CLM-R 45

CLM-R45

WL ORY
: ERY.
T JAN e
Ml
United Kingdom Atomic Energy Authority
RESEARCH GROUP =
Report l (UL d R b AL

SCIENTIFIC COMPUTING AND OPERATIONAL RESEARCH

K. V. ROBERTS

Culham Laboratory,
Culham, Abingdon, Berkshire

1965
Available from H. M. Stationery Office

FOUR SHILLINGS AND SIXPENCE NET

© - UNITED KINGDOM ATOMIC ENERGY AUTHORITY - 1965
Enquiries about copyright and reproduction should be addressed to the
Librarian, Culham Laboratory, Culham, Abingdon, Berkshire, England.

UNCLASSIFIED CLM -R 45
(Approved for Sale)

SCIENTIFIC COMPUTING AND OPERATIONAL RESEARCH

by

K.V. ROBERTS

ABSTRACT

This report describes operational research carried out at the Culham
Laboratory, designed to improve the efficiency of both scientific comput-
ing and system programming by the introduction of automatic techniques.

U.K.A.E.A. Research Group,
Culham Laboratory,

Nr. Abingdon,

Berks.

July, 1965 (ED)

14.

15.

CONTENTS

INTRODUCTION

BASIC 1401/STRETCH SYSTEM

AUTOMATIC PROGRAM LIBRARY

CONTROL CARDS

SUBROUTINE LIBRARY

VISUAL OUTPUT

CONVERSION TO THE SC 4020

CINE FILMS AND SPACE-TIME DIAGRAMS
WFORTRAN DATA" AND STANDARD PROGRAMS

THE KDF9 AND THE EGDON PROGRAMMING SYSTEM
AUTOMATTC DOCUMENTATION

OPERATIONAL RESEARCH INTO SOFTWARE DEVELOPMENT
USER CODE AND SYSTEM CODE

CONCLUSION

REFERENCES

12
17
17
19
22
23

23

1. INTRODUCTION
The development of computer hardware and software has now reached a critical, almost
explosive stage. In some respects the improvement in performance during the last one or
two years represents several orders of magnitude; for example on-line computing allows
the man-machine interaction time to be feduced from the usual 1-24 hours to 1-5 seconds,
A direct consequence of this has been an enormous extension of the range of scientific

problems for which computers are potentially useful,

Some of the developments in hardware are illustrated in Table T. Main core storage
and random-access backing storage have both become much larger and cheaper. A wide range
of visual output is available, and well adapted to scientific use: microfilm (including
cine fi;m), photographic hardcopy, and the on-line cathode-ray tube. The computer can
accept input from a light pen, and read microfilm. Some on-line typewriters cost little
more than desk calculators, and can be attached to standard telephone lines. The recently-
announced CDC 6800 and IBM 360/95 have instruction speeds several tens of times faster
than that of the IBM 7090, which until not long ago was the standard machine for scienti-
fic use. At the other end of the scale there are small machines such as the PDP 8 which

cost only a few thousand pounds, and can be attached to individual experiments,

If some of the claims put forward for advanced computing techniques sound exaggerated
to many scientists, it is largely because people have become adjusted to the considerable
inconvenience of even the besf existing installations. Until recently, unless a scientist
wished to carry out a large number of similar calculations as in bubble-chamber analysis,
or had a mathematical problem which could not be solved in any other way, he would have
been well advised to avoid computers altogether, and to use analytic techniques or desk
machines. As an illustration, we shall discuss in this report the elementary computing
problem of tabulating and plotting an arbitrary mathematical function - in the simplest
Case, a standard function such as Jg (x). It would take only a few minutes to look this
up in a library; using a computer one must either write a Bessel function subroutine or
extract a copy from a card or paper tape file, write a main program to read in and print
out the data (working out an appropriate format), punch and handle cards or paper tape,
fill in a job slip, compile and debug the program, waiting hours or sometimes days for
each set of output to arrive. The results must then be plotted out by hand; alterna-
tively if an automatic plotter is available it is usually necessary to program this in
considerable detail. Quite clearly therefore, the computer does not yet begin to compare

in efficiency with other well established information-handl ing systems such as libraries

and automatic telephones. For these systems, access to information has for many years been
highly organised, by means of well-printed books, scientific journals, directories, cata-
logues, indexes,.dialling codes, enquiry services, classification schemes and the like.

The scientific computer user on the other hand has been forced to accept long delays and

to do much routine mental and manual work for himself, a paradoxical situation in view of
the fact that three main characteristics of computers are precisely their high speed, their
ability to perform large numbers of routine manipulations without error, and the readiness

with which all forms of automation may be introduced.

To resolve this situation it is essential to carry out a thorough programme of opera-
tional research into the whole process of scientific computing, questioning every procedure
and piece of equipment that is currently used, determining the specific causes of delays,
errors and routine human effort, and eliminating them so far as possible. This problem
ﬁas been recognised in the United States, where there is now considerable emphasis on
improving the man-machine interaction(l), actively sponsored by bodies such as the Advanced
Projects Research Agency of the U.S. Department of Defense. One example is Project MAC
at M.I.T.{z’s’q) which enables a number of users to have on-line time-shared access to a
central machine via individual typewriters, connected to the telephone network. Another is
the Thompson-Ramo—Woolridge On-Line Computing Center at Space Technology Laboratories(s’a),
where visual display is used. A list of on-line time-shared systems at May 1965 is given
in Table 2. Little comparable work has been done in Britain because the necessary computer
facilities have not been available. A certain amount of operational research designed to
increase the efficiency of scientific computing has however besen pursued at the Culham

Laboratory, and some of the work carried out in the last three years will be described in

this report.

2, BASIC 1401/STRETCH SYSTEM

Until recently* all work done by the Laboratory used the IBM 7030 (STRETCH) computer
at AWRE Aldermaston, together with an IBM 1401 off-line or satellite machine situated at
Culham itself(7). Access was available to STRETCH two or three times each day according
to a regular schedule, magnetic tapes being taken to and fro by taxi over a distance of
about thirty miles. The AWRE STRETCH is a large configuration with 96K words of core

store, 2 million words of disc storage, 16 magnetic tape units and other peripherals.

* July 1965. An English Electric-Leo-Marconi KDF9 was installed at Culham in April 1965

and most of the computing'work of the Laboratory has now been transferred to this machine,

MAGNETIC -
TAPE STORE | | STRETCH SC 4020

Q
(']

1 § ALDERMASTON

— e e e e e o — — A—___-—‘ch} ———————————

? a

1]

S 0|2 | B

] j=% (3]

=]) O =)

] Bl é

&= wlw |2

g 2l &

L -

= 2le (g

: 5|3

= -

2 8¢ |

i o8 |3

= Lo

[3] m-g E.

B £ |3

5 a

_________________ Nt — = — — F+ =8 — = = — — = = = .
! |8 CULHAM
g
PROGRAM] 1401 J GRAPH
|LIBRARY TAPE b PLOTTER

A

2 &

& .?:g

2 - n

2 58 =

= E° o

= (&

——— By hand
—>— IBM tape USER

—»es— Direct connection
Fig.1 The Culham 1401/ STRETCH system (CLM-R45)

In addition there is a General Dynamics SC 4020 microfilm and photographic hardcopy recorder
at AWRE and a Benson-Lehner magnetic-tape-controlled Model J graph plotter at Culham. All
these facilities form part of an integrated system (Fig.1), so that simply by placing the
appropriate control cards or FORTRAN statements in his input deck the Culham user can have
access to any tape or to the disc, and can select his output in the form of printed tables,
punched cards, graphs, diagrams drawn on the printer, microfilm, ciné film, stereographic

slides or photographic hardcopy.

3. AUTOMATIC PROGRAM LIBRARY

In developing the Culham computer system, no attempt was made to alter the STRETCH
software. This would indeed have been a formidable task, since MCP (Master Control Program)
alone is said to have taken thirty-four man-years to write(g). Effort was instead concen-
trated on building up a powerful library of FORTRAN subroutines and programs, afnd on
improving the appearance of the system to the scientific user by modifying the 1401 input-

output routines. The first major improvement, carried out by L.A.J. Verra in 1963, was to

introduce an Automatic Program Library in order to eliminate unnecessary handling of cards.

-3 -

As many computer users have realised, binary cards are anachronistic because once a deck
has been punched out by the machine, nothing is ever done with that deck normally except
to read it in again. Why then should it be punched out at all? In the past, the valid
answer has been that random access backing storage was never large enough to handle all
the subroutines compiled by a typical installation. Now that magnetic card files are
becoming available, each capable of holding the equivalent of two million ordinary punched
cards with a retrieval time of % -)% second, it is likely that binary cards will disappear

altogether, since one such file can store all the subroutines compiled by a major installa-

tion during more than a year.

No random-access device was available on the Culham 1401, but it was realised in 1963
that most of the cards used in production (as distinct from development) work for the
Laboratory could be accommodated on one magnetic tape, and that the relatively long retrie-—
val time would not constitute an unacceptable penalty.* A scheme was therefore adopted by
which any sequence of cards in the user's Job Deck can be stored on a Program Library Tape
(PLT) which is permanently mounted on the 1401, and referenced symbolically by means of a
single L-card, (carrying 'L' in column 1, together with a File Number). Each L-card is the
complete logibal equivalent of the card file that it represents, when used in any job.
Broadly speaking, all that has to be done7~ in order to implement this scheme is to modify
the 1401 input routine (which copies cards on to the STRETCH input tape), so that it looks
for the character 'L' in column 1. When this character is found, a number is read from

the card and the corresponding file is copied from the PLT before proceeding to the next
card (Fig.2).

This elementary modification allows the overall appearance of the system to the user
to be radically simplified and generalised, For example, a complete program can now be
represented by one card, even if it contains hundreds of separate subroutines, so that the

entire job deck for a production run might comprise:
JOB-CARD
L—CARD
DATA

* This was because the 1401 was not fully utilised. For general use, it is recommended
that the Program Library Tape should be replaced by -some form of random access storage,

e.g. an IBM 1311 Disc File.

7 In fact the necessary modifications took one man about three evenings to make. This
encourages the author's view that substantial improvements to system software can be
made extremely quickly, provided that the existing version is properly understood, and
all the ramifications of any change made clear. In this case, understanding was facili-
tated by the 'rigid' interface between the 1401 and STRETCH, beyond which no alteration

could propagate. For further confirmation of this view, see also Section 11.

- 4 =

INPUT DECK JOB DECK ON
FROM USER STRETCH TAPE

JOB CARD."‘_"'___'__"_—_‘___—"-'lJOB CARD (Copied)

L —CARD 1 , ——————————————— - FILE 1 (From PLT)

—————————————————— - ll CARDS (Copied)

L - CARD 2’ ———————————————— - FILE 2 (From PLT)

|
V V

Fig.2 (CLM- R 45)
The L -card facility. Any sequence of cards in the Stretch Job
deck (except the Job card itself) may be represented symbolic-
ally by a single L-card. This eliminates unnecessary card-
handling, and the same L-cards may beused for public or private
card indexes which can be printed or duplicated when required

Anotiher useful device during the development of a large FORTRAN program is to put the
current COMMON/DIMENSION deck on the PLT; one can then represent the set of declarations
which must occur at the head of each subroutine in symbolic fashion by means of one L-card,
which never has to be changed. This avoids the need for multiple copies of the deck, with

all the consequent problems of updating as the list of declarations is increased.

4. CONTROL CARDS

A significant feature of card-oriented computer systems, which seems to give them a
decided operational advantage over those using only paper tape, is the use of symbolic

control cards, of which L-cards are one example. It is part of the Culham philosophy that

control cards are always prepunched, in order to avoid errors and tO eliminate unnecessary
human effort, and that preferably the stock should be kept up automatically. Copies are
held in a tray near the reception desk and can be selected as required. The information
on each card has previously been automatically interpreted by an I.C.T. 419 interpreter,
(i.e. printed across the top), so that it can be read by the user as easily as by the
machine. In addition to the character 'L' which initiates the substitution process, each
L-card carries a File Number to indicate the position on the PLT, which is occasionally
changed so that frequently used library items can be placed in the more accessible part

of the tape. It also carries a permanent Reference Number” for the user, followed by a

brief plain-language description of the purpose of the item.

5. SUBROUTINE LIBRARY

The subroutine concept is of immense significance in computing; it allows large pro-
grams to be built up from individual prefabricated 'bricks', thus greatly reducing the
total amount of programming effort that is needed. FORTRAN systems have a further advan-
tage in this respect, because it is possible to compile subroutines independently, into an
intermediate ﬁachine-oriented language called Relocatable Binary (RLB). Furthermore if a
single error is detected in the program, often only one subroutine has to be recompiled,
which with STRETCH now takes only a second or so. Existing ALGOL systems usually require
the whole of a large program to be recompiled afresh each time an error is found, and

since compilation is in any case more difficult the relative penalty in machine time is

extremely serious.

Each FORTRAN programmer usually divides his program into a number of private sub-
routines; here however we are concerned with the problem of organising a set of standard
subroutines into a library. In our case this was greatly assisted by the fact that four
separate A.E.A. computing groups used the same machine (Aldermaston, Culham, Harwell and
winfrith), and could therefore exchange programs freely. Most of the mathematical sub-
routines were in fact contributed by Harwell. Each subroutine is stored in RLB form on
the PLT and represented by a single L-card. If a user wishes to employ a subroutine he
need therefore only select the appropriate card from a tray and include it in his job;

the subroutine will then be loaded automatically by the 1401.

If a disc is used instead of the PLT, the Reference Number is sufficient and the File

Number can be dispensed with, since the actual disc location is immaterial.

RAQIT9 0055 eC SYMBOO PRINTS ALPHABET ,GREEK ALPHABE! AND NUMBEKRY UN PLUIIEK
ADI91 0Ou27 oH O0BO3A DRAWS LINE BETWEEN 2-PTS .IN FREE RUN MODE

AQ207 0376 =C PLVAROQ PLOTS VALUE OF A VARIABLE ON BENSON-LEHNER

A0217 0734 =H OBOLA DRAWS SECTIONS OF THE SURFACE FI(XeY,Z)=0

AQ218 0731 =H 0BOSA PLOTS FORTRAN SYMBOLS ON GRAPH PLOTTER

e

BESSEL FUNCTIONS
0021 CO73 =H FFOIA COMPUTES BESS FUNCTS JO(X),YO(X) - REAL ARGS
0022 0074 =H FFO2A COMPUTES BESS FUNCTS J1{Xx),Y1(X) — REAL ARGS
0023 0N75 =H FrO3A COMPUTES BESS FUNCTS I10(X),KO(X) - REAL ARGS
0024 0076 =H FFCuA COMPUTES BESS FUNCTS I1(X)sK1(X) - REAL ARGS
AQ196 0526 #H FFO5A EVALUATES SPHERICAL BESSEL FUNCTIONS
RAD209 0375 #C BESSJ/KO BESSEL FUNTIONS OF COMPLEX ARGUMENT AND INTEGRAL ORDER

Ll el ol ol o

BETA-FUNCTION
L R 0017 0069 =H FCO5A COMPUTES BETA FUNCTION OF REAL ARGUMENTS

CLOCK
L 0056 0036 =H ZACI1AS READS STRETCH TIME INDICATOR
L 0178 0178 BM TMCHEOQ READS TIME REQDe. IN MINS.yF5.2, AND REJECTS JOBS

COMPLEX VARIABLE, FUNCTICNS OF
L 0075 0035 #C BESSJ/KC BESSEL FUNTIONS OF COMPLLX ARGUMENT AND INTEGRAL ORDER
L 0128 0128 =C CMPLXO COMPLEX ALGEBRA

L 0142 0142 «C NEWICO MODIFIED NEWTON ITERATION TC A COMPLEX ROOT

LSR 0143 0143 =C GRAPHICAL/ITERATIVE PROGRAM FOR COMPLEX ROOTS, CARD |
LER Olub4 Gl4b4 =C GRAPHICAL/ITERATIVE PROGRAM FOR COMPLEX ROOTS, CARD 2
L 0145 0145 =C GRAPHICAL/ITERATIVE PROGRAM FOR COMPLEX ROOTS, CARD 3

CONICAL GUN
SEE #THETA-PINCH GUN®

v

Fig. 3 (CLM-R 45)
Extract from the Classified Directory. This serves as an index to the facilities provided by
the Culham system, and (apart from headings) is composed of the same symbolic L-cards that
extract material from the library. = The first number on each card is the reference number,
which directs the reader to the relevant sheet in the Library Handbook (Fig. 4). Columns 1,
2-4 (for updating) and 10-13 (file number) are read by the machine. The symbols ‘*H, *C’
denote Harwell or Culham subroutine respectively, while *BM’ refers to a private contributor.
The next entry is the FORTRAN name of the subroutine, Updating is not always perfect;
note that L75 should also appear under ‘Bessel Functions’

L-cards in the tray are ordered according to Reference Number. When however copies of
the same cards are placed in alphabetical subject order, together with suitable headings
and cross-references, they can be listed on the printer to form a convenient Classified
Directory to all the facilities available in the library, (rather like the Yellow Pages of
an American te_:lephone directory). Suppose, then, that a scientist wishes to use the Bessel
function Jo(x). He first looksup 'Bessel function' in his directory and finds that item
21 seems to provide the facilities needed (Fig.3). He then checks this by consulting

Reference Sheet 21 in a loose-leaf Library Hand-Book (ordered according to reference number),

which gives full details of how to use the subroutine (Fig.4). Finally he places L-card

21 in his job.

Such a schemé can be extended indefinitely, and from an operational standpoint is
simple both to use and to maintain. However, it still involves some degree of routine
human effort, and on the KDF9 it is proposed that the Classified Directory should be stored
on the disc and updated automatically whenever material in the main disk library is added,
deleted or modified. Users can then always obtain a copy of the most up-to-date version

by a '"request' placed in the normal job stream.

As subroutine libraries become larger, it is clearly necessary that they should be
catalogued as carefully as ordinary libraries containing books or reports, so that all the
material is readily available to subscribers; however this standard is rarely met, in

spite of the fact that the necessary automatic equipment is available.

Subroutine FF01A 21

1. Purpose

This subroutine calculates approximations to the Bessel functions
Jo(x) and Yb(x)

The accuracy of the approximations is at least ten significant figures.

2. Argument List

SUBROUTINE FF01A wvJ_, VYO,X,N)
If N is set to O only J,(X) is calculated
If N is set to 1 only Yb(X) is calculated
If N is set to 2 both JO(X) and Yb(x) are calculated
The value of JO(X) will be set in \ARY
The value of Yb(x) will be set in VY,

3. warning
If J,(X) is required X must be 2 0.

If YI(X) is required X must be > O.

If X is negative JO(|X|J and/or Yb('xl) are evaluated.

4, Method

A Chebyshev series is used if 0 <X < 8. If X exceeds 8 a Chebyshev
series in 1/X is used.

Fig. 4 . (CLM-R 45)
Sheet 21 of the Library Handbook, taken from the Harwell subroutine library

vix,y)=0

1st. ORDER POLE 1st ORDER ROOTS

2nd ORDER POLE

Fig. 5(a) (CLM- R 45)
Contours of the real and imaginary parts of
f(2) = (z - 1)(z - i)

(z + 1)(z +1)2

6. VISUAL OUTPUT

Graphs and diagrams of all kinds have always been useful in scientific work. The
basic STRETCH system provides many types of visual output, but it would have been extremely
wasteful in human effort for each individual programmer to make use of these facilities by
starting from the fundamental plotter instructions afresh each time, and a comprehensive
set of higher-level subroutines had to be provided. The first two of these were PLOT and
KONTUR, written by F.M. Larkin in 1962, enabling points and curves to be plotted, and func-
tions to be contoured. It is remarkable how many different applications can be found for
contour plotting(g); some examples are shown in Figs,5a and 5b. Since good scientific
practice requires that descriptive material should be included on each graph, a lettering

subroutine ALPHA was also provided.

_9 -

Fig. 5(b) {CLM- R 45)
Expulsion of an initially uniform magnetic field by an eddy in a partially conductive fluid. The
lines of force are plotted as contours of the magnetic stream function
(Series of stills taken from a film by N. 0. Weiss)

- 10 -

X COORDINATE Although contouring was now automatic,

conditions were operationally still far from
ideal, because in drawing an ordinary graph it
| was necessary to write instructions to turn
**® the page and number it, insert the date, draw
axes, work out and print scales, scale the

function, plot successive points, and write

ZO-—HNZCTM M Muanme

om the captions, all of which constituted a need-

less distraction from scientific work and

ought certainly to be done by the machine. An

—— attempt was therefore made by the author,

0. 2-300 4-ao ¥ 500

Fig. 6 (LR 45) (using a rudimentary form of time and motion

SC 4020 output from Culham Standard Program1, study on himself), to find out how the work
which plots and tabulates any continuous func-

tion automatically. Imperfections in the letter- required from a programmer for plotting graphs
ing are caused by the fact that the writing sub-
routine was originally provided for amechanical
plotter, which ‘cuts comers’due to inertia of
the head. A better subroutine has now been

might be reduced to an absolute minimum, A

hierarchy of higher-level subroutines was

provided for the SC4020 (Fig.14). The users written, all ultimately based on a version of
initials and date on card 14 of Fig. 8 nommally
appear in the upper left-hand comer, but have PLOT, which would automatically scale and plot

been omitted in the reproduction
any function, reading captions punched on

cards and writing them in the appropriate places (Fig.6). This set was extended by S.J.
Roberts and N.O. Weiss to the point at which graph-plotting has become considerably simpler

than printing, since a complete page such as Fig.6 can be generated by one FORTRAN statement.

7. CONVERSION TO THE SC 4020

An illustration of the power of these plotting routines was noticed when the SC 4020
microfilm recorder was installed, Since all Culham graph-plotting still depended ultimately
on the original subroutine PLOT, it was only necessary to rewrite this one subroutine for
the SC 4020 in order to route all graphical output to the new medium, If on the other hand
each programmer had written his own basic plotting instructions independently, an enormous
amount of work would have been involved in changing to the new form of output. As a matter
of fact, in common with some other computers STRETCH has the interesting property that if
two or more subroutines are loaded which have the same name, the last one takes control
and the otheré are ignored, Therefore to convert any existing program, (which might be on
the PLT, with a structure quite unknown to the current user), it was strictly speaking

unnecessary to alter the program at all, but simply to insert a single L-card representing

w 1 =

(Sry-wTD)

Spded BlEp TBUOTITPDY

¥ 018 —m—mv
sydea8 doJ suotqdeny

Ajatuygspul weiford o1 jo uoneorjdde Jjo o3uer a1 BurpualXs 08 ‘S)O[S INOJ 9y JO [[e Io
Aue u1 poppe 9q Aew [elIsjEW BIXF

‘T weidoig prepuelg 10§ yoop Indul a1 jo srmongs [eIauan)

6314

‘UMD STY 9ONPOJIUT UOTATPPER UT Kew 2y pue
‘aesn ayz Joj ABoToutuwial ' saptacad ueaSoud ETAA

o (7 | A
SIUBWRIRYS NVILHOd BIIXH

(474 “dViLS ‘NVIL¥Od spaed-7) .
SOUTINOJIQNS JIWOISND JO AdRIQTT TBUOTITPPY

SPJED TOJIQUOD QZOP OIS

I LOTS ——————
(s1sanbaa adeq pue 2sTp) spded q Q I

SVILXd TYNOLLJO

0TS —————

PJED UOTEBITJTIUIPT
8LL 1

(X)d =1
Trto= XVINX

= NINX

LIl 1

91l 1

MIvo dor

ADFd ININT WANINTIN

A

SPJIED TOJUOD Yd22d3§ TeT1TUl

urJa3oad pus 07 SpJED TOJ7UO)
suT3nod andutr Jo pug

autqnod andur
NVHLHO4 Jo BuTuutlog

ueaSoad jo Apoq utepy

SAUVO—T A9 QILNASTIdTI SWHLI

14 -

Two such programs have so far been written, designed to plot and tabulate arbitrary func-
tions (or sets of functions) in one and two dimensions respectively. Fig.8 shows the card
deck needed for the particular function Jo(x), (0 £ x £ 10). Fifteen cards are needed in
this case, of which nine are prepunched and six are punched by the user®. All the standard
part of the job deck is on the PLT, leaving only those features which are specific to the
individual problem to be supplied explicitly. Fig.9 shows the general deck structure and
Fig.10 is a simplified instruction sheet. The basic philosophy is to allow the computing
system to exhibit a considerable amount of initiative, making its own choice for all but
the essential data needed to specify the problem; if however the user wishes to make his
own conscious decisions, he can insert FORTRAN statements in Slot 3 of Fig.9, and these
will overwrite decisions made by the system, (e.g. method of plotting or tabulation, number
of mesh intervals, accuracy etc.). By suitable FORTRAN statements inserted in this slot,
almost any continuous mathematical function or set of functions may be defined. Altogether
there are four slots in the deck shown in Fig.9, into which extra control cards, Subroutines
or L-cards, FORTRAN statements, and numerical data may respectively be inserted, so extend-
ing the range of application indefinitely. The program has in fact been used for several
types of problem not foreseen by the original writer, such as the solution of differential

equations and the evaluation of integrals.

At this stage, the simple task envisaged at the beginning of this paper has essentially
been accomplished; it is indeed possible to use the computer system to plot the function
Jo(x) or any other continuous function, no matter how complicated its definition, simply by
"typing" the request in mathematical form on a small number of cards, and "dialling" in the
necessary programs and subroutines by selecting L-cards from a tray. For this type of prob-
lem, the computer has become almost as simple to use as an automatic telephone, and the
facility has been in constant use since 1963 by members of the Laboratory with little or
no knowledge of programming. Nevertheless because the STRETCH computer is not on site it
was still necessary to wait at least three hours for the results, so that unless the func-

tion to be plotted was quite complicated it‘was not always worth using the machine.

Facilities at Culham are being steadily extended by providing more standard programs
and subroutines, improving the documentation, reducing the turn-round time, and increasing
the ease of access by the scientist. Ultimately we envisage very large libraries indeed,

containing thousands of tested items stored on devices such as the magnetic card file, and

*
By further optimization the number could be reduced to ten, (6 + 4).

- 15 =

Sjuswalinbal pajednsiydos a1ow Wim asoy Ioj a1qe[ieae 21¢ weidoid ap
Aq popiaoid sanijioey ay jo suondiIosap pajrelap 210w A1eatssaiforg ‘Suiwwerdord

Jo a8pa[mouy ou Supmbai ‘1 weidord piepuel

(Sry-w12)
(210 = N) SpIED
ZL uoT1de)
JOo Jaqumpy
oL-1¢ uoTydTIdsaq
0g-11 STeT1TU
6/8°9/s°¢/T a1eq

suumTo)

‘Ll uwumto2 uT
SuT3aels juawsqels fspaed (2S) ueaiaog

*yound 30U oq *j}sap uoTldadad

WwodJ |Tqeutelqo ‘sSpaed AledqTl pJepUeR]g,,

AdVSSHOAN

Sl
Ll
9Ll "soN *Jay

100 dSDx

SMIVO NOILdVD

@MIVD NOILVOTIJIINAGI

® el 1

(u3aq) (X)J = &
= XVIRX
= NINX

LI T

91l 1

& 40r

LVINHOA IWANTN TN

NOILLONNS V 10Td NV JLVINAV]L

f———

S Buisn 10§ 199ys uononnsul payrjdwig

01 814

*8uot

sToquAs (S ueByjl adow 3q Aew JISYTOU pue
(£) w3u Y3IT™H pIjRUTWIIY 8] 9Shu yoeq
*A1eSS309U JT pJed puUodSsS 07 ASJT]

wod] SBuTUUnI ‘z -z swumTod uT payound
2q 3snw 9sayl “*suoTyded TRITIIAA (TT)
PUB TRIUOZTIOY (T) BUTATS SpJed g Jo |

UoTIOUNY 3Yy3 JUTJOD 07 PSPIdU SaUTINOJd 7§
J0 AIBUTQ ‘SPIBO-T BIIXI AUB 843y IJIISUT

TYNOLLJO

100 :ON uwelBold pJepue3g ueqim

16 -

maintained by teams of mathematicians and system programmers, since reliability and effi-
ciency are crucial. But if this kind of scheme is to have a marked effect on the progress
of scientific work, it is necessary for the scientist to be able to feed information to the
machine via'a key-board on his desk, and to have the results displayed as quickly as possible
on a screen in front of him. This is the system pioneered at Space Technology Laboratories(5)

and elsewhere in the U.S5.A. Immediate access is even more necessary for efficient program

development, since otherwise the mere omission of a comma can hold up work for hours.

10. THE KDF9 AND THE EGDON PROGRAVMING SYSTEM

To enable further improvements to be made in the system, it was necessary to have a
computer configuration at Culham, and as a basis for such a configuration the Laboratory
decided to install the English-Electric-Leo-Marconi KDF9 which is now in full operation.

A large version was selected including a 32K core store and 4 million words of disc storage,
together with 9 magnetic tape units and other peripherals. A disc-oriented programming
system called EGDON, based on FORTRAN and punched cards, was worked out in collaboration
between English Electric, Culham and Winfrith (who ordered an identical machine). It was
implemented by the Company with some assistance from A,E.A. programmers. The EGDON system

has now been working for some time, and details will be published in a separate report.

11. AUTOMATIC DOCUMENTATION

One of the main requirements was that the initial EGDON system should be capable of
rapid and continuous evolution, in order to improve its efficiency from the point of view
of the user in the light of experience, and to take advantage of new hardware and software
developments such as on-line time-shared computing. As with any other expanding Laboratory
service such as the electricity supply, it is essential for this purpose to have a thorough
understanding of the current system, so that the detailed ramifications of any proposed
changes can be quickly grasped. The concept of operational research had therefore to be
extended to system programming. It is customary to write this type of software from flow-
charts(lo); few programmers have yet become proficient at inserting enough comments into
their actual code to make it easy for other people to follow (or even for themselves), and
unlike FORTRAN and ALGOL the languages which are used for system work are in any case
extremely difficult to read. When a large system is being changed frequently it is an

expensive and almost superhuman task to maintain adequate documentation by normal office

methdds, but this should not prove difficult for a computer. The idea of automatic

-17 -

ENTRY. |SET UP
COUNTERS

BEGIN NEW WORD

BLANK CHARACTER.
oMLT

TEST IF LAST
CHAR, IN BUFFER

.
v 3 '_4,

PUT BLANKS IN

Fig. 11 (CLM-R 45)

Annotated flowchart of one of the subroutines

of the EGDON system, produced on the SC 4020

by the Hain flowcharter. Control runs down-

wards. A dashed circle indicates a label which
has already occurred at a higher level

Fig. 12
The main subroutine of the EGDON Job Organiser, from a
flowchart produced on the Benson-Lehner plotter

documentation was therefore formulated; system
software is to be organised in such a way that
flow-charts, annotation and indexes can be gene-
rated by the computer itself, solely from the
original code and its inserted comments, and
brought up to date automatically as soon as any

alteration is made.

The term "meta-software" has been coined to
denote programs that analyse other programs, and
three examples have so far been developed at
Culham. One of these is a flow-charter, written
by K. Hain and G. Hain and further adapted by
S.J. Roberts. Fig.11 shows an annotated flow-
chart which has been produced by this program on
the SC 4020, from the original KDF9 USER CODE of
a short subroutine of the EGDON system, while

Fig.12 shows a much larger chart, so far without

(CLM-R 45)

- 18 -

annotation. The comments in Fig.11 have been picked up from a separate table, but in a
fully-organised scheme they would be included in the code itself as it was being written.
The second example is a documenter, started by the author and developed by D.L. Fisher,
which processes a complete USER CODE program deck, commenting on all variables and jumps
and compiling appropriate indexes. All the EGDON software is being analysed in this way.
The need for such automatic assistance in reading large system programs may be seen from
Table 3 which is one of the subroutines of the EGDON Job Organiser and represents possibly
0.2% of the entire system. Using automatic documentation, two substantial improvements
(from the point of view of the user) have already been included in the EGDON system; these
were made in a few hours without programming errors. Normally it is extremely difficult

for customers to alter large system programs.

Finally, a flowcharter to make FORTRAN programs more readable has been developed by
J. Staples and the author. Fig.13 shows one of the subroutines of the flowcharter itself,

analysed in this way.

12. OPERATIONAL RESEARCH INTO SOFTWARE DEVELOPMENT

The real economic importance of system software is now being recognised, but little
emphasis has yet been placed on finding out how to produce and maintain it more efficiently,
in spite of a serious shortage of system programmers, and of the embarrassment caused to
manufacturers and customers by late delivery. The following topics are suggested for

operational research:

A, Design an optimum set of automatically-generated indexes, annotation and
diagrams which will make system programs as easy as possible to understand,

(analogous to maps, gazetteers, directories etc.).

B. Establish a Code of Practice for system programmers, containing rules for

documentation which are adapted to automatic techniques.

G Develop a proper language for system programming, which is easy to write
and especially to read, and which is efficient in both machine time and

instruction space.
D. Introduce a character set adequate to express this language.

E. Design on-line hardware which will make the work of the system programmer as

simple as possible.

F. Develop techniques which exploit this hardware; for example by following the

working of a program on-line, using charts and diagrams displayed on a screen.

G. Monitor the working of the system by inspection programs, in order to measure
its efficiency, and to see how it can be further improved.

= 18 =

SUBROUTINE NUMBER (KN,KS,KF,KC)
+essss common-dimension list omitted in reproduction

sbickzok: READ NUMBER KN, STARTING IN COLUMN KS. NO BLANKS ALLOWED WITHIN sk
sofkiok OR TO RIGHT OF NUMBER dokikick
sk NEXT CHARACTER IS KC, IN COLUMN KF sk

KN=0
&
#kkiokk READ BLANKS UNTIL FIRST SYMBOL REACHED #swacts
$§-—-—-DO 1 K = K5, 72

L +
4+Leese.IF (NCARD (K) -MBL)2,1,2
Vi +
V +...1 CONTINUE
v tmmm—————§
v Akancks END OF CARD esesiesesksk
Vv $m———— 51 KF =73
Vv A KC =MBL
v A RETURN -- -RETURN
v A
v A #kskuskk SYMBOL FOUND ek
 JS—— Am e 2 Ki1=K
A +
A sk ACCUMULATE NUMBER ksisksiok
A e DO 7 K=K1,72
A L KD+NCARD(K)
A L didkaskk TS THE CHARACTER A NUMBER skssioks
A L =eteses. IF(KD-M1)5,4,3
A Lvy +
A LV +....3 IF(KD-M1-8)4,4,5
A LvyV +
A LVV #ickokk YES, LYING IN RANGE |- 9 stmkr
A L $-V--—-4 KN = 10*KN +KD-MI+1
A L Vv +
A L+ Vivaan GO TO 7
A Lvyv
A LVy #xxirx IS THE CHARACTER ZERO ¥d¥kkx
A +eLaVe$===s========5 IF(KD-MZERO)8,6,8
A VLV +
A ViV sk YES okskokkskk
A VLV 6 KN=10%*KN
A VLV [e ot
A V 4 +$======7 CONTINUE
A v +
A v skisk END OF CARD REACHED koo
PRI, ' SR GO TO 51
v *#:kkk LAST CHARACTER REACHED sk
e T 8 KC=KD
KF=K
RETURN -RETURN
Fig. 13 (CLM-R 45)

One of the subroutines of the Fortran Flowcharter, automatically flowcharted by the program itself. (Copied from the
computer printout, with minor corrections.) Symbols A,V denote upward and downward paths, L an upward return in
a DO-loop, and ----- transfers to left and right respectively, ===== both ways. Flow paths are entered at +
and left at §. The symbol + also denotes a continuation in the same vertical column. Any comments included in
the text are emphasised by asterisks. A well-written program will include a comment for nearly every statement
number, and these should be inserted as the code is being written down. Routines of up to 500 cards may be handled.

- 20 -

A large system program is a valuable mathematical or logical document, and as much care
should be devoted to improving its readability as one would give to an important journal
article or text-book. If this is not done, major weaknesses are likely to go undetected
or be difficult to remove, and systems are now developing so rapidly that anything which
is unreadable and therefore incapable of continuous evolution is likely to be abandoned
quite soon in favour of an entirely new version, at a considerable waste of scarce soft-

ware effort.

Good documentation is relatively easy to achieve by automatic methods, once the problem
has been recognised. Starting from the actual code, it should not prove difficult to pro-
duce a complete 'hand-book' on the line printer, or on a device such as the SC 4020 in
hardcopy or microfilm form, including annotated code, diagrams, page headings, indexes,
footnotes and any other features that may be found useful. It is worth mentioning the
complementary problem of the language in which system programs are written - this deserves
a considerable amount of thought, because evidently a good language or notation can make
an enormous difference in mathematics; consider for example the invention of the zero in

arithmetic, or the use of Arabic rather than Roman numerals. At present, the development

ABLUEFGHIITKLMNOPORS TUVWXY Z
abchFEHﬂJklmﬁmpqrskuvwaz
ABMAEDT HT KAMNOIEESTYXO=HZ
«p{ie¢{eLWK%HvOmeTTuXwgﬂK

/N

=—~mal<>> .ZW%&%%HU“VAX+

L1 IOV A
() poml s, &
01259454 /78%

Fig. 14 (CLM-R45)
Programmed character set for visual display device

- 21 =

of programming languages is gravely hampered by a quite incidental difficulty; the inade-
quacy of the character set available on card punches and line printers. For a fraction
of the cost of the current software effort it should be possible to introduce an extended
set, comparable to that available on a mathematical double-bank typewriter. On the other
hand, this difficulty may well be removed by the use of on-line key-boards and display
screens in system programming, since this allows quite arbitrary symbols to be defined.
Permanent listings can be produced on either hardcopy or microfilm., A subroutine which
generates most of the symbols used in mathematics has been written by A.N. Dixit and the

author and an example of SC 4020 output produced in this way is shown in Fig.14.

13. USER CODE AND SYSTEM CODE

As a start on the language problem, some work has been done in the direction of .
extending KDF9 USER CODE to form a more convenient system language, while accepting the
restrictions imposed by the standard punched-card character set, and keeping the necessary
translator as simple as possible. USER CODE is a very suitable starting point for this

(8’11), it employs standard symbols

purpose, since apart from its Reverse Polish notation
or names for mathematical and logical operations, (+, -, /s NOT, AND etc.). The extended
language, which is called SYSTEM CODE, is equally efficient in terms of machine speed and
instruction space, but much more powerful and readabie, since it includes mnemonic names,
algebraic and logical formulae, argument lists, function subroutines, and macros, while
descent into USER CODE is possible at any point. The programmer is able to define new
compound instructions and macros as he goes along, and therefore virtually to develop his
own private language, just like the author of any other mathematical text. All the decla-

rations necessary for this purpose can then be incorporated in the Automatic Library, and

s0 brought into play by a single L-card.

According to present proposals, a simple Translator I would be written in FORTRAN, to
convert SYSTEM CODE into USER CODE. A new Translator II would then be written in SYSTEM CODE,
converted by means of Translator I, assembled, and incorporated into the EGDON system.

Parts of the EGDON system would then be translated literally into SYSTEM CODE by hand, in
order to gain experience and to develop a suitable set of macros, and to make the system

easier to understand. Further extensions to the system would subsequently be made in the

new language.

o

14. CONCLUSION

In the past, system software has mainly been concerned with achieving an efficient

utilisation of the machine and simplifying the work of the operators. Except for the

introduction of higher level languages such as AUTOCODES, ALGOL and FORTRAN, it has done

little for the user. These earlier problems have largely been solved and there is now a

rich field for operational research, leading to automatic techniques which will make the

computer system an ever more effective tool for the user, and increase the rate at which

software itself can be developed. Apart from its intrinsic interest and application to

scientific research, this type of work is likely to have considerable economic importance.

Unlike other forms of automation, all the necessary hardware exists and forms an integral

part of the computer system itself, so that progress should be rapid.

11.

15. REFERENCES

McCARTHY, J. (1962) "Time-Sharing Computer Systems', in "Management and the Computer
of the Future", M. Greenberger, ed., Cambridge, Mass. The M.I.T. Press, pp.221-236.

CORBATO, F.J. et al. (1963) "The Compatible Time-Sharing System - A Programmer's
Guide", M.I.T. Press, Cambridge, Mass.

DENNIS, J.B. (1964) Comm. ACM 7, 521.

FANO, R.M. (1965) I.E.E.E. Spectrum (January issue, p.56).
CULLER, C.J. and FRIED, B.D. (1964) STL Report 8587-6002-RV00O0.
FIELD, E.C. and FRIED, B.D. (1964) Phys. Fluids, 7, 1937,
RIGG, F.A. (1964) Computer Journal, 7, 169.

WEGNER, P. (1963) '"Introduction to System Programming", Academic Press, London ard
New York.

LARKIN, F.M. (1964) Computer Journal, 7, 212,

GOLDSTINE, H.H. and VON NEUMANN, J. (1947) '"Planning and Coding of Problems for an
Electronic, Computing Instrument", reprinted in John Von Neumann "Collected Works",
Vol.V. Pergamon Press, Oxford, 1963.

DIJKSTRA, E.W. (1961) Algol Bull. Suppl. 10.

= 9%

TABLE 1

RECENT DEVELOPMENTS IN COMPUTER HARDWARE

TYPE

EXAMPLES

NOTES

Core Storage

Random Access
Backing Storage

Visual Output

Visual Input

On-line Computing

Telecommunications

Large Computers

Small Computers

Magnetic card fTile
Data cell

Graph plotter
Microfilm recorder

Hardcopy recorder
On-line CRT

Light pen
Microfilm reader

Typewriter

Light Pen

Cathode ray tube
Programmed Key-board

Computer - Computer
Subscriber - Computer

CDC 6800
IBM 360/95

PDP 8

Up to 1 million words
Cost & £1/word
Minimum transfer time
1/40 psec

60 million characters
Cost ~ £70,000
Access time 1/3 - 1/2 sec

Arbitrary combination of
printed and diagrammatic
material, including ciné
film

Minimum turn-round time
1-5 seconds

Screens can display 8000
characters, and graphs

In principle, any two
units can be connected via
the public international
telephone network, and
automatic dialling can be
programmed

Speed possibly 50 x
IBM 7090

Minimum cost ~ £7000.

- 24 -

TABLE 2

CHARACTERISTICS LISTED IN CHART

STATUS O-operational system, number in parenthesis denotes the approximate date that the system went on the air.
D-system under development with anticipated date that operations will begin.

TYPE G-general purpose, S-special purpose.

COMPUTER manufacturer's name and number of central computers in system.

c/M/UN denotes whether commercial, military, university or non-profit organization operates system. PR-denotes system
for private or internal use only, PU-system available for general public use, SP-semi-public use permitted.

LANGUAGES basic languages available on system at present.

TERMINALS type of terminal equipment avallable, number of such terminals in parenthesis. Code: TT followed by number

denotes TELETYPE terminals and model number, TY-typewriter, TLX-Telex console, CRT-cathode ray tube display,
BR-Bunker Ramo series 200 display consoles, IBM 1050-keyboard consoles.

MAIN STORAGE first number denotes total core storage on system, second number in parenthesis, if given, denotes maximum core
storage available to an individual user.

SECONDARY STORAGE DR-magnetic drum, DK-disk file, MT-magnetic tape (K = 1000, M = 1,000,000).

NO. OF USERS maximum number of users who can operate simultaneously at any given time.
TIME-SHARING SYSTEM SCORECARD Prepared by COMPUTER RESEARCH CORPORATION
AN SECONDARY
ORGANIZATION STATUS TYPE | COMPUTER(S] C/M/UMN| LANGUAGE(S) TERMINALS STORAGE STORAGE NO. OF USERS REMARKS
Adami Associstes — Keydata System |O (5/65) G |PDP-6 C-PU [Fortran TT-28 (16) 48K (32K)| DR (IM Wds.) 161 For on-linc invoice preparalion and
Cambridge, Mass, KOP-111 DK (11M Wds.) inventory control, other accounting
MT (2 Units) uses under il
Avistion Supply Offica” O (10/62) | S |IBM-1410 M-PR TBM-1014 (12) DK (2 Units) 2 Inventory control system
Philadslphis, Pennsylvania :
Ball Telephone Laboralories? D (2/66) G | GE-6364 C-PR Information not available
Murray Hill, Now Jorsey
Bolt Bersnsk and Nawman Inc? 0 (6/64) G |PDP-1D°® C-SP MIDAS TT-33 (48) 24K (4K) | DR (128K Wds.) 32 Medical Information and communi-
Cambridge, Mass. TOLL-1 7 DR (25M Wds.) cations system for hospitals
MT {2 Units)
Carnagie Inititute of Technology | O (3/65) S [2G20 U-PR | ALGOL TT-33 (12) DR 12
Pittaburgh, Psan.
Dartmeuth Collage® 0 (9/64) G |GE 235 U-PR | BASIC TT-35 (22) (6K) | DK B Educational time-sharing syslem
Hanover, N. H. DATANET-30 ALGOL MT
IBM QUICKTRAN Service O (5/65) S |[IBM-7040 C-PU | QUICKTRAN® | IBM 1050 (40) | 32K DK 40 On-line scientific computation service
Now York, New York 7044 MT
MIT Computatien Canter Q (9/63) G | IBM-7094 U-sp Same as 64K (32K) | DK Same as
Cambridge, Mass. Project MAC DM Project MAC
5 Phase one MT Phase_one
MIT Dapt. of Elecirical Eng. 0 (9/63) | G |PDP-I U-PR | MIDAS TY (3) ax DR 3 Experimental lime-sharing systém for
Cambridge, Masi. studenl use
Naval Command System10 O (12/64) | S |2 CDC-1604 | M-PR TT-33 (8) 32K DK (2 units} B For (racking, control and scheduling
Suppert A:iiviir 2 CDC-160A naval vessels
O (9/63)11 | G |IBM-7094 U-SP ALGOL TT-35 (54) 64K (3ZK) | DR (}6M Wds.) 30 Project MAC is an MIT research
FORTRAN IBM-1050 (56) DM program sponsored by the Advanced
MAD TLX (1) MT Research Projects Agency, D.O.D,,
LISP under the Office of Naval Rescarch
rm}m MAC = MIT (Phasa Twe) D (2/66) G | GE-6361 U-SP 50013 128K gﬁ 15013
o
RAND Corporation O (2/64) S [Johnniac N-PR | JOSS TY (8) 4K Wds. DR (1ZK Wds.) B
Santa Monica. Califarnia : ¢
Space Technolopy Laboratory 0 (1/65) S [Bunker- C-SP MATHE- 4 Consoles 14 8K DR (48K Wds.) 4 Highly flexible system for on-line
El Segunde, California Ramo MATICAL MT mampulauon. spec:ﬁcmun and ex-
(Culler-Fried System) 340 ANALYSIS ecution of mathematical operations
with graphical duplny of results
Stanford University 0 (6/64) G |IBM-7080 15 U-5P MACRO 16 PHILCO (12) 20K DK 20
Stanferd, California PDP-1 LISP TT (8) DR
FORTRAN
Syitem Devalopmant Corp. O (6/64) G |[AN/FSQ-3215 [N.SP | TINT - | TT-28 (B) 80K (48K) | DR (400K Wds.) 30 Oricnled to command and control
Santa Monica, Californla PDP-1 IPL-TS TT-33 (16} DR (4M Wds.) cxperimentalion
JOVIAL TY (3) MT (16 Units)
CRT (6)
U.CLA. Western Data 0 (11/64) 5 TBM-7740 17 U-5P IBM-1050 (12) | 32K DK 12 Joinily financed by UCLA and IBM.
Processing Cenler 1BM-7040/ DM system services UCLA and 88 other
Los Angeles, California California_schools
University of Califernia D () G |SDS-930 U-PR | FORTRAN TT-33 (6) 32K DR 6
Berkeley, Californis CRT
Univarsity of California 0 (3/65) s RW 400 U-PR MATHE- 16 Consoles 14. 18 6K DR (BOK Wds.) 16 Highly flexible system for on-line
5, rbara, -California . AN/FSQ-27 MATICAL DR (500K Wds.) manipulation, specification and ex-
(ried Systam) ANALYSIS cecution of mathematical operations
with craphical displav of resulis
Univenity of Pennsylvania D (6/65) G |IBM-7040 U-SP MULTEILANG | TT-35 (4) 32K (24K) | DK [
Philedelphia, Penn. PDP-5 MAP BR (2)
ALGOL
Nores 6 B pon an earlier 5 viation PDP-1 tystem operational 9/63. 14 Esch contole tonsitts of twa keybonrds and a storage tube display.
Syslem to be expanded lo 4B viers shortly, 7. Version of the RAND JO! nguage. A tamera and plotier are shared among the coniolel.
% Developed under contract with ‘Tha Moara School of Electrical 8 Developed with the cospe-stion of the General Eleciric Co. 15, Exomple of main comauter with waiellite compuler for communicatian
Engineering, University of Pennsylvania. L Greline venlon of FORTRAN. with comsales and sched
3. Dewelopment In compertaion with Project MAC, Massachusens Instliute 10 d under coniract with Compuler Command Cont-ol Corp. 18 Other languager include GOGOL and BALGOL.
of Technalogy. e ihared in 1987 a1 Tha M. Comparation Centen 17, System currenily utilizes five computers in addilion to centeal 7740,
4 Muliiple Procesor Time-sharing system. 12, Other lsnguager include FAP, SLIP, COGO, SNOBOL, STRESS snd 18, Other te cauipment 1o be inuslled include a PAND rabist ard
5. Developed with the Massachusells General Hospital under contract OPL-1. o Grafacon.

13, This system i eventually expected 1a handle 500 tarminth and 150
simultancous users some_lime after initial operation begin

fram the National Instirures of Hi

Spring 1965. Reprinted by permission of Computer Research Corporation,
Belmont, Mass. U.S.A., from whom subsequent editions are available.

- 25 -

TABLE 3

SUBROUTINE 702 OF THE EGDON JOB ORGANISER IN USER CODE

KT01999

P702s %HANDLE JUB CARD}s SETE, =RC15, : %7020003
®s1) VUOP700M15, =VB2P700M150, JJC15N2S8, SETI14, CUT, ERASE, SHL=18, 7021003
SETB36UT7, SHL3V, OR, =VAOPTUL, V63P700, SETI03, 0UT, %7TU2)504
V21P797s DUP, =RMI4, =RM|5, SET4, =RM7, JSBs JSB, JS6P704, Jé» %7022003
=VEPT7O0s JSP70U4, ERASES V&RTU0, wTUZ2 103

e JSBPT04s J9s =VTRPTOUs JSPT704s ERASE, V7P700, %7022203
10s JS13, JSP710, %7022303
12» DUP» ZERDs SMLD12s J112=Z, ERASE. %7022403
l4s SETB140Us CABs ORs REV, =MOMISQ, =HOMISU, %x7022453
JS42PT70GU, SET6U, XD» CONT, SHLZ4, SET114s QUT, DUP, JSP710, %X70225U3
=MUM|50s =MOMI5Q, ZERO, SHLD30, =V&P700s SHL=12s SHLD12s sV7P7Q0, %7Y2300%
SETB202+ OR2 =VBP700, NC|S5, C157T0014, Qld4s SET]15, OUT, %7023503%
VOP7Q0, SHL6, SET3: ORs SHC=6s =VORT700D, V34P700, NEG, NOT, DUPs , %7024003

JS2, JS33PTU0, J83, JS4, JS3s JSZ, EXITI, %X7024503

B, JSP704, ERASE, %7025003%
13, JSP7{0, SETB400, SHC=12, ORs =HMOM|{BEQ, =SHM0M150, EXITI, %¥7025503
9, ERASE: JS13s ZERQ, ZERD, Jlda : %702600%
115 ERASE, SHLDI12s Ji2» %TU27003
by ERASE, ZERUs REV, J7, X7028003
2, SET6, SHML32s SET240s ORs J4s %X702910%
a, VOP798, ; %¥7029203
4, SET123, J43P700, %7029303

Subroutine from EGDON Job Organiser

Note

This example shows how difficult it can be to read a program written in symbolic
language with any degree of comprehension of the overall meaning - the individual instruc-
tions are clear enough. A detailed analysis of the readability problem will be given in
a subsequent report, comparing the same subroutine in various forms, e.g. USER CODE with
and without documentation and SYSTEM CODE.

- 26 —

Available from
HER MAIJESTY'S STATIONERY OFFICE

49 High Holborn, London, W.C.I
423 Oxford Street, London W.I
I3a Castle Street, Edinburgh 2
109 St. Mary Street, Cardiff
Brazennose Street, Manchester 2
50 Fairfax Street, Bristol |
35 Smallbrook, Ringway, Birmingham 5
80 Chichester Street, Belfast

or through any bookseller.

Printed in England

S.0. Code No. 91- 3- 18- 43

