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ABSTRACT

As a simple example of the mutual interaction between magnetic fields and
. material motions, the rotation of an electrically conducting cylinder of solid
material in a transverse magnetic field has been investigated. An applied driving
torque produces the rotation which is opposed by friction and the induced magnetic

torque. It is well known that when the field is transverse to the rotation

axis the magnetic torque rises from zero as the rotation rate Q is increased,
reaches a maximum and tends to zero as  + =, and the magnetic flux is
expelled. We may consider B0 (the applied magnetic field strength) and Qo
(the rotation rate at which the drive is just balanced by friction alone).as
~ control parameters of the system. For sufficiently strong driving
torques, the equilibrium surface Q(QO,BD) develops a fold and consists of
two branches - 'fast friction-dominated' and 'slow magnetically-dominated’
stable rotation rates. These solutions embrace an unstable intermediate
equilibrium, and the system exhibits hysteresis depending on the manner
in which the fold is approached. A 'potential' function can be introduced
in terms of which the equilibria and stability can be analysed, and this potential
function indicates that the equilibrium Q-surfacesdisplay the characteristics
of the cusp catastrophe of Thom. One consequence of this folded structure
is the existence of a forbidden band of rotation rates for a given driving
torque irrespective of magnetic field strength. Similar properties can be
shown for spheres, and we speculate that the general features - fold,
upper and lower stable branches, forbidden band of stable rotation rates -
are generic to all axisymmetric solid bodies and shells rotating about their
axes of symmetry in the presence of a magnetic.field with a transverse
component. These featuresare absent if the magnetic field is aligned with

the rotation axis. The hysteresis should be observable in the laboratory

and experimentally verifiable.
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l. INTRODUCTION

The kinematic advection of magnetic fields due to the inductive effect
of a moving electrical conductor is a well known phenomenon. However the
full dynamic interaction between magnétic fields and moving media, in which the
induced fields can alter the conductor's motion, is perhaps less well understood.
In this paper we consider some particular systems for which this interaction

can be fairly thoroughly analysed.

We investigate the rotation of an electrically conducting cylinder in a
transverse magnetic field. A steady driving torque is the source of the
rotation which is opposed by both an applied frictional torque and the induced
Magnetic torque. The rotation of the cylinder about its axis is entirely
Specified by one parameter - the angular velocity - and we examine the dynamic

Telationship between this parameter and the magnetic field configuration.

Much of the earlier work on induction in solid rotators was motivated by
problems in geomagnetism, in particular the problem of the origin of the
terrestrial magnetic field (e.g. Bullard 1949, Herzenberg and Lowes 1957,

R L Parker 1966). The electromagnetic generation of centrifugal flow by
applying rotating or alternating magnetic fields to cylinders containing

liquid metals provides an almost equivalent problem, and a number of analyses

of limiting cases have been carried out (Moffatt 1964, Devanthan and Bhatnagar
1967, Dahlberg 1972 and the references therein, Richardson 1974). Interest in
the concentration of magnetic fields at the granular and supergranular
boundaries of the solar photosphere has resulted in studies of the kinematic
expulsion of magnetic flux by eddies (E.N. Parker 1963, Clark 1965, Weiss 1964,

. 1966) and the dynamic (non-turbulent) interaction between magnetic fields and
convection has been examined to some eétent (Busse 1975, Peckover and Weiss
1978, Galloway, Proctor, Weiss 1977, 1978). The rotation of plasma in a 6-pinch
has been analysed in terms of a driving torque produced by an axial Hall current,
and an opposing magnetic torque arising from the rotation in a transverse

magnetic field (Thonemann and Kolb 1964).

We consider a solid annular cylinder of outer radius a rotating about its
Principal axis with angular velocity Q in the presence of a constant applied
transverse magnetic field of strength By The rotation is opposed by a
frictional torque taken to be proportional to @ (to model some of the effects
of viscosity) and is produced by a constant driving torque which can be
Characterised by the angular velocity 2, for which the drive is just balanced
by friction. The rétation also induces a retarding magnetic torque which

for transverse fields increases with Q@ to a maximum value and then decreases
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ultimately to zero as the flux is expelled (Bullard 1949).

Considering Qo and B, as "control variables'", we have examined the possible
equilibrium values for Q@ in the two lipiting cases of a completely solid cylinder,
and a thin cylindrical shell and find that in both cases, the equilibrium
surfaces display the characteristics of the cusp catastrophe of Thom (1975).

For sufficiently strong driving torques, the equilibrium surface Q(QO,BO)
develops a fold and consists of two branches. The upper and lower branches are
found to represent stable equilibria, and for onme given point in (QO,BO) space
the system can in principle adopt either equilibrium. These "fast" and "slow"
stable solutions embrace an unstable intermediate equilibrium, and the system
can exhibit hysteresis with the transition from one equilibrium to the other

depending on the manner in which the fold is approached.

The analysis of the equilibria and their linear stability properties is
facilitated by introducing a 'potential' function to describe the system. In
none of the cases we study is the form of this potential a simple polynomial,
but the topological properties of each function certainly indicate a cusp-—type
catastrophe in each instance. Similar properties can be shown for solid spheres,
and we speculate that this behaviour is generic to all axisymmetric solid bodies
and shells rotating about their axis of symmetry in the presence of a transverse

applied magnetic field.

In §2 we derive equations describing the magnetic stream function, angular
momentum and magnetic torque for a general cylindrical annulus. The completely
solid cylinder is then considered in §3 and we obtain its equilibria. The
corresponding dispersion relation is derived and used to examine the linear
stability characteristics. The thin annulus investigated in §4 gives a simpler

problem mathematically, and a full stability analysis can be carried out.

The analysis of this paper often makes use of complex functions to
represent the physical variables, and it is well known that care has to be taken
to specify real and imaginary parts where used (especially when calculating
quadratic quantities such as magnetic torque). Where real or imaginary parts
are intended the symbols Re or Im  are used explicitly; otherwise the full

complex quantity is implied.
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25 GENERAL FORMULATION

2.1 Configuration and Equations

We comsider the problem of a right circular solid annular cylinder of mass
“M, length L, outer radius a, and inner radius ka, rotating in vacuo about its
principal axis. The rotation takes place in a transverse applied uniform
magnetic field of strength Bo maintained by sources at infinity. We neglect
end effects and, taking L >> a, can expect close two—dimensionality in the system.
The cylinder rotation induces a current and hence a magnetic torgque JY. For
convenience we imagine the current flow to be closed by a suitably arranged
external circuit which interferes in no other way with the system. The
rotation 1s assumed to be driven by a steady applied torque . , and opposed by
a frictional torque Ia taken to be proportional to the instantaneous rate of
rotation. In this section we derive and partially solve the equations which
control the motion of this solid annular cylinder; in the two subsequent
sections we consider in detail two limiting cases:— firstly in §3 the solid
cylinder (k = 0), which provided the original motive for examining this system,
and secondly in §4 the thin annular cylindrical shell (k = 1), which is more

tractable analytically and shows the essential features in a clearer fashion.

The equations that govern the magnetic induction B are

aB
g? = curl (v A B) + nV%E , : (2.1)
within the solid cylindrical material, and
curl B =0, (2.2)

in vacuo, subject in both cases to the solenoidal condition
divB =0 . (2.3)

Here t is the time, v is the cylinder velocity, and the uniform and constant
magnetic diffusivity n is given by (uo )_] where 1 and ¢ are the cylinder

permeability and conductivity respectively.

The angular momentum equation for the cylinder is
d
18- 754/, (2.4)

where Q(t)é is the angular velocity of the cylinder using cylindrical polar
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co-ordinates R,0,Z in the normal way, and I = } Ma2(1 + kz) is the moment of

inertia. Equations (2.1) to (2.4) together with appropriate initial and boundary
conditions form a complete set for the evolution of the magnetic field and

angular velocity.

2.2 The Magnetic Field and Magnetic Torque

Since it is assumed here that all variables are independent of the axial
co-ordinate 2, a vector potential A = A(R,S,t)é may be introduced for the

induction B. We have then

9A =
_a__, (2:5)

24
26

| =
EL

B =curl A =

so that (2.3) is automatically satisfied.

It is convenient to introduce dimensionless variables r,z,w,T and a by
R = ar,g = Lz,0 = Qnu, t = Q;lr, and A = Bjaa where Q;l = az(l - kz)n_l. The
dimensionless angular velocity w is then effectively the magnetic Reyiolds

number for the system.

Substituting (2.5) into (2.1) and (2.2) we can perform an integration to
give, in non—dimensional variables, the following equation for o (assuming no

externally applied electric field):

o aa _ B
et uge = -k)V, ksrsl, (2.6)

V9a=0,0¢<r<kandr >1. (2.7)

In general, a can be expressed as an infinite sum of cylindrical
. im8
harmonics of the form fm(r,r)e . However we need only be concerned

with the m = 1 component (see Appendix 1) and can write a as

Qo = ﬂ& {(r + b(1)/r )eie} » T 21,
=Re { c('r)reie }) , 05k, (2.8)
= Re { D(r,T)Eie Faksr sl

where b, ¢ and D are in general complex. The boundary conditions can be
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put in the convenient form

9a _
(o = 1 Br)r=k =0, (2.9)
and
(@ +1r 3% =28 % (2.10)
or 1 ? :
(see R.L.Parker 1966)%
Condition (2.10) implies
*dD _
Im D57, = - 28Dl _, , (2.11)
which enables the magnetic torque (A.3) to be written as
27 Bo2 L.El2
M = 8,1 _, > (2.12)

where D = Bl(r,r) + i%}r,r) with 81,62 real functions. To give [62]r=1
physical content we note that on r = 1 when © = 0 or m, the magnitude of the

radial magnetic field is B [B.,] Further, the magnetic flux crossing the

o 2'r=1"
diametral plane © =7 within the cylinder is 2B0aLI82]r=].
2

2.3 The Angular Momentum

Let us express the frictional torque.L, which is by hypothesis proportional

to the angular velocity Q, as

I =m, (2.13)

} ]. In the absence

where A is a coefficient of friction with dimension [LZT—
of magnetic field, a steady angular velocity Qo will be attained in which the
driving torque balances friction; hence J = MMQ,. The equation of angular
momentum for the cylindrical annulus can thus be written in non-dimensional

form as

-1 d
Low -wriae, (1,D, (2.14)

where the coupling parameter Q is given by

4B 2a2
= P
WoAn ? (2.15)

* ©= -1 gives the direction of the externally applied magnetic field.
2
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and p is the uniform density of the cylinder material. The quantity Q can be

recognised as a modified Chandrasekhar numbex*(see, e.g. Weiss 1964) ,

with X playing the role of kinematic viscosity, and p is a modified magnetic

Prandtl number given by

_200 -k A

2.16
(1 +x5H 0 : :

2.4 Steady Rotation

When the rotation rate has reached an equilibrium value, equation (2.14)

becomes f(w) = 0 where

f(w =0 - w+} Q8,(1), (2.17)

o
and B, at r = 1 has been evaluated from the time-independent solution of (2.6).
In representing such equilibria it is convenient to introduce a potential function
'y such that
9
flw) = - 3—3 . (2.18)
The roots of f(w) = 0, representing the steady state of the system, then

correspond to turning points of the potential y.

gy 2 P
*The Chandrasekhar number Q may be more familiar as H® where H 1is

the Hartmann number.
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3 THE SOLID CYLINDER

When k = 0, the annular cylinder becomes a complete solid cylinder, and
the inner harmonic region for A disappears. However, the magnetic torque is still

given by (2.12) and equations (2.6) and (2.14) control the system. The moment
2

of inertia I is } Ma

Reynolds number) reduces to QaZ/n, while p becomes 2A/n.

» the dimensionless angular velocity w (the magnetic

3.1 Steady Rotation

In this subsection we concentrate primarily on the possible equilibria of
the system. Putting all time derivatives equal to zero, it is straightforward

to solve for the magnetic field (see Gimblett 1977 , Landau and Lifschitz 1960 ):

2T, (qr) .
1 16
a-c[we ],rsl, (3.1)
J,(q) .
2 i8
=RE [(r +;3'3'a'5—) e ]: A T (3.2)

where q2 = - iw and Jn denotes the Bessel function of the first kind of order n.
The form of (3.2) shows that the external field can be regarded as the sum of a

uniform field and an induced dipole fiéld (see e.g. Bullard 1949).

It follows that the magnetic torque'” (Eq. (2.12)) 1is

47B 2La2 J.(q)
u J (@]~ ’

A full discussion of the properties of expression (3.3) is given in Gimblett (1977).
A graph of the magnetic torque against w is shown in Fig. !. An interesting
feature of this curve is the maximum value of J{ appearing atw = 6.3. For values

of w above this value, there is a gradual decrease in the braking effect of the
field (see §5 where the physical basis for this effect is discussed). The
occurrence of this maximum value has important implications for the family of
equllibria the system can adopt as we have shown that in certain regimes, one

value of the retarding magnetic torque can correspond to two distinct rotation rates,

Returning to the equilibrium problem, we recall that the dynamic balance

1s now given by

flw) = w, T ow * Q Im [Jl(q) J =0, q2 =-iw , (3.4)

qu(q)

where the torque £ 0, tending to zero for w - 0 and w -+ =.

Equation (3.4) defines w as an implicit function of w, and Q. These latter

- 3.1 -



two parameters are determined by external agencies and can be thought of as the
'control variables' of the system. Fig. 2 shows the

locus of equilibrium values of w plotted against Q for various values of W, .
For w > 42.34, there are three distinet possible-equilibria for any one given
value of Q. To obtain a graphic representation of these equilibria, we can

form a potential function ¢ as in (2.18). Using

J](q)
qu(q)

n |

] - é%' ln[berz(m%) # bEiz(m%)] ’ (3.5)

we obtain the potential in the form
-1 2 2,3 2, 3
P(w) = 3 w ww  + Q &n [ber(w?) + bei“(w?)]. (3.6)

(For definitions of the Kelvin functions ber and bei, see for example Tranter

1968 p.22).

3.2 Stability

The question now naturally arises as to which (if any) of the equilibria
found in the previous subsection are stable to small perturbations. To
determine the linear stability properties of the system, it is necessary to
reinstate the time derivatives of Eqs. (2.6) and (2.14), and assuming small
perturbations about an equilibrium we can write (for example) w = w, * Re (aeYT),
where the e subscript indicates an equilibrium value, and @ and Y are the
perturbation amplitude and growth rate respectively. The magnetic field is
similarly perturbed, with care being taken to distinguish between real and
complex quantities. From the discussion in .the Appendix, we need consider only
perturbations with m = 1, as the rest do not contribute to the torque.
Substituting into the linearized perturbation equations, we first solve for the
magnetic field and then calculate the perturbed magnetic torque. The

resulting dispersion relation is

Q[ Ik ) Jl(kz) , { JI(Q)}]

_] _ 9 _ 1
p 'y +1) = 2 (k3. + K (k) aJ_(a) | > (3.7)

where

= J.2 =



First we consider the stability of the system to what Herzenberg and Lowes
(1957) term 'adiabatic' perturbations (i.e. perturbations in which the magnetic
field configuration is assumed to adjust itself instantaneously to any small
change in the angular velocity). The dispersion relation for this system can
be obtained either by a linearisation of (2.14) or equivalently by taking ;ﬁ;
of the R.H.S. of (3.7). The adiabatic assumption is then seen to correspond

to p << 1. We find that the growth rate of adiabatic perturbationms, Yy is

ool @Gl .

real and given by:

Recalling that

J.(q)
W _ - - 177
= YT T A [qu(q)] ’

it follows that

fg =~ B Bzw/sz . (3.9)
The adiabatic stability of the equilibria, themn, is directly related to

the sign of ¢" at the points §' = 0. In fact, stable equilibria correspond to

minima in ¥, and unstable equilibria to maxima. Furthermore, the points of

marginal stability y¢" = O correspond to the turning points 3Q/%w = O (when

they exist) in Fig. 2 (this follows easily on differentiating (3.4) with respect

to w with d/dTr = 0).

Fig. 3a shows plots of y for w, = 75 and three values of Q. The three
"curves shown represent values of { for cross-sectional cuts in the graph of
w against Q shown in Fig.3b . Curve A exhibits one adiabatically stable
equilibrium, B possesses two stable equilibria separated by an unstable ome,
while C again has one stable equilibrium. When three equilibria are present
for fixed values of w, and Q, the "fast" and "slow" types are adiabatically

stable, and they embrace an unstable intermediate equilibrium.

The dispersion relation (3.7) has also been examined for general p. One
can easily show that the roots of (3.7) for y are either real or occur as
conjugate complex pairs. Numerical studies indicate that there are in fact
three roots, at least one of which is always real (c.f. §4.3). The real root

is zero only when www = 0. Moreover when y is real and small
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_ P
ply= - ey oD (3.10)

(1+2pQX)
2 J. (q)
where X = i—ﬂe (Y) with ¥ = - . A graph of Re (Y) as a function of
dw? aJ_(a)

w shows that X is positive for w > 3.1. However for y sufficiently small,

wmw = 0 which implies é% S"I(Y) & = Q_l. As Fig. 1 indicates 95:(Y) can only
have a negative gradient for w > 6.3. It follows that in the vicinity of the
turning points the real root y and www have opposite signs. Numerical studies
of the conjugate complex pair of roots Y, * iyz show that Y is negative for
the whole range of parametric choice. It follows that the condition wmm 20
is indeed the stability discriminant for general values of p. Figure 4 shows
the real root and the real and imaginary parts of the complex roots for y as w

varies between O and w, on the equilibrium curve for w, = 100 and p = 1. The

real root is positive for 6.9 < w < 29.7, where Yow © 0.

We have thus demonstrated that the behaviour characteristic of the solid
cylinder when p << 1 is present irrespective of the value of p; certainly in
the more tractable case of the thin annular shell analysed in the next section
we prove rigorously that the stability characteristics hold independent of the

value of p.

3.3 Behaviour of Equilibria in the (w_ - Q) Control Space

It is now quite clear that the system described in §3.2 possesses a
simple cusp catastrophe (Thom 1975), and will display the well-known character-
istics associated with it. For example, imagine holding w, fixed at 75,
and slowly increasing Q by increasing the ambient field strength BO (see
Fig. 3b). The system will remain stably in a rapidly rotating equilibrium
up to Q = 415.7, where we expect a 'discontinuous' jump in the angular velocity
w down to the slowly rotating equilibrium corresponding to the same value of Q.
This event corresponds in Fig. 3a to the disappearance of the right hand stable
equilibrium between curves B and C. Slowly decreasing the field strength from
this value, the system follows the stable path in Fig. 3b back to Q = 361.7
where a (larger) jump in w will restore the system to the corresponding fast
equilibrium, corresponding to the disappearance of the left hand stable
equilibrium between curves B and A in Fig. 3a. Such hysteresis is a basic
feature of the cusp catastrophe, and defines a 'forbidden' regime for each
fixed w, in which there is no stable equilibrium for a range of values of w.

The forbidden zone of Fig. 3b, for example, is 7.2 < w < 22.3.

Figure 5 shows a three-dimensional plot of the developing fold in

(mO,Q,m) space. The 'pucker point' I occurs at wy = 10.7; Wy = 42.3,Q = 185..1.
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4. THE ANNULAR SHELL

Analysis of the conducting solid cylinder rotating in a steady transverse
applied magnetic field leads to expressions involving Bessel functions of complex
or at least semi-imaginary argument which cannot be manipulated in a straight
forward manner. A mathematically simpler problem with the same essential

features is that for which the rotating cylinder is a hollow shell of circular

cross—section.

We take the shell to have thickness 8§ << a. The analysis of §2 for the
general annulus still applies, but the magnetic stream function A can be
considered to be independent of r within the shell. An examination of the

limiting process §/a + O shows this to be justified for sufficiently small §/a.

Neglecting 0(6/&)2, we find, since k = 1 - §/a, that the mass of the shell
is now 2mpLad, its moment of inertia I is Mﬂz, the modified Prandtl number p
becomes 2(% Y(A/n) and the non-dimensional angular velocity w (effectively the

magnetic Reynolds number) is 2adQ/n.

4.1 The Magnetic Field

With the assumption that the shell is negligibly thin, the vacuum field

is given by

o =8 {(1 + C)reie} r<l1,

) o

=fe {(x +Cc/oel®, r> 1,

and within the shell the induced component of the field is given by

a; =Re (ce®} , (4.2)

where C = C(1).

The (axial) current density j for the induced eddy currents can be
calculated from the jump in the tangential component of the induced magnetic
field across the shell, assuming the radial distribution of j is constant over

the thickness §:

ext .
jé = u 1] el =+ 28 a. /u . (4.3)
3R |. o1
int
. 2 . . . . . .
Since V A = — pj a little manipulation puts equation (2.6) into the form
L 4iu(1+0) +4c=0 . (4.4)
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4.2 Steady Rotation

As in §3 we now obtain the equilibria corresponding to steady rotation
rates, and examine their stability. Unlike the analysis for the solid cylinder,

this can be done completely and explicitly.

In equilibrium C = - iw/(4 + iw); so that 8,(1) = Im(C) = - 4u/(16 + w?).
Inserting this in (2.17) we obtain an equation for the steady dimensionless
rotation velocity w in terms of the control parameters w, and Q:

flw) = W, = w - ——222—5 =0, (4.5)
16 + w

(cf. equation (3.4)). This equation for w is a cubic equation with real
coefficients, and so has either one or three real solutions depending on the
values of the control parameters. Note that the magnetic torque term in (4.5)
has exactly the same form as the simple torque/slip equation of an induction
motor (see e.g. Jayawant 1968 , pp.69 - 73).

As for the case of the solid cylinder, we can form a potential function ¥
satisfying (2.18). This potential,whose turning points represent the
equilibria of the system,has the form

p(w) = %wz - ww * Q n (16 + wz). (4.6)
Qualitatively this potential looks very similar to the solid cylinder potential
(see for example fig.3a). Figure 6 shows a schematic representation of f(w) = O,
for the different regimes of the annular cylindrical shell. The three curves
shown are the equilibria curves w = w(Q) for different values of w . For
w << 4, (4.5) reduces to w = wO/(l + 2Q) so that w Vv Q_]. If W, < wops W is a

monotonic decreasing function of Q (see curve (iii) in Fig.6 ). If w, > w a

,
re-—entrant 'knee' develops in the curve w = w(Q) (see curve (i) in Fig.6) o
These two regimes for w, are separated by the curve (ii) which has a point of
inflexion I with infinite gradient. At I the three roots of the cubic coalesce
and the cubic has the form (w - mI)3 = 0. Comparison of coefficients with (4.5)

indicates that at I

wp = 4vy3, W = 123, Q = 64 . (4.7)
: of| dQ _ _ °f
Now since for constant Wy 3Q [& dw 30lQ’ then
dqQ 2 Bzw
- 2w T = (16 + w) ;;5- (4.8)
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in which

2 2
d Qz =1-2Q w2 16 5 . (4.9)
dw -(m + 16)
. . . . dQ _
Hence the turning points Z] and 22 in figure 6 where an O correspond to
where ww = wmm = 0 simultaneously. Inspection of equation (4.9) shows that

no turning points can occur when w < 4. When W is large, then Z, and Z, have
3 ; 2
(Q,w) co-ordinates of approximately ( W /8 , 4 wo) and (4 Wy s 4+ l6/mo)

respectively.

4.3 Stability
To examine the stability of the dynamic equilibria of the hollow annular

shell we return to the time dependent equations viz.

_]dLU_ _ 1
ar Y% w+ z QB, ,

1 . i - wg, = 0, 1 (4.10)

+

= 482 + w(l + B]) =0, !

where C(t) = 81 + iBz.

If an equilibrium (w, B], Bz)e — where the subscript e stands for
equilibrium — is given a small perturbation such that (w, Bi> 82) = (w, B> BZ)e +
Re{(& eYT, EJEYT, EzeYT)} where %, El’ E P and y are in general complex, then the

resulting dispersion relation is
Gy + 1) Iy + 412 4w ) + 25016 + by -0 ?) =0, (4.11)

where § = Q/(16 + mez) and w, is an equilibrium value for w. This dispersion

relation is cubic in y with real coefficients, and can be recast as

2
Foo(y) = Y3 + 0¥ + o,y tay =0, (4.12)

where 9, and o, are real and positive and 0q is real and equal to p(l6 + mez)wmm.
There are only two cases to be considered: either the cubic has three real roots

Y12YgsY3s OF it has one real root Yy and a conjugate complex pair g * 8,

(a) 3 real roots. If oy > 0, then Fl(y) > 0 for vy > 0; hence no positive

roots — the system is stable. Now - aq is Y{Y,Y3s the product of the roots.
If ug < 0 then Y1YoY3 > 0; hence at least one positive root — the system is

unstable.
_403_



(b) | real, 2 complex rbots. One can show that - ZgIE(g] = y])z + gzz]

2 0,0, 04 which for this system is strictly positive. Hence gy < 0 and
the two oscillatory modes are always damped. Also Oq =~ Yl(glz + g22).

Hence sgn (Yl) = - sgn(cs).

In either case g4 >0 gives stability, g3 <0 gives instability. Thus the

necessary and sufficient condition that the system is stable at its equilibria is

2
¥ 0 . (4.13)

N

ow

The stable equilibria correspond to minima in {, the unstable equilibria to
maxima. From equation (4.8) we see that the system is stable if and only if
€ 0. Hence the equilibria lying in fig. 6 between Z; and Z, on the dotted

dw
portion are unstable.

4.4 Adiabatic Stability

Now t is essentially the resistive timescale; if we wish to consider
relaxation on the frictional time scale we must introduce s = pT, and perturb
as exp (I's) where T = pdlY. In terms of T, when p << | the dispersion relation

reduces to

(r+ Qs +u ) + 25016 - w ) =0,

ot zq(me2 - 16)
I =-1+ 55 (4.14)
(16 + 0w )
e
=T ¢mw'

This mode is one where resistivity is much stronger than friction and
corresponds to the "adiabatic" relaxation discussed for the solid cylinder

(ef. equation (3.9)).

4.5 Behaviour of Equilibria in the (mo - Q) control space

The rotation of a hollow annular shell has now been fully analysed and
this system also possesses a simple cusp catastrophe, even though its potential
(4.6) is not polynomial. The 'pucker point' in the (mo,Q,m) space where the

fold first develops is given by (4.7).

It is interesting to note that an alternative potential wl can be
defined by
Bwl

(16 + g2 Elg) == - (4.15)
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(cf. eq. (2.18)), so that
b = 4o -(1/3)wom3 % {84 Qu® ~ 18 wu - (4.16)

Using the transformation w = (wl + m°/3), we can remove the cubic term in the

quartic for wy to obtain the classical form for the elementary cusp catastrophe.

A 117 ~ 2, - 2
At equilibria Ti} =0 = %%— and %5—%' = {16 # w2) E—% ; maxima for i, correspond
3w
to maxima of Y and similarly for minima. The func%%ons ¥ and ¥y thus have the
same topology and this demonstrates clearly that Y is the energy function for a

simple cusp catastrophe.
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5. DISCUSSION

5.1 Characteristics of Rotating Cylinders

In this paper we have taken QO and B, (or their non-dimensional counter—
parts w_ and Q%) as control variables, and examined the possible equilibria,
W, s in the two limiting cases of a completely solid cylinder and a thin
cylindrical solid shell. For sufficiently weak driving torques, w, decreases
monotonically as the applied field is increased. For w, greater than some
critical value wors @ fold develops and the curve of Wy against Q has the
form shown in Fig. 6. The curve has an upper 'frictional' branch corresponding
to stable fast rotation rates, and a lower 'magnetic' branch which gives
stable slow rotation rates. Physically, the transition from the fast to the
slow branch indicates that the onus of Balancing the driving torque is
passing from the frictional drag to the induced magnetic torque. The two
branches overlap for 32 < B, < B (say) so that in this range there are two
distinct possible stable equilibrium rotation rates; which of these is
realised in practice depends on whether B_ has been increased or decreased
into this range. If BO is increased through B2, then the upper branch is
followed until BO equals B, at which point w will jump 'discontinuously' down
to the magnetic branch. Conversely, if B0 is decreased through B;, then the
lower branch is followed until B, equals B,, whereupon w jumps up to the
frictional branch. For our systems, the latter event appears to involve the
larger change in Wy - The fast and slow branches are separated by unstable
equilibria (dotted in Fig. 6) so there exists a forbidden range in which no
stable rotation rates are possible for any value of BO (the annular shell, for

instance, has a forbidden band 4 L g 1 wo).

For both the solid cylinder and the annular cylindrical shell the induced
magnetic torque about the axis of rotation increases linearly from zero with
increasing w, reaches a maximum and then falls to zero again as w + =,

This feature allows w to be multi-valued .for given control parameters Wy

and Q. The physical explanation for this effect seems to be that the
rotation not only bends the field lines, producing the torque on the cylinder,
but also expels them from the body of the cylinder. This leads eventually to
both a drop in the Lorentz force and the formation of a 'surface' current

density (Bullard 1949).

Skin effects are well known for A.C. currents flowing in solid conductors
(see e.g. Shercliff 1965); in the frame of reference of the rotating object
the steady applied magnetic field does appear as an A.C. field, so that such
skin effects are not unexpected. Indeed in an induction motor, if w is inter-—
preted as the 'slip velocity' i.e. the departure of the cylinder angular velocity
from that of the rotating field, then the magnetic torque is well known to depend
on the slip in the fashion shown in Fig.l (see e.g. Jayawant 1968).
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Throughout this paper we have been concerned solely with the linear
stability of our systems (i.e. stability to infinitesimal perturbations). The
criteria found are then of course merely sufficient for instability and not, in
general, sufficient for stability. Indeed, a glance at the potential functions
of Fig.3a leads us to expect finite amplitude instability when the system is in
the fold region (or returning to the above notation when B, < B, < B]). Outside
this range we might expect unconditional stability. Although we do not comsider
here the nature of any such subcritical instability, we note that the simple
form of the controlling equations (4.10) for the annular shell makes such an
investigation feasible (for a discussion of subcritical instability in the

modified disc dynamo see Robbins (1977)).

5.2 Rotating Spheres

An analysis similar to that for the rotating cylinder can be carried out
for a sphere of radius a rotating in vacuo in a transverse magnetic field B_.

For this case we can express the magnetic field as

B =.Re{curl{§ A V(S(r,t)sineei¢) }} : (5.1)

using spherical polar co-ordinates (R,6,¢), and S is the appropriate complex
poloidal scalar function (see R L Parker 1966). Introducing s = S/aBO, the

total magnetic torque about the axis of rotation is found to be

3 2
fz ) 4ma Bo j'ﬂl[S]r=1 , (5.2)
u

with s = s(r,t) and R = ar (c.f. 2.12). If the sphere is replaced by a
spherical shell of thickness § this formula for;ﬁﬁis unaffected, though the
value of s at r = | is modified; in factJ%.ﬁ - w/ (36 + wz), w = 2aéQ/n, a
functional form similar to that of a thin cylindrical annulus c.f. (4.5).
(The retarding magnetic torques for thin spherical shell, cylindrical shell,
and solid cylinder are given in Smythe (1950) pp.417-8, though in a less
convenient form). For the solid sphere, the time independent solution is

(Parker 1966, Bullard 1949)

_ 3 r? J3/9 (ar)
s(r) = 3 - T () ; E& oy (5.3)
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where q2 = - iw, and w is the magnetic Reynolds number Qazfn as for the solid

cylinder. The Bessel functions of haif_integerubfder appearing in (5.3) can
be expressed in terms of elementary functions (see e.g. Tranter 1968 p.12),
and in particular we find

1 (sinhx + sinx)

1
j"[slr=1 - 3'[;5 T 2% (coshx - cosx)] i

(5.4)

where x2 = 2uw.

K=

For the sphere,Jq'varies linearly with w for small w, w 2 for w + o, and

possesses a maximum value as for the solid cylinder (it is illustrated in Fig. 6
of Bullard 1949 for n = m = 1 in his notation). The potential function

characterising the equilibrium rotation rates is (c.f. 3.6).

Wl = d® = e, + 3 Qg zn(z(““hxz_ °°SX)) ; (5.5)
x
where QS is the analogue of the Q defined for the cylinder. This potential has
the same topological features as those found for the cylinder, and so gives

'fast' and 'slow' branches with corresponding 'forbidden' bands of rotation rates.

5.3 Conditions for folded equilibria

The cusp catastrophe behaviour described for the cylinder and sphere
appears to require a transverse applied magnetic field (i.e. one perpendicular
to ©). Bullard (1949) has calculated the torque on a solid sphere of radius
a rotating in a uniform magnetic field B, parallel to @ and concentrically
embedded in a larger non-rotating sphere of radius a and identical conductivity.

The resulting torque about the axis of rotation is, in our notation
5
_ 2523 (, _a)
“ft = B a m\] 5/, a; >a. (5.6)

This would give for the analogue of (2.17)f(w) = W, T w - Q]w where Ql is
appropriately defined, so that w = wO/(I + QI) in equilibrium (in the absence
of the external non-rotating shell the torque (5.6) vanishes). Since the
torque is a linear function of w over all the range with no maximum value, the
ambiguity in the equilibrium rotation rate is removed, and the double branches
and associated hysteresis are absent.

Moreover both friction and magnetic field are necessary to obtain the
hys£eresis. In the absence of the magnetic field, there is a simple stable
equilibrium between driving torque and friction: w = W - In the absence of

friction, the balance between driving and magnetic torques gives exactly two
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equilibria (for the same Q) provided that the magnetic field strength

exceeds some critical value Bcrit' The slower of the two equilibria is
stable while the faster is unstable (as the friction tends to zero, W,
tends to infinity in Fig. 5, and we '"lose" the frictional branch). For

B < Bcr' the maximum magnetic torque is less than the driving torque,

1t
and the frictionless cylinder would accelerate indefinitely (as it would
also do if started above the fast magnetic equilibrium branch mentioned

above). For the annular cylindrical shell, Bc corresponds to Q = 4w0;

rit
this implies that the critical value of the magnetic field occurs when the
B :
energy of the applied field within the cylinder, wazL 7%7)’ just equals
the drivi.ng torque J . For the solid sphere the maximum magnetic torque
B

is v V \7%?) where V is the volume of the sphere.

Having shown that a compact body (the sphere) and an elongated body
(the cylinder) both exhibit the folded catastrophe behaviour for the
equilibrium rotation rate, we conjecture that any axisymmetric solid body
or shell will display the same phenomenon when rotating in a uniform
transverse magnetic field. In general, one can show that the magnetic
torque can always be expressed in terms of surface integrals (see e.g.
Herzenberg and Lowes). Moreover, one can consider the external induced
field, and hence the surface integrals, as corresponding to dipole moments
induced on the axis of rotation; the induced fields for spheres and cylinders

have been calculated in this fashion by Landau and Lifschitz (1960,p.194).

We have considered a uniform transverse field; however any field with
a transverse component seems likely to give a similar effect. Lin'kov and
Urman (1974) have calculated magnetic torques on spheres for general
inclined axisymmetric fields, and find that (except for parallel inclination
where the torque is zero) all spherical harmonics produce torques that
increase linearly in w for small w, reach a maximum, and decrease as md%
for w +~ ». The maximum value of the torque is only weakly dependent on
the order of the harmonic, although the angular velocity for which the
maximum occurs does drift upwards (see their Fig, 1 for 5ﬁfxn (k) in their

notation).

We have carried out stability analyses for the totally solid cylinder
(p << 1 gives explicit analytic results) and the thin cylindrical
annulus, and find in both cases that the equilibria are defined by the turning
points of a suitable potential function Y(w), i.e. when ww = 0. The equi-
libria are found to be stable or unstable according as $wm is greater or less
than zero. It seems likely that the general problem of computing the stability
of axisymmetric rotators is reducible to this form, and that potential functions

are obtainable in prineciple for all such bodies.
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5.4 Non-linear friction

The analysis of this paper has been presented on the basis that the
opposing frictional torque is linearly'proportional to the rotation rate Q.
To check whether this assumption is crucial, we have investigated a more
general form of the friction law - 7€;$f where € > 0, With a suitable

renormalization of p and Q, the angular momentum equation becomes

% g% = moe - w° +-% Q B8, (1,7) (5.7)
Cef. 2.345. Introducing an appropriately modified potential function ¢, one
can show that the condition for adiabatic stability remains w >0 at
equilibrium values of w. For the thin annulus, if QE = 2Q/(wo) , then the
equation for equilibrium analocgous to (4.5) is

(- (Yo |

from which evaluation of BQE/Be‘shows that Q5 is a monotonic increasing
function of ¢ for fixed w and W . If then e is varied in either direction away
from unity the folded topology for sufficiently large W, remains. Indeed
although aQE/Bw < 0 for w < 4 and for w sufficiently close to w,.Ome can
show that there always exists for sufficiently large w, & range of w for
which BQE/Bw > 0 even when € approaches zero or infinity. As to the stability
analysis for the thin annulus this follows through, provided € > 0, without
any change from that in §4,3 save that (p IY +1) in equation (4.11) is
replaced by (p y + ¢ wee—l), and Vow (or 9Q./%w) remains the discriminant.
Q itself is made up of two factors (see the r.h.s. of 5.8): the first is a
mgnotonically decreasing function from one to zero at w = W, the second is ap
upward facing parabola-like curve which is the inverse of the magnetic torque
curve. The product of two such factors will always produce a fold for
sufficiently large Wy provided the magnetic torque curve has the characteristics
we have already remarked on viz a maximum, and zero value as w tends to zero
and infinity. We conclude from this that the general features of the system
we have discussed - fold, upper and lower stable branches, forbidden band
of stable rotation rates - are not sensitive to the particular choice made
for the friction law, provided the frictional torque increases monotonically

with Q.
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5.5 Fluid Cylinders

The analysis of rotating fluid cylinders has not been carried out for
a full range of magnetic Reynolds number. Weiss (1966, see his Fig.l) has
performed numerical experiments for isolated eddies and finds expulsion
of field for w >> 1. In this limit, the solid cylinder's equilibrium

|
rotation rate satisfies w, ~w - Q(2w) % = 0, or

w v e - ——jg——r (5.9)
V2 w ?

o
(the asympotic value may be calculated from (3.5) using for example Tranter

1968 p.51). The annular cylindrical shell obeys
wvw - 20 . (5.10)
“o

Moffatt (1965) treated the case of a cylinder filled with rotating viscous
conducting fluid in a rotating applied field. He considered (in our notation)
w > 1, and w - w << ] to obtain

o o

w =W —m (5.]1)

for the (solid body rotating) inner core of the fluid. Thus when the magnetic
field is concentrated in a skin at the edge of the conductor, the viscous
fluid appears to behave (functionally) more like the annular shell, even

though the fluid core rotates as a rigid body.

It is not possible here to say whether in the fluid case the transition
from high to low w or vice versa will be accompanied by the general behaviour
we have found for rigid rotators. The vorticity generated in the fluid by
the rotational part of the Lorentz force will distort the flow pattern and
remove the axisymmetry from the system. The additional degrees of freedom
might then enable the transition to be smoothed out and the hysteresis removed.
However, large classes of bifurcating fluid equilibria have been found in
many other non-magnetic systems (e.g. Platten and Chavepeyer 1975, Brooke

Benjamin 1978).

5.6 Experimental Considerations

It is possible that the hysteresis in w as a function of Q should be
observable in the laboratory and experimentally verifiable. In principle,
the values of Q obtainable are at the experimenter's disposal by suitable

choice of the friction parameter ) of (2.13) (there is of course a lower limit
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to A in practice). The magnetic Reynolds number obtainable presents more
of a problem. Table 1 shows approximate values of w obtainable for solid

cylinders and annular shells made of copper or aluminium.

Solid Cylinder Annular Shell
a=2.5 cm. a=2.5c¢cm. §=0.25 cm.
¥

-3 -4
! Copper 4,9 x 10 7 Q 9.8 x 10 @

;s -3 -4
Aluminium 3.1 x 10 © @ ) 6.2 x 10 @

TABLE 1

App;oximate values of magnetic Reynolds numbers w
( in r.p.m.) ‘

We see that for Q = 5,000 r.p.m., w for the solid copper cylinder is
v 25, and for the copper annulus w ~ 5. The regime of interest in each case
is 2 40 and z 20 respectively, so the attainable values appear a little
low. However these values can be boosted in two ways. As w = a2 for the
solid cylinder and « ad for the annulus, we could obviously increase w by
increasing the system dimensions. Secondly, there is the possibility
of rotating the external applied field in a direction opposite to the
sense of the driving torque. Rotating the external field is suggested for
fluid systems in Moffatt (1965), and has been used for such systems
experimentally (see Dahlberg 1972 ). 1If as seems likely the phenomena
described in this paper survive the addition of rotating fields, then
im principle the magnetic Reymolds number ot the system can be easily lifted

into the regime of interest.
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6 CONCLUSIONS

When an axisymmetric electrically conducting solid body or shell is made
to rotate, against friction, in a transverse magnetic field Eé, the equilibrium
rotation rate Q is given by %%—= 0 where the potential function '¢' is given by
(3.6) for a solid cylinder, (5.5) for a solid sphere and (4.6) for a thin
cylindrical shell (the thin spherical shell has a similar form). For fixed
friction coefficient there is in each case a minimum driving torque above which
Q is triplg-valued for a range of values of B (see figure 6). For the thin
cylindrical annulus which can be analysed completely, the upper and lower
branches are stable against linear perturbations whilst the middle branch is
unstable; this implies that for given friétion and given driving torque there is a
forbidden band of equilibrium rotation rates which are inaccessible however strong
the applied magnetic field may be. For the solid cylinder we can prove similar
stability properties when the ratio p of friction to magnetic diffusivity is
small — the so—called 'adiabatic limit' — and numerical studies demonstrate
these stability properties for general p. It is likely that these general
features hold for all axisymmetric bodies and all values of p.

The development of this multi-valued 'folded' equilibrium rotation rate is
an example of the cusp catastrophenof Thom, with  as the potential function.
It appears to require a magnetic field with a component transverse to the
rotation axis and is not sensitive to the form of the friction law provided
friction increases monotonically with rotation rate. The folded nature of Q
results in hysteresis if the applied magnetic field strength is varied on a time
scale long compared with all other time scales in the system. It is an
interesting possibility that such hysteresis, which should be experimentally

verifiable for solids, may be present for rotating fluids if the additional

degrees of freedom do not smooth it away.
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PPENDIX 1
We here write down the general solution of equations (2.6, 2.7) for the
on-dimensional magnetic stream function o and then show that only the m = I

omponent contributes to the total magnetic torque on the rotating cylinder.

The general form of the solution of (2.6 and 2.7) can be expressed as

ib o -m_1mb
ﬂe (re + mgl bm(-r)r e )

Q
]

6 ) (A.1)

]

0 m im
.R,E (mél cm('r)r e

imo ) Lk

ﬁe (mzl dm(r,'r)e

shere the by, c and d are in general complex, and Re denotes real part.
'he boundary conditions are that the uniform field must be recovered as r =+ =,

hat B is finite, and that B is continuous across the surfaces of the annulus.

ig ..
In terms of o we have a - He (re”") as r -+ =, a finite, and both o and g_o: are
r
continuous at r = ka and a. The first two conditions have been used in writing
a in the form (A.1); the latter conditions lead to
i}

_ 3
mcm('r) ko = mdm(k,r) = k(g; dm(r,r))r=k, for all m ,

(A.2)

1l

mbm(‘r) mdm(],‘r) = - (;lr— dm(r,r))rzl , form# 1 ,
e - 3
By(n) = dy(l,m) = 1= 1 - de dyfrynd) g -

The moment exerted by the Lorentz force on an element of the annulus is
dft = R A dF where dF = Ll_] (curl B) A B RdRd6dZ. Hence the total magnetic torque

over the whole of the annulus is

L ra 2m ”
M ='—E-“Ij J J Rg%vadedez,
a 0
(B La“) Vet f2n
M oe-—o J J I 2—gvza dedrdz . (a.3)
Kk
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Inserting (A.1(iii)) into (A.3), it follows on integrating with respect to 6
that no cross terms occur in the torque. Integrating with respect to r by parts

then gives only surface contributions:-—

2.2 )
mB “La © ad ad
0 % _m * m \ 1
M S NI - R d —) - (kd — (A.4)
( 0 )j‘“mzl {( modr) mo dr ) S
where IJm denotes imaginary part, and * signifies complex conjugate. From (A.2)
* 9 _ 2m-1 % ; . 5
however, {dm 5 gin)}r=k = mk 'Cmim for all m, which is a real quantity.
5. & - : . »

Similarly, {%n 5¥-(¢m)}r=l m bm by, for m # 1, and this is also real.

Thus the magnetic torque has a non—-zero contribution only from the m = 1
component of o, and that from the outer surface of the annulus alone. Hence we
need not consider modes with m # 1 when analysing the stability of the cylinder's

rotation.
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Fig.1 The induced magnetic torque M for a solid cylinder rotating in a transverse magnetic field plotted as
a function of the non-dimensional rotation velocity w (see eq.3.3). The scaling factor/{ o = 4(7By? La? /u)
is proportional to the magnetic energy within the cylinder at rest.

0 100 200 300 400

Fig.2 Equilibrium (dimensionless) rotation rates w plotted against Q for various values of w,, for the solid
- cylinder (see eq.3.4). The re-entrant ‘knee’ develops for all loci which have wgq > 42-3.
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Fig.3(a) Plots for the solid cylinder of the ‘energy’ function (w) (see eq.3.6) for wg = 75 and 3 different
values of Q in the vicinity of the fold. (b) The cross-sectional cuts in the («w—Q) plane to which the three
forms of  in 3(a) correspond. The curve shown is w = w(Q) for wq = 75. The part of the curve in the
‘fogbidden’ range is unstable and corresponds to a local maximum in ¢ e.g. in B in 3(a).
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Fig.4 The roots of the dispersion relation (3.7) for the solid cylinder when g = 100 and p = 1. 7, is the
real root which is positive when V/(,,¢,, < 0 and negative otherwise. The two complex roots are v, tiv2
which give highly damped, high frequency oscillations.

Fig.5 Three-dimensional plot of the developing fold in (wy, Q%, w) space for the solid cylinder. In the
vicinity of the origin the fold is not re-entrant. The ‘pucker’ point is at wg =423 w=10-7 Q= 1851
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Fig.6 Schematic plots for the annular cylindrical shell of the (dimensionless) equilibrium rotation rate w
as a function of Q for 3 different dimensionless driving torques wy (see eq.4.5) (i) wg = 1000 — the
dashed part of the curve represents the unstable equilibria; the arrows indicate the course taken as Q is
slowly increased or decreased. The (w, Q) co-ordinates of the turning points are Z, = (wq/2, we* /8) and
Z, = (4,4wg). (ii) wo = 124/3 — this curve contains the ‘pucker’ point I (wy = 4/3, Q; = 64) at which
dQ/dw = 0. Above this curve all equilibrium curves have an unstable portion of which (i) is typical; below
(ii) no curves have folds (iii) wo = 1 — a simple monotonically decreasing curve, with w « Q™" for large Q.
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