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ABSTRACT

When space charge fields can be neglected the loss of charged particles
from a cusped magnetic field can be calculated exactly from a steady state
statistical model without any restrictive assumptions about the form of the
equilibrium’ configuration. Losses calculated in this way represent an upper
limit for the loss from a Maxwellian plasma. In a spindle shaped cusp it is
found that the loss through the line (ring) cusp corresponds, as expected,
to a leak whose width is approximately a Larmor radius. However a comparable
loss occurs through the point cusp, where it corresponds to a leak which is
much larger thah a Larmor radius. This enlargement is not very important for
the spindie cusp itself, which in any case has a large loss from the ring
cusp, but a similar enlargement could greatly increase the end-losses from

a high-p theta-pinch.
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INTRODUCTION

The loss of plasma in a real Cusp experiment is partly determined by the electric field
in space charge sheaths or boundary layers at the plasma-field interface. It is unlikely
thzt a rigorous theoretical description can be given of this complicated situation for in
addition to a self-consistent calculation of the electric field this would need a knowledge
of the complex and variable electrical properties of the vacuum chamber walls under plasma
bombardment, The solution may also depend on the exact way in which the plasma-field bound-
ary was {irst created since it appears that even the simple plane plasma-field boundary is
not uniquely determined by the state of the internal plasma but depends on the density of
trapped electrons(l) which in turn depends on-how the plasma formed.

On the other hand, it may be that in some circumstances the space charge electric fields
are short-circuited or auﬁomatically compensated by slow electrons, in which case the losses
are determined purely by the magnetic field and can be treated on an individual particle basis.
The problem then becomes more straightforward and susceptible to theoretical analysis.

Several estimates have been given for the cusp losses in the absence of electric fields.
In the case of a sharp plasma-field interface the effective siZe of the "leak" at a line
Cusp was calculated by Berkowitz et. al.,(z) using a generalised adiabatic invariant, to
be a Larmor radius - a result which seems intuitively obvious, This same calculation, and
intuition, would lead one to expect that the léak aﬁ a point Cusp would also be determined
by the Larmor radius; if so then in the axisymmetric spindle Cusp (Fig.1) the leak at the

points ~ ma® would be negligible(s) compared to the leak at the line Cusp ~2nRa.

Line (Ring) Cusp

Point Cusp

Containment Zone

FIG. |



(4)

However Grad has also roughly estimated the cusp losses by assuming that there is a

critical flux surface outside which particles behave adiabatically but within which they

are strongly non-adiabatic. In this model it is this critical flux surface which deter-

mines the size of the leak which is therefore roughly the same at the point and line cusps,

This concept of a critical flux tube would appear to be applicable mainly to the case where
(8)

field and plasma are well intermixed but it has also been suggested that approximate

equality of the losses at point and line cusps is a general phenomena.

It seems in fact that there is still some uncertainty about the individual particle
losses from a Cusp even when space charge effects are neglected. Accordingly it seems
worth while to calculate the losses exactly using a well defined model, This can be done

(6)

using a statistical model similar to that used by Robson and Taylor to discuss non-
adiabatic effects in mirror systems., A similar model was used by Tamor(T) for a more re-
stricted calculation of cusp losses and there are similarities with the work of Firsov(s)

who was, however, concerned with the influence of electric fields, As will become apparent,

losses calculated from this model represent an upper limit to the real loss rate,

CALCULATION OF CUSP LOSSES

We consider an axisymmetric spindle Cusp (Fig.1); we make no special assumptions about
the nature of the plasma equilibrium except-for the existence of the ring and point Cusps
and the existence of an almost field free (high $) containment zone near the centre con-
taining most of the plasma. We assume that the plasma-field boundary is thin compared to
the plasma radius (so that the radius of the plasma boundary is a reasonably well defined
concept) but we do not specifically require a "sharp" boundary or make any special assump-

tions about its shape or structure,

The real situation changes slowly with time (because of the loss of particles) and is
only a quasi steady state. However for the purposes of calculation this is replaced by a
true steady state, by imagining that all escaping particles are re-introduced into the con-
tainment zone, in such a way as to maintain constant the distribution of plasma withinlthe
containment zone, We can then consider a true equilibrium defined by a stationary distri-
bution function, from which we can calculate the flux of particles leaving the containment

zone,

The appropriate steady state distribution is determined by observing that within the
containment zone the distribution can be assumed to be Maxwellian and that in a steady state

the distribution function will have the same value in all parts of phase space which are
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accessible to each other (Lioville's Theorem). This does not, however, mean that the dis-
tribution is everywhere Maxwellian since not all of phase space is accessible to particles

originating within the containment zone; outside the containment zone the distribution will

be a truncated Maxwellian.

The accessible region of phase space is determined by the constants of motion; in an

axisymmetric system these are the Hamiltonian

Py eAG 2 |
e | 2 2 | =
H-é{9r+pz+(r o e (1)
and the angular momentum
eAe
Py = r (Ve+—c-—) . éwn (2]

[The mass of the particle is taken as unity and Ae(r,z) is the only non-zero component of

the vector potential. In the calculation it will be more convenient to work with the flux

e
¥ =% rAe when

1-9 e J
B ——ngl{ EB = F;l"{'.] ees (3)
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Within the containment zone i = 0 and all particles originating within this region

therefore satisfy the inequality
H > p?Zr‘a > pg/zlz2 oo (4)
where R is the maximum radius of the containment zone, Since both H and Py are con-—

stants of motion only those regions of phase space satisfying
H > p3/2R® vun: (B)
are accessible to particles from the containment Zzone,

With these preliminaries it is now a simple matter to calculate the flux through the

cusps.
THE RING CUSP

The flux through one half (i.e. z > 0) of the ring cusp is

=2 o] 5] -] :
= = - E 2 2 2
Fys = 27R j' dz f e dvr f dvz [ dvy €Xp - 5 (vr L VB) ... (8)
(0] (0] -0 -

where the integration is to be carried out at r =R (we assume for simplicity that the

radius of the ring cusp is the same as the maximum radius of the containment zone), and is

restricted by eq.(5) to the region,

-3 -
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Furthermore at the ring cusp % = z. The integrations are elementary; by the trans-

formation v _ = p Cos 6, v, =p Sin 6 one gets

* 4§ ) o
F, = iggg ] T% /'pz dp j dvy exp - g (p® + vg) .ee (8)

0 =00

the range of integration being restricted to

0<i<(p2+\’g)]§—\' vax [9)

R 6 °

The remaining integrations can now be performed directly to give

2Rec | 3x [ (10)

Fi. = 8 "8 . |2p°

To express this as an effective "hole size" one needs the density of plasma in the contain-

ment region

n = .[ d3v exp :g ve = (22)9@ ‘ ees (11)

Then equating the flux F, to the effusion rate (% H'E'QﬂRBL) one finds an "effective

leak width" at the line cusp of

= 3 [z _ 3m%
& = 5eR 2 - (8 ) a oo (12)

where a is the r.m.s, lammor radius é% {%. Thus, as expected, the width of the leak

at the line cusp is closely equal to the larmor radius.

THE POINT CUSP

The flux through the point cusp is given by

_ oo [=-] ] . E y . .
Fa =27 j' rdr j‘vz dvz j‘ dvr /, dve exp > (Vr ¥t ve) een (13)
(o] o =g o0

where the integration is again restricted by eq.(5), this time to

2 2 2 1 2
v+ Ve o+ Vi Re (r've + ) e (14)
2
and at the point cusp | = eg: « With the same substitutions as before eq.(13) becomes
Fs; = 4x /‘rdr .7 p® dp ]‘ dv6 exp -~ g (p® + vg] . wne: [ 1)
(o] o0



If v_ > O the range of the r integration allowed by eq.(14) is

6
eB - 2 . 26BR ( 5 _ _a\%
0 < = T = \{VS s (p® + ve) e CTB)
but if Vg < 0 the region
i T o, o SR s 2R (2, ya)
Vig \F’e = (p +ve} TR =N ¥ [V P (p +Ve) w7

is also forbidden. However eq.(17) is real only for Vg SO large as to satisfy

—— > 2R, .. (18)
so that eq.(17) affects only particles whose larmor radius is greater than the dimensions
of the system! We can therefore ignore eq.(17) and integrate over the range defined by

eq.(16) for both positive and negative Vg The integration of eq.(15) is now straight-

forward and leads to

_2mRe |, 3x [ e [Z
F2="ep " B2./2p [1 * 3ReB .| 7P } wisi 180

corresponding to free effusion through a circular hole of radius
a—%
_ (3 % % 85 p
Sp—(z) (ap RF| 1+ (372" g .o. (20)

where a is the r.m.s. larmor radius corresponding to the field at the point cusp.

If the field strengths at line cusp and point cusp are equal then the loss at the line

cusp eq.(10) and that at the point cusp eq.(19) are also almost exactly equal.

SUMMARY

Using a statistical, steady state model of the loss from an axisymmetric spindle cusp
we have calculated the loss rate through line and point cusps. The loss through the line
cusp is equivalent to free effusion through a slit of width 2SL, where 6L is (3ﬂ/8)z
times the r.m.s. larmor radius at the line cusp. The loss through the point cusp is almost
exactly the same as that through the line cusp and corresponds approximately to free effu-
sion through a circular hole of radius

o, = (¥ (a) 0

where qp is the r.m.s. larmor radius and R the maximum radius of the confined plasma.

Our model confirms therefore, as Berkowitz et. al. assumed, that the loss at a line

cusp is determined by the Larmor radius but at a point cusp particles penetrate much
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