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THE CENTRAL REGIONS OF THE DIFFUSE PINCH

by

M.G. RUSBRIDGE

ABSTRACT

The structure and properties of the central regions of cylindrical
diffuse pinch configurations are investigated in general terms using an
expansion in powers of the radius, The discussion is then limited to
discharges marginally stable to the Suydam criterion near the centre,
The evolution with time of the central regions due to dissipative pro-
cesses such as ohmic heating and thermal conduction is discussed. It
is shown that under some conditions the discharge will instantaneously

become unstable.

When dissipative processes are neglected, the discharge can change
only if the boundary conditions change, and the influence of these changes
on the central regions is discussed. The results are relevant to the
problem of setting up such a configuration in a time short compared with

typical diffusion times,

Finally the possibility is investigated of using the results, which
strictly refer only to the central regions, as a guide in constructing
models of the whole discharge. As an example a particular configuration
is constructed which is hydromagnetically stable and contains a pressure
giving a B of 35%.
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1. INTRODUCTION

| Butt and Pease(l) have considered the time constants for the onset of instability in

a diffuse pinch due to changes in pressure distribution arising from ohmic heating and from
the plasma drift motion in the applied electric field. In the latter case they considered
a particular distribution and showed that the changes induced led to violation of the
Suydam criterion only in the outer regions; in the case of ohmic heating, however, they

did not consider the changes of the pressure distribution in detail, but only the overall
effect, assuming that there is some value of average P (ratio of plasma to magnetic pres-
sure) above which a plasma cannot be stably confined. If this is denoted by Bc’ the time

constant is of order ﬁcTR where TR is the resistive diffusion time o« oR®.

2, However, the stability criteria for a pinch configuration do not depend merely on an
average value of ( but on the details of the pressure distribution; they are most re-
strictive near the centre of the discharge. The purpose of this report is to discuss the
structure and evolution of the central regions of the discharge in terms as general as
possible, and to show that there are conditions in which instability may be expected to
occur in times much shorter than the Butt and Pease lifetime, We discuss first the evolu-
tion under the influence of ohmic heating, thermal conductivity and electric field drift,
and then the evolution of a "collisionless" discharge, in which these transport effects
can be neglected, under the influence of changing boundary conditions, such as for example

are required to set up the diffuse pinch configuration,

3. Finally, we show by an example that although our considerations strictly apply to the

central regions only, they can serve as a useful guide in the construction of models of

the whole discharge.

2., THE STABILITY CRITERION IN THE CENTRAL REGION

4. We consider the hydromagnetic stability of an infinitely conducting diffuse cylindri-
cal discharge. If the magnetic field configuration has shear, local stability is assured
if the Suydam criterion(z) is satisfied, and complete stability follows if the conducting
wall of the discharge is placed at a sufficiently small radius(s). This radius is of the

order of the characteristic radius of the magnetic field configuration, and we may assume

that it is large compared with the size of the central regions in which we are interested.

5. Let us define the quantity A = (d®p/dr®) r = 0. The Suydam criterion applied to the

centre of the discharge requires that
) i 5x K1)

-1 =



where p is the plasma pressure (see Section 3, below). However, the centre of a diffuse
pinch is a region where the shear vanishes, and it is known(4) that in such regions the
stability condition for modes aligned along the magnetic field is less severe than the

(4)

Suydam criterion; it would allow a finite negative value of A. However, Tayler and
Newcomb(s) show that modes not quite aligned along the field ('quasi-interchanges") are
much more unstable, and in particular Tayler points out that the stability condition for
these modes is in effect the Suydam criterion when the shear vanishes, i.e. dp/dr > O.

These modes involve transverse displacements which become infinite in the limit as the modes
become aligned with the field, and Tayler suggests that the inclusion of finite viscosity
should have a strong stabilizing effect, and presumably lead to a stability criterion inter-
(6)

mediate between the Suydam and zero shear criteria, while Ware has shown that for values
of A between zero and the limiting value for modes aligned along the field the growth
rate is small when compressibility is taken into account, and these modes may be stabilized
by finite Lammor radius effects. Nevertheless, since no rigorous demonstration of either

of these proposed stabilization mechanisms has been given we shall use the Suydam criterion

in all cases.

(7)

6. For the case when the discharge is toroidal, Mercier and Cotsaftis have obtained an
analogue of the Suydam criterion for localised perturbations. Applied to the central
regions of a discharge, this criterion gives the following results:

(1) for a perfect torus, the stability condition is given by equation (1) above the

Kruskal limit, i.e. for ¢ > 2x where ¢ is the rotational transformm, and its

inverse
A £ 0 oww (D)

below this limit.

(2) For an imperfect torus there are in addition "bands of stability" for 1 slightly
greater than 2Kn where K is an integer taking values depending on the shape of
the distortion of the torus. In these bands equation (2) is the appropriate

stability condition.

(3) In these bands the displacement of the magnetic axis from the geometric axis is

very large, and for t = 2Kx there is no equilibrium,

T These results can be interpreted as follows (A.A. Ware, private communication). When
the curvature of the magnetic axis is small the toroidal discharge can be treated as cylin-
drical in first approximation., However, when the curvature of the axis is comparable with

that of a typical line of force not on the axis, either because the latter is small (below

the Kruskal limit) or the former large (the distorted discharges for . % 2K=n) the results



are qualitatively different from a cylinder. In what follows therefore we shall continue

to use the Suydam criterion for stability near the axis as well as elsewhere.

8. We can now formulate the problem more explicitly. Suppose we have a discharge con-
figuration which is just marginally stable on the axis, i.e. A = 0. Then what is the sign
of the instantaneous rate of change of A, and in particular under what conditions is it
positive? For if it is negative, the discharge will instantly become unstable, and corres-
pondingly we expect that a discharge which is to remain stable for a time of the order of

the Butt and Pease lifetime must have A greater than some critical value AC > 0. On

dA
dt
become negative it will only do so after some finite time which will already be of the

the other hand, if ( >A - o 1s positive, we can expect that although A may eventually

order of the Butt and Pease lifetime.

3. THE PROPERTIES OF A GENERAL DIFFUSE PINCH CONFIGURATION
IN THE NEIGHBOURHOOD OF THE AXIS

9. Considerations of symmetry and continuity show that the magnetic field configurations

and pressure distributions near the axis can be expanded in the form

a
By =B, (byr - bar® ... )
B, =B (c0 - cor? + curt ... ) e v (3}
P =D, + par® + par? ...

The signs are chosen for convenience; in a diffuse pinch we expect b, and c¢c. to be
positive when they are defined in this way. Bzo we take to be constant, and b4 and Co
can without loss of generality be set equal to unity in equilibrium; they must, however,

be allowed to vary with time where appropriate,

10. The current density is given by

2B
Jp= 2 (1 - 2ba P® in )
eer (4)
2B
‘]6 = 4?[0 (C2P - 2(:41"3 waw y

and the square of the total current density is given by

4B7 A
i* = g [1 - (4bs - c?) r] e (5)




From the pressure balance relation we obtain
2

0
P = :ﬁ; lew = 1) 5 e (6)
BQ
0 1
. PP @)

11. The Suydam criterion may be written

' B2 .
'£<ﬁ>2+<§§9>-2f—r<§2)’30’ sea (8)

z Z0
where
Le
FBZ
Thus
I !
w! Be 1 E&
- a L]
v BB r BZ

and substituting for B and BZ and retaining the lowest order terms we obtain

5}
!
ﬁ: 2r (Cg"'ba)'l'... ces (9)

Thus the first term in (8) is of order r®, and since the second term is of order r if
p= # 0, the first requirement for stability is pz > O; this is equivalent to condition
(1) discussed in the previous section. When pp = 0, a second condition must be satisfied
for stability near the axis; this is obtained from the tem in (8) involving p,. The

result is

Bio 1 2
By =~ w 'y (1 - by) oo (10)

where we have used equation (6) which for p, = O reduces to

ce=1. e (11)

In this case we see that the values of bs and pg are sufficient to characterise the

behaviour of the discharge near the axis.

12. Although equation (10) might suggest that |b3| should be as large as possible, in
fact for configurations of the diffuse pinch type bz will lie in the range O g by ¢ 1;
the boundaries are not very precise, but for bz < O we tend towards a "thin-skin" type
discharge, and for bs > 1 the discharge current is necessarily very small unless Be is

allowed to be negative, in which case we have a reversed current skin. For example, for

the force-free paramagnetic model (FFPM)(S) which is a typical pinch configuration, we

find ba = % .



13. We also note from equation (9) that the term of order r in p"/p vanishes for

(9),

bs = 1. This is the condition for a shear-free core in the discharge'~’; correspondingly

we note that p,; > O is the stability condition in this case. The stability condition

8mp
is shown in the (bs, B4) plane in Fig.1; here B, = gr= .
zo

B4

Fig. 1 CLM-R41
Boundary of stability (stable to left of curve) and limits of ‘stabilising’ regions
where 13 2 0 (stabilising to left of curves shown) for the following conditions:

(1 tz=t4=0sﬁ4=—1faﬁo

@ tzzolt=“%tn- B4="‘ZBD

3 t2=l/4t0! t'4=_1/stﬂ’ ﬁ4=_1/4ﬁu

) t2=1f£t0:t4="'1/2t0! ﬁ4=_ﬁn

4., THE RATE OF CHANGE OF p; DUE TO DISSIPATIVE PROCESSES

14. Even when the boundary conditions of a cylindrical discharge are held constant it will

in general evolve with time because of dissipative processes. We wish to determine the



sign of p. during these changes, evaluated at p. = O. We use the following set of
magneto-hydrodynamic equations:-
Equation of motion P %% =j~B-Vp,
Ohm's Law i=gc (E+¥y aB),
&n see U8
Continuity ol div(ny) = 0 ,
ép_2j2, 5,60 i
Energy =3 '3 T §¢ + n div (k¥T) ,

together with Maxwell's equations. We have

and the electric and thermmal conductivities

on =
a, =
K =
8
where f = —%%I and we assume Te = Ti s

We shall not need the value of the constant

assumed the adiabatic gas law pps/a = const.,
are given by
a T;/z ,

lO"” 3 aea (13)

2

3.86 1B

oy k

The temperatures are measured in energy units.

a. Equations (12) are appropriate for a

cylindrical discharge at which all quantities vary only radially. The value of themmal con-

ductivity given is obtained from that given

calculated for deuterium ions.

15. If we evaluate the orders of magnitude

the energy equation and express the result as a characteristic time

(10)

by Vaughan-Williams and Haas , and is

of the three terms on the right-hand side of

T for the pressure

to change, we find that the ohmic heating term gives T ~ ﬁTR, the compression term gives

.l

T

T

= |
P

very roughly, where )

=

is the resistive diffusion time o oRZ.

, and the thermal conduction term gives

£
m,
1

"R

Thus for

},
() -

only ohmic heating is important, while otherwise thermal conduction will dominate, unless

the discharge is isothermal.

tant.

16.

equilibrium states, so that we may drop the

We should not expect the compression term to be very impor-

The detailed results given below bear out these estimates.

We shall assume that in its evolution the discharge passes through a sequence of

term p%% in the first of equations (12),

This assumption imposes a constraint on the electric field distribution; if this constraint

is violated the discharge will in general begin to oscillate (we assume, of course, that



it is stable), and our assumption is valid provided that the dynamical times associated

with this oscillation are much shorter than the characteristic time ﬁ'tR of our problem,
With this assumption, we obtain a second expression involving %E by differentiating the
first of equations (12), and the requirement that this must be consistent with the energy

balance equation is the constraint we mentioned.

17. We now expand the quantities appearing in equations (12) and (13) as follows:-
E, = E, (1 - exr® ... ),
Eg = Ej (dar - dar® ... ),
E
V:'B'E—(—VLF+V3P3---),
Z0
n =I'l0—n2|."2, s (14‘)

O =0 = 02’ +  see

together with the expansions of Be, BZ and p given in Section 3. By substituting
these expressions in equations (12) and collecting up appropriate termms we obtain equations
relating the various expansion coefficients. The algebra is tedious and we shall only
quote the results. The initial distributions of B, n and T may be assumed known, and

we obtain five equations for the six unknown quantities eg, dy, da, Viy Vas Dz » We shall

give these equations first for the simple case of an isothermal discharge in which fg; =0

E.ndbi-_-Co:C;a: 1;
Then
1 - 2ba + € =-dy =0,
vy +dy = 1 o
o= == 2 |- 2(4bs - 1) + 5BV ) (15)
2 47:0’0 3 3 03 *
éz..—1- .8|:-d1-2d3+233:|,
o
Va:l—b3+2ﬁ4+d3-32,
8’]‘[]}2 8mp )
where [z, P4 are respectively BT s B—g—‘l . It is, of course, to be expected that we
z20 Z0

should have one more unknown than equations; equations of this type form a hierarchy which
can only be closed by the appropriate boundary conditions. We shall obtain the extra con-
dition by arbitrarily assuming d; = O; this corresponds to dco/dt = 0 so that the central

value of Bz remains constant. When this assumption is made, we can also have eps = O in



the particular case b, = % ("paramagnetic' models) but it is not consistent with these
equations to set ds = 0 also. Thus a true force-free paramagnetic discharge with uniform

electric field cannot be obtained.

18. From these equations we immediately conclude that at low ﬂo’ Pz 1is positive for
ba < 1/4; this result is independent of our assumption ds = O. More generally, we find
that bg is positive if ba < bae where

b 4 + 10Bg + 20&054

e 5107 : o (16)

Since we are interested principally here in exhibiting the qualitative behaviour of the
results we shall simplify this by assuming that B4 = - I/Zﬁo; this corresponds to the

assumption that the pressure varies as (B + Byr® and vanishes at r =2, Then

4 + 108y - 5B3

c~ 7 16 + 108, ) e (17)

ba

19. When we include temperature gradients, expand the thermal conductivity in tems of
temperature and pressure, and note that p. = 0 implies n, Te + Ny T0 = 0, we find that

the third of equations (15) becomes

- 1
Pe = Fnoy

Wl

3T Ty T T T )
= _ =2 3 = v (o4 _ _2 & o3
1: 2(4b, 1) + T, + 5(va To) 50 + 98&0 <-— T T (1 + 5 TO)):| ’

... (18)

where the term ST;/T0 represents the radial variation of conductivity and hence of Joule
heating, and we can clearly see in the other terms the ordering in powers of Bo described

above.

20. We again assume d, = 0, which from equations (15) gives v, = 1, and the net effect

is that bs. is given by

2(2 + Q) + 108, + 20PoP,

-

where

2 S5
(1 + )

Tﬂ
To —) ) ’

T, 2 T,
Q=g* (3 - 5p,) + 988, (2 T; - T

(o]

represents the temperature gradient effects.

21. We have calculated the critical value ba. for a number of cases as a function of Pg;
the results are shown in Fig.1 plotted against @, using our assumption relating (4 and
ﬁo. The curves are numbered as follows:

(1) This is the isothermmal case given by equation (17).



(2) Here we assume tp = O, i.e. an isothermal core to the discharge, but t4/%0 E %
so that the temperature falls off as fast as the'pressure. Note the dominant

effect of thermal conductivity as soon as BO rises above about 10%.

(3) We now allow tg/t,0 = %, tq/to = - %; these numbers are again chosen so that
t=0at r= Vﬁt The only significant change is to raise bs. at low ﬁo;
this arises from the increased differential Joule heating due to the conductivity
variation.

(4) Finally we set the "edge" of the discharge at r = 1 rather than /2, so that we

1
53
In all cases pg is positive to the left of the curves.

. i
now write tu/t, = ta/ty = - 51 Ba = B,

22. We emphasize that these examples are illustrative only. We have tried to choose
intuitively plausible models for the diffuse pinch with temperature and pressure falling
off from the centre; plainly quite different results could be obtained if, for instance,
we allowed t, to be positive. But to improve these results we must solve the full set
of magnetohydrodynamic equations with realistic boundary conditions, and this has not yet

been done for the diffuse pinch.

23. Nevertheless, we can draw the general conclusions that for models of this type thermal
conductivity is dominant for ﬁo > 10% unless the discharge is very nearly isothermal, and

if we require p, to be positive we are restricted to small b; and not too large ﬁo.

5. THE RATE OF CHANGE OF p, IN A QOLLISIONLESS DI SCHARGE

24, In a collisionless discharge the configuration and pressure distribution remain con-
stant unless the boundary conditions are changed. A real discharge of course cannot be
completely collisionless, but the collisionless approximation may be valid if we attempt
to set up the discharge in a time short compared with the characteristic times of the dis-
sipative processes. In doing this, we must avoid introducing any discontinuities (skin
currents etc.) into the discharge if the collisionless approximation is to be valid,
because the dissipative times characteristically decrease as the square of the width of a
discontinuity and must ultimately become the shortest times in the problem. However,
supposing that we can somehow avoid setting up discontinuities we can usefully consider
the effect of collisionless compression on the properties of the discharge centre by using
our expansion technique., This is a particular case of the more general problem of the

collisionless compression of the discharge, which will be discussed elsewhere. Here we



shall discuss the sign of the change of p.; under collisionless comparison, which is
equivalent to asking whether configurations with p, = O can be reached through a series

of configurations with p. > O.

25. As the configuration changes, the following conditions must be satisfied:

(1) Conservation of pitch of a line of force:

p_Be
ot (7B) =90
z
(2) Adiabatic compression:
D P
bt B = °

(3) Conservation of axial flux:

D
bt /~r r, Bz(ri) dr, = O.
0

(4) Pressure balance (we again assume slow compression)

47 QE = 4 (Eé_i_Eé = Eé
dt dr 2 r

where the derivative D/Dt is taken following the motion of a line of force. We shall de-
note small changes in the configuration by ABe, ABZ, Ap, and introduce the corresponding
displacement £ of a line of force. Then from condition (2) we can obtain an expression

for Ap:

[Z]]4,1

5 ! '
B,p=3psB +E(3pB, -p B) .os (20)

and from condition (3), similarly, an expression for ABZ:

[} ’
riB, = - g'rB, - £ (B, + rB) ees (21)

If we now introduce the expansions given by equations (3) for Bys Bz and p and separate
out the orders in r, we obtain:

zero order

5 ACq
Apo =3P Co
e (22
ACO = = 2&1 CU
second order
5
o, APz = ca Ap - 2p2 Es ¢ + 3 (p2 Acy - PyAce - 2D Eq Co2)
ven (23]

bcz = 3 Eacy ~ 4 &1 Co
where & has been expanded for small r in the form

g=§1r+§3ra e

- 10 -



We now set pp = 0 in (23) and eliminate Apo, Aco, Ac, from (23) and (21) to cbtain

Aps = - 5 E; PD eee (24)

26. Now E- is positive when the displacement of a line of force is outward. In setting
up a configuration, lines of force move inward from the walls and & is negative at the
walls. Newcomb's criterion for stability requires in this case that E shall not have a
zero within the discharge, and consequently if £ is negative at the wall it must be nega-
tive everywhere; thus g, must be negative. To find E; we must solve in series the

full differential equation for & which is obtained by eliminating Ap, ABZ, ABe from
the four conditions given above. The derivation and solution of this equation will be
discussed elsewhere; here we simply quote the result,

Cn,C

0o~ 2
Ea = E1 .
2 207
2(cg + - p,)
When pz = 0, we have
c,Ca = by

and if g, 1is negative, g, is also negative. From (24), Ap, is then positive. This
implies that configurations with ps; = O can be reached only from configurations with

pz < O which are therefore unstable.

27. It remains possible that including the effect of magnetic field diffusion would allow

such configurations to be reached without passing through any unstable configurations.

6, THE VALUE OF ﬂo ¢ AN EXAMPLE

28. In the preceding sections and particularly in Section 4 we implicitly used a heuristic
model to obtain a relation between 4 and @o’ in spite of the fact that taken literally
the result implied very large values of ﬁo (approaching 100%). Since the best published
estimate(il) of the pressure which can be contained in a diffuse pinch gives B, of the
order of 4% our values might seem excessive. We shall however show by an example that much
larger values of Bo can be contained in configurations stable according to Newcomb's
criterion(s). This will also serve as an example of the usefulness of discussions of the

central regions in guiding discussions of the whole pinch configuration.

29, In a similar way to Section 4, we suppose that the pressure distribution can be re-

presented approximately as ﬁo + Ba r* and assume that Newcomb's criterion will require the

walls to be placed at r = 1, then
Boz_ﬁd . e (25)

= 41 =



From equation (10) and Fig.1 we see that the largest value of -B, is obtained for bj = 0]
(as before, we limit bs by O < bs Sll); this gives an estimate of 25%. In passing, we

note that this procedure applied to the "paramagnetic" models for which bs = L gives an
2

estimate of about 6% - quite close to Kadomtsev's estimate.

30. We have therefore chosen a particular model configuration with bs = O and tested it
for stability by Newcomb's criterion. This configuration has f =r; g is determined

from the Suydam condition and the pressure balance condition as the solution of

;- 38 ol
s=2-4 mri -eo (26)
with g = 1 at x = 0. The parameter K is included to allow a small margin of stability to

Suydam's condition, which is necessary in computing the stability using Newcomb's criterion.
The Suydam condition requires K < 1; the value chosen was K = 0.9. The resulting con-
figuration is shown in Fig.2 g passes through zero at r = 0.82, and if we put the wall

at this point the central value of { is 35%.

O-5+

Fig. 2 CLM-R41
Example of configuration with b, = 0, that satisfies Suydam’s and Newcomb’s criteria

- 12 -



31. This configuration has been tested for stability by Newcomb's criterion using the com-

)
puter programme written by Copley and Whiteman(lz’. For this purpose the wall was placed

at r = 0.9. The following ranges of m and Kk values were tested:

=0 k = 0.01
= 1 k = -0.8
to k=-1.2

and also (by mistake) the same range of ]kl but with k positive, Comparison with the
results on the qualitatively similar FFPM configuration reported by Burton et al(s) sug-
gests that for m = 1 this range of k, which contains k = -1,0 corresponding to the pitch
of the magnetic field lines near the centre, should be the most unstable, However, no

instability was found, but the form of the results showed that indeed at k = -1.0 the con-

figuration was most nearly unstable,

32, It would, therefore, be possible to extend the configuration to greater radii, allow-
ing g to go negative. The central pressure increases very rapidly when this is done,
but most of the containment is eventually due to the axial field, and the configuration no

longer bears much resemblance to a normal diffuse pinch.

33. We conclude that the Suydam and Newcomb criteria do not in themselves place any severe
restriction on the value of P in a diffuse pinch. The configurations with high @, how-
ever, may be unacceptable from other points of view: in this particular case, for example,
the total current density increases outward and is highest at the walls, which is probably

undesirable in practice.

34. Finally, we note that our estimate (25) of the maximum B appears to be conservative.

7. CONCLUSTONS

35. We have discussed the structure and evolution of the central regions of a general

diffuse pinch configuration using an expansion in powers of r given in equation (3).

36. If we consider particularly configurations with py = 0, i.e. that are marginally
stable to order r? by the Suydam criterion, a further stability condition has to be
satisfied to order r®?. A convenient means of displaying this condition is on a diagram
of by against B, (Fig.1). The stability condition, together with the condition that
the configuration be a plasma-containing diffuse pinch, limit the region of the diagram

within which the representative point (bs, Bs) of the configuration may lie.

37, If we further require that in the evolution of the pressure distribution under dis-

sipative processes it does not immediately become unstable, i.e. we require dpg/dt > 0,

- 13 -



we further limit the permissible region of the diagram, in general to low values of Dg.

Models of the paramagnetic type with b, = % lie outside the permitted region.

38. Analysis of the evolution of the central regions of a 'collisionless" discharge under
changes in boundény conditions shows that, for the type of changes which would correspond

to the setting up of the discharge, configurations with p, = O can only be reached through
unstable configurations (i.e, with pz < 0).

39. By extrapolating the pressure distribution given by the r* stability criterion to

the wall we obtained the suggestion that it might be possible to contain a central pressure
corresponding to EO = 25%. By constructing an example and testing for stability we have

verified this; our example has a central value of BO of 35%.

40. Finally, it should be emphasized that in these calculations, infinite conductivity
stability theory has been used throughout; dissipation has been introduced only to calcu-
late the rate at which the discharge configuration changes. Evidently the calculation
could be extended to include not only finite resistance stability theory but also such
other factors as radiation cooling, nuclear reactions and edge effects (i.e. effects at

the plasma boundary).
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