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ABSTRACT

A co-ordinate transformation is developed which gives rise
to a concentration of grids in a boundary-layer without forecing too
many nodes into the remainder of the region. This proposed trans-—
formation is compared with a number of existing transformations.
The flexibility of the proposed scheme is demonstrated through its
applications to flow over a horizontal surface and for fléw in a
bounded region. The transformed conservation equations can then
be solved using finite difference methods in uniform rectangular
grids, thereby avoiding any interpolation of the variables or

their derivatives.
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INTRODUCTION

It is well known that the finite-difference schemes that
employ uniform grids are the simplest and most accurate. A uniform
grid, on the other hand, is not suitable for most boundary-layer problems
and particularly for thin boundary layers. This is due to the fact
that for adeguate resolution several mesh points per boundary-layer
scale are required and the physical dimensions of the system may be
orders of magnitude larger than the boundary layer thickness. In this
case,the computational effort for a uniform grid over the whole region
will be prohibitively expensive and wasteful. A further complication
can arise for time-dependent problems since the integration timestep, in
an explicit method, is governed by the smallest mesh size. It is,
therefore, imperative that some technigue be employed which allows

nonuniform grids with greatest density in the region of maximum changel1,2].

Perhaps one of the most straight forward methods is to select,
a priori, a nonuniform grid by concentrating grid pointswithin the boundary-
layer and using a widerspacing outside it (see, for example, Ref.1). It has
been generally believed that this nonuniform grid will result in
improved accuracy of the solution without wasting computer memory space
and running time. A major disadvantage of this technigue, hqwever, is
that it involves interpolation of the variables or their derivatives at
intermediate points and weak numerical instabilities usually arise at
an interface where the grid spacing changes. Runchal, Spalding, and
Wolfshtein [3] have used a nonuniform mesh and report improved accuracy when
grids are concentrated in the steep-gradient region. The resulting
accuracy, however, was not sufficiently adequate for practical purposes.
Crowder and Dalton [4] have reported that a nonuniform grid gives a
solution inferior to that for a uniform grid structure in both accuracy and
computing time, at least, for the Poiseuille flow problem in a pipe. By
experimenting with three different sets of nonuniform grids they
concluded that, for the same number of grid points, a uniform grid gave

more accurate results when compared to the exact solution.

An alternate approach that has been used with some success is
based on the usage of a continuous co-ordinate transformation for

the co-ordinate normal to the boundary. Thus, with an appropriate



transformation, the boundary-layer structure is not present in the
transformed co-ordinate system. The governing differential equation(s) is
noW subjected to this transformation, and the transformed equation(s]) can
then be solved on a uniform grid in the transformed space. The use of

a stretched co-ordinate to obtain a boundary layer solution, which can

be matched to an exterior solution, is a well known technigue in the
theoretical analysis of fluid flows. The technigque there is to have

a severely stretched co-ordinate in the boundary layer region and no
stretching at all in the interior. The approach we shall be considering
in the rest of this paper is the generation of a spatially nonuniform grid wh:
produces severe stretching in the boundary laver, but which passes over
smoothly and continuously to a quasi-identity transformation far from

the boundary.

~ Let us consider, for example, a one-dimensional problem. The
independent variable x is transformed to another independent variable

£ through the following equatian

g = f(x) (1)
Various partial derivatives appearing in the Navier-Stokes eguation are

replaced by expressions such as

ou _ dg 3u (2)
X dx 9f
and
2 2 a2 2
32u _ (dEV? 3%u _d’8 3u (3)
Ix?2 dx/ 8E2  dx? 3E

The resulting set of eguations can now be solved by using a.uniform
grid in E-space. From these equations, the following constraints on

the co-ordinate transformation are obtained:
1) the function must be continuous,
2) the function must be, differentiable ai. least twice, and

3) the function and its first two derivatives should not

have any singularity.

The existing transformations as well as a more flexible one will
be discussed in the following section. The resulting grid patterns
are examined and results compared. Several applicaticns are also

included.



EXISTING AND PROPOSED TRANSFORMATIONS

Roberts [5] was the first to propose a highly suitable
transformation in terms of a logarithmic function which resulted in the
desired grid structure in x-space. His transformation for a one-
dimensional flow problem with a boundary layer near x = o can also be
expressed as ,

_tanh ! [ViTE (1-x)]
tanh_lVT:B

where 0 < x £ 1, 0 £ £ <1, and § is the normalized boundary layer

(4)

thickness. Note that the boundary layer thickness is in the range

0o <& = 1. When § is equal to one, Eq.(4) can be seen to reduce to an
identity transformation (i.e., £ = x) and hence a uniform grid spacing
in x-space can be used. In the case of boundary layers near both
x=-1and x =1, i.e., for the case of flow in a bounded region (also

termed a 'channel prDbleﬁJ, Roberts' transformation can be written as

-.1 e
¢ - tanh _][L/l—ix) . (5)
tanh V1-§

The grid structure for the problem of a single boundary layer near x = o

can be obtained from Eq.(4). Alternately, this equation can be inverted

to give
my = 1~ tanh M2 ponnml /i (8)
v1-8 N . .
where i = 1, 2, --- N + 1 and N is the total number of meshes. Figure 1

shows grid patterns for various values of the boundary-layer thickness.

It is noted that this transformation indeed results in a concentration

of grids within the boundary-layer. The total number of grid points used
in E-space will naturally depend upon the problem. For example, if it is
required that there be a minimum of four meshes inside the boundary-layer
(which is desirable for adequate resolution) then the total number of grids

will have to be at least 22 and 30 for 6 = 0.01 and § = 0.001, respectively.

Recently Schumann, Grotzbach and Kleiser [B] have used the
transformation suggested by Roberts. They report that, at least for
their trial boundary-layer problem,the variable grid spacing technique
gives better agreement with the exact solution than the fixed grid pattern
in x-space. In other words, the continuously varying grid method with
B0 meshes results in an accuracy of 10_3, which is achieved by a fixed

grid pattern with 4000 meshes. They have also reported that the



finite-difference technique with variable mesh is superior to the
spectral method as long as the number of degrees of freedom is no greater

than B60.

An alternative transformation has been suggested by Kalnay de Rivas

[7] for the boundary-layer problem near x = o. She suggests

£ = Vx (7)
It is seen that for a uniform grid in g-space, this transformation gives
a continuodsly increasing grid in x-space. Let n be the number of meshes
desired in the boundary-layer of thickness § then it is related to the

total number of meshes N, in this case, by

N=7§- [8)
Hence, for a minimum of four meshes in 8§, the total number of meshes
will have to be 40 and 126 for 6 = 0.01 and 0.001, respectively. This

transformation is thus seen to require a large number of nodes for thin

boundary-layer problems. Another drawback of this transformation is that
2
it introduces singularities, due to derivatives such as %% and %;% , 1in the

governing equations near x = oO. Kalnay de Rivas has also suggested the
following co-ordinate transformation for the channel praoblem with

boundary-layers at x = o and x = 1
£ = % E.in“1 Vx (9)

For the case of a channel covering - 1 < x £ 1, this transformation becomes

I fl+x _
E = — sin 5 L {10)

Israeli, see in Reference 2, has suggested
=1 i = %
g = c; tan i (11)

where Xy is the location of the ith boundary or interior layer, Gi the

boundary-layer thickness, and s is a weight factor. This transformation
does not allow the number of mesh points in the boundary layer to be chosen
independently of the total number of mesh points used. As an illustration,
consider the simplest form of Eqg.(11), viz, £ = ¢C tan_l(x/SJ. Then, far
the case of a single boundary-layer, at least half of the total number

of meshes must be in the boundary layer.

We find the following transformation, for use when a single boundary

layer is present adjacent to x = o, to be a flexible ane:



tanh mx
€= tanhm (12)

where m is a number (not necessarily an integer) to be determined.

This functional form meets all of the requirements noted earlier. The
parameter m is calculated by requiring that there be at least n meshes,
out of a total of N, in the boundary layer thickness 6. Thus, m is the

solution of

n _ tanhmé
N ~ tanh m (18]

For sufficiently large m (say, m » 4) and thin boundary layers, m is

obtained from

=1 -1 {n
m = 3 tanh \N} (14)

Figure 2 shows the grid pattern obtained by Eg. (12) for two values of
m. It is seen that for m << 1 the proposed transformation reduces

to an identity transformation.

The Dhly disadvantage of the proposed transformation is that for
the case of very thin boundary-layer problems (i.e., large m) almost
all of the mesh points are concentrated within the boundary-layer
region (xv4§8) and one or two meshes remain with which to represent
the main flow. This deficiency can be eliminated, following a
suggestion by Eiseman [8], by adding another term to Eq.(12) We thus

propose
tanh mx

2
tanh m_ T (17c)x", (15)

£E =cC
where o < c £ 1. There is a great degree of flexibility in the second
term on the right hand side of Eg.(15). Eiseman [8] has used a linear
term. We prefer to use a quadratic term since it gives more weight to
the interior region. The free parameter c can be chosen to optimize
different elements of the solution. Figure 3 shows the grid pattern
for ¢ = 0.5 and different values of m. The quadratic term contributes
very little in the boundary layer. Therefore the parameter m can be

related to the number of meshes n within the boundary-1layer by

m =%tanh—l (—-rl) (16)
C

_5 -



This equation is valid for m 2 4. For the case where the boundary-layer
is expected to cover the entire range, we recommend that ¢ should be set
equal to 1. Eiseman has observed that the parameter (l-c) should be the
ratio of fractional area occupied by the boundary layer to the percentage

of nodes in the boundary layer.

For the fluid flow problem in a& bounded region with different boundary-

layer thicknesses at x = +1 and x = -1, Eg.(15) can readily be generalized
to give
tanh ml[l+x] tanh mz[l—xl
E=c - +(1l-clx (17]
tanh 2m1 tanh 2m2

where my and m, are expressed, in terms of the boundary-layer thicknesses
and the number of mesh desired within the layers, as

1 -1 {2y
m. = —— tanh —_— (i =1,2), (18)
i di cN

for which mi = 4 is assumed. The paramgter ¢ is determined by the
importance of the .mainstream region: as .compared to the resolution.of boundary-
layers. A word of caution must be added that the parameter c must be such
that the desired number of meshes within the boundary-layers out of a given N
meshes is feasible. Mathematically this condition can be expressed by requiring
the argument af tanh_1 in Eg.(18) to be less than unity,i.e., c > Zni/N.

Table I shows a compilation of various transformations that may be
used to provide resolution in a thin boundary-layer at x = o in the
region o £ x £ 1. Various characteristics are also noted in the table.
Perhaps the two most suitable transformations are denoted by numbers five
and six. In either case the number of grid points is minimized.

Likewise for the problem of boundary-layers at either surface in the

region - 1 £ x £ 1, various transformations are summarized in Table II.
Clearly, the most general and efficient one is the last one. It should
be emphasized that this transformation permits an optimum choice of
grids even for the case of two drastically different boundary-layer

thicknesses.

APPLICATIUNS

In this section, we will apply various transformations noted

earlier to both the one-sided boundary-layer and two-sided boundary-

s 1B



layers problems. First, we consider the fluid flow problem on a
surface such that boundary-layer aof thickness 8 is created near x = o.
It is well known that an adequate resolution of the boundary-layers
requires at least four mesh points inside the boundary-layer. Table III
shows the total number of meshes required by these transformations

such that a minimum of four meshes result inside the boundary-layer.

The flexibility of the proposed transformations is evident. Roberts’
method is considerably.superior to Kalnay de Rivas particularly

for thin boundary-layers. The proposed transformation is even better

than the one suggested by Roberts.

We now consider the fluid flow problem in a bounded region. The
applicable transformations are already summarized in Table II. Some
of these are compared graphically in Fig.4. It is seen that the
transformations involving hyperbolic tangent or arc hyperbolic tangents
are guite favourable. The effect of an additive term in the proposed
transformation is clearly shown in Fig.5. In this figure, the
transformation given by Eq.(l7) is sketched for three values of o
(0.5, 0.8, and 1.0J) and m =m, = 10. Note that the region shown

2
here is - L £ x £ o since the other region can be obtained by symmetry.

The propaosed transformation can also be compared with the others
by cnmpﬁting the minimum number of total meshes required to yield at
least four meshes in each boundary layer. The results are given in
Table 1IV. The superiority of hyperbolic tangent function when
combined with a linear term is thus evident particularly for thin
boundary-layers. It should be pointed out that the total number of
mesh points is determined by the resolution required in interior, as
the parameter m insures the desired resolution inside the boundary-

layer.

We remark that Lsraeli's transformation [Eq.(11)] involving tan
could be generalized in a fashion similar to that described here for
tanh. Thus the transformation E = tan_l[me/tan—l[mJ. where m satisfies
an equation similar to Eq.(14), has the same general characteristics as
Eg.(12). Moreover in Eg.(17) tanh can be replaced by (tan_lJ every-
where to give a similarly satisfactory transformation. For equations

(15) and (17) and for the analogous forms of the generalized Israeli



transformation, the analytic forms for di/dx and dzg/dx2 are of
comparable complexity: and none cén be expressed simply in terms of
£, which would be ideal since the calculation is actually to be
carried out in E-space. Thus the choice between the 'tanh' form
which we have chosen and the 'tan_l' form appears to be a matter of

personal preference.
SUMMARY

A flexible technique'has been proposed which is capable of
generating a concentration of grids in and near the boundary-layer.
This was accomplished by employing hyperbolic tangent functions and
a linear or second order polynomial. Flexibility was provided through
a relative weight parameter between the hyperbolic tangent and polynomial
terms. The proposed co-ordinate transformation has been compared with
other existing change of variables and the superiority as well as
flexibility of the proposed method was demonstrated. For the fluid
flow problem in a bounded region with drastically different boundary-
layer thicknesses, the proposed method is unequalled by any other
transformation considered here, save a closely related generalization
of Israeli’'s transformation. Finally, the proposed technigue is

readily extendable to two and three-dimensional problems.
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TABLE III. Total number of required meshes to yield four meshes in
a one-sided boundary-layer problem
Re 8 Eqg.(7) Eg. (4) g.(15)
(c=0.5)
; o
400 0.05 18 16 10
1o? 0.01 40 22 10
ax10* 0.005 57 24 10
10° 0.001 126 30 10
TABLE IV. Total number of required meshes to yield four meshes in each of th
boundary-layers atx = + 1.
Re 8 Eg.(9) Eg.(5] Eq.(17)
i (c=0.5)
400 0.05 | 28 22 | 20
! |
4 i
10 0.01 63 30 | 20
!
ax10* 0.005 89 34 20
108 0.001 199 42 20
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Fig.1 Roberts’ co-ordinate transformation for flow over a horizontal surface
(boundary-layer near x = 0).

tanh 3x

Fig.2 Hyperbolic tangent transformation for flow over a horizontal surface,
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Fig.4 Comparison of various transformations for flow in a bounded region (6, = &,).

CLM-P598



§=c

~0-8 144

-10

[tcnh m(1+x)-tanh m(1-x)

tanh 2m
4 (=) X

m =10

] | ]

|
-0 -08 -0

6 -0-4 -0-2
X

Fig.5 The role of a linear term in hyperbolic tangent transformation.
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