CLM -R 3

CLM - R 3

P e b e

CULHAM LAGURATO Y |
LimRARY
| JUN 1963
] ——
b

United Kingdom Atomic Energy Authority
RESEARCH GROUP

Report

THE LIFE HISTORY
OF IMPURITY ATOMS IN A PLASMA
POSSESSING A TIME VARYING
ELECTRON TEMPERATURE AND DENSITY

G. D. HOBBS
M. A. ROSE

Culham Laboratory,
Culham, Abingdon, Berkshire
1963

Available from H. M. Stationery Office
FOUR SHILLINGS NET



(C) + UNITED KINGDOM ATOMIC ENERGY AUTHORITY -1963

Enquiries about copyright and reproduction should be addressed to the
Librarian, Culham Laboratory, Culham, Abingdon, Berkshire, England

u.b.C.
621.039.626 ZETA




CLM-R_3

THE LIFE HISTORY OF IMPURITY ATOMS IN A PLASMA POSSESSING

A TIME VARYING ELECTRON TEMPERATURE AND DENSITY

by

HOBBS
RCSE

= O

ABSTRACT

The differential equations describing the life history of an
impurity atom in a plasma, through all its stages of ionization,
require a numerical solution if the electron density and temperature
vary in time in an arbitrary manner. This report outlines some of
the physical processes that can be represented by these equations, a
method of solution, for which a computer programme has been written,
and, in the form of a simple example, the type of problem for which a
solution can be obtained. Such calculations are of interest since
they enable a cross-check to be effected between measurements of elec-

tron temperature and density and observed impurity spectra.
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1. INTRODUCTION

l. Virtually all plasmas produced experimentally up to the present time have
been contaminated by impurity atoms. In the case of ZETA(I), for example,the
main impurity constituents present in a discharge with deuterium as the work-
ing gas are carbon, nitrogen and oxygen together with smaller quantities of
the liner constituents(l). These are basically an embarrassment to a con-
trolled thermonuclear reactor project in that they‘constitute an enormous
energy sink within the plasma, even in the small quantifies in which they
generally occur. Energy that should be present as thermal motion of the
plasma particles is converted, by collisional excitation, etc.,to internal
energy of the impurity ions and is then radiated. Since the plasma is in
most cases at least partially transparent to this radiation the energy is
lost from the system. Again, as an example, in ZETA at moderately high work-
ing pressures (~ 5- 10 microns), with a total impurity concentration of about

a percent, all the energy discharged into the gas is radiated as fast as it is

pui in, i.e. at a rate of hundreds of megawatts.

2., This energy loss, however, provides a powerful experimental method for
investigating the interior of the plasma since the radiation emitted from a
given region of the diséharge will be determined by the conditions prevalent
there. The process of extrapolation back to the plasma properties from the
measurements may,admittedly, be involved and often ambiguocus. However, the

mz jor advantage of the method is that the introduction of probes and other

solid objects into the plasma is not necessary.

3. The radiation emitted by impurities may be divided into two categories -
continuum radiation and line radiation. Continuum radiation, emitted over a
continuous range of frequencies, is due to electronic transitions between two
unbound states (free-free transitions) or from an unbound to a bound state
(free-bound transitions). Line radiation on the other hand, emitted only at
certain discrete frequencies, is due to bound-bound transitions, i.e. to
changes in the internal electron structure of the impurity ions. It is the

latter only that will be considered in this report.

4. Measurements of the intensity, as a function of time, of given spectral

lines emitted by impurity ions have been made by a great many workers.



(3-6)

Previous attempts at interpreting the results have been confined to

the theoretical analysis of a model in which the assumption of constant elec-
tron temperature and density has been made. Independent measurements(7’8}of
these quantities, however, have been obtained and significant variation can

be observed during the discharge period. In the following sections calcula-
tions are described in which the restrictions inherent in the above assump-

tion are relaxed, provision being made for any arbitrary variation of density

and temperature.

5. The purpose of this report is to outline briefly the physical processes
under study (Section 2), and to describe in reasonable detail their mathe-
matical representation and the methods employed in solving the resulting
differential equations (Section 3). The equations are solved numerically
and a computer programme has been written for this purpose. Details of the
input data required and the results obtainable are described in the form of
a simple example of the use of the programme (Section 4). Application to a

specific experimental situation is not considered. Information of this sort

(9)

has been , and will be, published elsewhere.
6. Details of the programme are not discussed in this report, since they
depend to some extent on the computer used. At the present time the

programme is written in FORTRAN and could be run with little difficulty on
the IBM 704, 7090 and 7030 computers utilizing either the FORTRAN II or S1%
compilers. Access ts an automatic graph plotter would also be advantageous,
although not essential, the plotting routines at present being written for
the BENSON-LEHNER, MODEL J machine. Any person interested in using the

programme should contact G.D.Hobbs.

2. PHYSICAL PROCESSES

7. The atomic collision processes likely to be predominant in a low pressure

(3)

gas discharge have been discussed by many authors, for example: McWhirter

(4) (5)

Knorr and Post For the calculations described below three only have

* 51 is a 'dialect' of FORTRAN written for the IBM 7030 (Stretch) by

A.E, Glennie et al of A.W.R.E., Aldermaston, in conjunction with

IBM (United Kingdom).



been included, these being generally accepted as the most important.
(1) Collisional ionization of an atom or ion by an electron.
(2) Recombination of an ion with an electron.

(3) Collisional excitation of an atom or ion by an electron.

8. In calculating the rates at which these processes proceed in a small
volume of the plasma it has been assumed that the electron component of the
gas has, locally, a Maxwellian distribution of velocities characterized‘by a
temperature T. Thus, if f(v)dv is the fraction of electrons with velocities

in the range v to v + dv,
mv>

3 s A
£(v) = 4n (5mpg—)°ve 2KkT ,

where m is the electron mass and k is Boltzmann's constant.

9. In addition to the collision processes, provision has been made for loss
and injection of ions in order to take into account any lack of containment

of the plasma.

10. The model, then, allows for an atom (or ion) to be injected into the
plasma, (or in the case of the neutral atom, to be there from the start),
where it will undergo ionizatioﬂ, resulting in the loss of one or more elec-
trons; recombination, resulting in the gain of one or more electrons;
excitation, resulting in the emission of line radiation; and finally per-
haps ejection from the volume to lose its identity on the walls of the
containing vessel. The relative rates with which these different processes
proceed depend on their individual cross-sections and probabilities and the

way in which these vary with T and the electron density n,.

11. In principle the model applies only to an infinitesimal volume of space.
To apply it to a finite discharge volume would lead, if done rigorously, to
complex integrals. However, since experimental determinations of ng and T
as functions of space and time are not easy to come by, it is not unrecason-
able to assume them spatially uniform, together with all other plasma

properties, and apply the model to the discharge as a whole.

12. It may be mentioned here that each process is treated by a self-
contained sub-programme. This makes the programme flexible since one or more

of the existing sub-programmes may, if desired, be replaced by others which



take into account different physical situations (e.g. substitution of a
mono-energetic electron stream in place of the present Maxwellian velocity

distribution), leaving the major part of the programme unaffected.

13. In all that follows the term 'ion' should, in general, be interpreted as

'atom or ion'.

IONIZATION

14. The physics of ionization by electron impact is complex(lol. The simp-

lest process conceivable is that of an electron impinging on an ion with
sufficient energy to eject an outer bound electron from the ground state
directly into the continuum. The energy required to do so must be at least
Eo' the first ionization potential of the ion. More complicated processes
are easily envisaged; for example, excitation of the ion to an intermediate
bound state by one electron followed by ionization out of that state by a
second electron. Clearly the individual energies required by these two elec-
trons need not be as high as in the case of the simple process. To include
all such processes would be an enormous task and the form in which ionization
has been treated in this report is therefore somewhat generalized, the

detailed structure being left at the disposal of the individual user.

15. Three properties are assigned to the ionization cross-section for an
individual collision, when expressed as a function of energy. It must vanish
below an ionization potential Eo’ have at least one maximum and fall off
asymptotically as 1/E. These properties have been embodied in a single

analytic form.

(1)
E-Eo o (E-Eg)°

E? (E+E,)3

The parameters A, B, Eg and E, can be chosen to fit the data relevant to the
particular ion under consideration. In particular, if B=0 and A::a/EO,

(11)

where & is a given numerical constant, the 'classical' cross-section for

ionization is obtainable.

16. The total rate of ionization of a particular ion, denoted by a subscript

i, is given by:-

eee (2)



where 5; = (:01 v> is the ionization coefficient and the brackets denote

averaging over the Maxwellian velocity distribution, i.e.

o0
si = oiv)> = {7 oyvi(vidv, s 130
’ oi
1
. E y 2
the lower limit being taken as voj; = (2Egpj/m)°, below which Oj vanishes.
The coefficient can be written in terms of exponential integrals(lz)and its

calculation is discussed in more detail in Appendices 1 and 2.

RECOMB INATION

17. Since recombination is physically just the converse of ionization it
would not be.expected to be any less complex. Two basic processes have been
assumed to contribute to the total recombination coefficient a, in terms of
which the total rate of recombination is given by:

dni
—= = - nenja;.
dt S

18. The first, radiative recombination,is defined by the equation

Az-Fe - A, _ 4 + hy,

where A, denotes an ion carrying a net charge +Ze. The theory of radiative
recombination for hydrogen-like ions has been successfully analysed but a
complete mathematical description of the process for anything more complex
has yet to be obtained. In view of this it has been assumed that the recom-
bination coefficient for an ion of charge Z may, as a reasonable approxima-
tion, be replaced by that for the hydrogen-like ion of identical charge.

This coefficient, when averaged over a Maxwellian velocity distribution at a

temperature T can be written(13) in the form:-
-14 22 ol
ap(Z,T) = 9.56 x 10 £-[G(n, ,Z,T)+ Z = F(xp)}, sea (4]
T2 n=1
where F(xn1_i)
G(n,,2,T) = o ;% + il %) + £€n Y ,
1
Fi{x) = - xe €H-x),
72
X, = 13.60 =
n n°T

and,if T is in eV, ag is in cn®/sec. The constant én v = 0.577216 and &i(-x)
(1 :

is the exponential integral 2)(see also Appendix 2). The series represents

a summation over the lowest n -1 energy levels of the ion and G(n, ,Z,T) is



an integral representation of -the summation over the remaining levels. The

recommended value of 4 has been adopted for n, in these calculations.

19. The second process, three body recombination, is defined by the equation

A + 2e = A + e,
Z z=1

the second electron carrying off the excess energy. Until recently this
process had been thought to be negligible at the temperatures and densities

(14) of the

encountered in low pressure gas discharges. However a new study
subject has shown this conjecture to be untrue under certain circumstances.
Its effect on the total recombination coefficient a has been included,

rather crudely, as a factor H multiplying agp, i.e.

4 = Hag e-. (5)

This factor, determined only by the average density and temperature, has
been assumed constant throughout a calculation. In those cases in which
there is an appreciable order of magnitude variation of ne and T during the

discharge period this approximation may be invalid.

EXCITATION

20. The phenomenon observed experimentally is the variation of intensity of
a spectral line emitted by a specific ion. The process assumed to give rise
to such a line is collisional excitation of the ion from an initial to a
higher state followed immediately, that is on a time scale short compared to
any other physical p}ocess under consideration, by a spontaneous radiative
dzcay. The population density of the initial state, which will in general
be the ground state, is assumed to exactly equal the ion number density nj.
1f the energy separation of the initial and excited levels is %, then the
rate of excitation, equal in this approximation to the rate of emission
{radiated intensity), will be proportional to the excitation coefficient,
which on averaging over the Maxwellian velocity distribution, can be

written( 14)

(1P

X = Const x (KT) ° exp (- %/KT). TS

This expression is based on a cross-section for collisional excitation given

(15)

by Seaton The value of the constant is irrelevant unless absolute
intensities are required. The programme discussed in this report was

designed to give the variation of radiated intensity with time, not its



absolute magnitude. Hence, the constant has been chosen to provide a con-
venient normalization for the tabulation and plotting of the results. It
should be noted that % is not the energy hv of the radiated photons unless

the transition involved is back to the initial state.

21, Finally, the total radiated intensity emitted in a specific line will be
given by:

:nn-Xi 5 e (7)

I 851

i
the subscript i again denoting the particular ion. The radiation will be
enitted in all directions and before comparison with the corresponding
experimental data some geometrical correction factor may need to be taken
into consideration. A typical example of such a correction is provided when

the volume observed does not remain a constant fraction of the whole, as in

a pinch discharge viewed by a constant aperture instrument.

LOSS AND INJECT ION

22. Impurities appearing in a gas discharge plasma arise from two main
sources, those already present in the working gas and those coming from the
walls of the containment vessel. The latter may be injected into the plasma
during the entire period over which the discharge lasts. In practice the
rate of injection A varies with time but for simplicity it has been included
in these calculations as a constant, a different rate being available for

each type of ion.

23, Frequently not only do impurities stream in from the walls but, due to
instability, etc., plasma is lost to the walls of the containing vessel(s).
It would be unreasonable to expect the working gas to leave the system with-
out the attendant impurities. Thus provision has been made to represent,
again in a simple manner, the loss of impurity ions. The rate of loss has
been assumed to be proportional to the number present, the constant of pro-

"portionality A being independent of time but, if necessary, different for

each type of ion.

24. Finally, the total rate of change of ions due to the combined loss and
injection processes can be written in the form:-

dnj

i i S s ... (8
= A Aimg (8)

1 1



3. THE BASIC EQUATIONS AND THEIR SOLUTION

DEF INITION
25, The basic equations governing the life history of an impurity atom

through all its stages of ionization have been written down and discussed in
(3,5,6)

previous papers . They are
dn,
Tt = - nnS +nn,a, + A1 - l1n1,
dni .
<o T PelioaBiogT PeiSy T MeMiGy FMePiy Giyy F Ay - Mymye pee (9)
ii& = n.n S - nna, + A - An
dt e k-1 k-1 e k'k k k'k
where i = 2,3, ... k-1, ny is the number density of neutral atoms, n, that

of singly ionized atoms, nz that of doubly ionized atoms, etc., and ny is the
number density of 'fully stripped ions'. The 'fully stripped ion' is defined
for the purposes of these calculations as being that ion for which the maxi-
mum ionization rate likely to be encountered during the calculation is negligi-
ble compared to the recombination rate of the k+1 th ion, and for which S5y
can be set equal to zero in order to terminate the set of equations. The
significance of the various terms in equations (9) can readily be inferred by
reference to the previous section.

k

26. Adding the k equations (9) together and defining ng(t) = 3 n;(t) yields
iz

dng

da
di T dt

k k k
2 n;(t) = 3 A; - 3 Ninj, ...(10)

which, on integration from o to t gives

n,(t) = n (o) + ; Ajdt - g Ay tni(t')dt'. i s ELE)
i=1 i=t ©
This just states that the total number of ions present at any time t is
equal to the sum of those present initially, no(o), and those injected during
the interval o to t, less those lost from the system in the same period. As
would be expected the atomic collision processes do not contribute to changes

in the total number of ions and if Aj=X; = 0, for all i, this number is

conserved.

27. If all the A; are equal, i.e. Aj =X, equation (10) may be solved analyti-

cally, the solution being
Anglo) =LA 3¢

h ¢ )

no(t) =—-% +



where A =

b

Aj, and is the total rate of particle injection. The solution

i

1
possesses the following properties:
(a) Lim ng(t) = A/A.
o0
(b)Y If A > Ang(o), ny(t) increases monotonically to the limit (a).

(c) If A < Anglo), ny(t) decreases monotonically to the limit (a).

(d) 1f A

Ang(o), no(t) remains constant at ng (o).

28. The boundary conditions appropriate to the set of equations (9) are
determined by the assumption that initially all the impurity atoms are in
an unionized state. Thus,given the initial concentration ng(o), the boundary

conditions become

n; n_ (o),
. at t = o

ni=0,i'4=1.
These may not be valid if an intense preheating mechanism is used which

results in a significant degree of ionization in the gas.

SOLUTION
29. Solutions of these equations have been obtained under two extreme sets
of conditions. The first and simplest entails neglecting loss and injection
and insisting that the electron temperature T, and hence the coefficient 5;
and a;, be independent of time. Solutions of this type can be obtained by
analytic methods and have been discussed in earlier works(3_5). For complete-
ness, and for those who may be interested in studying them, a simple method

of solution which is'particularly suitable for automatic digital computers

is set out in Appendix 3.

30. The other class of solutions considered takes into account not only the
loss and injection processes but also the possibility of n, and T varying
with time in an arbitrary manner. Under these circumstances analytic inte-
gration of the equations becomes impossible and resort must be made to
numerical techniques. The method of integration adopted was that of Runge-

(15). This was chosen in spite of its inherent instability characteris-

Kutta
tics firstly, because a well tried fourth order sub-programme was already
in existence and secondly because a simple rearrangement of the differential

equations enabled the instability difficulties to be overcome.

31. The Runge-Kutta procedure is developed from a Taylor series expansion of

-9 -



the solutions of the differential equations. It is an unfortunate fact that
equations (9) under certain circumstances, possess solutions that to a first
approximation (e.g. see Appendix 3) can be expressed as a sum of exponentials
with widely differing negative exponents. It is known that the Runge-Kutta
method is susceptible to instability on encountering such solutioas unless a
very small step length is used. The magnitude of this step length is dgter-
mined by the ability of the method to make a valid Taylor series expansion

of the exponential with £he largest exponent, i.e. in general it is determined

by the term contributing least to the total solution.

32, To overcome these difficulties the integration is done in two successive
stages. In the first stage equations (9) are integrated from t = o until n,
has fallen to a small fraction of its initial wvalue (all the other 3 have
normally attained non-zero values by then) . It is from this latter point
onwards that instability is likely to occur and at which the second stage of
the integration commences. Dividing equations (9) throughout by n,,n; and ni

respectively, and defining y; by
Yi = £n ni, all i,

the set of differential equations may be rewritten in the form

=- (ngS; + M) + nyo, exply, - y;) + A exp(-y ),

dy; i
:ﬁ%::neSi_1exp(yi_1-Yi)-[ne(si+ai)+hi]+ né1i+1exp{yi+{-yi)+ Aexp(-y;) } (12)

dy k
k A + A, exp
T h neSk_1exp(yk_1 -yk) - (ne@k + k) k ('Vk)'

33, These equations have solutions that are essentially algebraic and can be
handled without any difficulty by the Runge-Kutta technique. Thus in the

second stage it is these equations, not equations (9) that are integrated.

34, Even though much computer time has to be expended in evaluating the many
exponential factors it was not difficult to obtain a ten-fold time saving
over the direct integration of equations(9) using such a step length as to
ensure stability. (Simple methods, such as linear extrapolation,

n;(t + 6t) = n;(t) +0tdn;/dt, proved to be equally slow.) The two stage
scheme is necessary because all except the first of the y; became singular

at t = o by virtue of the boundary conditions.

- 10 -



STEP LENGTH AND ACCURACY

35. Since an approximate analytic solution can be found for equations(9)
during the first stage of the integration, the initial step length Ot can be
calculated quite simply. Near t = o, nj €« n, for i > 2, and the only equa-

tion of importance reduces to
dn.]

= = —[neS1 + ?\..‘]1'1f + A1 W

Provided ng and S, (i.e. T) do not vary too rapidly over the first few steps,

the solution of this equation can be written

n, (t) = no(o)e-t/To * K, Toll e-t/To)
= nglo) (1 + t/T,)
where T, = (n.S, + l1)-1 and T, = T,(1 - A1TO/no(o))-1. Thus if &6t is chosen
such that ot « T, the integration will be sufficiently accurate. In practice

a constant step length of 7T,/100 ensures a tolerably small error during the

integration of equations (9).

36. In the second stage, i.e. during the integration of equations (12), the
step length is recalculated at every step in such a way as to obtain the
fastest integration commensurate with a high degree of accuracy. In all,
k+-1.equations are integrated simultaneously to give ng(t) and n;(t), i=1,
2,...k and the accuracy of each step is investigated by making a comparison

k

between ny(t) computed from equation (10) and ng(t) computed from 2 n;
i=1

The procedure for making this comparison is as follows:-

(1) At the end of the m-1 th successful step the solutions nD(m_l)
and ni(m-lh i=1,2,...k are known and the parameters Z(m‘l) and
61(m-1) have been computed, where
slml_ 3 (mo1)

and m-1 ::11) (m-1)

0, = |n0 L = B |,,
the actual error present in the solution at this point.
(2) The step length for the mth step is computed from 5t(m)= 6t(m-1)

or,at every fifth successful step,from 6t(m)= 26t(m—1),

(3) The k+ 1 equations are integrated by the Runge-Kutta sub-programme.
) (m)

(4) The parameters © Lo and 0 are calculated, where
P 1 2

5 (m) _ |51(m) . 61(m—;)| ’

2

the change in the error incurred during the m th step.

)
(5) 1f 62(m, $ €, a prescribed error, the integration is cc -idered

- 11 -



suczcessful and the next step is attempted.

(m} '
(6) 1f O, > &, the step length is halved and the integiation
repeated from (3). (The calcul=tion is autonatically terminated if

this occurs more than 10 times in attenpting one step.)

37. In this way the rate of increase of the discrepancy between no(t) and
k
.2 n;(t) is maintained small. The permitted error € is chosen so that the
i=1
mzximum total error Ne, where N is the total number of successful time steps,

at the end of the calculation, i.e. the number of particles gained or lost

due to arithmetical inaccuracies, is very much less than n (o). 1In the
existing version of the proiramme ng(o) = 104 and € = 10-3, hence an accuracy
of 0.01% is maintained if N = 103 and, since the maximum number of steps

. . 4 . ;
permitted is 2 x 10", the overall maximum error 1s 0.2%.

3
33. Attempts to monitor 51(m‘ itself and to apply a constraint of the form

6‘(m'\ < &

' ,» some other prescribed error, proved completely unsuccessful. It

was found that, during the first few steps, the step length adjusted itself
(m)

t> the maximun value possible, resulting in a rapid build-up of 6, to

within a small fraction of its maximum value €,. From that point onwards Ot

(m)

was forced to become very small in order to ensure that O, did not exceed

that value, the net effect being to slow the calculation down considerably.

39. The criterion di scussed above, while being successful during the integra-
tion of equations (12), cannot be applied to equations (9). These equations
possess the property that, if the physical loss and injection processes are

omitted, the total number of ions is conserved irrespective of the stability

or accuracy of the solution.

4. AN EXAMPLE

40, This section summarises the data required in order to use the programme
and the results obtainable. The summary has been drawn up in the form of a
simple example, the details of which have been chosen to illustrate the

facilities available to the user.

4]1. The discharge considered possessed the measured temperature and density
variation illustrated in Fig.l. The total period over which measurements

could be made was 5 milliseconds (msecs). The data of this figure was

s I3 &



supplied to the programme in the form of two tables, one, with 79 entries,
of temperature against! time, and the other, with 73 entries, of density
against time. It was not necessary for ithe intervals of tabulation to be

identical in the two tables.

42. The impurity investigated was nitrogen which was assumed present initial-
ly at a density of 101! atoms/cc. 1In addition neutral nitrogen was assumed
to be injected into the discharge from the walls at a rate of 2 x 1010 atoms/
cc/msec. Since the programme always sets the initial neutral density to
104/cc, the injection rate must be scaled to bring it into proportion. Thus
the value of A, used for the input data was corrected to 2 xlO6 atoms/cc/sec
(2 x 103/cc/msec]. An experimentally measured ion containment time of 1 msec
was adopted, giving a fractional loss rate coefficient A, the same for all

ions, of 103/5ec.

43. The details of the ionization cross-sections were based on data taken

from Allen(ll). The shape of O(E) is shown in Fig.2, the maximum, Op,x,
being given by 3 B

Giage = bn Tag (EO/EDH) cm-,
where -17

na2 = 8.80 x 10 cm?

bn = 0.8 for omne outer electron,

= 2.0 for more than one outer electron,

and

Egg = 13.56 eV, is the first ionization potential

of atomic hydrogen. ' From this form of the cross-section the set of ioniza-

tion parameters listed in Table I was derived.

TABLE I
3 7, Ai Bi Eoi E1i
(cms2eV) {cmsZeV) (eVv) {eV)
' -15 -14 .
1 | o | 2.6403x10 2.1997 x 10 14.540 | 12.276
2 |1 | 1.2967x10°Y | 1.0804x10"1% | 29.605 | 24.994
3 |2 |8.0927x 10710 | 6.7440x 1071 | 47.426 | 40.040
a4 |3 | 4.9567x 10710 | 4.1297x 10712 | 77.450 | 65.388
5 | a 0 0 - -

The termination of the table at i =5 was justified by investigating the rela-
tive magnitude of the ionization and recombination coefficients to be expec-

ted in the calculations.



44. A value of 4.5 was adopted for the factor H in order to represent the
excess recombination due to three body processes. The excitation potentials
for the particular spectral line of each ion to be studied were Xy =10.00 ev,

Xo=11.39 eV, X5=12.47 eV, Xg4=51.85 eV and X5=9.97 eV.

45. The output from the programme is in two forms - numerical and graphical.
The former, in addition to a listing of the input data, consists of two

tables; a tabulation of T, Ng, N , Ny, Ny, ...np against time, and a list

of normalized spectral line intensities at the same time intervals. The

latter consists of two graphs displaying the contents of each of the two

tables.

46. The graphical results obtained for this particular example are exhibited
in Figs.3 and 4. Interesting points to note are;:

(1) The rapid decay of the neutral number density followed by the
peaks PII and PTH demonstrating the passage of the nitrogen atoms
through their successive stages of ionization, leading after about
l msec to a small proportion of NIV and a very small proportion of

NV (not shown).

(2) The peaks PiI’ PiH and P}V due to recombination as the electron
temperature falls during the latter half of the calculation,leading
back ultimately to neutral nitrogen. In fact NI begins to reappear

during the last millisecond. -

(3) The steady exponential fall in the total number of particles to

its equilibrium value A/x at which loss and injection just balance.

(4) The considerable difference in shape between the number densities
and their corresponding line intensities. In particular the effect
of the falling excitation coefficients (i.e. falling T) in masking
nearly all the features displayed by the number densities during the

latter half of the calculation.
47. The above example illustrates all the details of the input and output
data except the restrictions that have to be imposed on certain quantities.
These are listed below:-

(1) The total number of ions k may not evceed 12.

(2) The number of entries in each of the two tables T and n, against

time may not exceed 100.

(3) The maximum number of entries in the final tables of n; against
time will not exceed 1000. 1If this number is reached the calcu-

lation is terminated automatically.
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APPENDIX 1

THE CALCULATION OF IONIZATION COEFFICIENTS

48. The ionization coefficient is defined by

S =0 v f(v) dv , (A.1.1)
: Vo
where 2
E-Eo (E"Eo)
g o el b e E > Eg ,
£2 (E+E1)3' [o] (A.1.2)
3 _mv2 '
_ m 3 2 2kT
f(v) = 4xw (E%ET) vZe . (A.1.3)
" s L
v = (2E/m)?, and in particular v, = (2E /m)2.

After a certain amount of labour S can be reduced to the form
1

-Xo

g 2
S = () {Alxg Eil-x0) + e 7] (A.1.4)
s x, &;
+ B[R, e + R,e i(- X + %018,
where " .
R, =1+ %, +% %, +3 x1(x0 + x1),
R, = 2x5 + 3x, + (x5 + 3x,)(xo + x,) + o x, (x5 + x1)2 .
xo = Eo/KT , 'x, = E, /KT
and
- o
- &i(-x) = ;7L 4z . (A.1.5)
AR

49, In the limit of small T, i.e. large x, and x,, difficulty has been experi-
. -X, )

enced due to the cancellation of terms such as x, €i(-%,) and e  © to a large

number of fipures resulting in sizable errors in computing S. In order to over-

come this, asymptotic expansions have been introduced in the following manner.

Successive integration by parts yields
-x

: e J AL, 2t a3
'El( x) ot [1 % +x2 ;{'5'+...].
Thus
= <5 :
x5 gi(-xo} g O e O[xo P gi(—xo) + 1]
x
=70 1 I
e R - B E TR - ]
o o Xo
Similarly, if x, = x5 + x,,
-X X : -Xo, - x 1
R, e ° 4 R, e L éﬁ(—x2) = e [R{ + R, @ 2 é;(-xQ)].
R R2 1 1
-Xo ) 2! 3
~ e Ri-==] + —= 1|1 - — 4+ = -
JEER IRT TR R SR
) 1 X G .
Thus, since R, - R2bﬁ = = [1 + 9xy + ;lJ, and defining the series,
) = +1
i 1 1 i - n 1
P(x) = 1 Eé 3 éé R = E :L_L%;_JlL ,
' x * x n=1 b
the asymptotic form of S can be written
3 R
8 2 x x .,
S ~ {zmxT) {AP(xo) + B 3= Plxp) - B(1 + 3t + g™, (a.1.6)

2
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APPENDIX 2

THE CALCULATION OF EXPONENTIAL INTEGRALS

50. The Exponential Integral is defined(lz) by
=-Z
- Ei(-x) =I°°E dz, o0<xX<w
X
It can be represented by the absolutely convergent series
2 3
& X xX
Ei(-x) = inyx - x + 575 - 3r3 toe--
= n_n
= fnyx + E 1) x
n!n
n=1

where €ny = 0.577215665, the Euler-Mascheroni constant.

51. Although convergeat for all positive x, there is a serious cancellation
of significant figures for large values of x. Thus the series has only been

used to compute é&(—x) for x € 1, sufficient terms being taken to ensure a

percentage accuracy of 10-5.
: o LT ; x & :
52. For x > 1, an approximation in which xe i(-x) is expressed as the
ratio of two quartics has been used. 1i.e.
- x* + a,x® + a,x?2 +ax+ a
- xe®* Ei(-x) = 2 % 2 = ! 8
x* + b,x" + bpyx” + byx + bo
where
ag = 0.2677737343 , b, = 3.9584969228;
a, = 8.6347608925 b, = 21.0996530827;
a, = 18.0590169730 , b, = 25.6329561486;
a, = 8.5733287401 , by = 9.5733223454.

This function represents the Exponential integral to a percentage accuracy

of 2 x 10-6 in the range 1 € x < o .



APPENDIX 3

A _SIMPLE ANALYTIC SOLUTION

FORMAL SOLUTION

53. If loss and injection processes are neglected, i.e. A\j = A; = 0,

equations (9) can be rewritten in the form

dn
E‘L = e n151 + n20.2

dnj
ST ni_1Si_1 = ni(Si + CLi)+ n,
:ln](

37 © Mr-1Sk-q- mp Q.

+1 G"i+1 (A.:’l.l)

where the new variable T is given by

t
T = J' I.I.e(t')dt'.
o

54. It is now formally advantageous to take the Laplace Transform of

equations (A.3.1) and express the result in matrix form:

21 (p) ﬁk{p) - ?10 " (A.3.2)
where
B lp) = [p+a, ¢, o0 o ],
-B, p+A, -C, 0
0 -B, ptA,
0 0 0 pP+A
Ni(p) = [ m,(p)] » 1y =] nyl0)]
n, (p) 0
Hk(P)J | o
and
A, =S ; Ag=a; A =8S;+a;, 2<i<k-1;

Bi=sil 1 €1i<€ k-1;
Cizﬂ.i,ZQix{\k

The Laplace Transform of nj(T) is defined by
- o0 -pT
nilp) =‘£ ni(’E]e P dt

and ngl(o) is the initial value of n, (T).

- 19 -



55. Equation (A.3.2) can be solved with the aid of Cramer's rule, the solu-

tion having the form

%.(p) =EJ1<(_P)

Dy (p)

where Dy (p) is the determinant of % (p) and Ejk is formed from Dg(p) by

replacing its j th columnn by the column vector Eo’ i.e.

E;x(pP) = [p+4, =G, 0 0 nglo) 0O S0 |
-B; p+tA, -Cy
0 -B, p+t+A
0 p+_A.j_1 0 0
O —Bj_-, 0 "Cj+1
0 0 0 p+Aj,,
0 0 0 0 0 0 P+ Ay

Inverting the Laplace Transiorm,

E:{p)
n(q:) = )—l—f l~ P eP"C dp,
J 2RL D(p)

the contour ¥ being chosen to lie to the right of all the poles of the

integrand. These are situated at the zeros of the determinant Dyi(p) and are

defined by
Drl(-p;) = 0.

In terms of the pj

Dx(p) = (p + pg).

&
[ L=

The residue from the i th pole is given by

_ Ejk('Pi) .

I (p+pg)
£+i

i

Thus

k E i (=ps o
n_i("l..') = E —‘-'lki—gil— e Py - (A..3.3)

I (p+ pe)
i=1 p4j

This is the formal solution of equation (A.3.1). It has been obtained in
this way due to the relative ease in which, once the roots P, have been

found, the coefficients of the series may be evaluated.



THE ROOTS OF Dy (p) 0

56. Standard numerical procedures are

zeros of a given function. Frequently

function in the form of a polynomial.

available for the extraction of the
it is advantageous to express the

For the case of this particular de-

terminant the transformation is straight forward. Thus, if
k m
Dplp) = 2 g P ,
m=o
the coefficients gy, are given by
1 (m)
Bkm = m! Pk (o),

where Dk(m)(p)

57. Due to the tri-diagonal nature of

the aid of certain recurrence relations.

D,(p) where n lies in the range 0 € n <

is the m th derivative of Di(p).

Dy it can be evaluated rapidly with
Consider the n x n determinant

k and D,(p) is defined by

D,(p) = | p +A, = 0 .
"By ptA, -G
0 -B, p+A4;
0 0 0 pHAn
Then Dy =1,
D1 = p+A1
= ; - =
and D,(p) (p-+An)Dn£?) B _,C, Dn£g), nz 2,
Differentiation with respect to p gives
plo) plm _ o, m3> 1
o o
Df°) = pt+A Df1) = 1; Dfm] =0, m>2
(m) (m) _ (m) (m-1) " .
and D (p}--(p-i-An)Dn_1 1-1CnPps T MO, T, 02 2, m > 0.
Thus, in the limit p = 0, the coefficient gy, may be generated from the
recurrence relation
(o) (m)
Dyle) =1 ; Dylo) =0, m=>1
(o) (1) (m)
D1(O)=A1; D1(o)= 1; Dy(o0) =0, m=2 2;
(m) (m) (m) (m=-1)
and D (o) = AD (o) =B CD (o) +mD (2) , 2€nsk, O0<ms<n.
n n n=i n-i n n-2 n-=1

- 21



EVALUATION OF Ejk(p)

58. Having extracted the roots of Dk(p} = o, the only significant problem
remaining is the calculation of Ejk(p) at p = - p; in order to evaluate the
coefficients of the series (A.3.3). This can also be done by the use of

recurrence relations.

m £ n, defined in exactly the same

59. Consider the n x n determinant Emn'
way as Ejk' Then it is not difficult to show that the identities

E11 = nO(O) ]

E = n (o) Tﬁ1 B. , mz=2 2,

mi o J=1 3

m, m+1 = lp + Am+1) Emm’

and E = (p+A)E - B c B , m<€n -~ 2
mn n m,n-9 n-i1 n m,n-2

are sufficient to evaluate all the Ejk , l.= j< k.

(m)
60. The methods outlined above for evaluating Dk(o) and Ejk(p) are ideally
suited to programming for an automatic digital computer and provided k is

not too large the method would be equally applicable to hand calculation.

CONSTANT n,

61. In the event of n, being independent of time, i.e. T = net' the restric-
tion li = 0 need not bé imposed. A redefinition of Ai' to the form
Ai = Si + @, + li/ne, would enable the calculation to proceed as before.
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