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ABSTRACT

The steady state electrostatic sheath which forms between a plasma and a wall
in order to prevent a net current flow also acts as a thermal insulator between
the hot electrons and the wall, The transmitted heat flux can be written in the
form Q = % n G,*2kT-F, where F = (ﬂ“/s]g [5 - en2np] and = me/hi. If the
wall emits cold electrons due to any cause (e,g. electron, ion or photon impact)
the voltage across the sheath is reduced and the thermal insulation impaired, i.e.
F is increased. The maximum extent to which this occurs is limited by a satura-
tion of the emission current due to space charge effects. In these circumstances
the ratio of emission to primary electron current never exceeds 1| — 8.3 Vi, the

sheath voltage falls to its minimum value of 1 kT and F attains its maximum

value given by F = 0.33 + 2.2 /.
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1. INTRODUCTION

An inherent feature of an open-ended magnetic trap (e.g. cusp, theta-pinch, ete.) is
that plasma must at some point come into contact with walls. Interest has been increasing
recently in the problems of thermal conduction along the field lines to the ends of such a
device(1’2’3). If the hot plasma expands into a vacuum (if cold gas is present initially
the situation may be completely different) and then strikes the walls the energy conducted
along the plasma can be given up to the walls. It is tempting to apply a boundary condi-
tion of zero temperature at the wall iﬁ the belief that there will be no limitation on the
heat flux at this point. However in the simplest situation a hot plasma 'in contact' with
a wall is in fact insulated(s) from it by an electrostatic sheath, the Langmuir sheath(4),
which prevents the bulk of the electrons striking the wall and the rate at which energy

can be deposited is limited by the ion flux to the wall, Under certain'circumstances,

then, the net rate of energy loss by thermal conduction might be significantly reduced,

The simple theory of the Langmuir sheath(4) assumes the wall to be perfectly absorbing
and non-emitting. Walls will not in general behave in such a convenient manner, particu-
larly if the plasma is at kilovolt energies, Any deviation from this simple assumption,
such as secondary electron emission or the boiling off of absorbed gas and wall material,

may lead to the complete disruption of the sheath and to a consequent enhancement of the

energy loss rate,

This report investigates the heat transmission properties of the sheath with particular
emphasis on the part played by any cold electrons emitted by the wall., It will be shown
that the actual physical processes giving rise to this emission, €.g. electron, ion, meta-
stable atom or photon impact, are irrelevant as far as the sheath analysis is concerned
and that it is only necessary to specify I' the ratio of the emission to primary electron
flux, i.e. the number of secondary electrons emitted due to all causes for every primary

electron absorbed. The heat flux to the wall can then be written in the form
Q = + v .xT.F
4 e ’

- 1,
where n and T are the electron density and temperature in the plasma, D = (SkT/ﬂmeyé

and F, the thermal transmission factor, is a function of me/mi and I' only. In an
appendix a simple thermal conduction calculation is presented which demonstrates the effect

on energy containment in a plasma of using this boundary condition rather than T = O.



2. THE STEADY STATE SHEATH EQUATTIONS

Consider an infinite plane wall, situated at x = 0, in contact with a plasma filling
the half space X > O. Let the density of primary, i.e. plasma electrons be neI(x)’ the
density of secondary electrons be nez(x) and the density of ions be ni(x). At X = =

i.e. far into the plasma, quasi-neutrality demands that
i 0]

nel(m)+nez(m)=n.(m)5n. ses (1)

In the vicinity of the wall, i.e. in the sheath region, there will be a charge imbalance

resulting in an electrostatic potential ¢(x) satisfying Poisson's equation

j=3) [=9
Nkl_eu

= 4%8‘_?81(X) - nez(x) - ni(x):] ves (2)

and the condition

(P{W) =0.

If the plasma electrons have a Maxwellian velocity distribution with temperature T at

x = « then the primary electron density in the sheath region is given approximately(s) by
_ “* ep(x)
ne](x) = ne1( ) exp T . vis k3

The mean free path between collisions is assumed to be large compared to the sheath

thickness.

Electrons are assumed to be emitted from the wall with negligible energies (compared to
kT) dnd then to fall freely through the sheath into the plasma. Their density is then given

by conservation of flux

Jep = nez(x) VeZ(X) = const. ee. (4)

and their velocity by
2
b m, vi,(x) - eo(x) = - e9l0) . oo (8)
Equations (3) and (4) implicitly assume that ¢(x) is a monotonic function, a point that

will be justified in a later paragraphe.

The ions are assumed to be cold (Ti = 0) and to arrive at the sheath 'edge' with a
kinetic energy (in the x-direction) of EO =X m; vg, having been accelerated towards the
sheath by small potential gradients set up in the bulk of the plasma(s) (c.f. also section

3(a)). On entering the sheath they will fall freely into the wall, n; and v being

-



given by

J.i. = ni(x) vi(x) = l'lu 'VO 9 . Pea (6)

4m v(x)+ecp(x) iv;. ciw (7

If T secondary electrons are emitted per primary electron impinging on the wall, the

flux of secondaries leaving the wall is given by

J.=TgJ ere (B)

e2 ~ el *

The condition that no net current shall flow is

JineT—Je2=l’10 VO, sl (9)
hence
1
Jei T F—1 My Y. 7
) } v« ow (10)
I
Te2. = T=7F M Yo
Equation (4) then gives
E %
_ r % 0
Regtli=m, 727 0 [W] : sz 11D
where u=m_/m; and % = ¢(0).
From equations (1) and (3)
E =t ‘
T % 0 % kT
nel(x)=no[ S 7T-T M (_e—(P;) e 5 aeis  (12)

Substitution into equation (2) now gives

E

E 1 1
.dag T % o.% | kT T 3 [¢] 4 1
— 47( - — — — . : —
dx s z J 1-TH ( etpo) }e tT-r8 (e(<P—<PDT) T = oo/ Eo I (13)

Defining dimensionless variables by

2eq 2E
2e ) o] X
=R hTo R 0 M=t i

1
where ?\D = (47!:noea/kT) 4, the Debye length, equation (13) becomes

S T R il (1- 2% [- Lo ]2 (e
’ T D )

Multiplying through by dn/dz and integrating from « (where dn/dz = 0) to z gives

1 dﬂa= _T'J_']é_‘]] I‘ Pnié [ __I]_lﬁ_]]
K G2 < g [(1 - i [a-2

T
e
Nl »

]

HN
+[ "-I_F-P_I' (_Tlc._i) Tl/z -1), ... (15)



Taking the negative square root (dn/dz < 0), inverting and integrating from O to z

: -
1 n L T HMa %
= — d 1 -1 —
N R R e
Ul

) l
x I:(1 - ETL)’E - 1:|+|: - T.I.‘T_I" (T:L')lé (e—n/2_ 1)}—!ﬁ
o 0

... (18)

then gives

3. CONSTRAINTS ON THE SOLUTION

(a) Stability
When T = O, equations (14) - (16) reduce to those for the conventional Langmuir
sheath, It is well known(s) that such a sheath will not form, i.e. equation (14) has no

monotonic solutions, unless 1, 2 1, i.e. EO;3 kT/2. When T # O the analagous stability

condition is

us (n1-1)> g

BN
Ny (g + N~ 1-T T )= .

.. (17)
It can be argued(s) that conditions within the plasma will always adjust themselves such
that ions arrive at the.sheath edge with the minimum kinetic energy necessary to satisfy
the stability condition, i.e. such that the equality is satisfied. This constraint of mar-
ginal stability will be used here. The equality (17) implies that, for <1, n, 2 1y

i.e. higher ion energies are required to ensure stability when electron emission is

included.

(b) Zero Current

The condition that no current must flow to the wall has been used in the derivation of
equation (14). In addition it can be used to detemmine Ny? the normalized voltage drop

across the sheath. The flux of primary electrons reaching the wall is given by

(0) BTyt - 1

_ ] _
Jel = 4 Ngq 10 T, =7T=T M Ve?
whence, using equation (12),
W2 q1-7T _14[ T (um)né] -
7 = - e . ... (18
}25,(“ 1 I—I' T]O

In order to determine . m, and m,; for a given value of T it is in principle neces-

sary to solve equations (17) and (18) simultaneously. However if they are rewritten in the

form n, - 1
- - 1
en0/2=1—2?:—‘1'|1 3/2 (1 + 1) . vee (19)



Ny * 1

wes (20
G

My =1+

and use is made of the smallness of Vi (< 56) it can be seen that, provided T # 1, an

approximate solution is given by

. (1-r)°
N, ® 1n [——EEE——i] s
] vwe 021D
ng = 1.,

Thus the introduction of electron emission leads to a reduction of the overall sheath
potential, the associated increase in the ion energy necessary to maintain stability being

negligible.

As T approaches unity the approximate solution (19) must break down. Before this
point is reached however a new physical phenomenon becomes important. It is discussed in

the next paragraph.

(c) Space Charge Limitation

The electric field at the wall is given by

E(0) = 35— (@D,

ZeID

where

T L S T DR o I O
lé((ﬁloa—ni[(l-'-ﬁ)_IJ_E(T]O+1)+T]_1(T]0+1) (e -1) ---(22)

The behaviour of this function, at least for small T, can be determined_by substitut-

ing into (22) the approximate solution (21), giving the result

1, (d0ys % _
% (5 5 = L+ ) L wen (23)

Thus as T increases and Mo decreases, the electric field at the wall decreases,
Equation (23) suggests that E(0) becomes zero for Ny ® 3, when T is close to, but
less than unity. It therefore appears that there exists a critical value Te of T at
which the emission current becomes saturated and a double sheath begins to form. For any
T in excess of Ic no monotonic solution for ¢(x) exists. A potential well, with a
depth of order the emission energy, i.e. small compared to kT, forms at the origin such
that all but a fraction £ of the emitted electrons are returned directly to the wall,
the sheath controlling e in such a way that e T = Te. Thus the ratio of emission to
primary electron current can never exceed I'c however many electrons are actually liberated

from the wall.



In principle a well of the type described could exist for I < T'ec, reflecting back to
the wall a fraction 1 - & of the electrons emitted. In this case & could lie anywhere
in the range 0 < e < 1. Since, in the negligible emission energy limit, the well would
have a very small depth and extent, the solutions would be indistinguishable from those

already obtained with T'=

A more precise estimate of Tc can be obtained by setting T = 1 in equation (20)

and finding its point of intersection with the curve (c.f. equation (22))

— _ 2 — -—
B PSR S LA N S A S
= N1 My (ﬂo + 1) " my (no + 1)
The values of no and m, so obtained are the limiting values for infinitely massive
ions;

n = 2,05

i = 1.16 .

Substituting these values into equation (19) then gives Ic correct to first order in

the small parameter /g, namely
Te = 1-83 V. v (24)

It can be shown that an increase in mn, above its marginal stability value results in
a lower m,, a lower E(0) and consequently a lower Ic. Thus the maximum emission cur-
rent is drawn from the wall when the stability condition is marginally satisfied. This
result is physically reasonable since an increase in Vo must lead to a decrease in n;

within the sheath.

It has been assumed in the present model that there are no processes producing ions in
the sheath region. If ions are produced they would tend to neutralise the electron space

charge and this would modify the above results.

4, THE TRANSMITTED ENERGY FLUX

Consider the flux of energy Q flow1ng into the wall, i.e. across the plane x = O.
Each primary electron striking the wall conveys on average an energy of 2kT (thermal
effusion). Each ion carries its initial energy E0 plus the energy Iewol gained by

falling through the sheath, Due to their low initial energy the emission electrons make



a negligible contribution to Q at x = 0,
Thus

Q = Je1 - 2KkT + Ji (E0 + qubl)

1 4
4n0v0-kT[no+n1+_1_r:' 5

1ol
Since Vg =.('Jt|.1./8)é nf Vs Q may be written in the form

Q = %n Ve « 2kT - F(T) ,

where .
Tus % 4
F(I') = CEHfﬁ Ty A, + 0y, +5—p)

For T < PC, use can be made of equations (21) giving

= 2
F(r) ~ (Bt [}n { ('2;HP) } + 3= %[]. wes: (25)

The limiting value of F, correct to first order in v{ﬁ is given by
F(PC) =0.33 + 2.2 Vi . ... (26)

If space charge effects were completely absent, i.e. if the electrons could flow freely
to the wall F would be unity. Thus F < 1 represents an improvement{ in the context of
insulation, over free thermal effusion of electrons. The largest, i.e. worst, value of F

is obtained for hydrogen, and‘is 0, 38,

5. EVALUATION OF T

The cold electrons emitted from the wall can be grouped into three categories: those
produced by primary electron impact, those produced by ion impact and those produced by any

other process. The emission flux can then be written, neglecting double sheath effects.

T =T I =T I+ ¥ J; + 7,

where Yé is the secondary emission coefficient for electron impact and Yi is the cor-

responding quantity for ion impact. The emission current due to all other processes (e.g.

photo-emission) is J,

The zero current condition gives

-7 =



Hence
Y. + Y. + J/7.
(& i i

J A
: 1. 1
Since J; = ng Vv, =N, (%—E)q nﬁ, this can be written

.=

3 Yé + Yi +J ny

= A
1+ Yi + M,
where

J

J. = — T It
kT4
nO (I'ﬂl )

For most purposes it will be sufficiently accurate to set m, = 1 giving, finally,

Ye + Yi + J

I' = . vee (27)

1+ Yi + J

If, when computed, this quantity is found to exceed PC for the particular gas of
interest then it must be replaced by Pc in the knowledge that such a large emission cur-

rent would be partially suppressed by space charge effects.

6. SUMMARY

When a steady state electrostatic sheath forms between a plasma and a wall in order to
prevent a net flow of current it also acts as a thermal insulator between the hot electrons

and the wall. It is convenient to write the energy Tlux to the wall in the form

nove- 2kT - F .

Q =

I

In the absence of any electron emission from the wall the potential drop across the sheath

js EL ip —
e V271

and the thermal transmission factor is given by

= (By% b
F(0) = (8 )25 + 1n o |
where p is the ratio of electron to ion mass.

If, due to any physical process, the wall becomes a cold electron emitter the sheath
potential is lowered and the thermal insulation impaired. It is not necessary to know the
details of the emission mechanism in order to determine the sheath characteristics. A
knowledge of T, the ratio of the total emission to primary electron current is all that

is required. For values of T < PC, where

I'C=l—-8.3\/_,



the sheath potential and thermal transmission factor are given by

kT 1 -
9(T) = "= 1n {\/Eﬁﬁ } ;

F(D) = (Esﬁ)lé[———? =L n {—————“2;“1“’2]] :

Values of P' in excess of PC are not possible. If the wall emits electrons in such
abundance that this limit would be exceeded a shallow potential well (i.e. a double sheath)
forms near the wall. This reflects back a fraction of the electrons emitted in such a way
that the ratio of emission to primary electron currents is limited to Ih. Under these
circumstances

¢, (T,) = 1.02 =

0,33 +'2,2 /i

R

F(PC)

Since the maximum value of /i is ~ 1/43 there exists (within the assumptions of the

model) an absolute maximum, i.e. worst, value for F of 0,38.

The following table contains values of interest for hydrogen and deuterium,

Hydrogen Deuterium
L, 0.81 0.86
e¢0(0) ! 2.8 kT 3.2 kT
e¢b(Ib) 1.0 kT 1.0 kT
EO(O) 0.50 kT 0.50 KT
EO(IE) 0.58 KT 0.58 kT
F(0) 0.16 0,12
F(rE) 0,38 0,37
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APPENDIX

AN EXAMPLE OF ENHANCED ENERGY CONTAINMENT:

In an open-ended magnetic trap energy loss due to thermal conduction along the field
lines to the end walls can severély limit the temperature attainable for a given power in-
put. In this appendix a greatly simplified example of such a situation is considered and
used to demonstrate how the insulation properties of a Langmuir sheath could result in the

achievement of temperatures higher than would otherwise be obtained.

Consider an infinite slab of plasma bounded by walls at x = * L, It will be assumed
that there is a uniformly distributéd energy input to the electrons at a steady rate W
and that the ion and electron temperatures are equal. If attention is confined to the
regime defined by A\/L > (me/hi)g, where A is the mean free path, the effects of con-
vection and particle loss on the temperature distribution can be neglected and a steady

state situation meaningfully studied. The temperature T(x) is then given by

LRS- wW, ves (A1)

with

n 1is the electron density and ;e the mean electron thermal speed. The subscript zero
indicates that a quantity is to be evaluated at x = 0, If we use the value of K for a

(7)

hydrogen plasma corrected for the thermo-electric effect as given by Spitzer ', then

~ 12 2
A, ® 2x10 To/“o'

5 . * " -3 : 7
where, if T0 is in eV and no in cm -, Ko is in cms.

Equation (A1) can be integrated directly and if an energy input time <t is defined

by

n_ kT

Wt =
(0] (0]

Nl

*The authors wish to acknowledge that this appendix is based on a similar calculation for
theta-pinch geometry carried out jointly with Drs. F,A, Haas and I.J. Spalding.

- 11 =



the result can be written T B - 7 /LY /To\ /X 3 »
T = ACVACTAY .o (A2)

where T = L/ﬁeO and is the mean transit time for electrons at the central temperature.

Equation (A2) determines the shape of the temperature distribution but not its abso-

lute magnitude. The latter can be determined by applying the boundary condition

dT 1 =

- K, (&) = =Ny vm.sz:-F , ... (A3)
i

where the subscript 1 denotes evaluation at x = L. If pressure balance is assumed, i.e.

n, T, = NiTy, then equation (A3) combined with the first integral of equation (A1) gives

G-—{>:/2_—_% %Q, via (A4)

(8]
If equation (A4) is now substituted into equation (A2) evaluated at x = L, the follow-

ing implicit equation is obtained for TO:

4 22 = (TO/T) (A5)
7 L 1 - (3T07FT)7 : iy
-8 =}
For hydrogen Ty = 1.5 x 10 L T0 6, where To is in secs if L is in cms and To in

eV, hence T0 can be obtained explicitly:
—8
B 3o § & 10 Lx* T4
'I‘0 = [%.5 x 10 WL* + <__—§F;_-_ ... (AB)
Equation (A5) is plotted in Fig.1.
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The boundary condition conventionally applied at a wall is T, = O and the results

analogous to equations (A5) and (A6) are then

A T
4 o _ _o©
5 5o B E soe (A7)
and
= fa
T, = [5.5 x 10 WL2:| ... (AB)

Equation (A7) is plotted as the dashed line in Fig.1.

It is now clear that if TO/T « E/S, i.e. if the energy input time is very long com-
pared to the electron transit time, the energy loss rate and hence the central temperature
T0 are determined by the thermal condition process alone; the wall sheath although pre-
sent has no significant effect. If Ty T ~ F/3, however, the sheath plays an important
role in limiting the energy loss rate and much higher temperatures can be achieved than in
its absence. In this regime T0 is given by

2/3
_ -11 WL
T, = ’71.87 % 107 = —’ )

n
o}

2 2
Thus where previously (equation A8) To' increased only as W’é is now increased as »v/g.
It should be noted that thermal conduction ceases to play an important part in deter-
mining T0 as soon as the temperature gradients in the plasma become small, i.e. as
T,_/T0 2 1. This occurs when XU/L ~ F. Thus provided F 1is small compared to unity,
thermal conduction becomes unimportant before the physical concept becomes invalid, namely

when RO/L s T

Throughout this calculation it has been implicitly assumed that any electrons emitted
from one wall and then accelerated into the plasma will be thermalized. In the short
mean free path limit the thermalization process will be Coulomb collisions and in the long

mean free path limit it will be two stream instabilities,

e BT o



. S
Wity a1 Dy W 0 e Ve od 38 v il Cor AL Parsce] agteinT red f[:»hb.'l L Bt e Fal |
» ,
= ) o (e ) b (G aton i) o ot Susges sl
Vv o
v - (I i E.O‘I
e —— ' b
E J _l
Ty
. . . F
. ' AT CTHS | AN )
. W
' 1o v o g h wodga, ety = Do brmbe &g PN g st
! ‘5o ey A, e wp el 0w st ] e gy @ ]
. I
Th gy e D . e B el ah & Ty N T g = o b A e ool e
+ gy o0 P | B L] b A TS PR P TR Y ¥ Ao [Ts N B n = o= i
D B L BT AL Tt S U P R FRS ) U (S ‘ : T T 1 U 1 Ao e
.
i1 . RTINS W 11101 L (R TR T S P T AL . S Il il S
' H 4 i 1 iy .‘I- - - : . 4 = N
i O W
fd " -
< .o .
¥ i
. [ - - b « 1o . B v §
- =" o 3 = i "
TRl fi Tt i wen G weaem BETT e W E ey LR o VR (O i B
a i ¥ OAEY o1 W b o o] W I g N S | S Laky = PR T 1
) ' ' ) Sl
JRTE LR LB B heEe Le o Tewwpeenn ol L s T BT R TR TP R T Y
, g ! - ) , R T 7O Y LI S RTINS it _
1 I and =
. . m g Aoy L L e 1g B i & TR e o =] T T R
- v 32 . . ¢ o B wro vt B - R ¥ *] wive I s
ezt o D L R T T E< TR = TR L T T P PR TN B VL0 . ! i
ey ol do Tty ik I s M OTVuw el oy 23 TR it SR AT T i
n
» *
- ,






Available from
HER MAIJESTY'S STATIONERY OFFICE

49 High Holborn, London, W.C.I
423 Oxford Street, London W.I
I3a Castle Street, Edinburgh 2
109 St. Mary Street, Cardiff
Brazennose Street, Manchester 2
50 Fairfax Street, Bristol |
35 Smallbrook, Ringway, Birmingham 5
80 Chichester Street, Belfast

or through any bookseller.

Printed in England

S.0.Code No. 91-3-19-58



