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ABSTRACT

A recursive procedure is presented which is suitable for solving the Vlasov
equation for systems having a simple unperturbed Hamiltonian function. The
method is used for investigating the stability of a low beta plasma supported
against gravity by a magnetic field, The effect of finite plasma boundary layer
thickness and of an electric field is investigated to zero order in Lammor radius.

The suitability of the gravitational model for investigating the flute
instability in a mirror machine is discussed. It is shown that, if the energy
dependence of the drift velocities in the mirror machine is taken into account,
the stability condition is much different, even to the lowest order in Larmor

radius, as compared with a simple gravitational model.
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1, INTRODUCTION

The theory of the flute instability in a mirror machine is far from being complete.
In all the kinetic theories so far published, a low beta plasma has been assumed and the
mirror field has been replaced by some effective gravitational field. The flute insta-

bility ih a gravitational field has been also analysed with various degrees of accuracy.

(1)

Rosenbluth and Longmire assumed high plasma density and a small Larmor radius ahd small

plasma boundary-layer thickness in comparison to the wavelength of the perturbation.
(2)

allowed for an arbitrary plasma density and obtained a critical density at

(3)

Kadomtsev
which the instability sets in. Rosenbluth, Krall and Rostoker showed that finite
Larmor radius effects can stabilize the flute instability at high plasma densities,

(4)

Mikhailovskii showed that at low plasma density the finite Larmor radius stabilisation

is ineffective.

Any kinetic theory consists in solving the Vlasov equation made self-consistent by

reduiring that the electromagnetic field satisfies Maxwell's equations.

In section 2, we present a recursive pfocedure suitable for solving the Vlasov equa-
tion for systems having a simple unperturbed Hamiltonian function. The outlined metﬁod
is used in the following sections to analyse the behaviour of an arbitrary boundary of low-
beta plasma supported against gravity by a uniform magnetic field. In section 3 the
equilibrium solution is discussed taking into account the effect of an electric field
perpendicular to the plasma boundary. In section 4, the flute instability of the plasma
boundary is analysed to zero order in Larmor radius. If the boundary layer thickness is
much smaller than the perturbation wavelength, we find a.critical density essentially
identical with that given by Kadomtsev(z). The growth rate of the instability is

(0

approaching the value given by Rosenbluth and Longmire when the density is several
orders of magnitude higher than the critical density. The phase velocity of the unstable
perturbation is equal to the mean value of the electron and ion drift velocities. An
analysis of the effect of finite boundary layer thickness shows that the critical density
increases linearly with the boundary layer thickness. In section 5 the effect of electric

field on the instability is discussed assuming a sharp plasma boundary and a small Larmor

radius, Under our conditions the electric field does not change the critical density.

In section 6 we discuss the suitability of the gravitational model for investigating
the flute instability in a mirror machine. It is shown that, if the energy dependence of

the drift velocities in the mirror machine is taken into account, the stability condition



changes appreciably even to lowest order in Lammor radius. This suggests that a more
reliable theory of the flute instability should abandon the gravitational model and start
from the Hamiltonian function corresponding to the actual mirror field. It is hoped that

the procedure preSented in section 2 will be suitable for this purpose.

2, THE SOLUTION OF THE VLASOV EQUATION IN HAMILTONIAN FORM

A general outline of the solution of the two-dimensional Vlasov equation will now be
given using a formalism similar to the well-known perturbation theory in classical mechanics,
Starting with a cartesian co-ordinate system (x,y,z), let us assume that none of the quanti-
ties of interest depends on the 2z co-ordinate. The two-dimensional Liouville equation is:-

oF
E-p [F,H] =O - LECA (2-])
F(x,y,px,py,t) is the number of particles per unit length in the z direction contained in
unit volume of the phase space (x,y,px,py). It may be noted that px,py are the compo-

-> - ->
nents of the canonical momentum p = mv + eA which is different from the mechanical momen-

> >
tum mv whenever a vector potential A 1is present.

== (p - eA)? + ep + m¥ wen (2.2

L
2m
is the non-relativistic Hamiltonian function of a particle of mass m, charge e, in an

electromagnetic field defined by vector potential K(x,y,t) and scalar potential ¢(x,y,t)

and in a gravitational field with potential Y¥(x,y,t).

[FH]_<a_E_aH _3F 9!) ; <§£ﬂ.a_l*‘_9.l.1>

? = r

ax apx dpx 9x oy apy ‘apy ay

is the Poisson bracket. A two component plasma consisting of ions (charge +e, mass mi)
and electrons (charge -e, mass me) will be considered. To each kind of particle there

corresponds a distribution function and a Hamiltonian (Fi, Hi for ions, Fe’ He for

electrons) which must satisfy the Liouville equation (2.1).

The Liouville equation (2.1) will be called the Vlasov equation in Hamiltonian form if

the electromagnetic potentials satisfy the inhomogeneous wave equations

3

5 19
v-q) - C—2 at{Q = - p/EO . “s e {2-3)
% 1 3%A _ =
VEA Z e - Mol eee (2.4)
with boundary conditions imposed by external sources. The charge density is
[ F d (2.5)
p = ej[Fi - e]dpx Dy . — .



The components of the current density 1 are

. =ef|:F'ﬂ"F 'aﬂa']dp dp

X .l.an e op, x 9Py

i =e] [F.aﬂ_y f.f‘.a:!dp a5 . Sus 12580
y .l.apy eapy -

Thg solution of the system (2.1)(2.3) and (2.4) may be performed in principle in three
steps. (1) Assuming given potentials, the Vlasov equation (2.1) may be solved for Fi’F; in
tefms of the potentials. (ii) Integrating the distribution functions according to (2.5)
and (2.6) the charge and current density are obtained. (iii) Insérting these into the wave

-equations (2.3) and (2.4) Eigenvalue equations for the potentials are obtained.

In this paragraph we shall be concerned with the first step which is a purely mechani-
cal problem. As the equation (2.1) merely states that the particle density in the phase
space is constant along any trajectory, all the solutions of equation (2.1) are known if
the trajectories in phase space are known and vice versa. The family of trajectories is
completely determined by the'Hamiltonian function H, In particular, if the integrals of
motion Pi(x,y,px,py,t) corresponding to the Hamiltonian H are known, the solution_of

.equation (2.1) is an arbitrary function F(Pi) of these integrals,

Unfortunately, the integrais of motion cannot be easily found in the majority of
practical cases, However, the Hamiltonian may bé split up'into two parts

H=H0+Hl o see {217)

The term HD is assumed to be time-independent and of such a simple structure that the
corresponding integrals of motion are known. The Vlasav equétion will now be solved by

a recursive procedure, the convergence of which depends on the ratio IHI/HOI.

Let us try to satisfy the Vlasov equation (2.1) with Hamiltonian (2.7) by a series

F = 2 F, (k=0,1,2, ...) .
k=0

Expanding the Poisson bracket, the following equation is obtained:-

dFq

ot + [F09HO]

+

. oF
SF4 4 [Fy,Ho] + [Fo,H,] +

== + [F,,Hy] + [F,,H,] + «u0

(] = O °



This equation can be satisfied by equating to zero each row separately. Thixs, a recurrent

system of equations is obtained:-~

aFO r
St [Fo,Ho] =

|
(=}

) eee (2.8)

oFy
3t T [Fk]Ho] + [Fk-:l.’Hl] =0,

which is linear in Fk' The equation (2.8) can be easily solved if the original canonical
co-ordinates are replaced by angle and action variables corresponding to the main part H,

of the Hamiltonian. Let us first find the corresponding canonical transformation.

As is shown in the Appendix if, besides the integral Hgp, another integral of motion
is known, there can always be found a canonical transformmation which transforms the original
co-ordinates and momenta {x,y,px,py) into angle variables w,,w, and action variables P,,P,.
The transformed Hamiltonian Hj is not a function of the angle variables wi(i =1,2) but
only a function of the actions Pj. Consequently the action variables are constants of

the motion described by the main part H, of the Hamiltonian.

In order to express the transformation explicitly some definite form of Hg must be
assumed. Let us suppose that H, describes the particle motion in a homogeneous magnetic
field B, =B, Bx=By=0 and in a homogeneous gravitation field with a potential ¥ = gx.
in this case H, can be written in the form

_ L 1 2 , L _1 2
H, = 3= (px + zm“’cY) i (py 2mmcx) + mgx , eee (2.9)

where w, = :’1 B is the cyclotron angular frequency. It is shown in the Appendix that the

canonical transformation

P
Z_g=,%, sinw, +P, =Zx=p = [V2P; cos wy-w;],
L Po P T2
ees (2.10)
Y -n =/2P, cos wy + W E¥= =l—2P sinw+P+~mE~
L mn 1 1 2 Po DT] 2[ 1 1 2 wcpo]'
turns the old Hamiltonian (2.9} into
) v
Hy =wc Py +V Py, v=f=—[‘5-. wne (Ze11)

In order to make the co-ordinates dimensionless, an arbitrary length L and a momentum

Py = mCmL have been introduced.
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CLM-R33 Fig.1
Geometrical interpretation of the transformation (2.10)

The physical meaning of the new co-ordinates wi’Pi is shown in Fig.1. Every particle
dw.
is moving on a circle of radius PL = Lv2P;, with angular velocity 75} = g%i = Wge The
1
centre of this circle is moving in the y direction on a line x = P.L with the drift

i --gx_ d—wg.— -a—HQz-g-
velocity Vig- = 3¢ = L T i L 3P, we

Let us apply the transformation (2.10) on the complete Hamiltonian (2.7) and assume
that the potentials K, ¢ are arbitrary functions of the x co-ordinate and of time and
periodic functions of y with period 2xL. The transformed Hamiltonian H; will be

periodic in both angle variables w, with period 2n and can be expressed as a double

Fourier series in the w.'s:
i €o=+
1=+ )
j(€ £
H, = hy, g, (PisP2,t) ed(6aWs + £awa) o (2.12)
'61=—m
62 = =00

In terms of the new co-ordinates the equations (2.8) can be immediately solved. The zeroth

equation has the solution

FO = FO(Pi,Pg) vea(2.13)

which is an arbitrary function of the action variables, Writing the solution Fk(wi,Pi,t)

of the k-th equation in the form of a Fourier series
Aw J(ngwy + now, )
=) T,ny,n, (P2oP2,t) e ’ .ea(2.14)
Ny 4Ng

the amplitudes f satisfy the linear inhomogeneous equations

k,ng ,n,

df
1 k,ny,n,

dt

-a-(nlc,uC + nzu)f'k’n“n2 = Gk,nl,ng(t) - eea(2.15)

(2 |



where

of
. W= ST Tli=1), (=), (0 =5) (k=1),(n,-€,),(ny~¢,)
Kyng,ng 4 3P, ha 3P, :} IR
L4165
vee(2.16)
) ‘o o __-___a:]
Z[‘“* 1) + (ny~2s) F(k-1),(n,¢,),(n;-&,)
€182
igs a known function of time if the Hamiltonian H1 is given and F has been found

k-1

previously. All the summations extend over integers £,434,,0,,0, from =« to +« .
The general solution of (2,15) is

¢ _ e—j(niwc + ngv)t(:q fej(niwc + mpv)t G

T, i Fis (t)a + constanéj . ea(2.17)

k,n, ,n,
To sum up, the solution of the Vlasov equation (2.1) with Hamiltonian (2.7) has been
found in the form of a sum of functions Fk(wi,Pit), kK =0,1,2 ... . Using angle and
action variables the perturbation Hl(wi’Pi’t) of the Hamiltonian and the functions Fk
have been expanded in Fourier series (2.12)(2.14) in the angle variables W,. The Fourier
coefficients f of Fk have been'expressed in terms of the Fourier coefficients

k,ny ,ng

h, of Hl with the aid of recursive equations (2.17).  Starting with an arbitrary
1.2

function FO(Pl,Pz) the function Gl o (t) can be computed from (2.16). Using equation
giigdiz
(2.17) we obtain f . Knowing T , we can find the function G which
1,0, ,0, 1,0, ,0, 2,0, ,0,
enables us to calculate f2 n, and so on. The convergence of this procedure will be
iy K

investigated in the next section. Tt may be noted that the solution has been obtained

without any linearization of the Vlasov equation.

Although the co-ordinates wi’Pi considerably simplify the structure of the Vlasov
equation their use in the wave equations (2.3,2.4) would lead to unjustifiable complica-'
tions. It is therefore advisable to solve the wave equations in the original co-ordinate
system. The normalised co-ordinates

p p
E=.'}f! TI'_"'Es pg='lc! P ==

= =mweL
Po’ N P Po ©

o

will be used. First, the charge density p and the current density 1 in the plasma
must be expressed in terms of the co-ordinates E,m using the distribution function
F(w P ,t) which is expressed in terms of the co-ordinates Wy ,P . An obvious way of
doing this is to transform back from the system (w +P. ) into the system (E,n,pg,p )

using the reverse of the transformation (2.10). Then p and 1 can be determined from



the equation (2.6). However, a simpler method is to transform from the system (wi,Pi)
into a co-ordinate system (wi,Pi,g,n,). The corresponding transformation is readily

obtained from (2.10):

wp =m ~/2P; cosw, ,
eee (2,18)
P, =& - /2P, sinw, .,

As the Jacobian of this transformation is unity, the total number of particles per unit
length in the 2z direction is

N

T =fF(wiPi)dw1dP1dw2dPg =jT"'[F] dwy dP, dg dn ,

where the symbol T_I[F] means that in the function F(wi’Pi) the co-ordinates w,,P,

were replaced by E,n according to the transformation (2.18).

. s N ;
Thus, the particle density n(g,n) = P azan is
1 -1
n=oz|T [F] dw,dp, , eoe (2.19)

the integration over w; extending from O to 2x and over P, from O to « . The

charge density is

p = e(ni - ne) P eee (2.20)

where ni,ne are the ion and electron densities respectively,

Similarly, the current densities are

=L (77 F——F 3 [
i dt Tat TS g

! -—--an—e‘dwdp
L2 J.dt e dt 1.

Using the transformation (2.10) and the equations of motion, the velocities in (2.21) can

(2.21)

be written as

oH 3
_ 1 oH, 1 H,
T 55, o, sin wy + (0w, + api) V2P, cos w, - 2¢ 3w,
(2.22)
an_ 1 oHy _ ): % aH1
== - aw cos Wy - /2P, (we + 3P, —2) sin Wy + =0 2 (v + — 3P, .
Again, the distribution functions Fi’ Fe ang the Hamiltonians HIi' HIe must be expressed

in terms of wy,P,,E,n using the transformation (2.18).

We see that the camputation of the charge density is a much simpler job than the

computation of the current density. For the sake of simplicity we shall therefore restrict



our attention to cases when the currents generated in the plasma can be neglected. In
other words, the stationary plasma will be assumed to have a low beta value and the time-
dependent perturbation of the stationary plasma will be assumed to be derivable from a
scalar potential. This approximation is completely justified for the examination of the

flute instability which can be represented by longitudinal low-frequency waves.

3., THE STATIONARY PLASMA' BOUNDARY

The procedure outlined above will be used to investigate a non-uniform low beta plasma
in a homogenecus magnetic and gravitational field. In a cartesian co-ordinate system the
magnetic field has components Bx = By =0, BZ = B and the gravitational field g is
directed along the negative x axis. In equilibrium the plasma density is assumed to be
an arbitrary function of the x co-ordinate restricted only by the assumption that for
X » 0 the plasma is uniform and for x « O the density is zero. The equilibrium plasma
does not change in the y and z direction (Fig.2). In other words we shall investigate
the transition region (situated in the vicinity of the plane x = Q) between a uniform

plasma and vacuum. In this section we shall consider the equilibrium solution and in the

Tfollowing sections low-frequency perturbations of the equilibrium,

o)
E g
O wn
= o
c =
-
s 1
o C
O
EeS
9 3.
ag-=|,
£ 4
=
= |
Q
o
>

CLM-R33 Fig.2
The transition region between a uniform plasma and vacuum.

The simplest equilibrium solution is a strictly neutral plasma. As in our approxima-
tion the diamagnetism of the plasma is neglected, the Hamiltonian (2.7) consists only of
the part Ho. The equilibrium distribution is an arbitrary function Fo(Pi,Pz) of the
action variables., Both electrons and ions may have different distributions Foe’ Foi

which are subject only to the condition that the density of both kinds of particles be

everywhere equal.



The particle density n(£) corresponding to a distribution Fo(Pi,PQ) is given by the
integral (2.19). The transformed distribution T—I[Fo] is obtained by replacing P, by
E -/2P,;sin wy.  An explicit expression for the function T_I[Fo]:=F0(P1,(g-—/§§;sin Wwe))
is obtained by expanding F0 into a power series in ,/2P,sin w; and expressing the powers

of sin wy in terms of multiple arguments. A simple calculation gives

+ oo
TF ] = T‘ ¢ edOM1
(o] v FA
—
£ =-w
oo £+ 2
N T T SR R T i b
2 k!(€ +k)! €+ 2k $ e
0 Py
Kk =-e P2 ='E
h "L and aEy F Defini
where a =“%5= = F,. efining
23 ap, <
2n [
n, (&) =——f F ar, ,
L2 o o Pg:g
— s (B2}
k 2n [ see (
nOP] =L—2f P!lcFO dPi »
. o Py = &
the particle density n(Z) can be written as a power series in P,:
ne ) gl 2 0 7, or (3.3)
L 2%(Kk!)? egrk 0t
k=0

I,
The arbitrary function ng(E) is the guiding centre density and P, = 3(7?)2 is propor-

tional to the square of the Larmor radius.

If a certain ion distribution is given (i.e. noi(g), 511. ﬁ?i , -..) then an electron

distribution can always be tailored so that

ng(8) = n @) x 3L (n P+ .o =0 (8). oo (3.4)

This can be regarded as a differential equation for noe(g) with an arbitrary choice of

F? ¥ Thus, a neutral plasma is a possible special equilibrium solution.
ie

When the plasma is not strictly neutral, an electric field exists inside the plasma.
The equilibrium distribution must be such that the Poisson equation is satisfied. Because
the charging up of the plasma needs a finite time we shall assume an electric field
-jat

changing with time as e and shall go to the limit a - O, Assuming again that all

the quantities are functions of the £ co-ordinate only, the electric field can be derived

from a scalar potential ¢(E)e_3at and the perturbation in the Hamiltonian (2.7) will be
_ e(&) _-jat
H, = B L2 e . ees (3.5)



In order to introduce angle and action variables we have to replace, according to
(2.10), £ by P, +—¢5§; sin wy. Expanding again ¢ into a power series in 2P, sin w,
and expressing the powers of sin w; in terms of multiple arguments we obtain the trans-

formed perturbation (3.5) in the form of a Fourier series:

ejew1 - jat

T[H ] - (PA z s
eee (3:6)
by 25 ()P mlcey o ¥ IR P
= 1 1 s
) D pl(e+p)! dE&+ 2p £ =P,

where o has the same meaning as before and all the summations extend from -« to +o .

We introduce a dimensionless potential function &(£) by

L

< A !

ven (3.7)

¢(E) = ¢ 2(E)

where A 1is the plasma layer thickness and P is a constant. The electric field is

P
Mo _ _Fo
ok Ldg A (

ol [ =2
e

The maximum value of the electric field is thus

fo

E ="T . s e (3-8)

o

With the perturbation (3.5) given, the procedure outlined in the previous section can be

immediately used for solving the Vlasov equation,

The zeroth order solution is an arbitrary function FO(P1P2). The higher order
corrections are
95 \K jnwy, - jat
F, =ii— L f_ e vou (3e9)
k (wcmﬁ) n Ko ! _

where the Fourier coefficients fkn satisfy the equations

a
(0 - 22 Tien = Gn - v (3.10)

According to (2,15) the right-hand-side terms in the equations (3.10) are

BFO

Gl =n SF: h,
eee (3.11)

! !,gn—é ah :]
%n = - (=) 357 T4, (net) 2) .
In the limit a > 0. the Fourieh coefficients of the first order correction are thus
aF
f,=0; fl —g-p— h (n#0) . S ees (3412)

- 10 -



It may be noted that this first order correction is a linear function of the derivatives

of the potential whereas all the higher order corrections are non-linear in the potential.

In order to estimate the convergence of the sequence (3.9) let us choose the up to
now arbitrary length L so that L = A, Then ]d@/ﬂgl < 1 and assuming a reasonably
smooth potential function &(£), also the higher derivatives of & will be smaller than 1.
The sequence (3.9) will converge if ]EU/bCBAI < A Especially the higher order correc-

tions will be negligible if

E
?0 = ,VEI &« Q)CA . "o (3.13)

The left-hand side of this inequality is the maximum drift velocity due to the electric
field and the right-hand side is the particle rotational velocity multiplied by the ratio
of plasma sheath thickness and Lamor radius. As A/rL > 1 (even if the guiding-centre
density is a step function, A/rL = 2) the inequality (3.12) is certainly satisfied if the

drift velocity is smaller than the particle rotational velocity.

Taking (3.13) for granted, a  good approximation to the equilibrium solution of the

Vlasov equation is the distribution

. _ 1 9F Z Jnw, - jwt
F=F,+F ; F = % 3P, hp e , eea(3.14)

where Fo(Pi,Pg) is the distribution of the neutral plasma and FI is the perturbation

caused by the electric field in the plasma.

The particle density corresponding to the above distribution is obtained in the same
way as before. The density corresponding to the unperturbed distribution F, 1is given

by the equation (3.3). The density perturbation 5n, corresponding to F], is

1 [a(, g 11( -i@)
ik ("0 d5>+4d5 o Pr s

vee (3.15)
18 (L p &) 1 7. de
3 a2 \ ot dE? *a dE? Mo F1 gz .
Only terms up to first order in P; have been retained.
This density perturbation creates in the plasma a charge density
P = lel (Snl = Bne) il a0 e (5-]6)

where 5ni and Bne are the perturbations in the ion and electron density and [e] is the

absolute value of the charge carried by both kinds of particles. The above two equations



express the fact that the charge density p is caused by the potential ¢. On the other
hand the potential is generated by the charge density according to the Poisson's equation:

-
=

g_ﬂ —_ L AR, 3.17
p cee (3.17)

Combining the last three equations we obtain an eigenvalue equation for the potential:

&y de do _
% (h+0) + 5 &

[2(n %) £(n2) 5(ng)
==| = P -—\k P - + —\u P 5
4 [da T g dz? togg? aE® todg

We have replaced the guiding centre densities ngj, Nge by the plasma permittivity

ee. (3.18)

n..m; + n
_ Doii * Moelle ee. (3.19)

Eq B~

so that the plasma dielectric constant (relative) is

e =1+« . ce. (3.20)

The eigenvalue problem (3.18) has a simple solution in the limit P, > O (cold plasma).

Introducing the electric field

E = de_
=~ L& *

equation (3.18) is reduced to

d

EE (¢E}) =0,
with the solution

E
E(E) =—E(g) ‘ .o (3.21)

In this case the plasma behaves as a dielectric with a dielectric constant (3.20) dependent
on the plasma density. It should be noted that the electric field in the plasma is com-

pletely determined, up to a multiplicative factor, by the shape of the plasma boundary.

4, LOW FREQUENCY PERTURBATION OF TIE PLASMA BOUNDARY

We shall now investigate the stability of the equilibrium solution against a perturba-
tion which is periodic along the plasma boundary. We shall assume that the field associated
. . . ) 1 yad (Ky=wt) . .
with this perturbation can be derived from a scalar potential Ve F The Hamiltonian

function becomes

H=H,+H +H , vee (4.1)

where H, is given by equation (2.11), the second term

H1 = (E ’ san (4-2)

BL?

- 12 -



associated with the equilibrium plasma potential ¢(g) is known from the previous section

and the perturbation

Hy =-‘;i% el(n-wt) : ve. (4.3)

has to be computed. The last expression has been simplified by putting k

I

ol
.

As before, we introduce angle and action variables according to equation (2.10).
Expanding H, into a Fourier-Taylor series we obtain

¥ j -
T[H,] = —2 3 g, eJ(&wl + Wy - wt) ’

BL® ¢
ees (4.4)
£€+2p=-m
g = ) (-1)P M (/3F,) T ,
m £+ 2p-m
g E =P
m,p

where Jm is the Bessel function of the first kind, m-th order, and all summations extend

from -« to + =, We introduced a dimensionless potential function V() by
vE) =y, [yE) <, oo (4.5)
Wo being a constant determining the order of magnitude of V¥, The expansion for H; was

given by the equation (3.6).

The Vlasov equation (2,1) with the Hamiltonian (4.1) will now be solved in a way
similar to that outlined in section 2, In order to increase the convergence of the

" method we add to Ho the mean value of H; which is also a function of the action

variables only. The rearranged Hamiltonian (4.1) will be
H=Hy +H +H , ce. (4.8)
with
H) = w.P; + VPy + hoﬁ—,&- § wes (4 T)
and
Po T Jjéw; - jat
CI—. .~ 1 -
H =% /) b e ,a~0. can (4.8)
£Fo0
According to equation (3.6) the term h, in (4.7) is
2
hy = @ - a2 2 £ s sas (449)
E =P, dg” |g = p,

The velocities corresponding to the main part H'o of the Hamiltonian are to zero order

in Larmor radius

A 3 ( 1 VE)

Ve = FR, T e * 3P, Y We\l+3 g &/ " Yo ves P10)
' dh

9 _ -2 .,_E _1

Vo= 5p = v +aP2~v BL_L(vg+vE) . cee (4.11)



where vg is the gravitational drift velocity and Vg the electric drift velocity (taken

as positive if in the +y direction).

o0
Seeking the solution of the Vlasov equation in the form of a series F = :E: Fk we

k=0
split up the complete equation into a sequence of recurrent equations
aF
o '
& + [Fo’Ho] =0 oy
aF, , ,
3t + [F:L:Ho] + [FolHl] =0,
aF, eee (4.12)
_aT + [FﬂlH;)] + [Firﬂl:‘l] + [Foiﬂi—l] =0 ’
oF

k
3+ [F.H,]

+

[Fk_isﬂa] * [Fk_gsHQJ =0 .

The first two equations have been solved in the previous section. Writing F, = F; + F3

the third equation can be split up into two equations

3F! i
a—t"' + [Fo,HL] + [Fh,HYL]

il
o

3F% vee (4.13)
2 I r "
“B‘t_ + [FlEIHQ] + [FE)HQ]

[
o

It has been shown in the previous section that the term F5 can be neglected against F,
if the condition IEOAhnCAI « 1 1is valid. We are thus left with the second equation

(4.13) whose solution is

R S [ (4.14)
2 © BL2 = Con » v s
c
with on satisfying the equations
F oF
v - w _ o] 0
(n + ™ ) Lo = (n 35, * _apz) g, veo (4.15)

Assuming that the frequency of the perturbation is much smaller than the cyclotron

frequency,

« 1 , ee. (4.18)
the solution of (4.15) is

We al"o
20 T v'- w oP, &

aF,
f2n = (61’1 *

It may be noted that [f, [»[f, |.

een (4.17)

dF,
52 ) g s (Inl > .

gl=

- 14 -



The equation for F; can be solved in a similar way, We find

Po¥o jlowy + wy - wt)
F; 8 Ffy = ————— e % 2 / .. (4.18
° 77 7 (wBLf)? n an (A 16)

with

F
r = We i._o. T (h )+__ ah&
30"V <-g 3, /, ¢ % 3, |’
£#0

£ xR | 2 (g BFoh 188, ak

3n " v - | Mmap, \b0 3P,/ “nar, 8o 3P, |-
It may be noted that the ratio of the Fourier terms of F% and higher order (|n| 2> 1)
We Po

vi-w 2
chL

vee (4.19)

3

terms of F3 is proportional to This is of the order vEA/ng .

We can proceed in this way indefinitely. We find, however, that for ]kl > 3 the

ratio
Pl % _ B oa
Fsl ~ wBLZ ~ wBl L .

Thus, if the conditions (3.13) and (4.16) are satisfied, an approximate solution of the
Vlasov equation is

F=Fy+Fy +Fi +FJ . ves (4.20)
The term Fg, + F; is the equilibrium distribution (3.14) and the term F% + F§ is the

sought perturbation.

In order to find the perturbation &n of the particle density corresponding to
F3 +F3, we again have to replace P, and w, in F% +F4% by £,m according to
equation (2.18) and find the integral (2.19). Omitting the details of the somewhat

tedious calculation we have, up to zero order in P, (i.e. for (er)2 < 1)
= 1 r We an 0 EL) d ﬂ
= (.UCBLa L |:V' - w dg no E E, (no dg y sae (4.21)

where no(g) is the equilibrium particle density and E(E) is the electric field asso-

ciated with the equilibrium plasma.

Inserting the charge density (3.16) intoc the Poisson's equation (3.17) we obtain the

eigenvalue equation for the potential V¥ in the form

L(8)-vlc-v2(vs 25)
dg dg i dg v}— W Ve-w

d (E de 1 o R
+d€<BL T (T—G"w_e u,e_w)>:| =0 . ers (4.22)

We have again introduced the dielectric constant e of the plasma defined by the equations

- 15 -



(3.19) and (3.20).

Let us introduce the following physically meaningful quantities into equation (4.22);

the ion and electron drift velocity due to the gravitational field

- & £
V. = sy Va = P)
i wy € W
the drift velocity due to the electric field
- _E&)
VE(E;) == B ?
the average gravitational drift velocity
V. +V
i*'e
V = 2 .
and the relative drift velocity
Vi=-V
_Yi~VYe
VI‘_ P .

eee (4.23)

vee (4.24)

eee (4.25)

eee (4.26)

Remembering that k = 1/L is the wave-number of our perturbation, let us further define a

parameter & related to w by

w = k(V + v, &) .

We further introduce the dimensionless parameters

b{g)‘= VE(E) ’

Vp

which is proportional to the electric field and

..t
o~ ¢
wl

~
~

LR

which is proportional to the gravitational field.

With these parameters equation (4.22) becomes:

A(c8)vfe-L (1,

g\~ dg/ " kg GEN\ T-8+Db " 1+86-Db
afde, 1. 0 1
'dg(dgb(1-6+b+we 1+6-b))]‘

This is an eigenvalue equation for the potential Y¥(£) with the eigenvalue

The potential ¥ has to satisfy the boundary condition ¥ -+ O when E -+ % o ,

now try to find some solutions of this equation.

5. STABILITY OF THE NEUTRAL PLASMA BOUNDARY

Let us first assume that the plasma is strictly neutral.

e (3427)

eee (4.28)

een (4.29)

«es (4.30)

parameter §,

We shall

Then there is no electric

field in the plasma, the parameter b is identically zero and equation (4.30) becomes

- 16 -



4y 2 1 g
&E (e dg)_“I"[z—:—’{o‘qa2 ! - ee (5.1)

We shall assume that the plasma permittivity « is a smooth function, shown in Fig.3,

K

)

0
L Al2 | Al2
= =
CLM-R33 Fig.3
The plasma permittivity x (or plasma density) as a function of
the distance in the direction perpendicular to the plasma boundary.

rising from zero to ke in the plasma boundary layer of thickness A . Then the dielectric
constant &(g) 1is a known function of & whose derivative is different from zero only in

the boundary layer

-—7:%<5<+7c P een (5.2)
A being the perturbation wavelength.
The eigenvalue problem (5.1) has a simple solution in the limit A/A\ - 0, i.e. if the

boundary layer thickness is much smaller than the perturbation wavelength. Integrating

the equation (5.1) from -né to +7t% we obtain

A
+7cA + 7 &
x ‘ A
em% A-g—g = ./ WEdg-Kil,lazf ‘F‘g% & . ve. (5.3)
- a i o1-
E—'I' 7"& E_+7‘?\. _ _é _ _é
) T3
In the limit A/A-> O, the right-hand side of this equation gives - E2— I 162 £ J(E = 10).
0 -
1

Outside the boundary layer (where de/dg=0) equation (5.1) has the solution ¥ = constant e
the plus sign applying to £ <-x % and the minus sign to g 2 e % § The derivatives in
the left-hand side of the equation (5.3) are thus known. In the limit A/ - O the equa-

tion (5.3) reduces to a dispersion equation

K
em+1=]_262K—°;, ee (5.4)
with the solution
K
=t [1-—=—L— | i v (55)
©1+57

’



Remembering that the angular frequency  of the perturbation is related to & by
the equation (4.27), we see that the plasma bouﬁdary is stable if

Ko

Koy < KC,xC=T—K-3 B oKy e eee (5.6)
As we shall see later, ]xo| « 1 in cases of interest. Equation (5.6) defines a critical
permittivity k. or a critical density
n_ =53k, B? zz.sxgkxlo“7 (5.7)
c C “gauss : v *

at which the plasma becomes unstable. The numerical factors in the last equation corres-
ponding to protons and to lengths expressed in cms. The plasma is, of course, completely

stable if x5 < 0, i.e. when the direction of the gravitational field is reversed.

2\

o) /

O I 2
ncb / nc

CLM-R33 Fig.4

The phase velocity Re{w)/k of the perturbation in units of the average gravitational drift
velocity V is plotted as a function of the plasma density n., in units of the critical density nc.

Fig.4 shows the dependence of the real part of w on plasmé density. If the plasma
density is very small, n_ « n,, the phase velocities of the two waves corresponding to the
dispersion equation (5.5) are nearly equal to the ion and electron drift velocities respec-
tively. As the density increases, the velocities are coming closer together and they
coincide when the density reaches the critical value. From this point on, both waves have

the same phase velocity equdl to the mean drift velocity V.

The dependence of the imaginary part of w (the growth-rate of the instability) on
plasma density is shown in Fig.S, The growth-rate is zero for nw‘S ng, then it slowly

rises to reach the limiting value \/EE given by Rosenbluth and Longmire(]).

It may be,
however, noted that this limiting growth rate /EE is reached at densities several orders

of magnitude higher than the critical density for ko values of practical interest.
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CLM-R33 Fig.5
The growth-rate Im(w) of the perturbation in units of /gk is plotted against the
ratio of the plasma density n., and the critical density nc.

To sum up, for a thin boundary layer (A/\ « 1) and high plasma densities (n, » ng) we

(1)

obtain the same result as Rosenbluth and Longmire who did not obtain a critical density

because they assumed a high-density plasma, Our stability condition (5.7) is essentially

(2)

identical with the condition given by Kadomtsev as will be shown in section 7.

In order to find the effect of finite boundary layer thickness on the critical density
we must return to the original equation (5.1). Assuming that «, « 1 even for AN # 0,
we can put & = 1, We choose such a shape of the plasma boundary that the deriva.tive of
the permittivity is a Gaussian function

de | 2 ~(2x/8)* oo (5.8)

ax T B/n e
The length A is practically the boundary layer thickness because in the interval

- %é‘ x <+ % the plasma permittivity rises from 0.06 «» to 0.9 «,. Equation (5.1)
has been solved numerically on the analogue computer EMIAC II for A/A in the interval
0.01 to 3.2, For each ratio A/A the smallest critical permittivity ke was computed,
In the examined interval of A/ the critical permittivity was found to follow very close-

"ly the linear relationship:

KC A
375_]"'2'67\‘ s (5.9)

We see that the critical density increases with the boundary layer thickness. This

can be understood physically by noting that, according to equation (5.1), the force driving

the instability is proportional to the gradient of plasma density.
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6. STABILITY OF THE CHARGE PLASMA BOUNDARY

If the plasma is not strictly neutral, there exists an electric field in the plasma.
It has been shown in section 3 that, under our assumptions, this field is inversely pro-
portional to the plasma dielectric constant &(g). The function b(g) in the equation

(4.30) will thus be
Eq
Bvr

%:bo (' oo (6.1)

VE
b(E) = of = - =15

) o
The parameter bg is equal to the ratio of the highest electric drift velocity (just on

the plasma boundary) and the gravitational drift velocity.

We shall simplify the eigenvalue problem (4.30) by assuming a very thin plasma
boundary layer (-ﬁ- « 1). Integrating equation (4.30) from —7:% to +at% we again
obtain, in the limit %* 0, a dispersion equation

+'J't

i 1
Foo =r [ l—5+b * l+6—h>dg' .- (6.2)
-7

4
)

As b is a function of & only, the right-hand side of this equation can be written in

b bO

0 1 1

— db .

Ko f l:”(1—6+b) * b2(1+5-—b)j|
b/

Performing the integration, we obtain the dispersion equation

the form

2 (oo 1 72 - 22 g on (04 e T RS)
.o. (6.3)
b
+;§ _(T:.LBTE- 81’1(1 * K”——_-1-I-1gfbo> .

Fortunately, we do not have to find a general solution of this equation if we are only
interested in the critical permittivity at which the instability sets in. By definition,
the critical permittivity is the maximum permittivity at which all the roots of the equation
(6.3) are still real but are on the threshold of getting complex. Separating & into real

and imaginary parts, 6=06,.+ j6j, we can thus limit our attention to roots having a very

small imaginary part. The dispersion relation
F(S’Km’bD’KO) — O N

can be expanded into a Taylor series in 'j61

F=F(5, ...) + J8§ <66)5 =0.

For small §&; all higher order terms can be neglected. Separating real and imaginary
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parts of the dispersion relation we get two equations

F(Spykcsbgskg) =0
... (6.4)
0
38 F(8pskcsbgsko) =0

from which the critical permittivity «, and the corresponding 5r value can be computed.

The equations (6.4) have been solved on the digital computer. It was found that the
electric field has é negligible effect on the critical density if b, varies in the range
-5 <bg<+5. To understand this result, we have to note than in a uniform electric
field the plasma moves as a whole and the stability condition cannot chahge. If the field
is non-uniform in the plasma boundary, different layers of the plasma boundary move with -
different velocities, This could affect the stability condition. In our idealized
picture, however, the electric field is inversely proportional to the plasma dielectric
constant which is nearly unity at densities of the order of the critical density. Hence,
the gradient of the electric field is very small and the relative motion of the plasma

layers is not high enough to affect the stability condition.

7. THE FLUTE INSTABILITY IN A MIRROR MACHINE

It is usually assumed that an adequate treatment of the flute instability in a mirror
machine is to use a gravitational model with a gravitational constant g such that the
ion drift velocity at the plasma boundary is in both cases the same (the electron drift
velocity is neglected). The accuracy of the effective gravitational constant so intro-
duced depends on the accuracy with which the ion drift velocity in the mirror field is

calculated. The simplest expression is

g = ’ oo (7.1)

[ Y B
NIF%

where v, 1is the transverse velocity of the ions in the mid-plane of the machine and R
is an effective radius of curvature of the field lines, As this expression neglects the
longitudinal motion of the particles, it is valid only for particles having a very small
amplitude of longitudinal oscillations., With the above value of g the constant Ko

defined by equation (4.29), becomes

2
_kg N T
Ko = = ] w5 A2
20} Rrp

Denoting the plasma boundary radius by rb we replaced the wave number k by N/r,, N
being the number of flutes. We also replaced the velocity v, = wjry by the ion Larmor

radius I s It can be seen that under normal conditions kg « 1, as was assumed in the



previous chapters,

The stabilivy condition (5.6) can be written in a different way by introducing the

ion Debye length_ rp o
WJ_

P
mw
p

] eee (7.3)

I

[w M)

where w; = N€"/egni is the ion plasma frequency and W, is the transverse energy of the

ions. As

IR T S B
02 R’ = ‘ '

P mwi Rl"p \ Wi

b=
=

we obtain the stability condition (5.6) in the form

Rrp < r‘f) . vee (7.4)

This inequality was first given (with a different numerical factor due to the cylin-
drical geometry) by Kadmntsev(z). The Debye length in the condition (7.4) is but a
convenient expression for the ion drift velocity which is proportional to the ion energy
and hence to the square of the Debve length. As the critical density is proportional to
the ion drift velocity, a decrease in the Debye length causes a decrease of the critical
density. In the limit of zerc ion energy, the effective gravitational constant goes to
zero and so does the critical density. In this limiting case, however, the growth rate

/gk of the instability is also zero.

The stability condition (5.6) for the gravitational model can be also expressed in
terms of a suitably defined Debye length. In the definition equation (7.3) the rotational
energy W, (which has no affect on the gravitational drift) must be replaced by the eﬁergy

corresponding to the gravitational drift.

The gravitational model in its simple form is inadequate for studying the flute
instability in a mirror machine mainly for two reasons., (a) An exact and meaningful
gravitational model is based on a plane geometry, whereas the plasma in a mirror machine
is cylindrical. (b) In the gravitational model the drift velocity of all the jons is the
same regardless of their thermal energy, whereas in a mirror machine the particle drift

velocity is proportional to Lheir transverse energy.

The Tirst imperfection of the gravitational model can be cured to a certain extent. by
using the Poisson equation in cylindrical co-crdinates. As this has been already dcne by
various authors(z’s’s) we shall not go into the details of this modification. We shall,
however, investigate the second imperfection which does not seem to have received suffi-

cient attention.
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Inserting the effective gravitational constant (7.1) into the expression (2.11) for
the particle drift v = vg/L, we find that the particle angular drift velocity in a mirror
machine can be written in the form

vy = mca P1 » sas (7.5)

where
a =

Zl?

’ ees (7.8)

is a constant related to the mirror field and Wwe is the cyclotron angular frequency in
the centre of the machine. The invariant P; is related to the particle Larmor radius
ry, by

RN s
p

The fact that v 1is no longer constant, as it was in the gravitational model, will

o]
=
I}
N =
/l_‘:;
[l
=
\/
n
1}
[STEN
~
=
=
p—_
]
]

change the expression (4.21) for the particle density perturbation. For simplicity we

shall assume a neutral plasma so that E =0 and v' =y, Equation (4.21) was obtained
by integrating, with respect to w, and P, , the zeroth order term of a power series in
P; wunder the assumption that v -is a constant. Because v is now a function of P, it

must be left under the integral. To do this we shall assume the unperturbed distribution

function in the form

Fo(P ,P,) =D(P,) * E(P,) , een (7.8)
where the energy distribution D(Pi) is normalised to unity by

f op,) &, =1 , wine: (2690
o]

and E(P,) is related to the particle density by the relation
271
ny (€) = 5 E(P,) P, = E * oo (7.70)
corresponding to the equation (3.2). With the above equilibrium distribution the equation

(4.21) will now have the form

1 [ ang [ D(Py) P a
én =w—cBL2 L[wc"a-g_o o v(P,) Sy dPg_"no:|‘F +'£ n, -a-g)] ], oo (7.11)

and the eigenvalue equation (4.22) will change into

d dy de T ® D _
& )-r[a () Th o [ 55 @)oo
0 (o]

where D; and v; are referring to the ions and De, Ve to the electrons.

Assuming that the plasma boundary layer thickness is much smaller than the perturba-

tion wavelength we arrive, in the same way as in section 5, at the dispersion equation-
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= e D. oo D
— ' — 1 _4p - —e 2
e + 1 mwlxwLJ o P j ve—wdp1:|’ sus (7018

o o

analogous to the equation (5.4)., The important dilference is, however, that the roots of

the dispersion equation depend now on the energy distributions .Dj and De .

The equation (7.13) has the same form (but different content) as the dispersion
equation obtained for a spatially uniform unmagnetised plasma derived e.g. in Ref.(6),
where the convergence of the integrals appearing in (7.13) is discussed in detail, Our
assumption of a time dependence e_‘jwt leads to the same result as the rigorous procedure
using Laplace transform if w is assumed to have a small positive imaginary part (which

can eventually be equal to zero if the integrals still converge).

If the particle energy distributions are delta functions Di(Pi} = 6(P; = Pyl

De(P,) = 6(P, = Pg) the dispersion equation (7.13) turns into

T 1
£ + 1 = Koo + = " wae (Tuld)
Lapi—(ﬁ_} ﬂ.'w—?lpe-l-—w']
. i 1 wj
with the solution L
Ha
W a —=
5; =5 Pi (1 -v) 2 Hc\j‘ - ?E s oo (7.15)
where
we Pe We
Y = == wwn {7 18)
mipi wi

is the ratio of electron and ion perpendicular energy in the mid-plane of the machine and

. _
ko =5 Py (1 +7), wan (T1T)

is the critical plasma permittivity. The plasma is stable if

PR 3 S ee. (7.18}

Remembering equation (7.7) it can easily be verified that if ¥ « 1 this condition is

identical with the stability condition (7.4) derived previously.

A discussion of the dispersion equation (7.13) for more general distribution functions

will be made in another report.
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APPENDIX

INTRODUCTION OF ANGLE AND ACTION VARIABLES

Let there be a time- independent Hamiltonian function H(qi,pi) with two degrees of
freedom (i = 1,2). We seek a canonical transformation

q; = qi(wi'Pi) » Py = pi(wi’Pi) vee (A1)

which replaces the old co-ordinates qi and momenta P by new co-ordinates wi and
momenta Pi such that the momenta Pi are constants of motion, The generating function

of the transformation w(qi’Pi) must satisfy the Hamilton-Jacobi equation:

oW
H(qi aqi) = C1 se e (A-2)

and the transformation is given by the equations

P; =34 * “i =3p. «e.o (AL3)

The solution of equation (A.2) is an easy matter if one further time- independent
integral of motion G(qi’pi) = C, is known. As the Poisson bracket

Gl = 3 (16_ oM _ oG ﬁ>=0

iS \eq; dp;  9p;  9q;

is identically zero, the two integrals H=C,, G =C; fom a complete involutory system,
see reference (7). Consequently, if the momenta are computed from the two integrals

P; = P; (qJ,Cj)
the functions P satisfy the condition

ap, dPps
3q,  9q

and thus are coefficients of a total differential of some function which can be chosen as
the generating function w(qi,Ci):

dW = p,dq, + p,dq, .

4
Qs *

qoo—

Ji0 g

CLM-R33 Fig.6
Integration path for obtaining the generating function (A.4).
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Integrating this equation along the curve shown in Fig.6 the generating function is

obtained: )
9 i)
W= _/ p,(q,,q,,C,,C,)dq, + f p,(a,,,4q,,C,,C,)dq, veo (A4)
%10 %20

(qIO’q20) being the co-ordinates of an arbitrary initial point,

The new momenta Pi can be arbitrary independent functions of the constants Ci' In
particular, these functions can be chosen so that, if the old co-ordinates ‘are periodic in
the wi's, the period is equal to 2=. In this case the co-ordinates wi are called

angle variables and the momenta Pi are action variables.

Let us now use the outlined method for finding the transformation (2.10) from

section 2,

The original canonical co-ordinates are cartesian co-ordinates X,y and associated
momenta are px,p . The Hamiltonian describes the motion of a particle (charge ey
mass m) in a homogeneous magnetic field Bx = By =0, Bz =B and in a homogeneous gravi-
tational field with a potential v = gx. As the magnetic field can be derived from a

vector potential with components

: 1 1
A = -3 By, A =3 Bx
the Hamiltonian is
_ L 1 2 . 1 _1 2
H == (p, + gmogy)® + 5= (py 3 McX)® + mgx wue; (B:5)

where w, = eB,/m,

Let us first introduce dimensionless co-ordinates £,n, and momenta pE’pﬂ by the

equations
X _x
‘E-L pg_po
B vee (A.6)
_X =By
TEE BTy,

where L is an arbitrary length and Py =|nuJCL is a constant. Equations (A.6) repre-
sent a canonical transformation of valency c¢ = l/bOL derived from a generating function
1
W=+ (xp. +
L (% ypn)
The transformed Hamiltonian is
" | 1.y 1 ee
H _cH_zwc[(p€+2n) +(pn 5 EI* # 2vE] .o (A7)
with y = -8

wcPo
integrated so that the integrals of motion are known.

The equation of motion defined by this Hamiltonian can be easily

Let us now introduce angle and action variables by the procedure described above.

g,



Let us choose

i
DTI+2E—C2

for the second integral. From this equation and from
LRY 1 e _
(p +3 1) +(pn 3 &) + 20E = C,

the momenta can be computed, According to (A.4), the generating function of the trans—

formation is

w:j\/ciwﬁ-zvcz-(g—cgwr)a dg—%np;)rcgn ... (A.8)

the non-essential integration constants having been omitted. Choosing the new momenta as
the following functions of C,,C,:

P, -]2- (C, +¥® - 2vCy)

wos (AJY)

P2 (Cz - 7)

the transformation (A.3) gives the angle variables

w= L gyt B2
TPy T /2P,
W
Wa =5, = (n -v2P, - (E-P;)?)

Solving these equations for the old co-ordinates we obtain
E = /2P, sin wy + Pa

... (A.10)
n =v 2P1 COsS Wy + Wy

which are the first two equations (2.10). The remaining two equations are obtained

replacing in Py = AN/IE, pﬂ oW/dm the old co-ordinates by the values given by (A.10)

Py = %E/ﬂ’l cos w; - w{l
vee (ALT1)
pn = % |:— V2P, sin wy + Pz:l a3

The new Hamiltonian is

H=wPy + VP, , v='Y'wc=a,8c- ee (AL12)
The corresponding equations of motion have the simple form

=we (t - tg) P, = Constant
.o (A,13)

w. v (t - to) P, = Constant
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