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ABSTRACT

The first part of this report describes a computer programme which finds com-
plex zeros of arbitrary functioﬁs by iteration from some given initial guesses.
The basis of the iteration is to approximate the given function by simpler func—
tions whose zeros can be simply calculated. The regions of the complex plane in
which the iteration converges to a required zero are greatly extended by several
ad hoc procedures developed ina study of helicon wave propagation. The programme
is constructed in such a way as to allow indefinite extension of the facilities
offered without reference to the original programming. The helicon wave problem
is used as an illustrative example and simple methods by which more complicated

eigenvalue problems can be solved are indicated,

The second part of the report is an operating manual for the programme,
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PART I

A COMPUTER PROGRAM FOR FINDING COMPLEX
ZEROS OF ARBITRARY FUNCTIONS

INTRODUC TION

The programme described here is a by product of a study of the propagation of helicon
waves in a plasma cylinder by Klozenburg, McNamara, and Thonemann(]). During this work it
was realised that the computer programs developed could provide a simple means of solving
any complex eigenvalue problem and with some modifications to the helicon wave programs
this has been achieved. The primary object of the programme is to reduce the solution of
such problems to a specification of the parameters and functions detemmining the problems,
the programme providing the solutions with a minimum knowledge of computer progfamming on

the part of the user. At the same time, the programme is constructed in such a way as to

permit indefinite extension of the facilities provided,

The method used is to improve guesses at the solutions by iteration, The most import-
ant feature of the iteration process is that it is limited to rectangular regions of the
complex plane so that unwanted solutions are not found., This necessarily introduces some
ad hoc techniques for producing convergence and the complete process as described in

Section I has rarely been found to fail,

The programme structure and facilities are described in Section II. A program using
some of the methods described here is discussed by W.L. Frank(z}. In Section III some
applications of the program are discussed. A simplified example from the helicon wave study
demonstrates the value and necessity for many of the programme facilities. It is then shown
how eigenvalue problems defined by second order differential equations or by second order
differential integral equations may be tackled by simple techniques. These only require

that the user be able to specify the coefficients, kernels, and boundary conditions ror the

particular problem,

Part II of this report is an Operating Manual for the Program.



I. THE ITERATION PROCESS

The basic function of the computer program described in this paper is to find, by
iteration, complex zeros of arbitrary functions of complex variable, Z and an arbitrary

number of parameters, Pi' i.e. to solve equations of the form

Fy (Z, Pi, Pa, euu, PN) = UK+ v, = 0 s 1)

K is an integer variable which may be used for the selection of different functions.

Iteration is a process of systematic guesswork and its effectiveness is frequently no
better than the initial guess., To supplement analytic procedures for making initial guesses
at the solutions of equation (1) a graphical program, such as that of F.M. Larkin(s), can

be devised to give excellent information about the structure of the FK in a specified

region of the complex Z-plane for particular parameter values,

Having decided on an initial guess at the location of a required root of equation.(l),
one can proceed to improve it by approximating the function in the region of the guess by a
simpler function whose roots can be more easily calculated. The initial guess is replaced
by an 'appropriate' root of this simple function and the process repeated until equation
(1) is sufficiently well satisfied. An essential feature of the iteration process is
that unwanted roots should not be found. The simplest way to do this is not to allow the
iteration to proceed outside a given rectangular region in the Z-plane around the initial
guess. This style of limitation, apart from being convenient, is appropriate to many
physical problems where the real and imaginary parts of the roots of FK are dominated by

different physical effects and can be approximated separately.

To locate a zero of FK in the given rectangle the value of FK is calculated at the
initial guess and at two other points on the sides of the given rectangle. This assumes,
of course, that the user has chosen the rectangle to define a region of the plane enclosing
and close to the required zero. Using these three values it is possible to evaluate any
approximate function requiring only three parameters for its definition. A choice of two

functions is offered by the program, a quadratic

FK ~ aZ? + bZ + C

and a bilinear function

_a + bZ
K cZ+ 1



the latter being appropriate when the required root is near a pole of FK' The roots of

these approximations are at

and

respectively. Il the modulus of FK at one of these roots is less than the modulus of

FK at any of the three points first used then the point with the largest modulus is dis-
corded and a new approximation to FK calculated. Iteration is stopped when a point is
found such that the real and imaginary parts of FK are less than given values or when
more than 100 iteration have been performed. The convergence of the process using the
quadratic approximation has been investigated by D. Muller(4). He has shown that in the
region of convergence, where the distance, sj, between the jth iterate and the required

root is sufficiently small, the distance, Sj+1’ of the next iterate from the root, r,

B 6F' (r)\% 1.84
“ira T (‘ F"'(r)) B

There is no a priori method of determining the convergence region for any particular

is given by

zero of an FK and so several ad hoc operations have been incorporated in the complete
process to ensure, as far as possible, that if a zero exists in the given rectangular
region it will be found. No matter how good the initial guess, it is always possible to
rfind that the root(s) of the approximation function lies outside the given region of the
complex plane, or that the modulus of FK at the root is larger than that at any of the
three current points. In the first case iteration is allowed to proceed provided the
approximate root is inside double the given rectangle to avoid the possibility that the
required root is only marginally outside the rectangle. In the second case the new iterate
is brought closer to the current iterate in an attempt to find a point where [FK[ is
smaller so that the process does not jump out of the local valley in [FK]. If this fails
then the auxiliary point of smaller modulus is rotated about the current iterate by 900,
keeping it within the given rectangle. This deals with the possibility that the process
has brought the three points into line, thereby giving a poor estimate of the shape of

FK perpendicular to this line,

The quadratic approximation has two roots and, when all three points in current use
are sufficiently close to the zero, the nearer root provides the next iterate. However, il

the nearer root provides a value of FK which is larger than that at the current iterate



the second root is examined and frequently turns out to be the one to take.

If these measures fail then the auxiliary points are brought closer to the current
iterate in case fhey are sampling FK in a region in which it is varying too rapidly for
these points to provide an accurate approximation to the function. As a last resort the
iteration process is restarted from a new initial guess and auxiliaries in the given region,
The entire process as described is nearly guaranteed to find a zero of FK in the given

region, if one exists.

The process is composed of two logically distinct sets of operations. The first is,
given a set of values of FK at several points find an approximation to the location of a
zero of Fie The second is to provide an estimate of the worth of this approximation and
in fact comprises the bulk of the complete process. These two operations are represented
by separate subroutines and it is a simple matter for the user to replace the routines for
calculating the three parameter approximation functions and their roots by more problem

oriented routines. The complete process, representing the product of these two operations

is represented by a routine called CRITIQ

II. THE GENERAL PURPOSE PROGRAM

The basic operation, CRITIQ, has been incorporated in a program providing a wide range
of inmput/output facilities and a selection of combinations of this basic operation, The
user is required to provide an operand, a subroutine defining the functions whose roots are

required. In the FORTRAN dialects used at Culham this is done by providing a routine called

FUNXNJ as follows.

SUBROUTINE FUNXNJ(X,Y,U,V,K)

COMMON A,B ..., R, P1, P2, ..., PN, S5,T, .0v., Z
Fortran statements defining

Fe (X + iY; P1, P2, ..., PN) = Up + iV

ending with ...

END
The parameters P1, P2, ..., PN may appear in a block anywhere in COMMON, the advan-—

tages of using COMMON in this way being that the user can employ mnemonic names for the

parameters, whilst the program need only know where this block lies,



The program provides (our combinations of root linding operations, The lirst and
simplest is intended as a test of FUNXNJ and linds the root of FK nearest. to the origin
whilst printing out complete details of the progress of operations. The second combination
is to find a root of FK in a speciflied region of the complex plane. The third combina-
tion provided is to locate a set of N zeros of FK in N given regions of the complex

plane for N different values of a parameter and is effected through routine ZDSETQ.

The fourth and most powerful combination is to execute this process automatically
when the only data required is the range of variation of the parameter and an initial guess
at the location ol the root at either end of the range. In this combination the root of
FK is first located at the given end points of the range, The first root located is then
used as an initial guess at the root of FK when the parameter has been incremented by an
amount depending on the number of points required in the range. The actual location of the

root is calculated by CRITIQ, the parameter further incremented, and the process repeated

till the parameter range has been covered. This combination of operations is effected

through routine CONTZQ.

There are, unfortunately, many wéys in which these simple processes have been found to
fail, some of which are illustrated in Fig.l., The initial guesses Z1, Z2 are shown in
their given regions of iteration together'with the actual positions of the root at para-
meter values in the range. Starting from Z1, the first mishap illustrated is where
another feature of the FK has moved along the line AB to interfere with the root find-
ing procedures, If this other feature is a zero then close to C this other zero might
be found and the computation deflected along the curve CB, If the feature is a pole then
the program may not be able to find the required root when it is very close to the pole,
Use of the bilinear approximation may overcome this difficulty and the program may then
find difficulty following the root around the sharply curved portion DE of the traject—
ory. The program attempts to overcome this difficulty by making a linear-extrapolation
from the known results, If this fails, the program will, if possible, continue from the
other end of the parameter range at Z2, The third difficulty illustrated is that the
root trajectory may not be continuous due to the presence of the branch cut FG. As the

program uses the last found location of the root as a guess at the new location, the

branch cut cannot be crossed by the process and is pushed in front of the trajectory.

The impossibility of dealing with these and other possible troubles made it necessary
to provide a means by which the user could control the program completely without too

much effort, The program therefore calls a dummy control routine, GPDUMQ, at every



BRANCH
POINT

—INITIAL
GUESS
Z2

INITIAL
GUESS
Zl

\ d

Fig.1 Possible reasons for failure of CONTZQ (CLM-R48)

important point in the operations with an indication of the current state of affairs. Thus,
GPDUMQ is called immediately before the beginning of each case or combination of operations,
immediately before and after.an attempt is made to locate a root, and immediately before
any output operations are started. If the user wishes, all of these operations can be modi-
fied by provision of an appropriate GPDUMQ. The logical structure of the program is given
by the flow diagram, Fig.2, The arrows labelled G1,2,3,4 indicate the various points at

which GPDIMQ is called by the program.

Finally, to demonstrate the growth potential of the program, a special control subroutine
has been written to enable the behaviour of a particular eigenvalue, %, to be calculated
automatically as a function of two parameters Pi’Pj' This routine uses QONTZQ to find
the root A, as a function of Pi at equally spaced values of Pj as illustrated by
Fig.3. The only additional data required is the range of the second parameter and guesses

at the location of the root, *, at the corners of the rectangle in the Pi—Pj plane.
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Flow diagram for CEVITQ. G-arrows show points where GPDUMQ is called and state of program
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The probability that such complicated uses of the program will be devised shows the
need for one other feature of the program., All the program facilities can be operated
without the need for reading data cards and‘all normal forms of output provided in the
program can be éuppressed entirely, with the exception of failure messages, in favour of

the user's requirements,

As is evident from the flow diagram it is possible to make substantial alterations to
the program for particular purposes whilst retaining most of the facilities. Higher order
iteration schemes, such as that of E. Frank(s), could be used by replacing the part of
CRITIQ which determmines the position of the new iterate. Still more complicated iterations

(6)

can be devised for polynomials as discussed by W.D. Murro .

IITI. EXAMPLES

It is useful to consider a specific example of the application of this program before
discussing wider applications. The problem, then, is to discover how a helicon electro-
magnetic wave will propagate down a uniform, resistive, magnetised plasma cylinder., The
wave fields will be of the form:

B = B(r) ei(me + kZ + wt)

in cylindrical polar coordinates, (r,6,Z), where m is an integer, k is the complex
wave number, and w is the frequency of the wave. For m = O the relation between k

(1),

and « is given by the solution of the equation

b (ak. & L)ngo(Yi)_EJO(Y2)+ ak _ ak Ko(ak)=0 (2)
" wo T Qe qs J2(Y1) ~ gz Ji(¥2) q:  qz / Ki(ak) st
> . - S - | -
Yi = qi a“k
where q,, q» are the two solutions of the quadratic equation
iv 2 @ _
Q¢ q* + akq + ol 0 ses (B

and the J's and K's are Bessel functions, a = radius of cylinder, v = electron colli-
sion frequency. Qc = electron cyclotron frequency, fys = a frequency characteristic of a
magnetised plasma cylinder. Corresponding to every solution of equation (2) is an electro-
magnetic wave whose structure may be indicated by the amplitude and phase of the Z compo-
nent of the magnetic field as a function of radius:

Jo(Yir/a) Jo(.rg r'/a)
7T Ja ) | Jab'T)




Some elementary analysis of the behaviour of the roots of equation (2) shows that for

small v/ﬂc

ak (u/nC = akreal(o) +0 ((v/nc)ﬂ)

1l

akimag( v/Qc )

akj_mag(ol + 0 (v/QC)

results familiar from knowledge of elementary L-C-R circuits except for the boundary layer
term akj,ma (0). The structure of D in the complex P = ak plane for m/w0 =5 and
v/QC = 0.05 is shown in Fig.4, This diagram illustrates very well the need for many of

the features of the computer program, especially the need for limiting the iteration pro-

cess to a linite portion of the complex plane.

15 :
P,
0 I-5
Pr :
Fig. 4 (CLM-R 48)
Contour map of D in the p-plane for ;“—’ =9, m—‘: =.05. Contour heights are:
* [+]
1. DREAL = 0.2 2. DIMAG=0.0 3. DREAL =0.2

Intersection of 1, 2 and 3 are poles; intersection of 1 and 2 above are ZEI10S;
B is a branch point of D



Using program CEVITQ it is now a simple matter to elucidate all the properties of the
several roots shown in Fig.4 and the corresponding helicon waves. If, for example, it is
required to know how the lowest root moves in the p-plane as v/nc varies and the corres-—

ponding B_ magnetic wave-Tield it is only necessary to provide a routine FUNXNJ as

Z
follows:
SUBROUTINE FUNXNJ (AKR, AKI, DREAL, DIMAG, M)
COVMMON WWO, PNU

Fortran statements defining

D (AKR + iAKI, WNO, PNU) = DREAL + iDIMAG

RETURN

END

To calculate the wave field at each root it is only necessary to provide a routine, GPDUMQ,
which intercepts the program after each root is found, i.e. at points G3 of Fig.3, and
performs the appropriate calculations, To complete the job CEVITQ is now given a guess at
the lowest root, from Fig.4, at WWO = 5, PNU = 0,05 and another guess, from the analytic
results, at the location of the root at sdme other value of PNU, The program is then asked
to vary the second element of COMMON, namely PNU, and will proceed to do so. As it is only
necessary for one of the given guesses to lead to the successful location of a root for the
program to proceed it is possible to work away in any direction in parameter space from the

relatively well known solutions of equation (3) shown in Fig.4.

Now, as might be supposed, the above example would not have yielded such a simple dis-
persion relation as equation (2) if the plasma properties had not been assumed uniform
across the cylinder and the basic differential equations would not have been soluble in
terms of elementary functions. This reveals the real power and value of a program such as
CEVITQ, it is possible to tackle and frequently solve non-self-adjoint problems and to use

experimentally measured variations of physical parameters.

As a simple approach to problems of this type consider the eigenvalue problems defined

by the K second order differential equations

d? do
P (x,P,0) GF + Q (X,P,0) G + R (x,P;,0) =0 cee (4)
and the corresponding boundary conditions
dy - s
Ay (xn,Pi,w) q;(xn) + By (xn,Pi,w) = =0 n=0,N sue (5)

X=X
n

to be applied at the two points Xor Xy

- 10 -



From these two equations it is possible to construct many functions where zeros correspond
arbitrarily closely with the eigenvalues, w. One possibility is to divide the given
region, Xy to Xy into N-1 intervals of width h and replace equations (4) and (5)
with the difference equations
Pelxpden g + (PR(x) = hQ(x ) - 2P (x D)o + (Pr(x) = hQ(x ) =0
m=1,2 ,,., N-1

(hAK(xo) - BK(xO))cp0 + BK(xO)wl =0
ees (6)

(hay (xg) = By = B ey_q = 0
These are a set of N linear algebraic equations in the P which give increasingly better
approximations to the values of the solutions ¢ of equation (4) at the points X, as the
value of N 1is increased, The condition that the equations (6) have a solution is that
the determination, DN of the coefficients be zero and this determinantal equation has
roots which are approximations to the eigenvalues of equatioms (4) and (5). This determin-
ant, then, is an appropriate function to use in solving the eigenvalue problem by CEVITQ.
From equations (6) it is evidently only necessary to provide a means of calculating the
functions P,Q,R,A,B to find the required eigenvalues. A routine, FUNXNJ, is available
to set up and calculate the determinant DN and only requires the user to provide routines
to calculate P,Q,R,A,B. Exactly the same technique can be applied to the calculation of

the eigenvalues of the differential-integral equations,

XN

d? de
P ax? * %k ax * Ry® =f G (x/y,0) oly) dy

%o
A corresponding routine FUNXNJ is available and the user need only specify P,Q,R,G. Thus,

with these routines and CEVITQ an immediate solution to a wide class of eigenvalue prob-

lems is possible,

IV, CONCLUSIONS

The major part of the effort required in scientific uses of computers is in the develop-
ment of programs, rather than in setting up the mathematical basis of the program or in
producing results. The program described uses basically sound numerical methods supported
by several ad hoc procedures which greatly extend the range of application, This is an
alternative to providing a wide variety of different numerical methods suited to different
problems, Using this program many eigenvalue problems have been solved with an order of

magnitude less effort than that required to solve the initial helicon wave problem, The

- 11 =



program has been constructed in such a way that it is completely compatible with any other

program or subroutine and can be added to without reference to the original FORTRAN.
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PART 1II

OPERATING MANUAL FOR CEVITQ

INTRODUCTION TO OPERATING MANUAL

Program CEVITQ is a standard program to find zeros of K functions of a complex vari-
able, Z = X + iY, an arbitrary number of fleoating point parameters, and an arbitrary
number of fixed point parameters., The program has been written in such a way that it can
be operated successfully with no knowledge of FORTRAN -~ if the single essential subroutine
FUNXNJ defining the K functions can be provided. For the user who must write his own,
the first section of this manual shows how routine FUNXNJ should be written. The second
section describes the data required by the program; the data layout is first summarised
in Table I and subsequently described in full detail, The third section describes the card

input to STRETCH and KDF9. These three sections contain all the information necessary for

successful operation of the program.

The fourth and fifth sections describe FUNXNJ routines which have been written to solve
the eigenvalue problem for second order differential and differential-integral operators,
The user of these routines is required to supply further, simpler, routines to define the
coefficients, kernels, and boundary conditions of the operators, From these definitions
the FUNXNJ routines provided construct a function whose zeros are approximations to the

eigenvalues of the corresponding operators, A simple worked example is given in each

section,

Section VII describes a special control routine GPDUMQ which allows automatic variation

of two independent parameters in an eigenvalue problem,

The next two sections of the manual, VII and VIII, give all the information which might
be required by the more ambitious user who requires other combinations of the component
operators in CEVITQ. Section VII gives the argument lists for the components of the root-—
finding operator CRITIQ and shows how the iteration process might be modified, Section
VIII discusses the various means of user control, CEVITQ calls a dummy subroutine, GPDUMQ,
at every important juncture in the program and suggestions are made for its use, Methods
of operating the program facilities without the use of data cards and provision of alterna-—

tive graphical output are also given.,

Finally, Section IX provides a complete worked example with sample output.

- 13 =



I. SUBROUTINE FUNXNJ

This is the only routine the user must provide. In the cuse of second order differen—
tial-integral equations this obligation refers to routines for evaluating the coefficients

of the differential operators and for the integral kernel (cf. Sections IV, V).

Subroutine FUNXNJ should evaluate the real and imaginary parts U, V of the K func-
tions of a complex variable, Z = X + iY, whose roots are required

Fe (Zy Puy Payeres Mgy My cuvey M) = U + 6V

The routine should be written as follows:

SUBROUTINE FUNXNJ (X,Y,U,V,K)

COMMON WoZ; wwwss Pl P2y Phs s wewe PNAE, woss
COMMON M1, M2, ...., ML,F,G, ...,

FORTRAN Statements ending with

X K

V = Imaginary part of FK

RETURN

END

Real part of F

FUNXNJ can CALL any other subroutines or programs provided by the user. The variables

W,Z, eesey A,B, .e0y F,G, «... are COMMON variables not required by FUNXNJ but which may be
necessary for compatibility with other routines the user may need. Program CEVITQ does not
itself require any COMMON storage although there must be at least one element in the COMMON

list, in the KDF9 version, which is used only to provide a reference point in the machine,

CEVITQ reads integers ('fixed point variables') and numbers with a fractional part
('floating point variables') differently. The necessity for providing means for reading
integers separately arises because integers are used by the computers differently from
floating point numbers, The distinction is oniy important when integer is to be used as
a DO-loop index, the index of a computed GO TO, or as an array subscript. Thus, the float-
ing and fixed point numbers, P; and L required for the definition of the FK may

appear in two independent blocks in the COMMON list.

To understand the value of this arrangement it should be realised that the COMMON list
is an ordered list, that the name used for a COMMON variable in a routine iz a dummy and
that only its position in the list matters. Thus, CEVITQ can refer to W and Z in the

above example merely as the first and second elements of the list,

It must be remembered that STRETCH and KDF9 only deal with real numbers and so the
real and imaginary parts of all expressions involved in FK must be evaluated separately,

Also, all the singular points of FK(Z) must be defined carefully, the best approach being

to test Z and if FK at a singular point is required set U,V = 1020.

- 14 =



PART II

OPERATING MANUAL FOR CEVITQ

INTRODUCTION TO OPERATING MANUAL

Program CEVITQ is a standard program to find zeros of K functions of a complex vari-
able, Z =X + iY, an arbitrary number of floating point parameters, and an arbitrary
number of fixed point parameters, The program has been written in such a way that it can
be operated successfully with no knowledge of FORTRAN -~ if the single essential subroutine
FUNXNJ defining the K functions can be provided. For the user who must write his own,
the first section of this manual shows how routine FUNXNJ should be written, The second
section describes the data required by the program; the data layout is first summarised
in Table I and subsequently described in full detail, The third section describes the card

input to STRETCH and KDF9. These three sections contain all the information necessary for

successful operation of the program.

The fourth and fifth sections describe FUNXNJ routines which have been written to solve
the eigenvalue problem for second order differential and differential-integral operators,
The user of these routines is required to supply further, simpler, routines to define the
coefficients, kernels, and boundary conditions of the operators, From these definitions
the FUNXNJ routines provided construct a function whose zeros are approximations to the

eigenvalues of the corresponding operators, A simple worked example is given in each

section.

Section VII describes a special control routine GPDUMQ which allows automatic variation

of two independent parameters in an eigenvalue problem,

The next two sections of the manual, VII and VIII, give all the information which might
be required by the more ambitious user who requires other combinations of the component
operators in CEVITQ. Section VII gives the argument lists for the components of the root-
finding operator CRITIQ and shows how the iteration process might be modified, Section
VIII discusses the various means of user control, CEVITQ calls a dummy subroutine, GPDUMQ,
at every important juncture in the program and suggestions are made for its use, Methods

of operating the program facilities without the use of data cards and provision of alterna—

tive graphical output are also given,

Finally, Section IX provides a complete worked example with sample output.



I. SUBROUTINE FUNXNJ

This is the only routine the user must provide. In the case of second order differen-
tial-integral equations this obligation refers to routines for evaluating the coefficients

of the differential operators and for the integral kernel (cf. Sections IV, V).

Subroutine FUNXNJ should evaluate the real and imaginary parts U, V of the K func-
tions of a complex variable, Z = X + iY, whose roots are required
Fy (Z5 Puyi Pogyros v 5 My s My cwwnyg ML) =0, + Ve
The routine should be written as follows:

SUBROUTINE FUNXNJ (X,Y,U,V,K)

COMMON W,Z, ...., P1, P2, P3, .... PN,A,B, ....
COMMON M1, M2, ...., ML,F,G, .c.s

FORTRAN Statements ending with

U = Real part of FK

V = Imaginary part of FK

RETURN

END

FUNXNJ can CALL any other subroutines or programs provided by the user. The variables

W,Z, vesey AB, veoy F,G, ..., are COMMON variables not required by FUNXNJ but which may be
necessary for compatibility with other routines the user may need, Program CEVITQ does not
itself require any COMMON storage although there must be at least one element in the COVMON

list, in the KDF9 version, which is used only to provide a reference point in the machine.

CEVITQ reads integers ('fixed point variables') and numbers with a fractional parﬁ
('fioating point variables') differently., The necessity for providing means for reading
integers separately arises because integers are used by the computers differently from
floating point numbers, The distinction is only important when integer is to be used as
a DO-loop index, the index of a computed GO TO, or as an array subscript. Thus, the fleat-
ing and fixed point numbers, P, and mi, required for the definition of the FK may

appear in two independent blocks in the COMMON list,

To understand the value of this arrangement it should be realised that the COMMON list
is an ordered list, that the name used for a COMMON variable in a routine is a dummy and
that only its position in the list matters. Thus, CEVITQ can refer to W and Z in the

above example merely as the first and second elements of the list.

It must be remembered that STRETCH and KDF9 only deal with real numbers and so the
real and imaginary parts of all expressions involved in FK must be evaluated separately,
Also, all the singular points of FK(Z) must be defined carefully, the best approach being

to test Z and if FK at a singular point is required set U,V = 1020.
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Finally, it should be noted that K is really somewhat redundant as it is probable
that the zeros of only one function at a time will be required, as appears in the examples
of other sections. However, program CEVITQ has been written to make reasonable provision
for the unforeseeable uses of the program, and this type of redundancy has been found ex—
tremely useful. Indeed, the parameter K need not be a fixed point constant at all; it

could equally well be a floating point array or any other kind of variable.

IL. FACILITIES OFFERED AND DATA REQUIRED

The facilities offered and data required by CEVITQ are summarised in Table I below.
Further details are explained in the remainder of this section, The data is to be punched
in free format with two or more blanks between each number., Four numbers must be given on
the first card to select the required facilities; subsequent data defines the function
whose zeros are sought and the regions of the complex plane where CEVITQ must look. These

blocks may be repeated for as many cases as are required.

TABLE I
First Data Card in Block

Selector Selector Values Meaning and Comment on Options
1 -1 Normal End of Job., No further data required.
Root~Finding 1 Test Option: Nearest root to origin with full print out
Sequence using quadratic approximation,
2 Isolated Root. Guess, iteration region, Max. Value of FK’
and parameter required as further data.
3 ‘| Series of NR Roots. NR and NR quesses at NR parameter
values required.
4 Root at 51 values of a Parameter. Initial guesses at end
points of range required,
4 + NP Roots found at NP values of Parameter. Initial Guesses
Required.
2 0 - NC Position in COMMON list of variable parameter, NC is
Variable ' number of elements in list. (2 1 in KDF9) If selector
Parameter = 0 no element will be set,
3 0 No Graphical Output See also Section VI for
Graphical 1 Graphs with Standard Captions. Two Parameter Problems.
Qutput 2 Graphs with captions given at end of data block
4 -1, =2 Same as +1, +2 but printed output suppressed. Error print
survives.
Iteration 1 Quadratic approximation to FK. Results printed,
and 2 Bilinear approximation to FK. Results printed.
Print 3 Quadratic approximation to FK with detailed print out.
4 Bilinear approximation to ﬁw with detailed print out.

Data should now be provided on further cards to define the function whose roots were

required,
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TABLE I

(continued)

P2,X12,Y12,

AX, AY, AU, AV

Card Selector Value Numbers Comments
1 K Selects the Kth Function. Number may be punched
on the first card of the block with the other
selectors. K must have a value even if not used.
2 NFP Number of floating point numbers to be read.
2A MFP If NFP#0, MFP, the position in the COMMON list of
the first of the NFP numbers, is given on a sep-
arate card, 2A,
2B Pi Now give the floating point numbers. The numbers
may be close-packed in Cols. 1-72 of as many data
cards as necessary with two blanks between each
number.
3 JFX Number of Integers to be read.
3A LFX If JFX#0, LFX, the position in COMMON of the first
of the JFX integers, is given on a separate card,
S3A.
3B Mi The JFX integers.
Further Data for each value of Selector 1
Card Selector Value Numbers Comments
4 1 None
2 P If Selector 2#0 the corresponding parameter is
X1,Y1,0X,0Y | requiredcf, Fig.2 below., Initial Guess, itera-
AU, AV tion rectangle centred on guess, max. acceptable
values of U + iV = F, at root.
If &aX = 0, AY,AU,AV not required. Program sets
AX =AY = 1.0, AU = AV = 0,001
4 3 NR Number of roots required.
54,6500 P,XI,YI,AX, | Parameter and Initial guesses etc. for each root
AY, AU, AV required. Each set of seven numbers on separate
card or cards.
AX = 0 treated as above. (Selector = 2).
4 4,4 + NP P1,X11,Y11, First parameter value and initial guess at this

value,
Second parameter value and guess,

Iteration region and max. values of U, V at root.

Finally, after all the

as described below, if Selector

data has been

3 =2,

supplied, the program requires the caption cards,

The above data layout may be repeated for as many cases as required.




THE FOUR ROOT FINDING SEQUENCES

Four root finding sequences are offered:

(1) The root of FK nearest the origin will be found with complete print out of

the operations performed.

(ii) A root of F, in a specified region of the Z-plane will be found.

K

(iii) NR roots of F, at NR given values of a specified parameter, Pi’ will be

K
found

(iv) NR roots of FK at NR values of a specified parameter, Pi’ in a given

range, P1 to P2, will be found.

Thus, the first number to be given to CEVITQ, Selector 1, has values 1,2,3,4. If the

Selector is 4, 51 roots will be found. If NR roots are required Selector 1 should be

NR + 4,

THE VARIABLE PARAMETERS

The second number required by CEVITQ is the position in the COMMON list of the para—

meter to be varied, If the COMMON list in the example in Section I read
[coMMON  W,Z,P1,P2, ....
and P2 is to be varied, Selector 2 should be 4, Selector 2 must be set even if Selector

1 is 1 or 2,

GRAPHICAL OUTPUT

The third selector chooses the graphical output. The three possibilities are: no
graphs, graphs with standard captions, graphs with captions provided by the user and the
corresponding values of Selector 3 are 0,1,2, The output is provided by a single sub-
routine, GRAFBQ (cf. Section IX if different output style is required.) This routine
utilizes the standard Culham graph—-plotting facilities and output can be on either the

'Benson-Lehner or the StrombergCarlson 4020 microfilm recorder,

The output is as follows: the real and imaginary parts of the roots are plotted as
ordinate on separate graphs. Each graph is scaled to fit a 10 inch square on the Benson-
Lehner, or a standard square on the SC 4020, in such a way that the scales are 1,2,4, or
5 x ION inches per unit variable, N integer. This enables results to be read off the
graphs with a minimum of inconvenience, The minimum and maximum values along the edges

of the square -are printed on the graphs. The calculated points are printed on the graphs
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and a smooth curve drawn between them.

F (z,p) 0
002 A typical output with standard cap-

tions is sketched in Fig.5. Selector
3 must be set even if Selector 1 is

1 or 2.

The user may provide special cap-
tions as follows (cf. Library File
r 1.10 CAPTBQ) after all other data

has been given: a series of cards

0-01

6
SJOI SJOI7 is punched according to the format

P First Card:
Date in Cols.1-9, Format 3(1X,21)

Fig.5 Standard graphical output (CLM-R48)
: Initials, Cols.11-30

Description, Cols.31-70

Integer NC < 3 Col.72
NC further cards punched in Cols,2-72 with a total of four captions, each followed by a
B sign. The first.caption is the heading for the graphs and replaces 'F (Z,P) = 0'. The
second caption labels the abscissae on each graph and the last two captions refer to the

real and imaginary parts of the root.

ITERATION OPTIONS

The fourth selector decides the function used to approximate the FK and controls
the printing of the results. The FK are approximated by a quadratic function of Z if
Selector 4 is 1 or 3, and by a bilinear function of Z if Selector 4 is 2 or 4. The
larger values in each case allow print out of complete details of the operations performed,
unless Selector 1 is 2 4, In this last case complete print out is only provided for the
two given guesses at the end points of the range; . the other roots are printed as they are
found, Finally, a negative value of Selector 4 suppresses all print out except when the

program fails.

All that remains in the way of data is to define the FK and the guesses at the roots

of the selected FK.
DATA

It is now convenient to state how the data is to be punched. 'Formatless' reading is
used in both versions of the program but the detailed operations of the corresponding

routines are slightly different; the following instructions apply to either version of the
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program and contain both sets of restrictionss, The required data must appear in the
correct order on data cards in columns 1 to 72 and the numbers must be separated by at
least two b_lank columns, As an example, the number 27 may be punched in any of the follow—
ing forms;

27 27,0 2,.7E1 270,0 E-1

If zero is intended to be read a zero must be punched on the data card.,

The first data card or cards required by CEVITQ must give the four Selectors and the

integer, K.

Floating point parameters, Pi,i = 1,N, defining FUNXNJ are then read into the COMMON
list from position M; the integers N and M must be given on separate data cards in

this order, followed by the Pi on as many cards as necessary.

Fixed point parameters, mi,i = 1,J are now read into COMMON from position L, The
integers J and L must be given on separate cards followed by the m; e If J or N
are zero, zero(s) must be punched on one (or two) data card(s) and, of course, the corres—

ponding position(s) M(L) need not be given, indeed must not be given,

Some of the four basic root finding sequences now require further data on a card, or
cards, separate from the above, The first sequence of course requires no further data,
The second option Tirst requires

a single floating point number, the

/ % ROOT NOT parameter to be varied, if Selector
FOUND
- 2AX — 2#0, Thereafter, it requires X1,Y1,
T o e E T e |
: *:%3$IBLE I * the initial guess at the position of
¥ I s FOSSIBLE : _ .
| ROOT i | the required root of FK (cf. Fig.6),
IN
L e e AY | 24y
I ﬁi GUE SS | AX, AY, the dimensions of the rect—
[ ! Y [
! i —
! - alx —a : * angular region of the X~Y plane,
I
T S o e e e S : centred on X1,Y1, in which the itera-
|
X x-‘— tion is to be confined., Finally, AU
and AV are to be given, these being
Fig. 6 (CLM-R 48)
Iteration region in x-y plane and possible roots of Fi =0 the maximum values of the real and

imaginary parts of FK which will be

accepted as locating the root of FK'

_*The most troublesome restriction applies to the KDF9 version, namely the necessity for
punching certain of the data on separate cards. This is not really necessary with the STRETCH
version and all the data for a sufficiently simple case could appear on a single card,
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If AX = 0, then AY,AU,AV need not be given and will be set to 1,0,0,001 and
0.001 respectively; AX will be set to 1.0,

The third sequence requires much the same data but preceded by an integer NR, the
number of roots to be found. MR sets of X1,Y1,AX,AY,AU,AV as described above must be
given, each set being on a separate card or cards.

The fourth basic option requires PJ:_(I), X17(1), Yi(1), Pi(2), X1(2), Y1(2), AX, AY,
AU, AV: The first six numbers are, the values of the variable parameter and a guess at
the location of the required root at each parameter value., The last four numbers define
iteration region and the maximum acceptable value of FK at the roots, The rectangle is,
of course, centred on the current initial guess during the calculations.

Finally, if Option 3=2 the caption cards must be given, These cards will always be read,
even if the given case fails, so that the next case will not be affected by spurious data,

CEVITQ can deal with an indefinite sequence of independent cases with data for each

case supplied as described,
III. INPUT TO THE COMPUTERS
STRETCH INPUT

The program is on the Culham Library Tape and the makeup of the input deck must be as

follows: (LC means Library Card).
TABLE II
STRETCH Input

Card Contents of Library File Remarks
Job Card Available from Computer Section
Time Card Estimated time required for Job
SC-4020 Only inserted if graphs required on SC-4020
LC 172 General Purpose PRELUDE Only required if COMMON arrays required by
o user, Performs all essential functions of
PRELUDE.
LC 215 400. Scalar PRELUDE Reads no data., Standard Prelude used when no
_— COMMON arrays required
Any other PRELUDE supplied by the user.
LC 400 Program CEVITQ: Includes GPDUMQ, GRAFBQ, and 'MAIN program' may be
dummy GPDUMQ, GRAFBQ and . over-written by user by loading appropriate
a 'MAIN program'. user routine after this card.
IC 214 Graphical output: GRAFBQ Standard graphs. Overwrites dummy GRAFBQ
LC 001 Standard B-L Graph Plotting [ on LC 400. Need only be inserted if graphs
routines are requireds
ILC 179 SYMBOQ-Script Routines.
LC 127 Converts PLOTBQ to PLOTSC [ Only inserted if SC—4020 output required.
LC SC—-4020 Routines

Now insert FUNXNJ and any other routines required by User.

END 1
END 2 { Standard Control Cards

QUIT

Now give PRELUDE data, if any, and then Option and Data Cards as listed in Section IT,.
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TABLE III

KDF9 INPUT

Mandatory Cards Optional Cards Comments

Job Card
#XEQ *JODTAPE 100/1BM/SAVE Only required for graphical output

*DISC PROGRAM CEVITQ

*PRELUDE
#DELETE SCALAR See Section VII on Variation of 2
parameters.
*CHAIN 1
RLB or FORTRAN
for
FUNXNJ
*SELECT DIFEQN/FUNXNJ 2nd Order Differential equation. See IV
*SELECT DIFINT/FUNXNJ Diff-Integral equation. See V
*CHAIN 2
*SELECT TWOPAR/GRAFBQ See VI
*DATA
Data for Job
*END JOB

IV. EIGENVALUES OF 2nd ORDER LINEAR DIFFERENTIAL EQUATIONS

To find eigenvalues, Y, of K 2nd Order Linear differential equations of the form

P (Y,p, 5%) ?Eg + Q("yp, 5%) %;f + Re(v,p;,x) 9 =0 o T)

subject to boundary conditions at two points xo,xN of the form

d
AT, ,x ) @ (x ) + B (Y,p,,x ) ﬁ,x:xm =0 m=0,N cee (2)

where the p; area set of parameters required to define the above coefficients, a routine
FUNXNJ has been provided for use with CEVITQ. The user is required to provide two sub-
routines, The first is,

SUBROUTINE BOUNDJ (AB, X0, XN, N, REGAM, GAMIM,K)
where N 1is the number of intervals to be used in the difference approximations to equa-
tions (1), (2). AB is a 4 x 2 array through which the real and imaginary parts of A(xo),
B(xo) A(xN), B(xN} are returned to FUNXNJ. The user must also supply X0, XN, and N.
The second routine required is

SUBROUTINE COEFFJ (PQR, X, REGAM, GAMIM,K)

PQR is a 3 x 2 array through which the real and imaginary parts of PK’QK’RK at X and

Y = (REGAM + i GAMIM) are returned to FUNXNJ.
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Subroutine FUNXNJ and routine TRIDIQ, a routine required by FUNXNJ, is available on
the Culham Library Tape on File 131 , For reference, TRIDIQ has arguments, (D,M,U,V)
where D is an array of dimension M x 2 in which are stored the real and imaginary parts
of the principal, upper, and lower diagonals of a tri-diagonal métrix. U and V are real
and imaginary parts of the determinant of this matrix and represent the FK whose roots
correspond to the eigenvalues of the K equation (1).

The best method of using these routines is well described in terms of a simple example,

Suppose one required the first few eigenvalues of
&g
= +

Subject to the boundary conditions

1de a2 M2
xdx'i'(SY xg)‘P—O -00{3)

¢ =0 at x =0
o8 e (4)

& =
mp + o 0 at x =1

The first thing to do is multiply equation (3) by x*® to eliminate the singularity at

x = 0, The routines provided might be as follows

SUBROUTINE BOUNDJ (AB, XO, XN, N, REGAM, GAMIM,M)
COMMON NPT

DIMENSION AB(4,2)

AB(1,1) = 1,0

AB(1,2) = 0,0

AB(2,1) = 0,0
AB(2,2) = 0.0
AB(3,1) =M
AB(3,2) = 0.0
AB(4,1) = 1.0
AB(4,2) = 0,0
X0 = 0,0

N = NPT

XN = 1,0
RETURN

END

SUBROUTINE COEFFJ (PQR, X, REGAM, GAMIM,M)

COMMON NPT, S
DIMENSION PQR(3,2)

R = S*X

PQR(1,1) = X*X

PQR(1,2) = 0.0

PQR(2,1) =X

PQR(2,2) = 0.0

PQR(3,1) = (REGAM**2-GAMIM#**2)*R*R ~ M*M
PQR(3,2) = 2.0%REGAM*GAMIM*R*R

RETURN

END
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One must now find some estimate of the position of the required eigenvalues of equa—
tion (3) for some values of S and m. This estimate could then be given to CEVITQ with
a request for the first element of COMMON to be varied from, say 10 to 30 and that 21 roots
be found. From the results a suitable value of this first element, the number of points
used in the difference scheme, can be chosen which will give the required per cent accuracy.
It will be found that 10 points is sufficient for 1% accuracy and that 20 points gives 5§
or 6 figures. An acceptable value of ﬁw at a root is of order ((XN-X0)/NPT) NPT which

in the case of equation (3) which has already been normalised to a unit interval might be

10725 over the range of NPT.

Having settled on a value of NPT one can now proceed to Tind the required eigenvalue

over a range of the parameter, 8.

V. EIGENVALUES OF DIFFERENTIAL-INTEGRAL EQUATIONS

To find eigenvalues, ¥, of K 2nd Order Linear differential-integral equations of

the form : XN
a3
PK(Y’pi'x) g_x% + QK(YJPJ-_;X) %:E + RK(Y,pi,X) = ] GK(Y,Di;X'y)tP(y)dy ees (5)
X
0

where the p; are parameters, a routine FUNXNJ has been provided for use with CEVITQ. The
user is required to provide two subroutines to define P,Q,R,G,XO,XN and the number of

points, N, to be used in the finite difference approximation to equation (5). The first

is,
SUBROUTINE FREDIJ(X,Y,REGAM,GAMIM,K,GREAL,GIMAG,XO,XN,N)
where
GK(x[y) = GREAL (X|Y) + i GIMAG (X|Y)
Y = REGAM + i GAMIM

The second routine required is
SUBROUTINE COEFFJ (PQR,X,REGAM,GAMIM,K)
PQR is a 3 x 2 array through which the real and imaginary parts of PK’QK’RK at X are

returned to FUNXNJ,

Subroutine FUNXNJ and routine MDO2A, (cf. Library File 133 ), are available on the

Culham Library Tape on File Routine MDO2A evaluates the determinant of a complex square

matrix,

The best method of using these routines is illustrated by the example in the preceding

section, The only point of difference in the treatment arises when the integrals
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are singular. There are three possible ways in which the operators can be singular

(1) they have discontinuities (2) they have singularities in the range of integration

(3) the limits of integration extend to infinity. The first type of singularity should
not affect the numerical results. The only point of interest about the second type is

that the user should ensure that the value of GK at the singularity is set to some suit-
ably large value, not a machine , which will not cause subsequent calculations to go out-
side the range of the machine., The last kind of singularity can be approximated by choosing

large finite values for the limits XO and/or XN.

VI. VARJATION OF TWO PARAMETERS

A special control routine GPINTQ is available for calculating the dependence of a root,

Z, of F, on two parameters, PA,PB. The results of the calculations are stored in two

K
PUBLIC matrices EIGREQ,EIGIMQ, storage for which must be allocated in Prelude. Thus, one
must insert in the Job Deck cards *PRELUDE and *DELETE SCALAR immediately after the Disc
Program card., The prelude so chosen reads the first Data card, on which should be punched

the number of values, NP of parameter PA at which the root is required.

The special control routine GPINTQ is invoked by inserting a card, *SELECT TWOPAR/
GPINTQ, after the *CHAIN 1 card. This routine allows the usual form of input, as detailed

in Section II,

The meaning of some of this input is slightly different from that in Section II. Thus,
the values of Selector 1 are 4,4 + NPB, where NPB is the number of values of parameter PB
at which the root is to be found. Due to space limitations, NPB < 51, The graphical
Selector has completely different meanings, appropriate to the two-dimensional nature of

the calculations,'as follows:

0 No graphical output

1 Real Z 1is plotted against Imaginary Z as PA varies for each value of PB
and, on a separate graph, as PB varies for each value of PA.

2 Real part of Z 1is plotted against PA for each value of PB and the Imaginary

part is similarly plotted on a separate graph.

3 Contours of ReZ and Imaginary Z are drawn on separate graphs in the PA-PB

plane.

The nature of these options can be better understood by referring to the example at the

end of this section.
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To save time and effort more than one of the above options may be taken with higher

values of the Graph Selector as follows:

and 3
and 3
and 2 and 3
= 1 and 2

I

- TS, RN
[
-

If graphical output is required then cards #*CHAIN 2, *SELECT TWOPAR/GRAFBQ are required

Jjust before the *DATA card,

The Iteration/Print Selector has the following effects; the more positive the given
value the more print out is produced, the more negative it is the less print out is pro-
duced. The smaller modulus number of each pair of numbers in the table below causes

Muller's process to be used, the larger causes the Bilinear Approximation to be used.

3,4 Complete print out at every root is found together with col-
lected tables of results. Matrices printed finally,

1,2 Tables of results only at each value of PB. Matrices Printed,

-1, -2 Tables of results only at the two ends of the PB range,

Matrices Printed,
-3, 4 No print out of any kind, except failure print, is produced.

Having read the selector values the program now reads data to define the FK and the

usual data required when Selector 1 22 4. The only further data required is

NPBCOM Position in Common of Parameter PB. It is assumed that the
initial value of PB has been supplied in the definition FK'

PB2 Final value of PB,
XB1,YB1,XB2,YB2 The two guesses at the location of the required root at the
upper corners of the rectangle in the PA-PB plane.

These last six numbers may appear on one card. Finally, if graphical output is in the form
of contour maps then further data is required to determine the contour heights. On one
card two integers NHR,NHI must be given to decide how many contour heights are required
for the real and imaginary graphs. The program accepts the following numbers:

NHR or NHI zero: 11 equally spaced heights between the minimum and maximum of

the calculated values of the real or imaginary part of the

root will be used.

NHR or NHI negative: INHR| or |NHI| heights will be used.
Only NHR or only NHI Corresponding number of heights must be given on subsequent
positive: data cards,
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NHR = NHI>O: NHR heights will be read and used lor both graphs.

NHR>0,NHI >0,NHR #NHI : NHR + NHI heights will be read. The first NHR will be used
for contours of the real part of the root and the last NHI for

the imaginary part.

AN EXAMPLE
The following dispersion relation arises in the study of electrostatic waves of the
form exp i(kxx + kZZ - wt) in a magnetised plasma slab interacting with an electron beam:-

@

Qd—pg

k; (1 + +

where wh s wp are the plasma frequencies of the beam and plasma respectively, Q is the

electron cyclotron frequency and

Hy w - nQ - ikvb n, integer

I

Vv

- ikv
p ® p

Here Vb and v_ are the themal velocities of the beam and the plasma. This dispersion
relation has solutions with negative Imw for real kx and kz representing an unstable
oscillation, An important feature of the dispersion relation is that the function

k_ = kz(w) has a branch point in the negative half of the complex w-plane showing that the

Z
(1)

instability can be convective

To calculate solutions of this dispersion relation and find the location of this branch
point one would use CEVITQ with the two-parameter facilities to map the kz—plane into the

w-plane and vice versa.

Some typical results are shown in Fig.7, Here the real and imaginary parts of « are
contoured in a portion of the kz—plane. The branch point is located at point B, The
program was asked to follow the root as RekZ was changed from 6.0 to 1,0 and as Imkz
was altered from 0,0 to -2,5. As the branch point was approached the program failed and
worked back from Rekz = 2,0 to B. Thereafter, the branch cut was pushed before the itera—

tion process to the edge of the region in the kz—plane as shown.

In Fig.8 are shown the root trajectories as kz was varied, effectively contours of
constant Imkz and Rekz of the function kz(m) in the w-plane., The branch point is

shown at B and the real axis in the kz—plane maps into the curve AC.
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The input to KDFY was as lollows:

Cards Comments
* JOB _
* IODTAPE 100/1BM/SAVE
* XEQ
* DISC PROGRAM CEVITQ
* PRELUDE
* DELETE SCALAR  *SELECTS VERSION TWOPAR
* CHAIN 1
* SELECT TWOPAR/GPINTQ
Fortran defining the dispersion relation,
* CHAIN 2
* SELECT TWOPAR/GRAFBQ
* DATA :
21 Prelude Data, 21 points to be used in Rgk,.
(30-4) points in Imk,, Vary Rgk,— parameter
30 9 4 -1 1 9, Graphical output 1 & 3, w-arrays to be
printed, n = 1.
10 Parameters defining dispersion relation to be
1 read in from position 1 in COMMON.
12,0 8.0 .09 .79 «237 3.0 0. 0. 0, 0.
0 No integers to be read
6.0 6.25 016 1.0 7.7 .06 0.5 0.5 1,0E-4 1.0E~4
Rekz and guesses at required root w etc.
10 -2.5 6.9 .3 8.3 1.3
Vary 10th element of COMMON, Imk,, down to
-2.5 where root is near 6.9, 0.3 and 8.3,
1.3 at Rgk, = 6.0,1.0
0 0 Use 11 contour heights for Re and Imw = w( kz).
* END JOB

Location of the 546 roots, print out of the results and graph plotting took 8 minutes

for the above job.

The author is indebted to Dr, J.G. Cordey who provided this example. (The effect of a

Finite Temperature on the Eleétron Cyclotron Resonance Instability. CLM R-44 1965,)

VII. CRITIQ, THE ROOT FINDING OPERATOR

The fundamental routine used by CEVITQ to find complex zeros of FK(X + 1Y) = UK + i VK
is
SUBROUTINE CRITIQ (XV,YV,METHOD,K,MFAIL)
where XV,YV are two S5-vectors such that (cf. Fig.2) :
Initial guess at required root is Zi = XV(1) + i YV(1). The iteration is restricted
to a rectangle in the complex Z-plane centred on the initial guess and with sides,

Xv(2)
YV (2)

oX
AY

]

. 0 ’ : : g
If AX or AY is greater than IO] no check is made on the wanderings of the iteration
process in the corresponding direction(s). A point Z. 1is accepted as a root of F, if

U] < xv(3)
and‘

]vKl < YV(3)
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The root, Zr, is returned to the calling program in
Z. = XV(4) + i YV(4)
and the value of FK at this point is
F(Z) = XV(5) + i YW(5)

The approximation function to be used in the iteration process is specified by METHOD.

This number also contrqls the print out provided by CRITIQ:

METHOD = 1 Quadratic Approximation, no print out.
= 2 Bilinear Approximation, no print out.
=3 Quadratic Approximation, full print out.
=4 Bilinear Approximation, full print out.

The success or failure of the iteration is indicated by the integer MFAIL,

MFAIL = 1 Unqualified success.
= 2 Success, but the dimensions of the given rectangle had to
be doubled in one or both directions (cf. Fig.2).
=3 Failure.

If the routine fails the last three points calculated are printed out. The theoretical

basis of the routine is discussed in Part I of this report,

The roots of the two approximation functions are calculated by two subroutines as
follows:
SUBROUTINE QUADRQ (S,T,U,V,I1,12,13,A,B,R1,R2)
where U,V are three-vectors and S,T are four-vectors such that
FK(S(I) + i T(1)) =u(r) + v(I), I=1,2,3
I1, 12, I3 are permutations of 1,2,3 such that
{FK(II)I < IFK{I2)| < IFK(IS)I

The values of the coefficients of the quadratic az® + bz + ¢, generated by three

numbers are returned in the five-vectors A,B:

a = A(1) + iB(1)
b = A(2) + iB(2)
c = A(3) + iB(3)

The roots of the quadratic are given in A(4) + iB(4), A(5) + iB(5). The equations between
these two roots and the point S(1) + iT(1) are returned in R1 and R2 and S(4) + iT(4)
is the nearer root.

The other routine is
SUBROUTINE BILINQ (S,T,UV)
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W is a 2 x 3 array such that

FK(I) =uv(1,I) + i W(2,1), I =1,2,3

S,T are as above but now 5(4) + i T(4) is the single root of the Bilinear function.

The complete list of subroutines called by CRITIQ and provided in program CEVITQ is:

QUADRQ, BILINQ, RECTAQ, CONSTQ, WTESTQ, CHANJQ, ORDERQ.

VIII. USER CONTROL

This section is perhaps the most important in the operating manual. It is hoped that
the instructions given here will be sufficient to enable the user to devise any conceiv-

able combination of root-finding and other operations with a minimum of effort,

The first point is that the program and all its lacilities can be used at any time by
writing
CALL CEVITQ
The main program loaded with Library Card 400 is a dummy which just calls CEVITQ and

can be overwritten by the user if an alternative main program is loaded.

The second and major point of interest is the use of the subroutine GPDUMQ. This has

arguments as follows

SUBROUTINE GPDIMQ (XV,YV,MFAIL,K,IG,XR,YR,PV,UR,VR)

where XV,YV are the two iteration vectors as described in the previous section and MFAIL
indicates whether or not a root has been successfully found, IG is an integer which
indicates from what point in the program GPDUMQ has been called. (See Fig,2 Part I. Flow
Diagram for (CEVITQ)) At points Gl, IG = - 1 and the user may for example take the
opportunity -of executing further input-output operations to define the job. Program CEVITQ
uses CRITIQ with the following calling sequence, corresponding to points G2,G3 of Fig.2.

CALL GPDUMQ (XV,YV,MFAIL,K,0,XR,YR,PV,UR,VR)

CALL CRITIQ (XV,YV,METHOD,K,MFAIL)

CALL GPDWMQ (XV,YV,MFAIL,K,1,XR,YR,PV,UR,VR)

After this sequence the results of the iteration, if successful, are stored in the

300-vectors XR,YR, and the parameter values, if any, are stored in vector PV. The

values of F at these roots and parameter values are stored in vectors UR,VR.

K

Thus, prior to any particular iteration, the user can completely redirect the process,

changing the size of the iteration region, the acceptable limits on the FK’ etc. After
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any particular iteration the user can performm other operations or, if the iteration was
unsuccessful, would call CRITIQ to make a further attempt at locating the root, using a

better initial guess etc. MFAIL,XU,YV should, of course, be changed appropriately,

Finally, when all iteration requested in a particular case have been performed, and
all roots found or not found, GPDIMQ is called with IG = 2 (Points G4 in Fig.2). The
results can now be output by the user in any form required or control may be passed back

to CEVITQ when the standard forms of output will be given,

The four basic options provided by CEVITQ can all be operated by the user without using
data cards. The first two options simply use CRITIQ directly, and the use of this routine

has already been explained in Section VII. The third option is executed by Subroutine

ZDSETQ:
SUBROUTINE ZDSETQ (NOPT2,-NOPT3,METHOD,K,XR,YR,PV,UR,VR,IC,XV,YV)

NOPT2 is Option 2, the position in the COMMON list of the parameter to be varied. -NOPT3
is the negative of the required graphical Option., This instructs ZDSETQ to look for the
data required in the first eight elements of UR. Thus, UR(1) = NR, UR(2) = P, UR(3) = X1,
UR(4) = Y1, UR(5) = 4X, UR(6) = AY, RU(7) = AU, UR(8) = AV, as described in Section II.
After each root has been found, the users GPDUMQ should provide data P,X1,Y1 in UR for
the next required root. In the STRETCH version of the program IC = 100, In the KDF9
version (and the STRETCH version) IC can be obtained by writing

CALL CBASEQ (C1,IC)
where C1 1is the first element of the COMMON list. A negative value of METHOD suppresses

all printed output.

The fourth option is executed by
SUBROUTINE CONTZQ (NP,NOPT2,-NOPT3,METHOD,K,XR,YR,PV,UR,VR,IC,XV,YV)

The argument NP is the number of roots to be found. The negative value of the graph
option NOPT3 instructs CONTZQ to look for the required data P1,X1,Y1,P2,X2,Y2,0X,AY,4AU,

AV in the first ten elements of UR,

It frequently happens that ZDSETQ or CONSTQ has to be CALLED by the users GPDUMQ after
GPDUMQ has been already CALLED by the same routine. This is a recursive CALL and, whilst
it works quite satisfactorily, control cannot then be returned to ZDSETQ or CONTZQ at the
original point from which GPDUIMQ was CALLED. Thus, in these circumstances, the user's
GPDWMQ acts as the 'main program' and further operations can only be made with a 'CALL'

statement. 'CALL CEVITQ' starts all operations afresh from square one.
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Finally, graphical output is executed by

SUBROUTINE GRAFBQ (XR,YR,PV,NP,I)
I=1 Standard Captions
I =2 Captions read and printed by GRAFBQ

It is to be hoped that as problems are successfully solved with CEVITQ, users will be
able to add to the facilities and techniques for solving complex eigenvalue problems, in a
generally useful way.

The complete list of Subroutine names used by program CEVITQ is: CEVITQ, CBASEQ,
GPINTQ, INDEXQ, CRITIQ and associated routines, ZDSETQ, CONTZQ, CMPLXQ, GPDUMQ, GRAFBQ.

The STRETCH version also uses the Harwell Formatless Reading routines NAOTA/BS. if the
GRAFBQ which draws graphs is loaded, then SKAPTQ, SYMBOQ and the general purpose graph plot-—

ting routines are also called.

IX. A WORKED EXAMPLE

The example chosen is the first one discussed at the end of Part I, To solve equations
(2), (3) 1, for ak over a range of PNU = v/QC between 0,05 and 0,25 for a value of
WWO = w/bo of 5.0 the computer input (KDF9) might be as follows,.

Job Card
#XEQ

*IODTAPE 100/1BM/SAVE

*CHAIN 1

*FORTRAN

SUBROUTINE FUNXNJ (AKR,AKI,DR,DI,K)

COMMON WwO, PNU

Fortran to define the real and imaginary parts of the dispersion function.
DR = ‘

DI =

RETURN

END

*FORTRAN

SUBROUTINE GPDUMQ (XV,YV,MFAIL,K,IG,XR,YR,PV,UR,VR)
DIMENSION BZM(100), BZP(100), RAD(100)

J=1G + 2
Go TO (1,2,3,2), J
1 PRINT 100
100 FORMAT (1H1/20X, 13HJOB FOR DR.X /)
2 RETURN
3 GO T0 (5,5,2), MFAIL
5 CALL BZCALC (BFP,BZM,RAD, ...)
[ Calculates Bz field as a function of radius etc.
RETURN
END
*DATA
42131
1 1 parameter
1
5.0 WWO
0 No Integers
.05 1.2 0,5
0.25 1.2 2,0
0.2 0.2 1.0E-6 1.0E-6 Guesses etc,
29 02 8 DR.X HELICON DAMPING RATES. 1
p HELICONS § PNU b AKR b AKI
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