent solution in the steady-state, since
diffusion cannot remove energy from the turbulence. We presume, therefore,
that the basic interpretation of equation (4.31) is valid.

However, there are still problems with the model. If we impose the con-
ditions at a surface that the turbulent kinetic energy must be zero, then for
reasons of regularity, e must go to zero at least as quickly as k. Furthermore,
one finds that the dissipation must go to zero less quickly than k?, otherwise,
the diffusion terms would not be regular (assuming the various gradients of
correlations exist). We thus find that O(k) < € < O(k?). This is not what
one would expect by studying a power series expansion close to a wall, where
one finds that k ~ O(y?), whilst € ~ O(1) (cf. Fletcher, 1982).

We can conclude, therefore, that there are again some inconsistencies in
this model. This time, the problems seem to be largely due to the selection of
correct boundary conditions. There is not room here to fully discuss solutions
to this problem and we will return to the subject in a later report.

4.4 Reynolds stress model with diffusion

We will make only a few comments regarding this model, since the equa-
tions are far too complicated to derive any useful physics from. Furthermore,
the model does not appear to be significantly different from the k — ¢ model,
with only one extra equation in the Reynolds stress 7;v; being present. In
steady state the equations are:

— d c, k*\ Ok
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In studying these equations, we find that the same problems regarding the
selection of correct boundary conditions are still present.

The difficulties could be due to the use of an incorrect set of approxima-
tions in closing the equations, or it could really be that we do not understand
what the boundary conditions should be. In the former case, the only terms
which appear to have been unreasonably approximated are those represent-
ing diffusion and dissipation. We have seen, however, that the k — ¢ model
does appear to allow steady-state turbulence, as long as solutions are taken
away from a wall, so that neither k or ¢ are expected to be zero. (This
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is consistent with the assumption which we have made previously that the
Reynolds number is high, so that the small-scale motion is dependent upon
viscosity.) We conclude, therefore, that the models are not valid close to a
wall. A possible approach to this problem will be examined in a subsequent
report, where we will study the expected boundary layer close to the wall.
This has already been accomplished in a paper by George and Capp (1979)
and our later report will review this work.

5. Summary and Conclusions

In this report, we have set out to investigate whether currently available
turbulence closure schemes are applicable to a strongly-convecting flow. In
section 3, we summarised several closures of different complexity, and in
section 4, they were applied to the convective flow in the limit of steady-state
and with the assumption of a zero mean flow.

We have discovered that there are at least two major problems with the
models which we have examined. The first is the most important and is
concerned with the selection of the correct boundary conditions. In a shear-
driven turbulence, one would usually choose the conditions at a surface that
turbulent velocities be zero there. However, we have seen that the assump-
tion of a zero mean velocity field (see section 2) precludes this choice, since
the steady-state must then be the one with a trivial solution for the turbu-
lent correlations. In order to get round this problem, we decided that it is
necessary to calculate the flow in a boundary layer close to the walls of the
fluid’s container. The reasoning is, as was pointed out in sections 2 and 4,
that the turbulent flow is expected to posses a thin boundary layer, whose
mean flow should not be zero. In this situation, one would be expected to be
able to use the usual boundary conditions at a surface.

This brings us to the second problem with turbulence models. Given such
a boundary layer, we wish to know how the turbulence feeds off it. We assume
that the process must involve a diffusive action. In many turbulence closures,
diffusion is left out of the equations altogether, since its effects are expected
to be small. This will almost certainly be true in shear-driven turbulence
where the mean flow dominates over the diffusion. In our application, how-
ever, we have pointed out that this is not the case, and we must be concerned
with developing a “reasonable” diffusion model. At this point, we should ask
if the modelled diffusion suggested in this report would be successful in mod-
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elling the true, physical process. The answer to this question is uncertain
at present. Thompson et al. (1985) and Wilkes and Thompson (1986) in-
vestigated the double-glazing problem using the boundary layer equations of
George and Capp (1979). However, they do not report on how well the dif-
fusion is modelled. Furthermore, for the numerical examinations that have
been attempted, there is little experimental evidence with which to compare
the results.

We have thus been able to demonstrate two major defects in current
turbulence modelling, as applied to a strongly-convecting flow. Firstly, we
need to determine a physically meaningful diffusion model, which is not based
on a mean flow. Secondly, we must derive a set of boundary layer equations
which ought to be at least analogous to those of George and Capp (1979). If
the k — ¢ model of section 4 is to be used, then we also ought to include a
model for the generation of the Reynolds stresses, in the absence of a mean
flow. In neglecting such a model, we must be losing some knowledge of the
physical processes which contribute to the turbulence, and the inclusion of
Reynolds stresses must be important for this reason.

We conclude by commenting upon the applicability of current turbulence
models to strong natural convective flows. As we have stressed many times
throughout this report, the currently available “state of the art” turbulence
models are based upon the assumption that the turbulence is driven by a
mean shear. There are several provisos regarding such models:

(i) The body forces must be kept in the model.

(ii) A reasonable model must be found for the turbulent correlations 7;; D5, ; 0
and @2. The first two of these would be expected to be the most important.
Models of these terms must not be based solely on a mean velocity and ought
to have some diffusive properties.

(iii) Finally, solutions must be calculated in a boundary layer in order to
provide boundary conditions for the fully turbulent flow. These boundary
layer solutions must be calculated via the exact equations presented in chapter
2, or else they must be approximated for by following a relevant boundary
layer analysis (e.g. George and Capp, 1979).

The k — € model as set out in sub-section 3.2 would not be expected to be
applicable to our particular problem. It generally only satisfies the first of the
constraints above. There would be no generation of Reynolds stresses and
it would be difficult or impossible for such a scheme to model the diffusive
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properties of our problem. However, the rather major modifications of section
4.1 ought to make its use more satisfactory, with the Reynolds stresses being
the only terms not conveniently modelled.

The full Reynolds stress model of section 3.4 ought to fair a little better.
This time it satisfies constraints (i) and (ii), since this closure contains equa-
tions in the transport of the Reynolds stresses and the scalar heat flux and
the buoyancy is nearly always included in this model. However, the boundary
layer equations or wall functions would still be inapplicable in most codes.
A commercial package would therefore have to have a facility whereby one
could provide one’s own equations for the boundary layer. A final comment
on this point should be made. The flows with which we are concerned involve
a Rayleigh-Taylor type instability along the top surface. The boundary con-
ditions and corresponding boundary layer behaviour along this top surface
are a complete unknown in turbulent flows.

Throughout this report, we have mentioned only the basic physical prop-
erties which a model should posses. No mention has been made of the more
complicated physics expected in strongly-convective flows. (e.g. wall reflec-
tion, streamline curvature etc.). Based upon the problems experienced by
researchers working upon shear-driven turbulence in complicated flows, one
must assume that the lower level schemes (e.g. k — ¢ or ASM) would have
difficulty in modelling the flow accurately. One would expect answers, as we
have indicated in this report, but whether such answers will be realistic is
another matter. These comments may not apply to the full Reynolds stress
closure and this should probably be the recommended starting point when
modelling flows of the type which we have considered in this report (Launder,
1989; Rodi, 1989).

Without the comparison of numerical solutions with experimental data,
we cannot comment further regarding the application of mean-shear driven
turbulence models to convective flows. We conclude, therefore, by suggesting
that a great deal more work needs to be done with regard to the problem of
highly convective flows. Experiments must be conducted which can provide
data with which to compare numerical codes. The experiments must be able
to reach Rayleigh numbers of at least 10° in order to represent fully-turbulent
flow and the geometry and the material must be relevant to the flows of this
report. The codes must be updated so that they represent more closely a
turbulent flow which is driven by convection. In particular, the boundary
layer for a vertical surface must compare with that presented in George and
Capp (1979). Finally, the structure of the top boundary must be investigated
analytically and reasonable approximations must be found so that a complete

42



turbulence model for these flows is specified.
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