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ABSTRACT

Volumetric heating of a confined horizontal layer of fluid
to produce natural convection is often carried out using Joule
heating to give a uniform heat source density. However if the mean
electric current flows horizontally, the heat source density is the
deficient in both upper and lower boundary layers; if the current

flows vertically the heat source density is enhanced in these boundary

layers.

At low Rayleigh number when the convection induced is weak the
consequence of this inhomogeneity can be calculated easily and allowed
for. At high Rayleigh number this effect can be ignored in the thin
upper boundary layer. In the lower boundary layer, which is thicker
and has a much smaller Nusselt number, these departures of the heat
source density from uniformity can significantly distort the dependence
of the Nusselt number on the Rayleigh number. Appropriate correction
formulae are developed and applied. To first order, the downward heat
flux density differs from its value for uniform heating by a term

proportional to the square of the downward flux fraction.

(Paper to be presented at 18th ASME Heat Transfer Conference, San Diego,

California, August 1979).
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INTRODUCTION
) In the study of natural convection in a horiz-
ontal layer of fluid containing heat sources, attent-
ion has been mainly focused on a uniform distribution
of heat sources throughout the fluid {[1-7]. The
physical properties - thermal conductivity, viscosity,
density, expansion coefficient-are usually taken to

be constant except for the buoyant density variation
which in the Boussinesq approximation drives the
natural circulation and enhances the heat transfer
coefficients over the value appropriate for just
conduction. To some extent the variations of these
physical properties from strict uniformity have been
examined [8-9]. The dependence of the heat source
function on temperature has received less attention[10]
in this context.

The most convenient and practical way of gener-
ating volumetric heating of a fluid in the laboratory
is to make the fluid an electrically conducting one
and to pass an electric current through it. If n is
the electrical resistivity of the fluid and j the
electric_current density, then the heat source density
h is nj2. If n and j have the same value throughout
the fluid, then the heat source density is uniform;
but if n is a function of temperature, significant
departures from uniformity may occur.

There are two common ways of arranging the con-
figuration in laboratory experiments:- (i) to place
2lectrodes at either end of the convection cell and
’ass electric current horizomtally [1, 5, 11, 12] and
(ii) to use the upper and lower plates of the con-
7ection cell as electrodes and to pass current vert—
ically [11, 13]. These can produce different results
(see below). For weak aqueous solutions, the
:lectrical conductivity o can be written as [12]

¢D]
£ 8_ is v 300K then y has the value of ~ 0.02K .
‘learly if temperature variations of 50 K are present
.n the convection cell then o may vary by a factor of
wo. The sensible approach is naturally to restrict
‘he temperature difference to be as small as possible.
£ B—BO n~ 2 K then ¢ is almost constant. However, for
igh Rayleigh number studies in the strongly tur-
ulent regime, the thermal fluctuations can be large,
nd to obtain as much resolution as possible from the
nstrumentation it is desirable to allow as large a
emperature variation as possible without vitiating

he experiment.

og=0 (l+ Y[B-Sol)

UALITATIVE DISCUSSION

Consider, to be specific, natural convection in a
olumetrically heated liquid contained between two
orizontal plates both maintained at a uniform temper-
ture 6,. (see fig 1). The equations for such a system
re the Navier-Stokes equation:

= 2
du/st + (u.V)u + pol\'-’p = vWu + pglo  (2)

and the advective Fourier equation:

3T/3t + (u.T = 72T + h/(p c) (3)
where the Boussinesq equation of state is
p = DD(I - aT) (4)

The thermophysical properties A, ¢, x are taken

T=T(z)  h=h(D L

Fig.l A horizontal layer of fluid containing distri-

buted heat sources of strehgth h(T).

be constant and the temperature dependence of the
density is only retained in the buoyancy term pg/p
which drives convection once the critical Rayleigh
number is exceeded. The relative temperature T=9-8
where 8 is the absolute temperature. The reference
density p, is the density of the liquid when T = 0;

The heat source density h=h(T) is considered as temper-
ature dependent only via the temperature dependence of
the electrical conductivity.

To see qualitatively the difference between passing
current horizontally and vertically it is convenient to
consider a high Rayleigh number regime in which the
time averaged temperature profile is essentially vert-
ically stratified. For these boundary conditions this
profile can be roughly represented by fig 2(a). It is
in essence a uniform temperature save for a thin
boundary layer of thickness dy at the upper surface
and a thicker boundary layer of thickness &7, at the
lower surface. Superimposed on this are turbulent
fluctuations in temperature, with intermittent plumes
and falling sheets of cold liquid. These are not
however germane to this discussion.

Let us suppose that the experiment consists of a
rectangular tank with horizontal (x and y) dimensions
of X and Y. When electric current is passed horizont-
ally, the planes x=0 and x=X are the electrodes. When
current is passed vertically the planes z=0 and z=L are
the electrodes. The side walls of the tank are assumed
to be sufficiently separated for the assumption that
the mean fluid properties are independent of x and y to
be true over a substantial fraction of the tank.

The quantities which can be controlled by the
experimenter are V, the potential drop between the
electrodes, and J the total current flowing. The local
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Fig.2 Schematic vertical profiles at high Rayleigh
number for the temperature (a) and the
corresponding heat source density h for
lateral (b) and vertical (c) current flows.

current density j and electric field E cannot be
controlled absolutely. The total power input is

P = [ oE? dxdydz = /nj* dxdydz from Ohm's Law
j = oE. Uhen the current is applied horizontally,
the same potential drop V exists between all pairs on

points on the planes x=0 and x=X respectively.
Moreover the electric field in the tank is horizomtal
of constant magnitude V/X independent of z. However
the density of the horizontally flowing current
varies as a function of height. The local heat
source density h = oEZ varies with height only
through ¢. Hence

h = hD (1 + +T) (5)
where h_ (=0 V2/X?) is a constant and ©0_ is the
electrical conductivity at 0y This shows that h
increases with increasing T.

On the other hand where the current is applied
vertically the potential drop exists between the top
and bottom plates, but the magnitude of the vertical
electric field is no longer independent of height.
However the density of the vercically flowing electric
current is independent of height = J/XY. The local
heat source density h = j2/c which varies with height
only through o. Hence

h = ho/(l + yT) (6)

where h_ (=J%/(c X2Y2)) is a constant. This shows
that h decreases’with increasing T. The difference
between the vertical and horizontal current cases is
essentially the difference between resistances in
series and in parallel.

If the result of a convection experiment is a
profile such as fig 2(a), then it follows that in the
case of a horizontal current, the heat source density
is not uniform, but as illustrated in fig 2(b). The
heat source density in the bulk of the fluid is _
hy = hy (1 + ¥Tp). The average heat source density h
is hy - J(8y + 6)(hy - hy). This indicates that in
the main part of the fluid the heat source density hy
is slightly in excess of the mean value h, whereas in
the boundary layers there is a heat source density
deficit compared with the mean.

Correspondingly for the vertical current 1f the
same profile were achieved, the heat source density
is as illustrated in fig 2(c). The average heat
source density h is h + (§ + 6 ) [ho2n (14+yTy) /¥ Ty=h,]
where here hy = h,/(1+¥Ty). This indicates that in the
main part of the fluid the heat source density hy is
slightly below the mean value h, whereas in the
boundary layers the heat source density may be consid-
erably enhanced over the mean value.

This preliminary discussion indicates the qualit-
ative differences between uniform and temperature
dependent heat sources; the following sections put the
analysis on a qualitative basis.

LOW INTERNAL RAYLEIGH NUMBER

In a horizontal layer of depth L and uniform heat
source density h between horizontal plates of equal
temperature, the critical value R, of the internal
Rayleigh number R = aghL3/(vkr) is 26x560 [4]. For
R/Re < 1, the liquid is at rest and heat is transferred
only by conduction. For I s R/R, s 1.25, the ampli-
tude of the convection which occurs is such that the
temperature distribution differs little from the
stratified parabolic profile [4]. We consider here
what effect the temperature dependence of the heat
source density has on such a profile.

Lateral Current Flow

If the electrodes are at the sides of the con-
vection cell, then the heat source density has the
form given by (5). The heat conduction equation can
then be written (neglecting the advective terms) as

2
LT S
dz? °

(N

with boundary conditions T=0 on z=0 and on 2z=2a (it is
convenient for later analysis to take the layer depth
to be 2a here). The configuration is thus symmetriec
about the plane z=a. This has the solution

T/T,=(2$2) 1 (cos(2¢[z=al/a)=cos 2¢) / (cos 2¢)  (8)

T, = (9)

where 1

b, a2/ (2\)

is the maximum temperature difference in the layer
when y=0 and

0% = yT,/2 (10)

The maximum temperature difference T,» when y # 0,



occurs when z=a, and is given by

- Ty/T, = (sin ¢/¢)%/(cos 2¢) (1)

The heat Qp generated in the lower half of the layer

is given by

Q, = hja(tan 29/2¢) (12)

so that the total heat generated in the layer Q is
20;..

The modified Nusselt number for downwards heat
transfer from the layer is defined by

Ny = Qa/(AT) (13)
Hence Ni = Z(Tlme)(tan 24/24)
= 2¢ cot ¢ (14)

The downward heat flux density qp is equal te Q in
this case and can be written as

iL = JZATmho{c052$/cos 2¢}i (15)

0bvi?uslz as y*0 then ¢+0 and so Tp*T|, Qp+hja Np+2
and q;+v2A\T h, which are the appropriate valtes for
uniform heating.

Vertical Current Flow

If the electrodes are above and below the con-
vection cell, then the heat source density has the
form given by (6). The heat conduction equation can
then be written as

A(d?T/dz%) + b (1 + yI)7! = 0 (16)

If yT<<], this can be linearized to
A(d2T/dz?) + b (1 = yT) = 0 (17)

lhe solution is then straight forward:
/T,=(24?) ! (cosh 2¢-cosh(2¢[z-al/a))/(cosh 24) (18)
ind equations (I1) to (15) are modified only in as
weh as each circular trigonometric function is
‘eplaced by its hyperbolie equivalent (cos ¢ - cosh ¢
ite).

Aliter, if we remain with (16) and define

s =1+T (19)
hen (16) can be written as
s(d%z/dz?) + 4(¢/a)2 = 0 (20)
his has a first integral
(ds/dzj? + 8(¢/a) tn(s/sy) = 0 (21)
here s = sy When (ds/dz) = 0 so that
sm = 1 + YTy (22)
urther integration gives
|1-(z/a) |= erf([2n(sy/s) 1ty /ere(lon sg1t)  (23)

where s satisfies
¥2g = sm(/FIZ)erf([En sm]i) (24)

which is thus also an implicit equation for Ty (Erf x
is the error function.)

also Q = hal(in sm)/(2¢2)]£ (25)

and N (26)
Now n/4 (erfl[2n(] + x)]i)2 = x=7x2/6 + 0(x3) when x<<I.

Hence to first order in ¥T,

20/28) (e )} (sg=1)

Tl/Tm =1 + 5mi/6
Q /(h a) =1 - 2vyT /3
L. o m (27)
NL /2 =1 - YTm/G
&L//ZATth =1 = mifé

Discussion

Fig 3 shows Qp/(hya), Ty/T, N and {ﬁL//ZATmho)for
both the lateral and vertical current flow Cases. As
the earlier discussion indicated, Tp and Qp, are enhanced
in the lateral current flow case and diminished in the
vertical current flow case. An important feature of
the lateral current flow solution is the fact that both
Qr and T  tend to infinity as ¢ tends to n/4. This
'explosive' behaviour corresponds to yT; = 1.25, a
value one might have thought tolerable. The Nusselt
number remains finite despite the divergence of Qr, and
Tp and only differs from its expected value of 2 by
207 for ¢ s /4 in both cases. For the lateral current
flow case, ¢2ATmho rapidly becomes a poor approximation
to qp as y increases. These results show that even for
quite small values of YTy it is necessary to compen-
sate for the temperature dependence of the heat source
density in Joule heated experiments. 1In this simple
conductive problem, which can be solved completely,
knowledge of hy, ¥ and A is sufficient for correction
factors to be calculated. The evaluation of the
critical Rayleigh number experimentally will obviously
be sensitive to y, see [5].

HIGH INTERNAL RAYLEIGH® NUMBER

Baker, Faw and Kulacki [14] have examined the
experimental results which they and their co-workers
have obtained for thermal convection in a horizontal
layer driven by uniform internal heating and cooled by
horizontal bounding surfaces maintained at the same
uniform temperature. They find to a good approximation
that the horizontal layer of depth L may be considered
as composed of two sub-layers. The lower sub-layer of
depth a is essentially stagnant and has a parabolic
profile upto a temperature maximum Tp; the heat trans—
ferred downwards is equal to the heat generated in this
sub-layer, and so is equal to a/L of the total heat
generated in the whole layer. The upper sub-layer, of
depth b is convecting vigorously, and at higher Rayleigh
numbers is turbulent. As the Rayleigh number increases
the downward flux fraction p decreases.

It was found by them that the sub-layer Nusselt
number for downward heat transfer Nﬂ remains close to
2, the conductive value, for internal Rayleigh numbers
in the range 103 < R/64 < 10", This implies §; = hya =
V2T hg. The sub-layer Nusselt number for upward heat
transfer N|j was found to depend on R* as
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Fig.3 The dependence on ¢ (=¥4T|/2) of (a) Qp/(h
(b) Ty/Ty, (e) N;/2 and (d) §;/¥2Ah,T T
lateral current case is denoted by ?LT t

vertical current case based on (17) is denoted

by (Va), and that based on (16) by (Vb).
scale for yT; is also shown.
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The

N' = e(r®)" (28)

u
where Kulacki and Emara [15] obtained e=0.20, n=0.226
in their experiments. The modified internal Rayleigh
number R* is based on the upper sub-layer depth b and
so is equal to (b/L)°R.

We now consider how these results would be modi-
fied if the electrical conductivity in the aqueous
solutions used for these experiments is taken into
account., At high Rayleigh number the average temper-
ature profile is as shown in fig 4. This profile
represents the mean vertical profile when the horiz-
ontal variations and the temporal turbulent fluctuations
have been averaged out.

(i}

T,

(i)

(iii)

0 . z L

Mean temperature profiles at high Rayleigh
number for a given thickness a of the lower sub
layer (i) uniform heating (ii) lateral current
with yT| = 3 (iii) vertical current with

YT, = §. :

Fig.4

Lateral Current Flow

For the 'stagnant' lower sub-layer, the analysis
of the previous section for low Rayleigh number stands
unchanged (though b is here the lower sub-layer depth
rather than half the full layer depth).

The upper sub-layer at high Rayleigh number is
essentially at a uniform temperature Tj (apart from
turbulent fluctuations) except for a boundary layer
adjacent to the upper cooling plate. An assumption
well justified from experimental results [4, 11] is
that the heat source density in the upper boundary layer
makes a negligible contribution to §qy. Since the layer
is thin for high Rayleigh number then provided (h_-h,
¢ h_this holds good. This implies that a small deficit
in the heating in the upper boundary layer does not
affect gy, at least to first order.

A comparison of the relatiunship between R* and
Ny for the case of convection with equal top and bottom
temperatures and that for the case with insulated lower
boundary shows that the lower boundary has little
influence on the (VU-R*) relatlonshxp for sufficiently
high Rayleigh number. The main body of fluid has a
heat source density h corresponding to'the electrical
conductivity op for Tp. Consequently the flux at the
upper surface and the experimental Nusselt number Ny
are those appropriate to a Rayleigh number R* =
aghmbsl(uxl)

The heat generated in the upper sub-layer is given
by

q, = hb (29)

where hy = ho(l + YTm) and Tp is given by (I1). Hence



QU = hob/(cos 2¢) (30)

neglecting the heat source deficit in the upper
boundary layer. Hence the Nusselt number for upwards
heat transfer from the sub-layer is

Ny = 2(b¢/a sin ¢)? 31)
and the downward flux fraction p is given by
u = a sin 2¢/(a sin 24 + b.2¢) (32)

As y+0, sin 2¢+2¢ and p+a/L, the value appropriate
to uniform heating.

Vertical Current Flow

As for lateral current flow, the low Rayleigh
number analysis can be applied without change tb the
'stagnant' lower sub-layer. The general discussion
in the previous sub-section is also applicable with
the main body of fluid at temperature Tp with cor-
responding heat source density hy.

If the heat source density is given by (6),
then ’

QU - hob/sm (33)
Ny = (1/2)(d/a)?(s /s ~1]) (erf B8))? (34)
ind
u= aBm/[aSm + b(/T/2)erf Bm] (35)
ihere s = | + yI_ and Bm2 =fa s
If on the other hand (6) is linearized to
h = ho(l - ¥T) (36)
‘hen one obtains
Qu = hob/(cosh 2¢) (37)
Ny = 2(b¢/a sinh ¢)2 (38)
nd
u = a sinh 2¢/[a sinh 24 + b.2¢] (39)

hich again +a/L as ¢~+0.

iscussion

Fig 3 has already shown how Qp and Ny vary with
for given sub-layer depth a. Fig 5 shows how
Qu/hgb) and N depend on ¢. As ¢>n/4, the heat
enerated in the sub-layer becomes infinite for the
ateral case, whereas the Nusselt number does not
iverge until ¢-m.

An important quantity in industrial applications
I results from studies of thermal convection driven
¢ internal heat sources is the ratio of heat trans-
irred dovnwards to that transferred upwards viz.
f{(1-p). For uniform heating this ratio is by def-
iition a/b. Fig 6 shows the variation of this ratio
-th ¢ for lateral and vertical current cases. For
v /4, u can differ by upto 302 from the uniform
:ating value, with lateral and vertical current
tses producing deviations of opposite signs.
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Fig.5 The dependence on ¢ (= “YTI/Z) of (a) QU/(hob),

and (b) (N§/2)(a?/b2). The lateral current
case is denoted by (L); the vertical current
case based on (36) is denoted by (V),
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Fig. 6 The dependence on ¢ of the flux ratio (u/(1-1))
(b/a) for both lateral (L) and vertical (V)
current cases.

IMPLICATIONS AND CORRECTION FORMULAE

The main implications of the analysis of the
earlier sections are that even a weak temperature dep-
endence of the electrical conductivity can significantly
modify the results obtained from those which would be
obtained if the heating were truly uniform, and that
lateral current flow and vertical current flow produce
deviations with different signs. The standard theory
for internally heated natural convection assumes
uniform heating. The point of this section is to pro-
vide a procedure for calculating first order corrections
to the experimental data obtained using (non-uniform)
Joule heating to obtain the true dependence of Nusselt
numbers and the flux fraction as a function of the
Rayleigh number for uniform internal heating.



If the temperature dependence of the heat source
_density is completely neglected, the procedure for
“reducing the data from the experlments is relatively
straightforward. The measured quantities are the
maximum temperature difference in the layer Ty, the
downward flux density qp, the upward flux density &U
and the power dissipated P. The mean heat source
density h can be simply calculated as P/(XYL). If che
insulation of the sidewalls is satisfactory then h.L
should equal 4y + d; £ Q. The Rayleigh number R, the
customary Nusselt numbers N; and N,,, and the downward
flux fraction p can be calculated from their definit-
ions. Thus the relationships (u-R), (NU—R) and (NL—R)
can be plotted for a number of data points, and correl-
ations sort the usual way.

These results do indeed characterise the system,
but it is difficult to apply correction formulae to
results presented in this fashion.

For the lateral current flow case we now consider
which quantities need to be measured and how the cor-
rection factors can be applied. The heat source den-
sity is given by (5), and this can be calculated as a
function of the vertical co-ordinate. The electrical
conductivity o_, the temperature coefficient y and the
cell width X are constants which can be determined
simply, the potential drop V across the cell can be
measured for each experiment, and the temperature
profile T(z) is also measurable. Hence h(z) is known.
At high Rayleigh number, h will be equal to hy (cor-
responding to Ty) for much of the cell depth. To
correct the results obtained to those for a uniform
heat source density it is simply necessary to add the
deficits in heat production in the appropriate bound-
ary layers to the upward and downward flutes Thus
qp, is replaced by qL = qp + 4qp and qy by qU = qU+AqU.
Also_the corrected downward flux fractionm 7 is
41,/ (qr, + qu)}- The appropriate Rayleigh num?er is Ry,
based on hE The relationships (& - Rp), (Ny - By),
(fy, - ased on the corrected fluxes can then be
plotted and these will be the ones required.
Moreover i should now equal a/L, which enables a to
be evaluated; the sub-layer Nusselt numbers Nj, and
Ni; can then be calculated and compared with the
digest of previous experimental results in [14].

The deficit can be obtained graphically from the
temperature profile since q. = a(h_ - /2hdz) = h_ay
(T, — fasz) However the analysig 1in Zhe earlilr
sec:lons enables A4, to be estimated. From (l14), &L
is calculated to be (2¢ cot ¢).(X Tp/a) whereas for

uniform heating it would be 2(AT /a). Thus
Ac';L = QL(can b= d) /e (40)
for the lateral current case. If )
2 = 2 =
% = YhoL f2) = YTZ (41)

so that § can be calculated without reference to the
temperature profile, then ¢ can be expressed in terms
of measured quantities qU and qL by the implicit
equation

dp /4y = W/2)A-pe)~! sin 2¢ (42)
When this is linearised, one obtains
¢ = uly (43)

If (40) is expanded in powers of ¢, then the first
order correction term is

D o A 2 2
aq; = q; (W=/3v%) (44)
The correction AqU can be neglected for high Rayleigh
numbers.

For vertical current flow similar arguments apply,
but with some modification. In this case it is the
electric current density which is constant throughout
the cell, and this being (J/XY) is easily measured for
each experiment. The heat source density h_, corres-—
ponding to Ty, is now the minimum heating race any-
where in the cell, and consequently to correct the
results obtained to those for a uniform heat source
density h_ it is necessary to subtract the enhancements
in heat production occurring in the appropriate boundary
layers; thus QL = ﬁL-AdL etc. If h is given by (6)

then
’

sq = a, (AT [en s )/24°1H) (45)

$2/3 which is equivalent
%36) cthen

which linearizes to ﬂq
to (44). If h is glven by
aqp = qL(l-cp'1 tanh ) (46)

To first order ¢ again satisfies (43), and so lineariz-

ation of (46) leads again to (44) as the first order

correction term. The correction term can also be

obtained easily from the temperature profile if (36)

13 assumed for h; if (6) is used however Aq =(hoaylsm)
(T -r)/s.dz which 1s certainly more tedious to eval-

o' m

uate than (44).

5 oo

5 N = N_(R) T

2 a0l L=N, NL

g uncorrected

= corrected

= 101 M

a e

4 Ny =N_(Rm)

Z 5 L I 1 1 I J
2x10° 10% 10" 102

Rayleigh number R

Fig.7 Example of the correction to the lower plate
Nusselt number for the vertical current case.

This correction formula has been applied to an
experimental investigation [13] using vertical electric
current flow to produce the Joule heating. With
Yy ~ 0.02K™', observed temperature differences of up to
12 K were not uncommon, which implies yT s 0.25. The
correction term Aq, to be subtracted from the measured
4, was found to be quite significant. Fig 7 shows the
uncorrected curve V = N, (R) with gradient 0.125 and
also the currected curva Ny = Nrkﬂm) with gradient
0.098. This can be cowmpared with a gradient of 0.09%
obtained by Kulacki and Goldstein who used much smaller
temperature differences in their experiments.

The value of vy for weak aqueous solutions
commonly used in Joule heating experiments is of
order of a few per cent. For example, vy = 0.032 for
common salt solution and y = 0.023 for HpS0, [16].
Thus the effects of the temperature dependence of the
electrical conductivity cannot be avoided, only
minimised. The correction formulae presented here



are admittedly somewhat crude, but they do indicate
the magnitude of the errors which can arise. The
-analysis also implies that one should be cautious
when extrapolating correlations to very high Rayleigh
number (particularly for Ny which is sensitive to the
spatial distribution of the heat source density).

The effects of the temperature dependence of the
heat source density have been calculated for thermal
convection driven by internal heat sources between
horizontal plates of equal temperature when (i) the
internal Rayleigh number is low enough for the temper-
ature profile still to be vertically stratified and
(ii) the internal Rayleigh number is high enough for
the temperature profile is vertically stratified in
the mean., In the intermediate regime when strong
laminar convection is occurring the temperature
profile has a significant horizontal variation and
this analysis is not strictly appropriate. However
large values of yT are likely to occur experimentally
only for large Rayleigh numbers when ome is trying to
push as far into the turbulent regime as is practical
with the apparatus, and so the errors are less likely
to be imporcant in the intermediate regime.

In the high R analysis, the heat sources in the
upper boundary layer were neglected on the premise
that the boundary layer was thick. If Ny is less than
% 10, this is unreasonable, and then the analysis
needs to be’'extended to take into account the deficits

or enhancements in heating in the upper boundary layer.

The extension can be carried out on the lines already
indicated, and is omitted here since the basic princ-
iples can be illustrated without the extra complexity
which the extension involves. If both internal heat-
ing and applied temperature gradients are present then
under certain circumstances, both boundary layers can
be quite thick and a full analysis is required to
calculate the magnitudes of the correction factors.

CONCLUSIONS

If the electric current flows horizontally
through a volume of electrically conducting fluid the
heating is proporticnal to the electrical conductivity
which has a positive temperature coefficient, and in
the upper and lower boundary layers the heating is
less than the mean heat source density. If the
zlectric current flows vertically through a volume
fluid which is thermally stratified in the mean, then
the heating is proportional to the electric resistiv-
ity which has a negative temperature coefficient,
ind the heating in the boundary layers is greater
‘han the mean heat source density, In both cases,
large temperature differences within the layer,
:oupled with larger temperature coefficients, result
.n significant but calculable deviations in the
lusselt-Rayleigh relations from their form for
miform heating. This effect can be minimised by
:eeping the temperature differences within the layer
mall, but for natural convection experiments in-
'olving both internal heating and applied temperature
radients [17] it may be unavoidable. The procedure
llustrated in the earlier sections can be carried
ut to obtain corrections for any configuration
here thermal stratification arises in experiments
ith Joule heating.
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NOMENCLATURE
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depth of lower sub-layer, m
depth of upper sub-layer, m
specific heat, J kg~! el
electric Field, V m~!
gravity, 9.81 ms™2 _2
heat source demsity, W m _
electric current demsity, A m ~
total electric current, A
total layer depth, m
coefficient in (28)
Nusselt number qL/XTp
upper layer Nusselt number, (b/L)Ny
lower layer Nusselt number, (a/L)NL
pressure
total power, W ' -2
vertical heat flux denSLEy, Wm y
heat generation rate in (sub) layer w m2
mean internal Rayleigh number, ughL 5/ (k)
(hy/R)R
(b/L)°R
1 + yT
time, s
relatxve temperature, 6-8 _, K
h,a/(2)) ®
h L2/(2A)
veloc1ty
total potential drop, V
horizontal co-ordinate, m
horizontal extent in x-direction, m
horizontal co-ordinate, m
horizontal extent in y-direction, m
vertical co-ordinate (increasing upwards), m
coefficient of thermal expansion, K~
(1n )}
tempTrature coefficient of electrical conductivity,
K-
dimensionless boundary layer thickness
coefficient in (28)
electrical resistivity of fluid, m? s-!
absolute temperature, K
thermal diffusivity, m? s~
thermal conductivity, W m - og-!
downward flux fractlon,qL/(qL+qu)

1

= kinematic viscosity, m® s

<9 Qv

g

-3
density, kg m
electrical conductivity of f1u1d AV
(v1,/2)?
(gt ,
enhancement (or deficit) inm q, Wm~

L]

Subscripts

o Brn

critical

lower

maximum (corresponding to T=T)
value at boundaries

upper

Superscripts

N

= corrected value
= (overbar) vertically averaged

-1

m









