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PREFACE

In a recent paper™ the relation of adiabatic invariants to the equilibrium
of plasma in a magnetic field was discussed. This discussion led to a deter-
mination of the adiabatic invariants to higher order, which were found to ex-
hibit interesting differences between the case of particles circulating round
closed field lines and that of particles oscillating between mirrors, It also
led to new form for the adiabatic invariant in fields with toroidal magnetic

surfaces,

The details of these calculations were too lengthy for inclusion in the
earlier paper, but as it is hoped to extend these calculations, notably in
order to discuss stability - it seemed appropriate to record them fully,
They are presented here in the form of appendices to the original paper,

which is itself included for convenience and completeness,

*Hastie, R.J., Taylor, J.B., and Haas, F.A, Adiabatic invariants and
the equilibrium of magnetically trapped particles. Annals of Physics,
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ADIABATIC INVARTANTS AND THE EQUILIBRIUM
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by

~ R.J4 HASTIE
J.B. TAYLOR
F.A. HAAS
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ABSTRACT

-
This paper deals with two topics, firstly with the conditions for plasma equilibrium

in an arbitrary magnetic field and their relation to the lowest order particle adiabatic
inva;iénts, secondly with the form of the higher order contributions to these adiabatic
invariants. In part I the equilibrium conditions are investigated in a systematic way: as
the time scale of equilibrium is increased the constraints on the distribution function
become more severe until they culminate in the requirement that it be a function of the
lowest order adiabatic invariants. In part II it is shown that this discussion of equili-
brium leads to a convenient and novel way of generating the adiabatic invariants, not just
to lowest order but including higher order contributions, for which a,recurrence formula is
derived. When the first correction to the longitudinal invariant.l=j£vu ds is computed some
interesting differences are found between the case of particles oscillating between mirrors
and that of particles circulating round closed field lines. Part III discusses the effect
of electric fields and the extension of the calculations to time dependent magnetic fields,
leading to the third adiabatic invariant (the flux invariant). Part IV deals with the case
of toroidal magnetic fields possessing magretic surfaces and the form of longitudinal inva-
riant appropriate in such a field. In the case of small rotational transform a modified
line integral for J leads to a convenient description of particle motions in toroidal
systems, including the effects of both rotational transform and guiding center drifts.






CONTENTS

Page
Part I
1. INTRODUCTION 1
2. PLASMA EQUILIBRIUM 2
3. LARMOR RADIUS EXPANSION 3
4. THE FLUID EQUATIONS 4
Part II
5. ADIABATIC INVARIANTS AND EQUILIBRIA IN HIGHER ORDERS 13
6. HIGHER ORDER CORRECTIONS 18
Part III
7. TIME DEPENDENT FIELDS, ELECTRIC FIELDS AND THE THIRD INVARIANT 21
Part IV
8. MAGNETIC SURFACES 24
9. SMALL ROTATIONAL TRANSFORM 26
REFERENCES i 29
APPENDICES
App.A A LOW EQUILIBRIUh:I FOR THE FLUID EQUATIONS 30
App.B COORDINATE SYSTEMS 31
App.C TRANSFORMATION OF THE VLASOV EQUIATION TO Hs€,¢,0 VARIABLES,
AND THE DERIVATION OF THE D OPERATOR 37
App.D EVALUATION OF THE L AND H OPERATORS 41
App.E TIME VARYING CASE. THE G AND M OPERATORS 60

App.F CALCULATION OF g, ' 66



P'-
7T R 5
¢.\3-b'_f.']" , "
1..‘
AT ST, )
. IR N }!J.'--; <L
. LMTAEPEg e AR By .6
.
N EAGER S XA TR 26T |
k1 1 oy, =
“ o ks i b d ) A AR i1t daede L0 £
| ] g RS [0
Br ' . - .
-
re VZLASELD QEET BT G wllayy IR AT (B0 T PRAGESNEE ST T
SF Ui 5
b a1 YoTone £
o & HEEH ¥
da
0ne raf eSO
agl99a¢
o AT e UUSERA e A0 el PRt WAl wof =ik
e ' EMATEYE ITHAINAXD B ogih
ary e ot in'f ."l‘{'f'f'i',fé;l.‘,i YRRAY AHT 96 FEOTTAMSHEAAIT Tlans
o PRGN T I RO RN | | i (o TRties £ 020 4 TN (PR AR T
Ve
I+ SRORERMAGn I A 0 TR A0 VOTVALLAET s
o N ol v 17 i S 1 R R S TG HUH ity
i
, A0 AT AF A i, g
¢ : !
-y
Ny
L




PART I

1. INTRODUCTION

In discussions of low pressure plasma confined by magnetic mirrors two models have
been widely used; each model leads to criteria which must be satisfied in equilibrium, 1In

the fluid model the necessary and sufficient conditions(1) for equilibrium are

) _
P 7 (pl p”)ﬂ3 i
0s B os
and vere (101)
: B x VB
vV (p +p).-——4— ds = O
it I B

where the integral is along the line of force. On the other hand, in the guiding center
model the necessary and sufficient condition for equilibrium(z’s) is that the guiding

center distribution function F should depend only on u, J, and the energy ¢ i.e.

Fqu Flup, g, J) . eea(1,2)

where u = v®/2B and
L

i

J (u, &, a, B) / [8 {e = pB)]I{’ ds enn (1.3
a,p

are the lowest order adiabatic invariants. [The magnetic field is E =% x Vg and a, B
label a line of force. ]

The first part of the present work is an investigation of the relationship between
these two equilibrium criteria and of the general role of adiabatic invariants in equili-
bria. The problem is approached through the Vlasov equation when the essential distinction
between different approximate equilibria is the time for which the distribution function f
can be regarded as stationary. The time scales of interest are investigated systematically
by expanding f in powers of m/e, which is equivalent to an expansion in powers of the
Larmor radius(4). As expected, we find that as the time scale is lengthened, increasingly
restrictive conditions are imposed on the distribution function, culminating in restric-
tions equivalent to those of the guiding center model. The fluid conditions do not emerge
directly but nevertheless aré shown to be appropriate to an intermediate time scale in
most circumstances.

In the second part of this paper we show that this discussion of equilibrium leads

naturally to a novel and powerful way of obtaining expressions for the adiabatic invariants



ﬁ and 3, not merely to lowest order in m/e but including higher order contributiongﬁ),
for which a formal recurrence relation is derived. This is possible because the invariants,
while not true constants, are constant to all orders(s). Hence, within the scope ol any
expansion F(Q, 3, g) can be regarded as an exact equilibrium and by comparing this form
with the results of the direct m/e exgpansion one can recognise the exact particle invariants
ﬁ and 3, even though the concept of such invariants was not originally introduced into
the calculations. This method of obtaining invariants by first finding an equilibrium

distribution circumvents the necessity for any calculation of orbits, either of particles

or of guiding centres, and may have application in other problems.

Using this method we have explicitly calculated the first order corrections p,; and
J, and the second order correction ., . An unexpected feature of our results is that
the correction J, tO the longitudinal adiabatic invariant has one form for particles
which are trapped between magnetic mirrors and another form for particles which circulate

unidirectionally around a closed field line.

In Part III we extend the calculation to include the effect of electric fields and
time varying magnetic fields. This allows us to derive the third (flux) invariant ¢ by
a natural extension of the methods of Parts I and II. If the time scale for the field
variation is sufficiently slow this third invariant replaces the particle energy as a

"constant of the motion" and a solution of Vlasov's equation is of the form f = g, J, 9).

part IV deals with toroidal magnetic fields possessing magnetic surfaces and the
longitudinal invariant (replacing J) appropriate in such a field. One possibility is
that J should be replaced by an integral over a magnetic surface, but in the case of
small rotational transform a modified line integral is more appropriate. This line inte-

gral J*¥*  provides a convenient description of particle behaviour in toroidal systems.

2, PLASMA EQUILIBRIUM

In the fluid description of low pressure plasma the necessary and sufficient conditions
1 : . ; 5 G
for equilibrium are these( ) given by equations (1.1), whereas in the guiding center (g.c.)
(2,3)

description of the plasma, an equilibrium is described by any distribution function of

the form (1.2). It may easily be shown, by direct substitution, that a g.c. cquilibrium

() It is important to distinguish between the quantities u and J which are defined

e.g. by equation (1.3) and the true adiabatic invariants denoted here Ly ioend 3,

The true invariants are equal to p, J only to lowest order in the m/e vxpansion. It

might be more appropriate to use Ho? JO instead of p, J but we wish (o avoid exces-
; . e m m 2 3 = n Lys

sive subscripts. Thus p = p + =y + (e) Py (el FIS TSI (e) R AR

-2 -



distribution automatically satisfices the Tluid constraints. On the other hand, there are
many g.c. distributions which are not of the form (1.2) but which nevertheless lead to

(6)

pressures satisfying the conditions for (luid equilibrium. Indeed BenDaniel has pointed
out that if the g.c. distribution leads to isotropic pressure it cannot be expressed in

the form (1.2) even though the corresponding pressure distribution may satisfy (1.1). One

can also construct g.c. distribution functions which lead to anisotropic pressure distribu-

tions satisfying (1.1) but which cannot be written in the form (1.2)., An example, discussed

in Appendix A, is the distribution function

.= H (u, ¥ QECTD ) ne (A

L 1

where

<I> = ;{: m, /ﬂHi (g, €) J (y, &, a, B) du de eon v (252

which cannot, in general, be expressed in the form of a g.c. equilibrium; but nevertheless
leads to a pressure tensor satisfying the fluid constraints (1.1). It is clear then, that
the fluid and guiding center descriptions are not equivalent and in the following section

we will show that this is because they refer to different time scales.

3. LARMOR RADIUS EXPANSION

The physically interesting time scales are those set by the Larmor frequency QE’ the
frequency of motion along the lines of force, v“/L and the frequency with which the guiding

center drifts around the system, Vd/L. These three frequencies may also be expressed as

a
w — w — w
2 L C ? L® c

where a 1is the typical Larmor radius so that the criteria for equilibrium on these
various time scales can be systematically examined by means of an expansion in powers of
a/L. An equivalent but more convenient procedure is to expand in powers of m/e, so follow-
ing and extending the procedure of Chandrasekhar, Kaufman and Watson(4). By imposing order

by order the condition that the distribution function be stationary we obtain a sequence of

constraints appropriate to equilibrium on the various time scales.

The first step is to introduce an appropriate coordinate system (Appendix B). Each
line of force is labelled by @, B where B = Vo xVB, and the distance s is measured

along each field line from some fixed plane, then (a, B, s) are used as position coordinates.

Velocity is expressed in terms of (g, p, ¢) where e =% (v? + vﬁ), u=vi/2B and ¢ is

the azimuthal angle about the field direction g4 . A feature of these velocity coordinates



is that the transformation from (&, p, ¢) to vy is two-valued, since v =% [2(e - uB) ]%.
To deal with this we explicitly introduce an extra "coordinate'" o which takes only the
values *1 and indicates which branch of the square root is to be taken. All quantities
are thus functioné of (a, B, s, &, Wy ¢, o). Although it has been introduced here purely
as a formal device to remove an ambiguity in sign, ¢ will later play a much more funda-

mental rale; in some respects it behaves as a constant of the motion along with & and p.

When expressed in these coordinates the Vlasov equation

of e ar
s FR v+ = (v x B). 5 T 0
can be written
of 1 of
3 A + B EE) sy [Bal)

where X =m/e can be regarded as a formal expansion parameter equivalent to a/L. The

operator D 1is defined by:

1 [ er ar . ar :
Bf=% Lo' q 5+ (V=Y 3 (gac0s9 + £,5in¢) +poq 3o [(pa- pglcos2g + (7,- Ta)SH‘?‘P]}
1 ga q® 1
- 1 o —ta - i uz
* in &Tq tr1+.§(12+-faj) + (c¢ o, c¢§;)cos¢ - (Cl P, CLUB)Sln@-Fé Uq[(T2 T,)cos2¢
. 3
+ (py=pa) 51n2tp]} é-f- o Baid)
@
where
1 1 2
a=[20e-p®)])% , c, = (2B M=%VB+%—Q1 Wi 2 tr (oot DR

]

The unit vectors g,, €,, g, are orthogonal, with g,

~~

B/B, and the coefficients p;, 0,
T, are related to the curvature and torsion of the lines of force as described in Appendix B.

The velocity V is related to the usual guiding center drift Yd by

e
=Yy=(g, x¥) . R 1)
We shall look for solutions of (3.1) in the form

= fo + MNT, + AT, + ... s (B65)

The time dependence of fo may be regarded as being of any order in A, depending on the
time scale one wishes to investigate. We shall regard aro/’at as negligible to succes-

sively higher orders in A and so obtain criteria for equilibrium on successively longer

time scales.



(a) Zero Order

In the lowest order we have

Bfo i BFO
—-aTP = E _at s (306)

indicating merely that if fo is to be stationary on the time scale of the Larmor period

then the appropriate constraint is that it must be independent of the azimuthal angle Q.

(b) First Order

In the next order

dfl i ’dfo )
e = D fyg ( T;E'>1 een (3.7)
80 that if f is again stationary we have
fe = & (o, B,8,u,€,0) +/d<pD £ «eo (3.8)
and, since f, must be single valued,
KDr, > =0 sai (3:9)

where g, is an arbitrary function of the indicated variables only, and the angular brackets
denote the average over the angle ¢. Since fo is already independent of ¢ (3.9) becomes

of

o]
= = o . ... (3.10)

1]

w|a

<D >

o

Hence the requirement that 5f0/at = 0 in this order, (corresponding to equilibrium
on the time scale L/V,) imposes the constraint that ro must be independent of both ¢

and s, and that f, be given by

f1=g1+/D B W eee (3.11)

(here and henceforth, if the variable of integration is not explicitly indicated it is
understood to mean integration with respect to ¢; other variables of integration will be
explicitly indicated). Equation (3.10) indicates, through its Lagrangian subsidiary equa-
tions, that in this order, a, B, u, €, ¢ are all "constants of the motion" in accordance
with the physical picture of a g.c. tied to a line of force. [But note that neither here

nor elsewhere do we introduce the g.c. concept directly.]
(c) Second Order

In this order we have

of ar
e A & e, = D DD E (3.12)
3¢ B ot - g T8 0 o s et



so that if  is stationary in this order we have

r, = g, (@ Ps,peo0)+ / D g, + j?/ Dr, . een (3.13)
To ensure that f, be single valued we must have
<Dg1>+<D/Df0> = 0 wus, (374
or
og
o
f ?g+<D/Df‘O> = 0 ve. (3.15)
so that
s
Bd
g, = h, (a,Byu,e,0) - © f —f(D/D f0> ... (3.186)
o

where h, is arbitrary.

Equation (3.16) leads to a new constraint on FO; in its simplest rform this would

arise, e.g., from the requirement that g, be single valued in s and would be

r

5145‘&12(1)[131“0> = 0 . (3.17)

where the integral is around a closed field line. If & > pB everywhere along the field
line then the constraint does take the simple form (3.17). This is applicable when par-
ticles circulate unidirectionally around a closed field line without undergoing mirror
reflection. In this case the particle streams moving in either direction, represented by

o =% 1, are independent and the constraint (3.17) applies to each direction individually.

When particles are reflected by magnetic mirrors the situation is less simple because
g < uB over part of the range of s and ¢q becomes imaginary. Physically the two streams
represented by ¢ = * 1 are no longer independent and it is the coupling between them which
now leads to a constraint. Mathematically this constraint arises because the two branches
(0 = * 1) of the distribution function coincide whenever & = uB and fo is independent of
o at these "turning points'". ‘However f, does not vary with s so it must be independent

of o whenever it refers to particles trapped between mirrors.

Similarly g, 1is independent of o at a turning point (but not elsewhere) and the
change in g, between turning points must be the same for both ¢ =* 1., This leads, from

(3.16) to the condition that

+[B %[(D/Dfoﬂ = -_/'BB—E'I—S[U)[D r0>] cer (3.18)

A c=+1 A I=-1



or

Z f%<‘3/”f0> =0 wae 13519

where the integral is between turning points. For brevity we introduce the operator

Lf = <Dfo‘> i, (3:20)

then we can summarize the second order constraints on fo as:

(i) For particles which circulate round a closed field line:

[f“?‘li“‘o:, = L’#‘ -B-g—il.fo:] =0 . .00 (3.21)

o=+1 o=-1

(ii) For particles trapped between mirrors:

Z L/E%S_L f‘oj = 0 and ':fc)] = [fO] . s s . (3.22)
== 1

o=+1 o=-1

In fact the operator L 1is independent of o but we leave these constraints in the
general form so that we may refer to them in connection with other operators which will
arise later.

The operator L 1is discussed in the Appendix; when operating on a function such as

fo (u, €, a, B), i.e. one independent of s, ¢ it can be expressed as

gt B ool Hndomuny f Bae Gy ) (5.25)
o = mB H O B ds B s
ap

ev
where —— 1is the drift velocity defined earlier. Inserting this expression for L fo

into the constraints (3.21) and (3.22) one finds that either constraint can be concisely

expressed in the a, P, coordinate system as

<a_.f_oé£ i.f‘_o.aﬁ].>_0 (324)
do. 3B~ 9P da/ T SR g

where J 1is defined by

J (CL, B, Hs g) = f q ds ’ i (3.25)
the integration being around a closed field line or between turning points as appropriate,
According to equation (3.24) fo does not depend on a, B individually but only on

d (q, B, u, £); the lower order constraints already make fo independent of ¢ and s

and we therefore conclude that it must be of the g.c. equilibrium form.



So far, then, we have shown that if equilibrium is to persist on the L/Vd time scale:-

fo = g (Jy us &5 0) ... (3.26)
"8
f, = h (a, By u, & @) - o‘f Eﬁi L, + /‘D r, sow (3.27)
S0
f, = & (a, B s, p, &, G")+/D r, e.. (3.28)

where fo’ h, and gy are arbitrary. For particles trapped between mirrors fO is
independent of o and it is convenient to take the lower limit of integration, Sy at a
turning point; then h, is also independent of o. For particles which are not reflected

by mirrors (circulating particles) the choice of S must be left arbitrary.

If we had retained time dependence of fo in this order we would have obtained,

instead of (3.24), the equation

ga&£+(aro ‘H‘a&ﬂ> g (3.29)
m ot de da of Jdp o = ] oo .
and the Lagrangian subsidiary equations then give the time derivatives

T oo .M () 2y T mady (331

o = +3 G G y B = -z i) isd) REA e h o))

and so 3 = 0. (The & and ﬁ are of course, just the first order guiding center drift
velocities averaged over the oscillation between mirrors or around the line of force.)

Consequently p, J and & are the appropriate constants of the motion on the drift time
scale and fo is a function of these constants. For circulating particles o is also a

“constant of the motion" and so also appears in i‘or.
(d) Third Order

So far in our analysis we have shown that as we increase the order, i.e. lengthen the
time scale of equilibrium, we must impose increasingly severe constraints on fo: however

this process does not continue indefinitely as we shall now demonstrate.

In the third order, with afo/at = 0, the initial form of the constraint condition is,

as in previous orders,

LD fg2 =0 e dBe 1)
or
3 ‘*‘ []
gg TRy Bds 5
Bas_-Lh1+O’L/ qu0-<D DD, > . con (8.32)
SO



This equation determines g€; and leads, by precisely the same arguments as applied to
equation (3.15) for g,s tO constraints similar to (3.21) or (3.22). All that is necessary
to obtain these new constraints is to replace the operator L in (3.21) or (3.22) by the

right hand side of (3.32). For particles which are not reflected at mirrors this yields;
Bds Bds '
ﬁq[Lni-cL/q Lf0+<D/D/DFO>}—O s 5 K3:33)

while for mirror trapped particles this must be summed over o = * 1,

Now at this stage h, 1is a function of the same form as was fo in equations (3,21)
and (3.22) so that when L h, is evaluated and expressed in a, B coordinates, equation

(3.33) becomes
dh dh
1 3J 133 ) _ [Bds Bds .
<aua[3' a,s:m)‘)g q {GL/T Lf0-<D/D/Df0>] = B, vee (3.34)

This is an equation of. a type we have not met before. The terms in h, constitute the

derivative along the direction J = constant so that

h, = k, (4 & J) +/ = M, eer (3.35)

J = constant

which determines h,, and hence I,, up to an arbitrary function of My, €y J. At first
sight it may appear that (3.35) does impose an additional constraint on fo if the surfaces
J = constant (which correspond to precessional drift surfaces) are closed. In this event

h, can be single valued only if fo satisfies

]{ ﬁg‘—ﬁ Hf, = 0 . ios 3.36)

J = constant

However when the operator H (Appendix C) is evaluated in full, a lengthy calculation shows
that this constraint is automatically satisfied by any function of the form fo = fo(p,s,J);
in the case of mirror trapped particles one finds that H fo is identically zero while for

circulating particles it can be expressed in the form

of df
_y .2 _g) ﬂ._a( __o,)
i1 =3B aa(PaJ % B\F I cos, (5870

(where P is defined in Appendix C). In either case, therefore, the loop integral (3.36)

vanishes identically.

Another form for (3.37) is

of af
JP 0o 9P 0
Hf, = ( = =E -~ 3 Q) ... (3.38)



which indicates that the velocities defined by

G- @TEEHT b= - @)= &

s (B439)
must represent the second order drift velocity, averaged over the motion along the line of
force, just as (3.30) represented the average of .the first order drift velocity. The

vanishing of (3.36) shows that the second order drifts produce no cumulative displacement

from the first order drift surfaces.

However the most important feature of this section is that on carrying the expansi on

to a higher order we have not on this occasion needed to impose any new restriction on fo.

Instead we find that f, is now determined apart from a function of the same form as fo
and which could be absorbed into fo if desired. We will later indicate why no further
restrictions on fo are to be expected even if we were to calculate to still higher orders
and will show that restricting f to be of the form f (u, &, J) is sufficient for

equilibrium to all orders. For the moment, however, we anticipate this result and turn

our attention to the question of the fluid constraints.

4. THE FLUID EQUATIONS

Tt has been shown that if one requires equilibrium to persist for increasingly longer
times then successively more stringent constraints must be imposed on fo, culminating in
the requirement that it be of the g.c. form (1.2); however, the fluid constraints (1.1)
have not appeared in the intermediate time scales, as might have been expected. This is
because we have so far been concerned only with the particle distribution function and have

not considered the electromagnetic fields.

Electromagnetic fields

When the electric field is included a new physical time scale is introduced - by the
plasma frequency W, = and the m/e expansion must be extended to incorporate this. If )
is comparable with @, this can be done most simply-by formally regarding the m/e expan-
sion as one in which e = = (ml finite) for then both w, = and w, * « but ub/mc
remains finite. In a similar way the case w, « W, can be dealt with by regarding the

expansion as one in which m >0 (e finite), for then w, > =, & - o but wp/uh - 0,

The condition for the electric fields to be stationary is

ap Bfi
— e a —
St = e; = d'y = 0 eee (4.1)

i

- 10 -



and because e, but not m, appears in this equation there are differences between the
theory with wp ~ W and that with Wy € Wo. In a situation where W € U the charge

e 1is treated as finite; then (4.1) shows that 0Jp/dt will vanish to any order so long as
ar/ot does-so. Consequently there is nothing to be added to the discussion of equilibrium
criteria and all the conclusions reached in Section 3 are unchanged. On the other hand,

in a situation where W ™ Wes the charge e must be treated as a large quantity; then
equation (4.1) indicates that dp/dt is one order lower than of/dt. Consequently, the
vanishing of dar/dt to a given order only ensures that dp/dt vanishes to one order lower

and equilibrium can only be ensured by making both df/dt and dp/dt vanish to the appro-
priate order.

In the case of equilibrium on the drift time scale, when fo is already constrained
to be of the g.c. form f_ (g, g, J), no new constraint is needed to ensure that dp/dt = 0,
for it has been shown that if fo E ro (u, €, J) the distribution is stationary not merely
on the drift time scale but also to one order higher (indeed to all orders, as we shall see
later). Consequently the criteria for equilibrium on the drift time scale are unaltered by

the inclusion of electric fields.

However, in discussing equilibria on the intermediate time scale v)/L an alteration
is necessary; not only is it necessary that fo = fo (4, &, a, B), so making Of/dt zero
to order A, but Jp/dt must also be zero to order A. This leads to an extra constraint
which is easily found by retaining the time dependence of fo in equation (3.15) which

then becomes

of og /
e 0 oq 1 =
S St *t p 3= o+ (b Dfo> = 0 sow [(@.2)
The constraint &p/dt = O is therefore
3y § B du de / i
= + m; = D /Df, >=0 wws (4:3)

i,o

¥o= Z{: U'/ m; gi du de vee (4.4)
i,o

(where

is essentially the current parallel to B). The existence of a single valued V¥ which
vanishes in the vacuum surroﬁnding the plasma requires the integral over s of the second
term in (4.3) to vanish. When the appropriate form (3.23) is inserted for {D|D FO >
the resulting constraint can be written entirely in terms of macroscopic quantities as

/. g% Vip, #+p;j) +Bxpg = 0 -ee (4.5)

- 11 =



which will be recognised as an alternative expression for the fluid constraint (1.1). (This
form (4.5) is applicable at finite pressure whereas (1.1) applies only in the low pressure

limit.)

From this discussion we conclude that when the time dependence of electromagnetic
fields is considered the guiding center constraint remains sufficient and necessary for
equilibrium to all orders. However the weaker constraint fo = fq (u, &, a, B), which
was previously adequate for equilibrium on the time scale L/V) , now needs to be supple-

mented by the fluid constraint (1.1) unless the plasma density is so low that wp « W .

- 12 -



PART TII

5. ADIABATIC INVARIANTS AND EQUILIBRIA IN HIGHER ORDERS

In Part I it was shown that as the time scale of equilibrium was lengthened by going
to higher orders in A, the restrictions on fo became increasingly severe until it was
restricted to the guiding center form. However, once this point had been reached, an
extension by another order imposed no extra restrictions on fo; instead the restrictions
affected f,; which was thereby determined in terms of FO (apart from an arbitrary func-
tion of p, €&, J, which could be regarded as part of fo). It was suggested that no matier

how far the calculation was pursued no further restrictions on fo would be found.

(5)

That this conclusion is correct is indicated by the following; it is well known
that invariant quantities (1 and J exist which are constant to all orders in m/e and
which are identical in lowest order with the u, J defined in Part I. Therefore, within

the framework of any m/e expansion scheme, a distribution such as
¢ = ¢ (ﬁ: J: E) ase (5-1)

can be regarded as an exact equilibrium, and if we put

= ‘l.lo"')\*_,l.l-l-?&s I.J.a ssese ---.(5-2)

gy = )

J

I+ My + B Ty o v 15:3)

(where for emphasis we now write . Hgr J, for the zero order invariants u, J) we see that

an equilibrium correct to all orders can be expressed in the form
2y Bl 2
v ( Hor Jor € ) + A ( B, qﬁo + J, aJo #FA e ve. (5.44)

This general equilibrium thus contains one arbitrary function of three variables and is
completely defined once its lowest order form is given. However if V¥ is regarded as

explicitly dependent on X (5.4A) can be written in the form
a¢0 a¢o
3
wo (po, JO, g) + A ( My EE; + J, 33; + ¥, (“0’ €, JO) + A% ... ee. (5.4B)

though this corresponds only to a relabelling of the equilibria and by summing

wo + Ay, 4+ A2 Y, .. (5.4B) can always be re-cast into the form (5.4A).

Clearly, the lowest order term in (5.4) must be identified with the fo of Part I;
it is then apparent that even if one demands equilibrium to all orders fo remains an

arbitrary function of Ho? Jo’ E .

w13 =



It is also clear the higher order corrections i, Ja; Wz, J2j ... can be obtained
by identifying higher order terms of the series fo + A = A® f, ... which have already
been calculated in Part I, with the corresponding terms in (5.4). There are marked
differences betwéen the case of particles trapped between mirrors and those which circu-

late round a toroidal system and we Tirst consider only particles trapped between mirrors.

Mirror-trapped particles

Collecting together results from Part I we have

: S
Bds da
£, =k, {po, JO, ) + j DFO = G'f Fa Lfo +_/'537BB Hfo ... (5.5)
o J = const

£
where the various operators have been introduced in Part I and Appendix C. For convenience

we are taking s/ to be a turning point (q = O) as this simplifies the evaluation of H,
_ in fact it then vanishes identically for trapped particles. When the operators D and
L are explicitly introduced into (5.5) one finds, significantly, that f, depends only

on derivatives aro/apo and BFO/BJO although higher derivatives appear in the indivi-
dual operators. Consequently f, as given by (5.5) is, indeed, of the functional form

indicated by (5.4) and can be completely identified with (5.4) by setting

X-g
1 ~
- i Y [XJ.‘wd"'_Z—i[qu.' (- D g, +a- (g U e, + 4y (g, ¥ X’Qi)}:l
sve L5:8)
and
aJ0 Sds
Ji:‘%'VJO-FHi(éE) - —q'-“ﬂd- VJO esv (BT
c,ﬁe so‘
where
%
J, = f( [2(e = p, B)]? ds ee. (5.8)
-B\.. 2 e
wﬂzgsx(q g+uVB) = =V, ias (848)
v, xB
a = T s e (5 10)

e, is the unit vector along B and P is the curvature of the field. All quantities in
(5.6) and (5.7) are referred to the position of the particle not to the guiding center
which we have nowhere introduced, similarly the integrals in (5.7) and (5.8) are along the

line of force through the instantaneous position of the particle.

* Any other choice leads, of course, to the same final result, any change in the explicit
s integration being compensated by a corresponding change in the operator H which
implicitly depends on s

.

o]
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The expressions for f, and J, agree with those given by Kruskal(7) and by Northrop,
Liu and Kruskal(S) respectively. The second invariant J, can be cast into more convenient
form by observing that the term a - VJO in (5.7) is simply the change in J, which would be
introduced if the path of integration in (5.8) were transferred to the field line through
the instantaneous guiding center. Similarly u, aJO/apo is the change introduced if we
replace p by {po + i,) in the integrand of (5.8).‘ Hence if we collect together zero
and first order contributions to J and take all integrals along the field line through

the guiding center, instead of through the particle, we can write

!6 =1
Jl:f[ [2&:— (p0+'é—‘p1} B):I ds-G/ ‘(’l—syd-VJO . - (5.11)
So

J +
0

a3

This can be written in yet another form which is important for the later discussion
of circulating particles. We introduce the instantaneous drift velocity in a, P space

by defining

¢ = y,r% , p=y. Lo 03.000)
and recall that the average drifts a and P are related to 8J6 B and 9dJ/da by
(3.30); then (5.11) can be written

% ds” /S ds’
m = . m m S ot S
3, + 2 J,0 _]4 [2(e (kg +gHa) B)]?ds + & = }( 1) G(s',s") ey e U5s 1 E)
S
0
where G(s’, s”) is a zero order quantity defined by
a3 . . . .
GlE"y 8l == [:a(S’) P(s”) - al(s”) B(s’) | . uv (5414)
m

The factor o which appears in the last term of (5.11) or (5.13) is due to our con-
vention that ds is measured in the direction of e, irrespective of whether the particle
is moving to left or right. If instead the integration is always taken in the direction
of motion then the o is unnecessary. Equation (5.11) can then be interpreted by observ-
ing that the last term represents the change in J0 since the particle left the turning
point due to the drift of the guiding center and so is exactly the amount which must be
added to J0 to ensure that (J0 + E Ji) retains its original value as one follows the
particle. (However note that (J0 + E Ji) is entirely a local quantity which can be com—
puted from the magnetic field and the instantaneous position of the particle; it is not

necessary to calculate the orbit of particle or guiding center.)

In a simple axi-symmetric magnetic field the symmetry ensures that Xd' VJO is

identically zero so that in such a field J is given correctly through first order by

=5 s



%
J = ‘4{[2(5-—(po+reﬂpi) B):I ds , e.. (5.15)

the path of integration being along the field line through the guiding center.

Circulating particles

For circulating particles i.e. those not subject to mirror reflection, f, is again

given by
s
Bds da
fy =k, (o, ].10, £y J0)+[Df0—gf TLrO-'-fm Hfo ee. (5.16)
So
J = const
and '
Bds’ SBds
Hfo=j[—q— G‘L[TLfO—<D-[D[Df‘O>}. eon (5.17)
5o

but there is now no natural choice for the lower limit 5o and the operator H must be

evaluated for an arbitrary So* As a result, H no longer vanishes; at first sight this

appears to mean that f, involves an integral over the precessional drift surfaces
J0 = constant. Fortunately, however, it is possible (see Appendix) to express the operator

H as a total derivative along J = constant, i.e.

ye o .2 if_o)_u_a_ ?fg) . 18}
o = 3B %a 57/ " da 3P 57 s Ly
where P is given by

2 d " s . r
P=0y, } ds’ [Ti +% (v, + Ta)] = % .# q?:”) /. G(s’,s") q?st) s (5,19)
s

So

the function G being again defined by (5.14). The coefficients 7T ,, T, T, are related

to the torsion of the field line and a, B are again the instantaneous drift velocities.

Consequently
S of
Bds 0
f, = ¥k, + '/‘Df‘0 - U./ i Lfo + P 35 eee (5.20)
o

which once again involves only the first derivatives of fo and so is of the form (5.4).
Direct comparison with (5.4) now yields the invariants for circulating (non-reflected)

particles as

; gL vy
1 ~
p1=—g[zl-wmd+ 7 [x.L- £+ D B =2 legd) =™ %y 21-”21}] i AR

and aJ
_ 0
Jy=a« W, +py Tt 7 ko j[ as' [7, +%(75 + 74)]
Y eee (5.22)
ds” ./'s ds’ o ds” s ds’
+ o G(s', s") - = f. ]' G(s’, s") .
JJq(sf') a(s’) ’ 2.f alsm s qls') !

Sp 50
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The second invariant can again be simplified by changing the path of integration to the

line of force through the guiding center, then

1
J=J +"—‘J1=j([2(s-(po+r£-pi) B)]éds+? pof[11+15(12+13)]ds’
om j[ ds” fs ds’ om ds” S”ds’
+ — = als”, g™y =i %. ‘/ Gls', ") .. (5.23)
& q(s”) q(s*) 2e q(s”) qls’)

So So

The invariant p, is identical with that for particles trapped between mirrors but the
second invariant is of a different form*. Some difference was to be expected since the
expression for (Jo + E Ji) in the mirror case involved an integral whose lower limit 5,
was a ‘'definite physical point - the mirror reflection point - which does not exist for
circulating particles. If J had been given by the same expression therefore, it would
now have involved an arbitrary value of So The extra double integral in (5.23) rectifies

this; both integrals of G(s’, s”) depend on the arbitrary point So but their sum is

independent of S, and can, indeed, be wrilten as

S
% a}( q‘(’z”) qc(lz,) G(s', s”) wis [5.24)
SI}

in which there is no arbitrary quantity.

Another difference between J for circulating and oscillating particles - which was
not foreseen - is the term involving the integral of the torsion around the closed line of
force. As this term is one of the terms arising from the operator H it can be inter—
preted as one of the consequences of the second order drift velocities (3.39). It may seem
surprising that one can relate part of a first order quantity J; to a second order drift,

but just as

ds
/6 !d -VJ0 a ees (5.25)

can be regarded as the accumulated change in Jo due to the first order drifts over times

of order L/q or LAV, so can

/ !‘gz) AR adTaaTs oo (5.26)

Jo = const.

Northrop, Liu and Kruskalts) have calculated J,, for mirror trapped particles only, and
give a 'direct derivation" of the invariant which would seem to apply whether the par-
ticle is trapped between mirrors or not. This derivation amounts to showing that if
J=(Jg+ MJ,) is given by (5.11) then dJ/dt is of order A®. However this is also the
case when J is given by (5.23) and would be true if J, were replaced by [Jl-PQ(G,ﬁ,H,E)]
where Q is any function, so that this argument alone cannot determine the invariant. To
be a first order invariant not only must dJ/dt be of order (m/e)® but its average must
vanish to higher order so that the error in J remains of order (m/e)® as t = «.
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be regarded as the accumulated change in JO due to second order drifts, over times of order
L/Véi) or X LAu. In (5.26) the drift is an order smaller than in (5.25) but the time
for which it acts is an order longer so that (5.26) still yields a first order quantity.
The second order'drift changes sign with Vj so its accumulated value for oscillating par-
ticles is always zero. It must be emphasised again that this is merely an interpretation
of the result of a rigorous calculation, it is certainly not necessary to invoke second

order {(or even first order) drifts in order to determine J, .

By the same token there is no necessity for the drift surface to be closed (i.e. for
the drift motion to be periodic). The invariant J exists as a consequence of the perio-
dicity of the motion along the lines of force and does not depend on any periodicity in
the drift motion. If the drift motion is periodic it gives rise to a further invariant(s)
_ the flux invariant @ (i.e. the total flux through a drift surface). In a static situa-
tion such as has been discussed thus far, this invariant is redundant since constancy of
u, J, € inevitably ensures constancy of ¢, However @ can be obtained by our procedure
provided one includes appropriately slow variations of the magnetic field and this will be
discussed in part 3. For the moment we return to g and J and consider the general

t . : ;
n h order term in their expansions,

6. HIGHER ORDER CORRECTIONS

A recursion formula for Mo and Jn involving only the operators already introduced
can be obtained as follows. When the equilibrium constraint < Dfn > was applied to fo,

f,, £, we found that f, could be expressed in terms of fo’ for example

s
Bds da
f, = kg + /‘Dfo -0 /‘ P L fo + 33/38 Hf‘O i s (BT

So

If we carry out exactly the same calculation, but consider instead of fo’ r,, fo the

general consecutive terms fn’ fn+1’ fn+2 we obtain
: ]
fn+1=kn+1+/m‘n-0’/ B—S{-S-Lfn+/7a‘;—;-a—ﬁ HE . e (6.2)
5o
Multiplying this by %n+1 and summing we have
f = k+AKT s wa (653)

where K represents the sum of the three integral operators in (6.2) and k(p,e,J)=2 f‘kn,

Consequently f can be written as

rf = (1- AK)“ k(p, g, J) ... (6.4)

=18,



which involves a single arbitrary function and generates f in the standard form (5.4A):
it can therefore be directly identified with (f, J, €). If now, we choose Y, J, €) = [
then the nth term in the expansion (5.4A) of V¥ 1is just M similarly we may choose
Y= J and éenerate a series whose nth term is Jn. Comparing these with the solution

generated by (6.4) allows one to write down a recursion formula for [ and Jn -

s J J
=/D[“}-U[B‘EI—SL{“}+/ag“aﬁﬂ{"}. ves (6.5)
Hy u ,

n

Using ‘this recursion formula we have determined p, in an arbitrary magnetic field. This

can be written
4

By = cg + ZE: (cn cos ng + s sin ne) .e. (6.6)
1

where

tan ¢ = e_.v/e_ .v . sow (68:7)

~3 ~~

In a general magnetic field the coefficients c S, are very lengthy but for a vacuum

n’
magnetic field they simplify somewhat and putting n = (p; - p;) and v = (7, - 7,) the

%
coefficients for a vacuum magnetic field can be written

4 a 2
... (6.8)
2
¢, = fg (n? - v?) LE%l_ eue (6.5)
(uB)2® 1 '
s, = —LBGL g NV veo (6.10)
qu“B av 9
& 12 B® { oy T 52 + n(2, - Pi) - v(20, - 61) -ee (6.11)

A special case of p_, - its value on the median plane of an axisymmetric vacuum field -
was calculated some time ago by C. Gardner and is quoted by T. Northrop(7). Our result
does not agree with this formula but we understand from Dr. Gardner that there is an

error in the formula of ref. 7 and his latest calculation agrees with ours.
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B

£ e, - 25,) - wp, - 2@3)}

- Wy Py )il Be e 61)} s (6:12)

‘3 <%>}+ (2B5)2 [B%<§>+2HT1+2P10'1+1§1J (z.g)}

eo. (6.14)

ees (6.15)

c
é)is B_JB- P:l.(c(2 + P—B):I

ee. (6.16)

c 3 C
q_B;: PiTi (q2 + “B) —g EI:_B% 0—1 (C[Q " PB):I
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PART IIT

7. TIME DEPENDENT FIELDS, ELECTRIC FIELDS AND THE THIRD INVARIANT

In parts I and II only static magnetic fields were considered; this led to the two
invariants y, J which together with the energy & form three "constants of the motion".
In time dependent magnetic fields e itself is no longer a constant but if the field
variations are sufficiently slow it is known(s) that there is still a third invariant
quantity, namely the flux @ through a drift surface J = constant. We now consider how
this third invariant arises from our present viewpoint and at the same time discuss the

related effect of electric fields. These calculations are very similar to those of parts

I and II so that we need give only an outline of the arguments involved.,

To investigate these effects we first transform the Vlasov equation to a velocity

frame moving with the field lines. For this we choose a velocity

= da ap B
E = [_—Bt VB—at Vﬂa}x"'—Bn s T el)
so that

Lele! = . 9P ’ =

3¢+ H Vo = O C 3t * E VB = 0 . S b 7H2)

This velocity g is not the same as the E x Q. drift, in fact with

3A
E= ¢ = ¥ S (%
and A = a VB the velocity U is
(E+ %) xB
E = B2 we v ETw4)

where ¢ = (a dB/dt + ¢) and W does not, in general, vanish.

After transforming to this frame of reference the variables 4s €, ¢ are introduced

as in parts I and II when the Vlasov equation can be written

o4
af 1 of
i 7‘(3 at+Di‘+Gf‘> )
where D is the operator introduced earlier and G is a new operator, given in Appendix C,
which depends explicitly on U and on V. In fact G may be split into two parts each
depending only on either U .or V.

-1

¢ = vlg¥+a . Lal lvie)

The calculation of f proceeds order by order just as in section 3, so that we can

omit all details. The effects of electrostatic fields and time dependent magnetic fields
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of various magnitudes are introduced by treating G as being of the appropriate order in
\. For example, to reveal the flux invariant the time dependence of the fields must be

taken to be one order higher than that of the drifts Vd/L, that is

\
1 04 8] a d
a3 L LT ¢ e (1.7)
: AT U 2 1 of U
which makes the operators G' and G  of order A°. Then B 3t and G [ are of the

same order and % é% can be absorbed into GU.

The zero and first order calculations are unaffected by the additional operator G

and, as before, constrain Fo to be independent of ¢ and s, respectively.

Second order

It is in second order that the operator G Tfirst affects the calculation and in place
of (3.12) one now finds

of
(-1 q; 5
s Df‘1+GI‘0 ve. (7.8)

fp, = g, + /‘Dg1 + /.D /‘Dfo + /.G¢f0 ees (7.9)

and the associated constraint

leading to

<Dg1>+<D/Df0>+<G¢fO> =0 . .or (7.10)

When the last term in this equation is evaluated it has a similar form to the first, with

which it can be combined so that (7.10) can be written
of
g2 s D ] _
T3 s (gi ¥ as>+<D[Dfo>._ o . IO Ay
Consequently the constraint in this order is still just

j( 3 (Dfo‘o> . i (712)

indicating that f_ = 1is of the form fo(p, e, J, t). There is however a change in g,

which is now given by

® Bds af0
gy = -O’f o et gl A, (u, &, @, B, 0) voe (7.13)

So

instead of by equation (3.18).

Third Order

In this order, both GIIJ and GU enter the calculation, and we have

of
3 s U .
—é— = ng + G f:l. + G fO PR (7. 14)

L]
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leading to the constraint
<o, >+ <ehr, > <% > = 0. con [7418)

When f, and [, are introduced in terms of f, one finds, as before, an equation for

g, similar to equation (3.32). For brevity this will be written as

q %, - Bds g2 Y
o3 = = —Lh1+0'L/—a- Lf0~<DfD/Df0>+GBE ¢$—>+Mfo... (7.186)

Qs

where Mf0 represents all the several terms arising from Gw and GU which appear in
(7.15) and the operator M is given in Appendix C. Integration of equation (7.16) over

s leads to a generalisation of (3.33) and (3.34), namely;

dh oh
1 aJ 1 9J Bds
( 3o 3p - 6_[3' EE>_HFO+}[ p Mfo . v e 717)
Now, as we observed in section 3 the expression on the left of (7.17) is the derivative of

h, along the precessional drift surfaces J = constant, and if these precessional surfaces

are closed (7.17) may .itself lead to a constraint on f, namely;

f[ %Hfo+}{ aT%aa—Js j[B‘fTS Me, = 0 . en (7.18)
J = constant J = constant
where the integrals are taken around the precessional drift surfaces.

It was noted in part II that the first term is automatically zero, so that (7.18)
leads to no new constraints in the time independent case. However in the present situa-
tion there is a constraint. To find this we must evaluate M; this is a tedious calculation
given elsewhere(g) and we content ourselves here with the result which is

}[ %G_ﬁ (%)(3—%)—(23)(%‘%2 ]: g, [ Grviey

J = const ap

[Here, 9J/dt at constant a, f means the rate of change following the field line labelled
by the numbers (a, PB) (i.e. the Lagranian derivative moving with the velocity U,) the
functions a(x) and P(x) must of course vary if the magnetic field is to change. ]

Equation (7.19) can be written

?_E’EE’. Qaf_o = 0 (7 20)
dt 9 B3t Ot - "t ¥
where
®= fadﬂ ees (7.21)
J = const.

is the flux contained within the precessional drift surface J = constant. Equation (7.20)
shows that f_ is of the form fo(p, J, @). Hence in time varying fields, although the energy
€ is no longer a constant it is replaced as an invariant by the flux ® and there are still

three 'constants of motion" p, J, &,
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PART IV

TOROIDAL SYSTEMS WITH SMALL ROTATIONAL TRANSFORM

8. MAGNETIC SURFACES

In our discussion of adiabatic invariants in part II, two different cases were dis-
tinguished, that of mirror-trapped (i.e. oscillating) particles and that of particles
circulating round a closed line of force in a toroidal field. Closure of the lines is a
very special circumstance and more usually in a toroidal system the lines of force are
not closed. Instead, as e.g. in a stellarator with small rotational transform, the field
lines generate toroidal magnetic surfaces. The structure of such fields has been con-

sidered in detail by Kruskal and Kulsrud(10) whose notation will be closely followed.

A magnetic field possessing magnetic surfaces can be represented by

B = W x W ... (8.1)

where VU is a single valued function which is constant on each toroidal magnetic surface
and v is a multiple-valued function. By a suitable choice of scale, ¥ can be made
equal to the longitudinal magnetic flux inside the magnetic surface V. Then v is an
angle like variable which increases by unity during one loop encircling the magnetic axis

and increases by (/2m during one circuit around the torus.

For the moment we ignore any complexity introduced by the multivalued nature of Vv
e.g. by introducing appropriate “outs" across the torus. Then we can use YV, v in exactly
the same way that we used o, B in pérts I and II, and the equilibrium constraints can
be determined by the same procedure. We consider only the o = + 1 stream, the changes

necessary for o = - 1 are obvious.

In zero order the constraint is again that fo be independent of ¢ and in first

order that it satisfy

of
_ 9 __° _
<Df‘0> = § Fs = o . ve. (8.2)

This implies that f0 is constant along a line of force and as each line generates its
magnetic surface this is usually interpreted to mean that fo must be constant over a
magnetic surface. This is also indicated directly by the alternative form of (8.2),

namely

{pf, > = Bﬂg(ﬁ-vro) = ... (8.3)

For the present we adopt this interpretation and examine whether any further constraints

appear in next order.
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Second Order

The second order equation is

of

2
35 = D, = Dgi+D/Df0 wis {Ba4)

leading to the usual equation for g,
gi
El_._...,_<D Df‘0> = 0 , s (858)

but because the field lines are no longer assumed to close on themselves this no longer
leads directly to the constraint (3.17) which was obtained by integrating around a closed
field line. Nevertheless there is a constraint on f_  implied in (8.5) as can be seen by

writing it as

B2
B- Vg, + - (Dfnr0> =9 ... (8.8)

and then annihilating the first term by multiplying by |Wr|_l and integrating over a

magnetic surface. Then the first term vanishes identically and fo must satisfy

f/% B?a <D/DFO> = B = e (8.7)

(10) that

o = T (@ s €) ruis (B18)

From this it may be deduced

N : iy ;
where J 1s a surface adiabatic invariant

& . // T‘E‘ﬁ .. (8.9)

which is an obvious generalisation of the simple invariant J obtained by replacing

un [ g4 . [ b5 e (8.10)
B |y |

as is appropriate if the line of force covers a § surface ergodically. Since J* is
by definition constant over a magnetic surface (8.9) merely confirms what had been con-
cluded from the first order calculation, namely that fo is constant over a magnetic

surface. Under certain circumstances however (8.8) remains true in the time dependent

(11)

situation .

Although these results appear to be the natural extension of those in part II they
may not be really appropriate, particularly when we recall our observations in part I
about the relation of the constraints on TO to the time scale of the corresponding equi-
librium, In particular it is clear that J can only be a relevant quantity on time
scales much longer than L/V,, (where L is of the order of the circumference of the

torus). Similarly J*, or even the magnetic surface ¢ itself can only be relevant on

L0% i



time scales long compared to the time taken for a particle to "sample' the whole of a
magnetic surface which, especially in the case of small rotational transform, may be very

long compared to L/Vy. Consequently the following argument would seem more suitable.

9. SMALL ROTATIONAL TRANSFORM

In the case of small rotational transform one should introduce the transform itself
as another small parameter and include it in the expansion (or ordering) procedure. This
can be simply done if one regards the field as composed of two parts; a large field which
possesses closed field lines and a smaller additional field which produces the rotational
transform and the ergodic behaviour of the field lines. (This is, in fact, the conven-

tional way of treating stellarator fields.) Thus we can write
E = Vlbevo+V1|rvai see (9.1)

where (Y, vo) label the closed field lines of the dominant field and v, corresponds to
the small rotational transform. The final results do not depend on the exact way in which
vy is split into its component parts Yo and v,. Corresponding to the splitting of the
magnetic field we can formally regard D as split into a dominant part Do and a small
D,, however, as will be seen there is no need to explicitly determmine D,. The calculation
proceeds like all its predecessors. In zero order there is no change; in first order there
is the constraint ¢ L > = 0 indicating that f, is a function only of (b v &5 1)
and f, is given by

fi = gi (v, vO’ Es My s) +/Df0 . oo (9.2)

In second order there is an essential change from section 8. The second order equa-

tion is now

of 5 -1
53 = D% f, +» D, T, eee (9.3)
so providing the constraint
-1
{D, & >+ (DO[DO f‘0>+7\ <D1f0> =i 1) IRUIRY | 11

The first two terms are very familiar; it is only necessary to note that they refer
entirely to the field corresponding to Ve which has closed field lines. The last term
is easily found without the need to explicitly determine D, by observing that, since

both (D, f, > and B .Vf are zero,

oyt o Epd e L @.v) = #(Ei.wo) . Ra(ouE)
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gE _3 < D D ) > }\- 1 5 v ) = . -
+ + g- (E . f 0 . (9 6)

where @gyﬂh)o must be taken along the direction of EO. The constraint which ariscs from

(9.6) and the requirement that g, be single valued is

Bds -1 B 05
== LD DEF >wi = ds = 0 . vie LT
q 0 By
The familiar first term in (9.7) becomes
o o5 Mo a -
3 o dv oy sk g s
where J is defined by the line integral
1
J z}[ [2(e—pB)]”§ ds e.- (9.9)

around the closed line corresponding to the dominant part of the field. The second term
in (9.7) is unfamiliar but can be reduced to a more transparent form by introducing

B= (VW x V) and

6f0 afo
Vf‘o = V‘]J—a—lll+Vvoa—vo e (9.10)
then
B« Vf of (B_. Vv) af
}[.._ 0ds:——é-u2 }[i—”—-— dsE__a_uE Vv.ds ... (9.11)
BO & BO e ~ ~

the last identity following because the path of integration is along the closed field line
Eo' Now recalling that the vector potential A can be written A = {Vv some further

manipulation allows us to write

0
fzv-di-:El}'j(é-di e (9.12)
and to show that
0
.__.av ﬁ.d-s" = 0 . s (9-13)

Collecting these results together the final form of the constraint (9.7) can be written;

ifg ?ii - a& BJ** = 0 (9 14
3¢ ov 3v oy = e (9.14)
so that
sk
f‘D = fo (e, €, J7) ... (9.15)

*k
where J is a new form of invariant defined by

4= =j{ (@+SA)-ds . .o (9.16)
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This is a result which could have been anticipated from the form of the canonical
angular momentum in a magnetic field. However the value and simplicity of introducing
J**  does not seem Lo have been appreciated. By its use one automatically incorporates
the effect of bofh rotational transform and that of g.c. drifts, whereas previous calcula-
tions(Iz) have achieved this only by a direct calculation. For example the average motion

of a particle under the combined effect of transform and drift is given by

ar sayt = o a3 \!
= ( 5 ) (5;) v o= _(W (ﬁ) eee (9.17)

: : ok ’
and the particle remains on a surface of constant J °, not on a magnetic surface of con-

=1

stant . Similarly the equilibrium distribution f0 is not constant over a magnetic
surface but over a J** surface. This is because the actual path of a particle is due to
a combination of the drifts, which divert the particle from the magnetic surface and the
rotational transform which generates the surface. Both these effects are included in J**;
j[ q ds represents the effect of drifts and j[ A ds that of the rotational transform.

When the latter is the dominant effect (small drift during one circuit compared to .L/2%)

then

J**‘*EJ( A ds
m

which is constant over a magnetic surface. Hence the results of section 8 can be recovered

in the appropriate limit.

* . . g < :
The invariant J** is different according to whether the particle is moving parallel
or antiparallel to the field. This asymmetry arises because the rotational transform and

; 2 ; . . akok
drifts are additive in the one case and subtractive in the other, this asymmetry in J
has, therefore, no connection with the asymmetry in J, (part II) which is a rather subtle

consequence of the dynamics of a charged particle in a magnetic field.
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APPENDIX A

As an example of a guiding center distribution which is not of the equilibrium form
F(p, €, J) but which nevertheless leads to anisotropic pressures satisfying the fluid

equilibrium constraints, one may take the separable distribution (for each species).

Fo (u, gy 0, B) = H; (u, ) Qa, B) . etsitB
Clearly (A.1) is not in general a guiding center equilibrium. The pressure resulting from

(A.1) can be expressed in the furm

p, = R/(B) Qls, P)
oo M2
p, = R,(B) Qla, )
where " .
R, (B) = z m, /%Hi (4, €) du de i AL3
1
R, (B) =

Z m, /qBHi (g, €) dp de . e A4
1 .

It can be seen by direct substitution that A.2 satisfies the first fluid constraint

ap (p, - p,)
i W 8B
3s T B s B vee A5
When (A.2) is substituted into the second fluid constraint
(Bx V B)
_/V (p, +p,) g 4 =0 sy AsB
the result can be written as
/‘ - (R“(B) + RJ_(B)) 5Q 9B 3Q oB 6 3
Be 3 3p OB om = eee A
However, on differentiating (A.4),
N (R_u>= y (R, (B) + R (B)) 3B o
af B? B2 ap vee Ao

so that (A.7) becomes
d dX aQ o dx
Q a_B </R||(B) F) B -a—%é_; (/R“(B) E;) = 0 .es A9

The second equilibrium condition (A.6) can therefore be satisfied by making Q(a,p) a

Q,‘ Q
o

function of /R“(B) 85 . Another form for this, obtained from (A.4) is

I

so the distribution (A.1) can be expressed as

=8 w|&

= Z’ mini (u, &) J(py &, ay B) dpde = T v BsTO

i

Fi (P-s E, Q, [3) = H.i. (}-1’ E) Q {<J> ) . B . v

Although this is not a g.c. equilibrium, it nevertheless satisfies both of the fluid equi-

librium conditions (A.5), (A.6).
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APPENDIX B

COORDINATE SYSTEMS

(a) Orthogonal Coordinate Systems

The operators introduced in Part I and discussed in Appendix C are most conveniently

evaluated in one of the following coordinate systems.

The first is a generalisation of that discussed by Chandrasekhar, Kaufman and Watson(4).

Three orthogonal unit vectors €., €, €, are chosen with e, = B/B. We do not neces-

~

sarily choose e in the direction of the principal normal to a line of force as C.K.W.

~

do, for, as will be seen later, other choices of €, prove to be more useful. Then if

ds, dx, dy denote elements of arc length in the directions €9 €40 €, respectively.

o) d 0
Ezilg"'gaa"'ga"g aoe (Bo1)
and

asi

e — Pt Ca 9 by

622

Frial (T, €a + Py 9_1) ees (Ba2)
de

?:' =Ty €2+ 01 €,

where p,, and - o, are the components of the curvature of a line of force in the g, ,
2 directions, and T, 1is related to the torsion. [If we choose e, along the princi-

. . : . . d -1
pal normal T, is the torsion, otherwise the torsion is equal to T, + = (tan” o, /p, )] .

The other derivatives are

984 %4
= P3 &2 — Tz &3 = T3 €3 + Pa €a
ax ay ~ ~
<3z aez
—a—x=o'2 '%3- P2 Ei —‘3?=O":3 ga-—’Ua ,%:L e (5-3)
de de
~3 ~3
T = g & = Oig B BT Pa8a =9 By

where the Pjs» O are the curvatures of the €, and e, axes, and the 7T; are related
to their torsions.

Because s, X, ¥y are not true curvalinear coordinates the derivatives are non-

commuting; (in fact the operation j% must be regarded as shorthand for €x ?E etc. ).

~ B =



The commutators are required extensively in the evaluation of the operators in Appendices

C and D, and are derived below:

2q %
aiay B a;ax = (e ¥ (e5- YQ) - (g5- V) (g,- Q)
og; og,
= Qe .o (B.4)

=(T2+T3)§§—C¥ 9-9—0' 29

o SO DT S

dsdx ~ 0x0s ds 9x
e (an)
- 9Q _ , 9Q 9Q
= (Tz - 11) dy P25x ~ P13s
L . G }
asdy dyds ~ ~ ds oy
... (B.6)

In evaluating the operators of Appendices C and D, we will also require the results of
differentiating the curvature and torsion coefficients, pj, 03, Tj, in the s, x and
y directions. We derive one of these results here as an example and list the others
which we will require, and which can be established in similar fashion.

ap 0T
1 3
Sy - 3s-% Yle(earDed-e,-Vle (e, De,l

%, d¢ og og g, o,
=—a_—._i+e s -__:."v>e ks . Y R Y —_r e es s (B.?)
y ~4

i<a

ds ~2

Talpa + pa) + T4lps - pa) - 1(py + T5)

Similarly 5o 5
..5)_(.1. - _5‘-5-2 = To(ps + Pa) = To(ps — pa) + paloy + 03) eos (Bo8)
Zx& == ea—s = Ty (Ty = T)~TT5+ pl + PE - 0,0, «e. (B.9)
(-3% + an:- = @y - Tz)f"?z":a- o2 - p2+ pyos ... (B,10)
aa_?( - ?—y": Oa(pa - P2) + 0a(Ts - T3) + pa(Ts + T3) ... (B.11)
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]
Ty ¥ Ax = Tl Tam Te) = olpg = Rl - il + ) i (Ba12)
ot oo
1 3
3y ¥ s T Talty — Bg) = T (T, W)= plp, +Ty) e.. (B.13)
611 do
2
ox F 9s T O3(Ta = T1) + Pa(Ty + T3) - P2(0y + 03) ... (B.14)
d d (1388 3B 3
7% P2+ o) + 55 ( 53y )= Palpatpd) - R R+ (- IR . (B19)
d d 1 OB P, dB 19
55 10y By) +§-§(B——y> = =0, (p2 + Pa) ——B—‘*ry+ (z; = x.) 'B“a_i' von (Bi16)
Some further useful identities are
1 0B
18, =-g3=PatPe
curl €,=0, €+ Py €3 - €y (12 + T3) sve (Bal?)
JII
3 =&t curlg, =- (Tt Ts)

Rotations of the e,, e, axes

In the final statement of results it is usually convenient to take e, in the direc-

tion of the principal normal to a line of force. However, in the evaluation of the opera-
tors L and H of Appendix C it is more convenient to take another choice of axes,

obtained by rotating the given €. &, axes about the direction g, . Consider the new

axes

€a=Tes+ Ve, ; Ea=€.x€5 =Tg; - Y&, ves (B.18)

where 1° + Y% =1,

Then in the new coordinate frame we have

2= 1 Ve, «ee (B.19)

ki H

nlez* Ve, + Y(es

2>

- N
(Ez 'E)Sa. = P2 2 %3

Then using the equations (B.4) and (B.18) we may solve (B.19) for p, ,7, to obtain

A

Pg 71299 + Yapa + ‘Y-T](Ta i 1'.2)

«-« (B.20)

’Ea = T]QTB + Yaq‘-a + Ynlp, - Pa)

In similar fashion we may obtain expressions for all the ﬁj_, 5‘1 ’ %i in terms of pj, T}

7; and m,Y. For example

= n%pg + Y3y + MY(T, - Tp)

5.2
©
|

oo (B.21)
= %75 + Y31, + (ps - pa)

e
@
|

- B -



It is clear from (B.20), (B.21) that certain combinations of the p's and T's are
invariant under rotations. For example

~ a ~ ~
Tog + Tg = Ty + T3 ; P2+P3=P2+P3

This is consistent with their interpretations as - es-curl g; and V-e, respectively,
which are clearly independen£ of the orientation of the e, g, axes. However the factors
(T, - 75) and (py - p,) which appear in Dzs, Anc and D, Azs(sce Appendix C) respectively
are not invariant under rotatioas of these axes, and one or other (but not both simulta-
neously) can be made to vanish. Thus

Ty = T, = (1, - 15) (n? - ¥Y?) + 2fnlp, - pa) wes {(B.22)

and this is zero if

5 1 (py = £5)
=g 12 2 21% .
f(ta - 13)% + (p2 - Pa)®}

With this choice of new axes, D25 and A vanish, and considerable simplification
2c

occurs in the complicated H operator

(b) The o, B, s Coordinate System

In tais coordinate system the gradient operator is given by

d d il
E:E(I.aa EﬁE'E'I'ES 95 s (8.23)

where B = EG:<Eﬁ, and the three base vectors are in general non-orthogonal. Thus

b} ESx‘Eﬁ . Jz Es x Ya

Yo x VP
da = B Y5 3F="B '

L LB el
* Jds T B £ By

I}
i<

eeo (B.24)

and the three derivatives commute.

However in the present problem, derivatives in other directions in a, B, s space

occur naturally. These are

(]

Qixzﬂ- .

v
gux¥0 o @ g, x 3P
B ~ 7 BBy’

(B. 25)

|

d
i e i .
e aal

As anticipated in the above notation these are derivatives taken at right angles to field

, nor

%
oo

lines, and therefore not at constant s. Consequently they do not commute with

with each other. In fact, writing

and operating on o, f, and s respectively with 32— , we find
2

g, x YP¥s
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so that

B 08 Rax AR T80 8
3a, = 3a - = S ... (B.26)
Similarly
3 0  Raxlerl g
ap, ~ B " B s aen (BL27)
A consequence of these results is that for any function A = A (a, B, s),
s S .
5 ., e gyx Yo Ts
EEI_/.AdS_/-f)—ﬁdS*-(A“-T__
... (B.28)

: s S
3 - _ [ oA < £s%x Y8 - Vs )
3a, / Ads_/ 3z ds -\ A B .

We note that for any function Q = Q(a, P) which is independent of s,

RQ _9Q . 2Q _Q
Ja, ~3a * 3B, T 3B

Finally we will require the resolution of the curvature of a line of force £y in a, B

space. This is
g8 o o TR

and we now obtain expressions for Py and p'[5 which will be useful in the main text.

Consider

o (8,xIB s ) a(ggxlﬁ) g, x18
E( B :ES-E B —ES B 'E e

=e, -V and using the vector identity

then writing 3 i

w

2
I
1=
l<a
i
I
}<a
x
—
p1s]
X
=

(@-9)b - (b-Y)a=a(y

this reduces to

3 ( axIP+%s : Y8y, &, x¥P g, xVP
.a_s..<_._B.__._ = Vs -curl \ F /+ B,E-gi-gli'
e, xVp-Vs 1 9B 198 13B 1
-l (19) 12 48 Leane,

The first three terms vanish by (B.26), and using p = - e,x curl e, in the last term we

4

obtain

3 {Bax¥P -1s

E( . B =+Pa, * s (B.29)
Similarly we have the result

3 [ & xJu-ds

E( B )=-Pg .« (B.30)

. 0
Finally we construct the commutators of the a——a y derivatives with each other and
%), 9B,

: 0
with 5

= BBl



Thus

32 32 32 3 e, x¥VB Vs 32 e, xVB-¥s 32 )
asau._L'aan_as= 3sda ~ 0s B % " Gass T B 352 = Pads
es. (B.31)
and similarly
32 3% d
as—%—m=pﬁg § .a. (B.32)
% 3? =_§.1"E|3_ v E:_"Ea‘_ v +§,1x,20-' v E,xiﬂ_v
30 op, ~ 0P 89, B ~ B ~ B ~ B ~
_ (128 8 18 )
8 B of, da, BJa 3B,
+ B1_3 {curl [(gix vB) x (E:L",Y‘l)] - (eyx 9P) div (e, x Va)
+ (4% Ya) div (g4 x VP) J -V,
where the identity for curl (axb) has been used.
Now using
(e,xVB) x (e;x Vo) = - B, div (e,x Va) = Va«curl g,
and
div (e,x VB) = Yp-curl e, ,
the above result reduces to
3 2 (e, curl e,) -
I . . By 2 e. (B.33)
3a, 3B, ~ op, o, B 3s
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APPENDIX C

TRANSFORMATION OF THE VLASQOV EQUATION TO pi, & , 0, ¢ VARTABLES,
AND THE DERIVATION OF THE D OPERATOR

In the body of this paper we have shown that the equilibrium conditions and the adia-
batic invariants, are determined by the operators D, L, H and G, and their integrals. In
this, and the following appendices, the various operators are explicitly evaluated and the

results collected.

The Vlasov equation for a distribution of particles f(E! v, t) in a general stationary

magnetic field, and in the absence of electric fields, is

Qs
)

of

o+ =0 sem (G:1)

e

Elm

Vvx B-
~

231

This equation is put in a more convenient form by the following transformations of the

velocity variables v .

First we resolve v in the directions €, €55 €, 50 that

Y= By Vg Bk Vel oo (C52)

Under this change of variable, the various terms of (C.1) transform as follows
0

J
sty = (&% (C.3)
(at v Bt)v” Vx Vy
3 J d d
3y T Radv, T Ra, t R Ty e (C.4)
(V-V) =(V-V) +vv * Ve _a_,,vv . Ve _a+vv . ¥ (. 5)
~ o~ Vi ~ vay Sy ~1 aV" ;A * AR3 avx YV = €, &v 5 ataca s

I

where the dyadic notation means, AB : VC = A --[(E . z)g] , and where v on the right hand

e e

side of (C.5) is given by (C.2). Using the definitions (B. 2,3) for the pj,oj,Tj, the

right hand side of (C.5) can be written in terms of v, Vy Vi . For example, we find
a 2
vy i Ves = v (Vgps = vy 04) + Vipa + Vv (T = To) + Vips wem  (Cul)

and similar results hold for yyv: Ve, and vyv: Ve, .

In the plane perpendicular to B , we introduce polar variables defined by

vV, =V, COs¢
ol (C.7)
Vy =V, sing
so that
d _ sing 9
dvy - S Ev] avl v, a¢
_ .. (C.8)
d 3 cosp 9

s.1ntpaTJ_+ v, 3¢

- T



Thus, in terms of the new variables v,, v,, ¢, we have

) 9
(3}‘.2:(3—)\' 2 ... (C.9)

i Vi,
3 3 e,xV, 9 3
—_ = oy —— 4 = —+ g =— ... (C.10)
" 2 a a ~ d ]
dy 3\,* ¥; ¢ 1 dvy

where the vector v, =v, (e, cos¢ + e, sin¢), so that the last term of (C.1) has been

reduced to the familiar form

e, p.2f _ _eBor
E]-X-X—B— a'\!‘=_ m B‘P ’ e (C.11)
and
(v - E,)vl = (" Dvv, o+ v[v3(py + py) + 2v,v,p, cosp - 2v,v, 0, sing
2 ~ 2 d 9
+ v3(1, - 7,) sin2¢9 + vi(p; - pa)cos2¢] o Yrdee
1] L
1 v v2
; I .
+ [v, (7, + 7(Ta+T3)) + cose (qdi -V, 0, > + suw(.;f pl-o‘avl>
i .!. ( 1 T T ] d
+ 8in29 vy (pa- pz2) + cos2¢ E'V“( 2 - T3) 5 .. (Co12)

Finally the v , v, variables are replaced by €, 4,0, i.e. the particle energy, magne-—

tic moment,and direction of flight relative to B. These are defined by,

(v: + vf) §

ol=

=z =+ s (GL1S)

[\ B
w

0{2(8 - p.B)]!é =V, .

It follows that o° = + 1 and therefore that o takes the values * 1 depending on the

sign of v.B.

~

Under this final transformation the various derivatives become

(3),.- (&), + (8),- (&)

pe
3_1(11+1)
&vf 2 Bop oe
... (Co14)
2 _1 9
avﬁ T2 e
X-¥B o
x E,’)“'u‘”'.l.: 24 E)PS TTB @
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Thus the Vlasov equation may be written in terms of the new velocity-space variables U5.2E

¢, 0, in the form

of

_ & of
szt D=~ : ss¢ (Ca15)

=4 B

with £ =71 (g, &, ¢, o, r, t), and

D = Dy + cosg De + sing Dg + cos2¢ Dy, + sin2¢ Dyg
o (CwAB)

+ [Ag + cos@ A. + sing Ag + cos2¢ Ay, + sin2¢ Ayg] 365

where the D's are differential operators, the A's merely coefficients and both are indepen-

dent of ¢. They are given by

c ’
R TP S 0 I g R
Dy = B os °’ D = B ox Vx du 3 Dg = B dy Vy O

o] 2 leJ d
Dac=LBg'(Pa"P2) TR Dzszﬂﬁg('ra_?a)g':
2 2
T 1 1 qo 1 q P
Ap = L[5, + 5 (5, + 7,)] ?Ac=E|_c1‘°FB]5 As=g | o =T
o o
Ajg =35 (Fu = Gg) 3 Kyg =32 LPs =Pak wom, (G17)

where q and ¢, are to be regarded as functions of p,e defined by

‘ + [2(e - ) ?

and ... (C.18)
1

+ (2uB)? .

o
U}

cy

L. ) 3 .
The derivatives 33" 3% and -a;- are shorthand for Ei'.?. etc., and Vy, Vy are given by

2 o 2
"'%‘P:. ;‘Vy=%a —%—0’1 : v HC 18]

fls

Vx=%

«

An important property of the D operator is now apparent, namely, that terms which are
functions of an even multiple of ¢ (i.e. Dg, Dgos Dag, Ao, Ages Agg) are odd in o,
whereas terms which involve odd multiples of ¢ (i.e. DC, Ds, AC, AS) are even in o .
This property leads to important consequences concerning the L and H operators. In

fact these are particular cases of a more general result which will now be proved. The

basic operation in the construction of the various operators is

SOD Mo sbiins 25555 § Eras sl D 3

(m-1) SD operations =

1]

KnQ . ... (C.20)
Theorem
For any function Q(u, e, o, r) which is an even function of o (i.e. for which

Q(o) = Q(-9)), K; Q is even or odd in © according as m is an even or odd integer.
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Proof

From the foregoing remarks on the form of D , it follows that we may write D as

+2

D=L ol ei“‘Pl:Bn+Kn-aaTPJ oo (Co21)

n= -2

~

where the Bn and A, are complex.

Then in KmQ the only terms for which the ¢ averagze is non-zero are those for which

m
ey e
e = 1
m
i.e. those for which k£'1 n. = 0. However the o dependence of the general termm in (C.20)

is z
‘ b}
[k:] (1+nk) ]
g i

and is therefore of the form o™ for all terms which are non-zero after averaging over o.
This proves the result. Functions which are odd in o , may be dealt with by writing them
as a product of o with an even function. Thus if P(c) is odd in o ,

Kmp(cr) = o KpP( lol), and P(lol) is even .

From (C.16) and (C.17) we may immediately write down the result of operating on f,(u, &,0,r)

with D. Thus
fo

3
{ry B = Dy D= Th=d oo (C.22)

[The oddness in o is a particular case of the theorem just proved, for this is just
K, o]

In solving the Vlasov equation, an integration over ¢ has to be performed at each
order, and this leads to a sequence of arbitrary constants g,, g,, etc. Thus in any ¢
integration arising in the operators L, H etc, the lower limit of integration has already

been accounted for. Thus for example we interpret [ Df, as

?
. | 1
f Df, = sing D.f, - cosg DTy + 5 sin2¢ D, .f, - 3 cos2¢ D f, ees (C.23)

It will be noted that (C.23) contains no secular terms, these having vanished as a con-
sequence of the fact that f, must be a single-valued function of ¢ , i.e. £ Df, > = 0.
In fact the requirement that f 1is single-valued leads to the secular terms disappearing
from each order of the problem. This enables us to treat each integral S Adg, where A
is any harmonically dependent func.t,ion of ¢, as if it were SP[A-{ADldg. Ifr {AD =0
this is clearly correct, but if < A > # 0 the proqedure is still permissible, since some-
where in the problem there must be a tem of the form - < A > which ensures the cancel-

lation of the secular terms.



APPENDIX D

THE L OPERATOR

The L operator is defined by

L = %D FDQ>. dimws K1)

In accordance with our remarks in Appendix C, we ignore secular terms arising from f g DQ.
We shall require the result of LQ not only for Q = f‘o (a, B, 1, &, ) but also for an
s dependent Q, This more general Q is considered here. First we note that L is juﬁt
the operator Km discussed in Appendix C (C.20), with m = 2, and consequently LQ is

even or odd in o according as Q is even or odd. From (C.16),

I =& (D0+coschC+simpDS+cos2@D2C+sin2ch25)

i 1z 1
( singD_-cos ¢D +58in2¢Dy~5C 052¢D>.)Q>

+ <A0+cos:pAc+sin<pAS+coschAgc+sin2@Azs)
(COS(pDC+Sin(st+COS2(pch-}—Sinz(PDgS)Q> eee (Do2)

On taking the average over ¢, <{cos®p> = (sin®p> = {cos?2¢> = {sin®2¢p :% and all

other averages are zero, so that D.2 becomes

1 1 1 1
Q=75 (DSDC—DCDS)Q+‘2'(ACDC+ASDS)Q+Z(Dangc-chDzs)Q+§(A25D23+Azcngc)Q .e. (D.3)
Inspection of the explicit forms of the D's and A's reveals that

Dag Dzg = Dac Dos =0
ees (Do4)

AQS Dgs + Agc DQC =0

The evaluation of the remaining terms in D.,3 involves the use of the commutator (B.4)
d o
operating on Q and on B, the results B.,7 and B.8 to replace -alyi and a—xi , and

B.17. The final result is

Wy . VQ qe ,curl e
1 =S . B (3 qi( e Ni) +B (e crie) 52 L (09)

B B “op os B
In part I, ﬁgg—s Lt‘o (appropriately interpreted for a mirror system) is required, and

when put equal to zero gives rise to the constraint (3,17) on f‘o. It follows by integrat-

ing (D.5) that
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of
where the last temm of (D.5) has vanished through 1;? = 0. In the case of a closed line
system the middle term of (D.5) disappears by virtue of an integration round a closed path,
whereas, for a mirror system the fact that g = O at the limits of integration again en—

sures that this term makes no contribution. Thus the second order constraint on T,

(3.21) is .
§ 92 nq-gr0 = § G5 = (o w2 = 0 e (0.2)

The reduction of this equation to the simple form (3.24) in terms of a, B coordinates
proceeds as Tollows.

In terms of a, P coordinates.

afg ol
o = v Vo + 3B VB,
_ 9B 9B BB
B'E da Yo + 3[3 B+ 55 AV.S eeo (D.8)

1

£

where as shown in Appendix B (B.29), (B.30)

Pa' Ea.+ 9[3 yﬁ’ ’

3 x VB .Vs
3 [~ *l r\..)

Po = 38 B
& By = Yo T8
- s 0)
and D.7 becomes
of e, x Ya. Vs af E xEﬁ.Es
of _1..__B__.>:] s - 6[30 _El__ 1 - >:|ds=0 v.. (D.10)

The &/9s terms of the integrands do not contribute for either oscillatory or circulatory

particles, so that D.10 becomes

That is;

o af
j[gg_s_ Lfo=(___c?,§£__°£> sa (D)

THE H_ OPERATOR

The H operator (3.34) is defined by

S
Hf0=:{3—g-s-{a|,f3—gs Lf0-<nfnfnf0>] sos (D,12)
%

where the operator is required only for a function fo = fo(p, e, J, o). Hitherto, although
different interpretations have had to be adopted for some of the operators, depending on
whether the particle distribution is contained by mirrors or by a toroidal topology (e.g2.
3.21, 3.22), the results have been independent of these considerations (e.g. D.11), With

Hf, this ceases to be the case.

~ AD =



(a) Oscillatory Periodicity

For this case the zero order distribution f, must be even in o(3.22). In section
(a) of this appendix it was observed that L is just the operator Ks;. Consequently Lf,

and therefore L ]SEQE Lf are both even in o, Similarly <:?/éjbfd> is just Ksf, and

must be odd in o; so that the whole integrand of (D.12) is an odd function of ¢ and

therefore vanishes when integrated f Egﬁ =f:E: Egﬁ between reflection points in a

mirror system, That is o=I1 A

Hf =0 aee (Da13)

(b) Toroidal Periodicity

Unfortunately there is no correspondingly simple argument to reveal the form of Hfo
in this case, Laborious evaluation of the operator cannot be avoided, and we give some
pointers to methods and subsidiary results which are required in the process. We evaluate

Kafy in similar fashion to Kofy; that is (C.16) is used to express each of the three D

operators in K,, and the average over ¢ is carried out explicity. Then

Kofy = <Dfufm' > = = DgDgPg - DcDgDe+ AgDgDe — AcDgDg+ DgAgDe — DoAgDg + AghgDg+ ACAODC] fo:{

1 1 1 1 A
DBcDO 20— 2A23D°Dac:l fo + iy |:DCD8(:DC 3 DCD(:DQC 2 QCDCDC D Dach+ 3 D5D593c+ 3 D,cDSDEJf

+
1
COI—

S 2 s 25 5 g 2g ¢

INT

+ DA, _D-A DD - DA D+A DDc]fo

& 1 1 1 1
D AD ASDBC c 5 SDCD'.!C 2 DHCASDC+ DSACDQC ACDHCDS+ 2 ACDSDQC 2 D’CACDS_! f

1
* 73| s e
i\
t T ACA‘::D:’c A5A5D9c+ 2A=sA5Dc+ ZAEBAch] f‘o]
1 1
k [- 8| DasPoPas* 2A=c:DuD=Si| T3 I:DsDasDc 2 DsDcDAS 2 DagPsDet DePagPy- 2 DcDgDas- 5 D?SDCDB:|f

ap—

DAD ADD+DAD ADD:|f
s [+]

s ac ¢ cac 8" Macte
i[ 1
+ 7 Ds sPag™ ASD::S gt 2 AstDBs 3 DasAst D A D, + A D=sDr:_ A.CD D:as 2 RsAch:|
1
Y32 Acﬁs[):zs*' J“cAﬂt:Dc AsA%Ds] % } .+s (D.14)

To deal with the numerous terms in (D.14) we have collected them into three groups. The

first eight terms do not contain the operators ch or D2S nor the quantities Azc' Azs'

They will be evaluated in pairs (I - IV). In the second group of 24 terms, each term con-

tains either D, or A, and therefore the factor (ps - pz). These terms will be

evaluated as one unit (V), as will the remaining terms VI, all of which contain either D2s

or A:ac and therefore the factor (T, - T3). Finally, to complete the calculation of Hf g,
Bds

we must evaluate gL —a— Lf, which we denote by term VII. In evaluating terms I - VII

So

= 47 =



we shall find that no third derivatives of f, appear, and that the few second deriva-
tives which are found, will integrate out under the s integration, The remaining terms
will then be expressed in the form Hf‘D =: 8 %gg + b %5? . Since the algebra is very in-
volved the reader may find the appended block diagram of assistance in following the details
of the calculation,

The following block-diagram illustrates the order in which the intermediate steps in

the evaluation of H are carried out:-

o]
Bds Bds
Hfo=fT[—K3f0+O'Lf TLfo}
S

/

K,fo =Group I to Group VI terms oL jf BdS yf, = Group VII
q
I || |zIz||av| |V | |vE Bds/, of _of _of\|| [ds, ofS
é‘ qQ (& ax+m Ew+n 3 EdVJ Wg-Vlg

L. A 0

TN

of af of
All of form a e + b 5; + C Em ’
since the higher derivatives can

. Bds/. of of af [aJ 9P, a3 oP
be shown to vanish, §. a Jiss + k QY) =5 [}ﬁ = o EEA

B8 dneSt 2l 1 L
q ox ay o

In this diagram the symbols a,b,c,l,m,n,j,k,h,i and t are intended only to indicate
the general form of the results at each stage, and hence, are not used elsewhere in the

report,



We commence with Kafoz

1

- 5 (DgDyDg + DcDgD.)

Using ‘the forms for Dg,,Dg,D. given in C,17, and the commutation relations B.5, B.6
the following results may be obtained:~
af of of, c Vv
[ox 1 o} 0 0 1 X
DoDcfo = Eg CJ_ {E (Pa - Pa) W + (Tg _T1) W} = W Do ( ——B_) ese (D|15)
oz 1 ofg 9fg)  ofp c,Vy
B5Pgts, = B‘?Cl{a Py =p) 5+ (m-%) 5| =3 Do ( B ) s {E26)

s & oo a3 ofg  ofg

nd

where for simplicity we retain 35 x @ 'a'TE; as pallt -aT respectively,

Now to obtain I, we operate on D.15 and D.16 with D. and Dg respectively and

use the following identities:~

3 13% _ (py=-p,) a2 (7, -7,) [a%r = a%f
s Box2 B =t T B ayox © Bxdy
1 af[ 2
*B oy 3;(-(12 %) = plm, —'r):l—-—" -pipil... (D.17)
-

12%0 0 olps=pel 3% s lm-m N atp _ afp
5s B oy® et B | ayax * 3x3y

+; gi’:ai-y( T, ~1,) + 04 (T, - 7)]——— —%Eﬁ+ o-ipa:|_,_ (D.18)

which follow from double application of B.5 and B.6, Finally, after much manipulation one

obtains
i a2, %1, . g
1 1 gg 9 o o [)
- 3 [ 0ePoPD DR, o = - 3 555 b [V g 2w, S, dpay}"'(z_xr"' )]
1 Mo p aVy
+ 3 ?P-- 0\ B) + D D ):I
AT R L N AT LSO g Y B ) Frra2(e, ) o 2 By 2 By )
Z B ox |2\ Ta PaPa ax W2l -t o+ ¢ PaPzaax'P
1 3 af
LA,
of 9
+%1—L‘§Bﬁ ayo%. (T#75) -0 potp, (7,-7,) 20, 7,~ —aa'; +-—(-: —Ty)+ 2(T -7 )(B ax -p,)-(pg- Pa)(" -3;.;0»)]
1 a of,
+Z%-Ta-;[d(pa pa) + 2p,(1, 'r)i| ... (D.19)

= 4% .



‘ :
II. + % (AgDD~ AcDgDs) o

Using D.15 and D.16 again this result follows at once
1! AD.D.-AD e, - Lo ( ) ~2pBo, 5 i ) £3| q%c - 2uBo
2 sPoPcAcDPs | To = 3% P3P2".'§‘qP B 5 AtarTy) g 470y pBa,
ofg
Zofj1 g 2 1 g 2
) oy [4 (Pa'Pz) .B#[q . 214]30’2] L (Tz_Ti) Fg[q Pa” 2p.BO'3:| }

of'

c,V N
_aTO-'_]i- {ACDO <_..‘£) AS b (C X) } ... (D.20)

1
III. 3 (DgADe~ DcAgPs)fo

+

Again C,17 and the commutation result B.4 are used. The result follows after some

algebraic manipulation

af,
1 _ ofg aT 2 B
2 (DgADe-DcAPs) To = 55~ H%QB { 3y -T(o,-0; +3F _ay)}
af g
1%009° _ 2 0o uog e _ 2 0B
¥9 T Be T ay B2 {ax T™p,~ % -~ 8

1 g oq® ol 1 0gq°
+§?y"f!_91'r+ -3 3 T(pV+o‘V)

a1 1 3B aT 1 9B Ny 9V
+_%Uég\:vy 3% VY Tp .+ 3 ax) = Vg ay F i (B ay_dl> L (ay T oax
sun (Ds21)

WHEFG T =1, +—;- (1, + 'ra}

1
N. 3 (AgAcDet+ ApAgDs) fg

From C.17 this may be easily simplified to the form
of
1 1 0
7 (AACDCHAASDS) T = 5 57 g% T (q2c,- 2uBo,)
of,
1
+-2-—a?%'[‘(q P, 2p.BCF')

af,
150
~ 350 Egn T [vx(qzo-i- 2uBo,) + Vyla®p, - 2}.1]30'3)] ee. (Do23)

V, VI. See (D.14) for the form of these terms.

Of the group V terms, only Dz'::DOD2 e contains second derivaties of f,. To prove this

we use the lemma: The commutator of two linear differential operators is itself a linear

differential operator.
Thus, for example we may write the term

1 1 1 1
I:CDQCDC 3 DCDCD2C-E chDch DD, Dg+ 5 > D DD, +5 chDst]

< i =



of group V in the form

1 o
3 D¢ [Dach -DD, l-5 [DBCDC-— D.D, C] D,

i
Ds |:DSD2C- DECDE| -3 [DSDEC_ Dach] DS

where, by the lemma, Dech_DcD% is a linear differential operator and consequently so is

=

its commutator with D, and similarly for chDs_ Dsch and D.. Thus this term of group
V produces only first derivatives when operating on foe The same can be shown to hold for
the remaining terms of group V, and an analogous situation arises in the terms of group \fI,

where the only second derivaties occur in DstoDes'

V. See (D,14).

*q%(p -p )? of
" __ 1 oga 3 Falp,-p,)" 3
3 [chDoch 2A25D0D20:| o=~ %8 F 5 BT ——g-aJ-—B o eeo (D.24)

As noted above the remaining terms in group V contain only first derivatives of Ty 1e€s

of, of, afg
E-’ = and By terms. This knowledge enables us to write down these terms immediately
as

o (1 SNy 1 C\ 1 o N L
X [z Pe 2 (?) ™8 Dace (ﬁ") "4 Dc(Aesir) 3 Aasle (—B")

Op
= ‘1 DgDg(pA, ) - ; D,.Dg ( EV > N % D, <A25 CJ];Vy) + % AxsDs (E;&
+ Z}.’ De (Azs cg_"x) - ‘-]F AzsPe <E%Y£E> - ';- De (pAghzg) + % AsPac <CJI;VX)
- % ASDC(PA;»S) + % Dac (AS %> - % D (nALALQ) + .411 B (fiéﬁz)

: V.
] L C_J-Vl b 1 1 c1Vx _ &.l
-4 Ach(PAQS) * 8 ch <Ac B T2 AcAcHA gt 2 AsAspAzs" 2 Aashs B 2A25Ac B

v ([ Da25)
where we have used the fact that
J
ch = =- 2A25P- ap se e (D|26)

VI, See (D,14)

In similar fashion we may account for the terms of group VI, First, the only second
derivatives occur in

2.2 2 .
. __ 1 ggad o palr,-t)? ofy
8 E23D0D25+ %ECDODQS] fo = 16 B 0os o B Em o u (De27)
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The rest of the group VI terms contain only first derivatives of f, and can be written

down (as in D.25 for group V) at once as

ofg 1 €L 1 Cu. 1 Cy 1 S
E3 [+ 100, ) - § 02+ 50 (A F) 3 AL
1 Ci 1 Ci 1 cy
L e g et - =
g Achs(B ) 3 DgS(Ac = ) £ 2 AN T

af c o c C
] L 1 L 1 L 1 L
+ = [ : DCD2S(B_) ~ 3 DstC(B )+ T D (AQC —B"-> e Achc(B )

-

_ ‘_1 ASDgs(%'J:) -1 D, (Ag %) - % A, %}
. %9 [- 1 DSDQS(C;VX) - 2 DD(pAL.) + 3 DQSDS(C;&) -z DCDZS(%&)
- Zli DeDg(pA, ) + % DESDC(E;—VX) s % DS(AQC%) + i Aach(%)
-1 DC(AZCC;V ) + g AQCDC(%&) - Io (A, + 3 Asnes(%x)
3 % ADg(pA,c) + % D,s(Ag CLTvy') - % De(AA, 1) - % ACDZS(%()
- % ACDC(PAQC) B % D2S(ACC_EV—X) i AcAsAzc“_ %AcAchJ-TVXJ' %AsAacCJﬁVy} s PSH

where we have used the fact that
)

DZS = 2A2C}.I. a_p. eee (Do29)
afg ofg
A simple relationship exists between the oy terms of group V and the ? terms of

group VI, In fact the group IV terms in D.28 may be obtained from the group V terms by the

substitution D, > D,g; A25-> = Ay that is by the substitution (pz—p,) = (1:2—1:3). Simi-

of of
larly the _ax_o terms of group VI in D.28 may be obtained from the -ﬁ terms of group V
in D.25 by the substitution
Doe ™ = Dpg 5 Azs > Agc
that is by the substitution
(pem @) = (85 75)
Thus if the form of D.25 is
< , of af,
= X (psmp,) + = ¥ (pg= py) + Ty Z 1pg=p.) .o (D.30)
then D.28 may be written in the form
of of, of
o o] o] '
= Y ('1.'2—'1:3) + F X (TE—TE) + ?H_ Y/ (12—'1?3) ees (D.31)

where there is a more complex relationship between the functions Z and Z' which we shall

not use,
afy  af

We proceed to collect up the various terms in ol s from V and VI as given in
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D.25 and D,28, expressing them in terms of the Pis O» T of appendix B,

Substituting from C.17 in D,25, and after some straightforward algebra the following

afy

of
expressions are obtained for the — and %2 terms of V:-

1 "o 9 1 3B 1 g o3
332 5B (& bempd) + (pempy) Copep - P32 e, e

of of 3
1 o} d 1 dB 1 0
+ E‘é‘y— %%q [“‘ E (Ps"Pa) + (PS—P2)(20'2+ o+ B E‘); } =3 Fy— B Ul(ps—pz) aas (D32

As observed above, a knowledge of the expression (D.32) enables us to write down immediately

(from D.31) the corresponding group VI terms in D.28. These are

1 2o poq (5 1 3B 1 gy oo
2 B {E(TZ—TS) = (7p=7) (2o 40,4 3 3y }+ 2% %‘ oy (75-7,)
of o oqd
1-0 3 1 9B 1 ofp
35l [ax (7,7%,) + (5,x,) (20,4 p,- 4 ax)]- 2 o (rr) e (0.33)

of,
Before attempting to evaluate or simplify the _a_ﬁo- terms of V or VI, which is a task of

great complexity, we will consider the final term VII of Hf o®

S
VII. O'L/ Bds 1o
q

First we note that

s s
af (e -curl e )
Bds ds 0 A5 i
/T qu = f?md' Vfo + U‘W B =Q (a,B,s,u,e) , ees (D.34)
So S5

where the lower-limit of the second term on the right-hand side has been absorbed into the

arbitrary constant h, (i.e. h, = h, (a,B,u,e,0,5,)). From D.5 we have the result

W.e 7Q ' (e « curl e
B S 2 (g2, 92, 0, 8 ML)
Q= —5 p-qu- (g,°curl e ) - (q 53) + B 5 |:p 3 3 ):l <.« (D.35)

where, with Q given by D.34, the first temm is

s L] »
v 48 5 . v, it p o S T8 sl (D.36)
B q d 0 B a“ B ses °
5o
and the second term in D.35 reduces to
1q929 P& i 2 Mg | 3
2B 3s [“ Em ‘57 (g »curl ¢ ) &= (g, curle) 3 Wy ¢ T ves (DE7)

The first term in D.37 and the third term in D.35 give zero contributions to Hf', when the
j{ % integration is performed. Note however that both these terms do form part of 82,
and consequently contribute to up, and J,. Combining the second term of D.36 with that

of
of D,37 leads to cancellation of the double derivative (Vv E—f—’) terms, leaving the

e A0 =



following %5 g; g—fl terms:-

af 3
_ o) pq° TotTa ) T +T
au[Bz l}ia"( )+ ey )]

9B o ""2"""'3 9B 3 (To+Ty
*E'Qg axay B )"ayax( ):|

_H_ﬁ (T,+ T,) [0'1%?{-+ Py %jl] ee. (D.38)

afo 1 B, . %fo ugq 3B
— = %g (v,+ 7,)(20, + 3 3;) Y iaE (ty+7,) E 5 2P4) ees (D.39)

In order to evaluate the remaining temm in D.36 it is advantageous to introduce a change of
coordinates. It is common practice to work in terms of the general curvilinear set a, f,
s which is described in Appendix B, In the present work however, it is more convenient to

introduce the coordinates a,, fi, $ which are related to a, B, s through the trans-

formations B.26 and B.27., Thus the integral f-—- v ]x—- W.. Vf, becomes,
So
of
ds 0 3B ofo 3B
ds \I . Vv — (g® ST e, [ —_ s .40

Using the results,

J
EJ-: Ads = f [301 - Ap

3
‘-BF.: [ Ads —f [:3[34_ - Apﬁ:l ds

which may be obtained from B.26, B.27 and B.28, it is straightforward to write D.,40 in the

form

. of of
48w pf =2, 2L _ 208, 00 evo (Du41)
q ~d day  OPL  9BL day

s .
where I = j'q ds. Some further algebra gives
o]
?(ds{(IB) [fm IB+ fo Tog ~ Tap Ta = Tp Im:‘

ol 0 [fﬂo‘ I+ foTgs = Tpg I, - T Iﬁu:l}’

where the suffices a, p denote (unless otherwise stated) differentiation with respect to

s

a,, Pp respectively, and the prime denotes differentiation with respect to s.

For f, = f, (u, €, J) we have relations of the form

- = J 2 = -
By = B Jp T ogem Tydy # gy T2 Bl =y Jog b Liggely, gt

and integral properties of the form

ffds (Ia)' = T fds (1 1‘3) =J JB, fds (IZ)’ = JZ etc.

= 5O =



Use of these results together with the commutation relation B,33 leads to
£y f ds |:Iﬁ (T )" = (1) Top = (Ig)’ Taa = Ig (Iuﬁ)’]
Lo+ % JG £y j[ ds l:IG' (Iﬁﬁ)’ + (153)' I[Bcn = (Ia)’ IBﬁ = Iﬁ (153‘1)’:|
ol fJffds (Iﬁ)’ % (z,+17,) - Jp f_]j[ds oy % (T2 +7a), eee (D.42)
where we have taken cognizance of the fact that

]{ds[(xp) 1)~ dE ) aﬁ] fas[uﬁn - I, (1)~ @) +Ia<xuﬁJ]

+—JBJ€1@—2JCLJCLIB s

together with a similar result for o and [ interchanged. It can be further shown that

S
9 ' '
-aE-'f ds [IC(. (IB) - Iﬁ (ICL):|

S
-— 1 = 7 . i 7
_[ ds I:IcL (Iﬁﬁ) (Ty) Igg + (Ig) Igg = Ip (Ipa):l e.. (D.43)
where «, P may again be interchanged. We now use (D.43) to write D.42 in its final form
of 3 a5
Mo[a3 op _ a3 P Tat T (A e B, _ 2
oJ aEJ_ aGaJ_ aCLJ_ aﬁ_,_:| fd [ay (C[ Pl + Y ax) % (— C[ O" + U ay
where el
d oL \ oI
_—j[ l:as L ap SuEE aﬁl) ac&] veo (D.45)

Since J and P are independent of s it follows that o, and B; in D.44 may now be
replaced by o and [ respectively (see Appendix B)., Thus term VII of the H operator

has given the following result after the j( g%s_ has been carried out round the closed path.

. ;
Bds | [ Bds . _ Mo /a3 0P 37 P
q q 07~ 73T \3p 3a ~ da 3p

So
(t +7 ) of
Bds _o
+f' g BT &y qp*'z”q(aax“Pi)]

5 23 = qcr +2uq(——+<r):|

_ Mo fBas (ugrl 2 fmprmy) | 8 (Tyr)
ol q B 1 9x B 1y B

+p1g[aB 3 (T2+Tﬁ) B 3 ('rz+'r):|

_j( Bds (7,4 7)) 9fp

Jx dy ay X B
oB
Ed (1 +'c)|:1ax 1ayi|} ce. (D.46)
. o o a3 e
where P 1is given by D.45, and —a—x— is understood to mean 5 = and similarly for
of,
dy °
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aro of
terms in Hf‘0 so that we are now in

This completes the evaluation of the ——, ==
axaf_ ay
a position to calculate the coefficient of _aT in Hfg.

We note first that all second derivatives of [, which have arisen so far have indeed
integrated to zero in Hf,. These terms occur in (D.19) (term I), (D.24) (term V), (D.27)

(term VI) and (D.35), (D.37) (term VII).
afq
We now form the complete coefficient of e by adding together the contributions
from all sources, namely (D.19), (D.20), (D.21), (D.23), (D.32), (D.33) and (D.46). The

of
same sources give the complete =2 coefficient, and the following result for these con-

9y

tributions to Hf, is:=-

Bds 1 pog ala_folaB N,1%oam
a 2 os |B ax \B ox 3 B oy B gy 2
Bds po 3fo /a3 P _ 23 P ol
f 5T Uorcurl T+ 53 (aa = -= P oo (Da47)
where
T = l:‘ri +i5 (=, +'ra)] e - 0,8, — 058,
= Te = 0_2'%.3 = 0—3’%3 ’ LN (D048)

of,
P is given by (D.45) and b, the coefficient of aTO in Hf,, has yet to be deter-
mined., In obtaining (D.47) we have made use of the relations (B.7) to (B.16)., The first
term in (D.47) vanishes because the path of integration is closed. To reduce the second

term to a more familiar form we write

T |:p1~ +0,8,- T8, Tag:_] |: 2T 08,1 PR Tag{\
o[ e - pa o] 2[R ]
folo} ag, aa,
— —2 - 275
S:\+£1[:ay 3% ... (D.49)

Then using (B.5) and (B.6) it follows that

af', af,
ds o . - (sl 2
_‘{ B o cupl 1 = _‘f 8 3s ax B oy

1

curl T

Bxp .9 . 9F
+fds{T ’;} o Rx =3 0} ... (D.50)

Transforming to a, B coordinates, and noting that the closed path of integration causes

the first integral to vanish we obtain

of
o (8J o aJ d
f{-—- ¥, curl T = 33 [ Tds - 36 a@f'rds] ... (D,51)

= 5D -



Hence

of of
_p o %o (agop a3 o
Hf, = b = # [ap = 65} a5 (Da52)
where P is now given by:-
Rl ) | oI aI
P = 2?‘ [as (Ba_L ) ET as ( ) . 2ch} ... (D.53)
afy |
Calculation of the Coefficient of ?ir in Hfo

It has been observed that the result for Hf, contains only first order derivatives,

and since the D operator contains no derivatives with respect to e, and since

fo = fy (4, &, J), that o o,
0
HfO"a?f+b'ér ses (D.54)
must be a correct representation. In (D.52) we have given the result for the function a

of
above. Now it remains to ew_'aluate b also. As before there are seven sources of a_pq

terms (the terms I-VII). We shall commence with the most formidable groups.

of
—2 terms of V and VI
o
af,
We must now simplify the —— coefficients which appear in (D.25) and (D.28). In

e

accordance with our remarks in Appendix B, we now consider the problem in a special co-
ordinate system, obtained by a suitable rotation of the £, &, axes. In this system the

have the special property that '7:2 = '"ra at all points, In con-

torsion coefficients 71,

sequence the terms in VI vanish,

In the following, the superscript " will be dropped from the Pis c'i, Tis but it is

to be remembered that T, 7 L throughout this section,

Using the definitions of the A's and D's as given in (C.17), we have the following

results for the terms arising in (D.25):-

. cV 5 1

-3 a, a2 %[_Z (p,- pa)] -U;E[ o, (py po) (& ay+2cr2):|
dB

g-l'L—B;)—[ (ps— p3) de:l

)=

c Vv 5
1 ALx 1 q l;ﬁ i _ ___
“g A A F ﬂ%‘ 7 P3Py P%il* B |:4 Palp,= P )(B e )]
207 1 3B
5 QLB‘%L[E (Pg= P2) 9 E‘SE]
cV 5 2 3 d
1 L X, P qQ®uB 1, a Py _ 5, 1B
-7 AP 5 )‘%’fl:‘ 2 (p,m Pz):]+ B? |:8(P3 Pa){dp, + 2 52 P13 3%

2 M 1 3%B 1
e R RS - REN § -2 ﬂ
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_ - _ 2 1 Glox 1
A0 () - & =, pz)] - LB |:§(pa- p,) 405 — 2 T2+ 70, g—g]

2 2
= S B(Pa- 0 G 557 -3 (5 ‘35)2’]

1 *(pa-
- 3 AAA, = 9-—- 38 P _ qBEB —(p3 PO G:| ELL-L_B4__|: (pm p )02]

5 [pi(p,- p 3uB [1
= %1[ " 21* Lt [E(Pa- Pa)ma]- et [5(9; P;;’Gi]

- 4 ADg (A, )= 1 [.A(pa- pa):| 9—-‘5}5 l:i 2 (pym p,) = (pym p,)os(o, + 2 25)
-2(p,- p,)o, ] g—'ig)—a 1[ 2 ay (pg= pa) + (p, )0, (0, + 5 )]
- 7 APcliA,) = L l:féi(Pa‘ Pa):] 4 Hﬁgé §|:91 £lpam pa) + (pym PL)PL(p,- 5
+2(py= Po)P,C, ] ELE;‘L |: s ax - Pa) * (py- Pa)o'a('Pi*"%g%)]
4 As ac( Siy ) =~ g_j[;ﬁ (pa- pz):|+ iB%E[g(pa— p,)(20,0,+ 3o, 'llg %g + 46?):|
= _(]_]_2_5.3_2 I} @ (p = p,) (E 3}- + 40 )]
: %Dac(%()zg‘ [fél ey "2)] ’ gﬁg[ﬁ(%" Pa) (-2p,%5% 30, § 35 - 2)]
QLP"A'L[ o (p,- p,) (]‘3"5;{'—4[31)]

1
+ 5 AgAspAss

1 AgC Vx q°uB
gch( B ) = B2 "'(P P )(Pi B ax 49_1_ 2P1 a):|

q(uB)®[1 1 3B 1 3B
B [8 (py= p3) (40,p,- 40, B3R %B ax Pi):l

+

ox
AcV
1 Y
Ip,.( cBJ_ ) = l: (py— Pa) (o‘iE a_y+ 402 + 20’10'2):|
(uB) 1 9B 1 9B
—q—p—q—[—'(pa p,) (- 40,0, 40, B3 - 2. B ay)]

n(”)_ﬂ—%ﬁ[(pa ) (7p, 3 842 L1 s g ):|

- 1 13 & 2B 1 3B dp :
QLJ';_B‘LL (o pa) (005 5)°- BE?)“7P1§E+2EE"+4P2J
1 V 3 1 1
- dp,p (CEY) - LB 56,7 £)(70, 3 R sﬁ)]
ﬂ%’— -(p_.,- p,)(6(5 2 aj,)2 -2(% g—yg) ¥ 7a§§—y —2 4 402)]

= —D c(HAA, ) = g%[ p3lpa— PQ)]
3 1 d
+ -q—h‘?- [p,,ax ~p2) + (pg= ps) (Tff‘ + 3p3+3p.T5- 3p, § ax’:]

- H!.%-%L IEPS_ Pz) -—-ﬂ- 4 0 E(Pa p)+(ps- pa)(pl— -g- g—i)cra:l

= B =



- -,l—DS(pACAzs) =+ %; I} o (p, —pa):|
+33-§E cr—(p =p,) + (p, = )(——-—’*—302 366—361%35)]
9—*53'— |:(p3 o) o2+ 0y 2 (- p,) + (pa_pzn.-a,g-gg—)az]
10 (Ags— B"x) 97 5 02 (p, —pz)]
- LB 2 (o, py)+ (py- ) (ot + 502 - & p, %%)]
-y |:B B Lpampa) + (pymp) GEE- 4GP+, 3 33’]
D (Ags%) = - I;Lj[? (p,- pg)]
-5 :'i[ s 5 Vo= pad¥ Lpy = le(—' 30, - %g—B’]

)2 oB a 1 3°B 1 aB 1 0B
9_@_ B ay ay Pz) + (Pa_Pz)(E? 43 B ay :L B ay):|

Mlu:a

Z
4 D¢ C(“ABS) = ];%' 8 P?_ (Pa_ Pa)

2 1
02 5[ Pa ax(Pa Py) + 257 P, (psm pa) + (py— p ) (93 120, 5 ax):|

-+

2 e = %, 2B g
o~ 2P4) 3x (Pem Pu) - 5@ (Pimey) - (P pa) [?f =5t

oB 1 3B,
x * 8 ax):U

+
=
ig
]
[ 5]
Bl
—
l::lcn

. 1
. HE'%E%[:%; 2 (py-pa)+ 2 & (0,054 p,)) = (p,= p,)(90% 120, E-gg)]

1(,5 9B 32 90, 2 3°B
& B-q;(pB)2 "1 [(— Erad ) —(p3 i) = gg(pa- Bad =~ (pu—D,) [— -é-f' "yt a2

138 o (138
+5<71Bay+8 Bay)]]

c Vv A cV 3
] Lx_1 _gs L X 3 L1 B _ ., 2
~ DD, (5= =7 D, (=) + o 4B 3 (p,-p,) (B 33 - 2p7)

1 Spy _19% 1 8By2 2 Py 9B
g E’ (uB)* [2(93‘ P2 - PR TR W
q(pB)?® 1 3B 3
- B4 [ B Bx - 2p1) ox (Ps_ Pz):l

1 B 1 8 & o, 3B
%) =- 3D, (M)-I-Lsz(pa—p)(—" =209

7 DD, ( B4 2’ ‘B
g(y%!a 1 90, 1 5°B 1 3B g, 3B
odlaer 5 (p - p (-2 5 B a7 4 (B ay) + 205 + 5 ay):|

2
. H%L[% (% 2_3 + 20,) _;_( (p,- Pz):l = aes [D55)
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af

If we now sum the terms in (D.55) we find that the coefficient of —5;9- may be written

lggi(Pa_Pz)li] +ﬂ%g£[ J +HLBP%)_2[] ; ... (D.56)

Tedious but straightforward algebra yields the following results for the coefficients

LLLL =L
[ l -0 vr (D.57)

in the form,

5}
_ 1 ) 1 _& 2 P 9B
[ :l =3 Pa 5% (Ps=Pa) + 3 (P, Pz)[ ox TP TPy TR B
2
] 1 LIz gl 3
+-§. 1ay (pS Pz) +2 (pahpg)[ay -0'10’2"["0-?_ 0-1B ay] e (D.58)
1 1 3B 3 { 37
[]a=1[2pi+§6__33} a(paupz)_Za_xﬁ(Pa_Pe)
1 1B 198 _ 198 _ 2
+4 [ |: ax—ZG':l-20§+3po’+crsBax spiBax_pl}
s o0 1B _ 301 Lo p)addrp -p)
4 1 B oy 2{ B3y ‘PP T oyF PP,
1 d 1 3B 1 0B 1 0B
+4(Pa_pa)[6y|:61_ﬁay-2d:|+2°§ 500t LBy %3 ay+°21}
ey, {DES9)
afo
— terms of I - IV.
ot
afo
We now simplify the 7y terms which arise in I - IV, and which are given in (D.19),

(D.20), (D.21) and (D.23) respectively. [Note that we shall evaluate these terms for

T, #rca, although of course it will eventually be necessary to take S in order to
of ‘ '

conform with the evaluation of the other a—l_Lo terms].

of

IV. Using (C.19) the 35 term in (D.23) can be written as
1 1 B
_-H—EIE T+—(T+‘E):I(1T3-ax -B-E+20_10—3_2P10.2)
( L 1l 9B 1 9B
+ﬂ_§l§_ torg b)) [, 535+ %55 ... (D.60)

of
III. Using (C.19) again, together with (B.4) and (B.17) the a—; term in (D.21) becomes:-

_9—5']-3- T o+ (ruen) |+ p, | v, + 3 (Tat )
1ax 4, 1 g Wit Ps gy | b Ty VRET R
1 Bpy ) B0, o8 gl B
+|:T1 3 (7, + Ta):l< ay T ox T 2B (0_1 ax Py 3y
L, Q) (1 2B 2 1 1B 3 i
B4 B 3y ox (T,+ 7,) = o | etz )

o, dB P, 3B O, 9B 9. oB
[* ('”2”3)]<31'a"£ f%‘f&‘f%’(Tz+Ts)(Pz+Pa)>}

vee (D.61)

Uﬂl
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of

II. We now consider the ?E? term arising in (D.20). By (C.19) this is:-

3V av
B [#m - )8 d ) o ] B 4 ] 0

From (C.19) it also follows that

rol=

3V a2
e e gy B el BBy gl B S 0-1 aB
kel =l P % F)rE M

and v ese (DaB3)
—X_, 9 (138 P 91
ds M 3s F 3% TS Rl as

Using (D.63) straightforward algebra leads to (D.62) being expressed in the form

3

o4l 3 ¥ 7
"415 q° 53 '3 (—1534>+%5L—1§%B—)[2g2§§ (54 # =52 {ptp,)

o 138 11 3B P, po(ptp)
+ 5t % G - 29, (p,+p,) 5B 5y Py +Pa>:|+ 20, 55 (§4) + —agia_
Py 1 8B, .
B [:as Fx * 20, (py+p,) +2—B ax (P2+F’a):|}
(uB)? 1 9B 11 3B
* B as G 20, (py+p) +35 5 (Patp,)
3 .1 3B 1 ‘ i5
- @ [E (3 §§) - 20, (pa+ pa) + 35 (pytp,) 3 By]} ees (D.84)
afo ds
Since the W terms are inside the integral j{? B it is advantageous to express the
q® term in (D.64) in the form
q“(O""+ 2) 3
—%g :S Pa qéth) (o +p3) (p,+p,) ee. (D.65)

so that the first term will not contribute to Hfo. The final form for group II is thus

1q(uB) B, 2 9 ¢4 3By o LB
=28 {2‘72 Bas () +o9ptp) +0 | 5 GF) +35 5y (Pat Pa):l

-+

a d 1 oB 119B
20, B 55 (4>+PG<92+P3>—P1[3§-(EE +§§3;(P2+Pa)]]
R 3 9B 11 9B
+1(%)—[%[a'§éax)+2P (pa +pa) + Eﬁ_x(p"’+93)]

- q, _a%(% aB)-zo' (p +p)+%%?—a§(pa+ ps)]} e (D.66)

of
I. We now consider the -—ap—o term arising in (D,19). Simple but tedious albegra gives

the result:-



o .1 B 11 0B
[‘a‘g(-aa; *3Bax (PatP) ¥ 20, (Pz+Pa):|

%a—B(P+P)+2p1(P +P):|

+
gl
— 1
F|e

=
il
1 17

R
Nl-

B

- (‘71 + %%%) |:-§—S (—]13- -g-f;) + % % g—g (p, +p,) - 20, (p* pa):l
+-§3-;li% (%%)+% ]; gﬁ(pz+p3) - 20, (p,+p ):|
3B 3 0 karey)|

I R RTNeRT)
_.'13.9-3- l}g—<261+%g—3>+%(p2+Pa)<2di+%%>:|]

s
V2 ; v2
_9 8 ([ x_ ¥
4B as< B ) ess (D.67)

of
Before collecting up the -ﬁ terms from all sources it is convenient to combine the

contributions from (D.21) and (D.23). Thus adding (D,60) and (D.61) we have:-

- aub {o‘l :x[+ Iz, 4 )]+ py e B m ):|+ (z M ) —1+3:—+ o0 - picra]
- b +—('|: +T))<B =t l; gf,)]
"'SL%‘B)_Q{%%%I: -;:(q:+1:):| Blggayl: +-('r +1.‘):|

[’L’i + — (v + 7 ):| ( 91 8B GB B 3 = (o) (p, % pa)> -} «vo [Da68)

USi]"Ig (BDT.) 3(808) and (B.I?), then

3 . 1 ap o0 8( 3 T +7T
- ﬂﬁ%‘i\:'ri +3 ('1:2+ 'ca)] < -a?"+—'§*+crio'a— PO, ) =~ 9—3%21 Bt — 2—B-—-ﬁ>

}%i % (_’E;_g_%) , ... (D.69)

4=|~

and as before this is more conveniently expressed as

N—

92 uq® (Zatla) _ q°(pB) 8§ [ T4 1 2
B 3s ' ( B pe Tl T +_2'q(;]3) (7, +7,)% (py +py)

- 58 —



of

The final expression for the a—‘uo- terms from (D.21) and (D,23) is:

—g_%_-[iaX[T +—(1:+1:):|+Pi [T +_(T+T):|+TB_(T;T.>:|}

CSE [ o] (SR )18 e ()

(uB) 1 3B 9 T 1 0B o 1
+Q-B%— Ba—-a—('r 5( ) —Ba%-('ri+-§(12+'ra))
1 9,9 P, 9B :
ik S (v, +7.)) (-B‘l—a-; + FI'-E—&- -z (m+1.){p, +p,) ... (D,70)
oty
Sum Total of —— Terms.’
op
of

In this section we sum all the B—PO terms which have arisen in (D.38),(D,58), (D.59),

(D.66), (D.67) and (D.70), Using (B.5), (B.6), (B.11) (B.12), (B,13), (B.14) and (B.17),

a3
it is possible to reduce the total coefficient of é B) to:

ap o0 o
Bz_[..?[ﬁ. 33?1+Ud + p,o .+ 2(p? +02)+—<-§3%f7—%1-§—i>-£(r2+¢3)2}:'

ees (D.71)

Carrying through the integration j{ — leads to
acr (o}
2 5 0B P, 3B 1 2
S5+ 0,0,+p,0,+2(p +02)+ 5 (—1 = = e —) -z log+ 1)

ds
j[ g—'ig—-(p2+p)[ B 3y B ox
oxw (D5 72)

Using (B.5), (B.6), (B.9), (B.10), (B.11), (B.12), (B.13), (B.15) and (B.16), and taking

W 2
T, =T, we obtain the following coefficient for QLB@)— -

2
5.5 (1[/ 13\ /138 3.0 (13 /1 38\ . 3 /1 3B
‘ZBE{BKEax)*(B ay>i|}+4Bas{B|iB_'x<§5§>+r)y(ﬁa_y-)]}

LG Pue o, 3B 5.2 g :
() EfER-23]) (R e 0.7

where the contribution from (D,72) has also been included,

of
We now observe that on integrating (D.73) by f BdS  the coefficient of B—PO vanishes,

CONCLUSIONS ARISING FRCM APPENDIX D

In this appendix we have been concerned with evaluating Hfo. For a system which has
oscillatory periodicity, it was sufficient to note that the operators K, and Ky, are
even and odd in o respectively, and this led to the result Hfo = 0. However, for a

system with toroidal perodicity we have showvn that

' e - o[ a3k _ a3 op
0~ a7 g da  da OB

where P 1is given by

. BORL



APPENDIX E

In this Appendix we are concerned with the extension of the method outlined in
Appendix C for the derivation of the D operator, to the time dependent case with elec-

tric fields present.

We have now to deal with the equation

of e Lof
E*i'y»f'*m[]i*i"gjlﬁ‘o ; veo (Eo)
where
dA
E==grs e v {EC2)
and
A=alp .
It follows from (E.2) that
- 9B g, - &
(E+Z\F)_dt Yo - 35 v, ces (E.S)
where
_ o 9B
VY=o 509 : ... (E.4)
and therefore that
o 2]
T U Ya=0; &E+Q-EB=O . s (EeB)
where
(E + VY¥)
Us ——=— B . ... (E.6)
~ BE
That is, the velocity U 1is a flux-preserving velocity. Previous authors(4’12) have

found it convenient to consider (E.1) in the coordinate system moving with the particle
E x B

drift velocity . However, in the pr_*esent WOrk, we shall choose a frame of refer-
ence which moves with the magnetic field lines, i.e. moving with the velodcity
(E + ¥¥)
T
Taking
yv=U+¢g

in (E.1) results in the following form for the Vlasov equation:-

oo _ M ar e L O . s[ 3
3t " 3t Q+(Q+Q)Ef",ag(u+g)' E’_Q+m g‘xg—\?"l’]-i_o

«ee (E.7)
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As in Appendix C we introduce u,e, ¢,0 to replace ¢ = (y} - U) as velocity variables.

The various terms in (E.7) transform as follows:—

a8 _ &L 1B _ogaf % oq o %
(-at)c‘ (at)wcp B3B3 B op S 3t 2uB 3¢ ot Lt x & e-e (EB)

~

of | U U ar dal
-3 ':FE"' - DU+oazs+ (QJ_ VU |=-32| o0& 35 - aYrp+oqesc, =¥ Q]
— a_f‘_'_ li‘. c * 92‘_]_ O .?g . V
e B 9 ~1L dt Aer 3gt & 8,0 XY

1 of day ay
__ZIJ.B_‘P g‘ix£¢.a—£-+dq£ng'a_S-+(Qix'QJ')gJ':y'g:l

ans (EL9)
where
d d
kel A
U.vr| =u.vr| Ef—u'EB-CEQ‘: u:v Zg st g J U= 'V
~~c_~~pscp “du B B pE-J_fu'mEi_ZpBacp Eix-gd--\. -\,Ei
~ ... (E.10)
g-}’j‘: BDf , wwe: (Eadl)
where D 1is the operator derived in Appendix C,
e af eB of
o Bl Sos - SR sow  (EaT2)

egy.of __e_ d¥of (13 of e, . & oo, BAER BF
and = = Y ac"“mdqasae'(séﬁ““ae)m—‘h T 09 T (E.13)

To replace the time derivatives of B and e, we use the Maxwell equation

o8
3¢ = —curl E
='°““["E"E'E\?:J = curl (UxB) , e (E1)
a result which would not hold if U were the particle drift velocity E;E . From (E.14)
we have
%g_B:-V.U-'-E:Lei o ==1x" 0, «er (E.15)
and
9’% ='§§‘(E‘E) g, +e, W-p) ... (E.16)

—~ Bl =



it (E.8), (E.9), (E.10), (E.11), (E.12) and (E.13) are substituted into (E.7) the resultant

form for the Vlasov equation is

e ¥ of 13f  of Y¥*ga*gy o
BDf'm[“qasaa"(Bap*as L STTE T oy

ot 2 Lye 2 "
as£dqas GUR) + U= p~ BT 1), ~oge, e Wag,

&[&

U ! oy . 3y du
-oqc, * £+ cossz €a E— e," ix /" sin2puB ga-a—; g ﬁ

it _ige) W .. 00X sl o5 L o B
a6 " Bap ) 8 e VEYED 5 T 00R €s° By T 8" Ox
oy oy
+ sin2¢uB Ea'ay+gs'ﬁ
1_of dy eB of
@_Bﬁ{“'ixg‘]" (_i-'E+ ZO'C[eixE‘L-a +(ele.J-)E,L EQ}:Kw N aus (E.]?)
which may be written
of v 1 af U
a(P_Gf A(Bat+cf+nf> ... (E.18)
where
v _1f e (12 _9_) Sa%8 oy 2 j
G e B[ Qa a + 2~ B a}l+ aE + 2|J-B Ew a(P L) LI (E-lg)
and incorporating -;-E into GY
du
LA .- G N -I e. 21 g o . . i
G_Bdt+B[O-qas (EU)+QQR uB (¥ y,)J_'O-qu—QJ_'VQ_QJ_'dt

oy Y ay . ay U ] 3
-oqc 3 * cos2quBie 3y P sin2¢uB | e, Py 4,8, o= =

dy U au U 3 ou 3
- I— c,*— + 20' ¥ — B o o e » —t C052 + UB o — » - sin2 —
B2 |51 Gt 18" 35~ MB \&:" 3y ~ 82" i P+ BB \R2" 5y tRa" 5% ¢ )3
1 dy ou i 3 (5.5
“mE S| @ rrantetNY R .. (E.20)

¥
In the main text (7.10) we are required to evaluate <G fo >. From inspection of (E.19)

we may write this down at once. Thus

of
v og Jd 0
-2 ), wues JEER

provided f, is independent of ¢ and s. (This follows since <5L> = 0.)

The M Operator

The operator M is obtained by substituting (7.9) and (7.13) into (7.15) and collect-

ing all the terms involving GW or GU. It is defined to be

2
_1ogd zafo) v b4
Mo =33 35\ ¥ 5.2/ - <D[Gfe > - <G br, >

S
ik s ... (E.22)
_L(—aé"-w)a,cr((;w/ e g > - <ty >
So
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and is required only in the form } L;S- Mf,, when the first term of (E.22) contributes
nothing.
Of the remaining five terms we may write down the last on inspection of (E.20) and

again using <£J_ > = 0. It is

df of
Bds 9] T ds 0 0 s .
_5[—(] Gty = —j[—q [-——dt + =57 (@ p - uB(YV-0),) ] ors (By23)
It is straightforward, using (E.16), to show that

o oo

A =0 sus (Ex24)

In Tact in terms of &, [, s coordinates

df of of of .y
So (T  Fooas o oFy_ _o)
a - ( 2 = - ( ie s (LB 25)

twhere (E.5) has been used to replace U- Va, U- VB); also

¥),-1e (%)
<at ap S\ 9t i
_][d {(a_qz 3q 9a é.qiE_G_CLG_S}
G 3t / T 9a 3t T Ip At ~ 3s ot
1

In this expression g—’:, EBE are replaced using (E.5) and %ES- is found with the aid of

swn (Fe26)

(E.16) as follows :
de

d 3 ~1 d
Sac-oe Wl -G B U1 fios (B 2T]

Thus

a) _ 3q 3q 3y, vp+ 2 y.vs - qu-
<3t>a,|3_ f(ds[<at> t R rgp e Rrgg B -l p

.o« (E.28)

1l
—e_,
[=%

[0
7=,
2l
[

a
I
o
e—

=—f %S{q’*g p - uB(Y. 1) }
Now on substituting (E.25) and (E.28) in (E.23) and noting that j‘ % = a_.; we obtain the
result
ef af
Bds U aJ 0 aJ 0
_f AR LR LS 4 Felled i Tl wiee: B

where J and f, are each to be regarded as functions of p, e, a, £, t. In lfact
fg = fo (0, e,J,t), and when the derivatives with respect to e, t are taken at con-

stant J, the same equation (E.29) holds.
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Returning to (E.22) we evaluate
s

frmoce[ Mo

wn

q

d 34 Bds
=7 os ‘{ds ] q Lfo
8o i
d Bds
= + o ,'{T ¥ Lfg
9 | ds 3 of g F) q(gi curl 21)
=Ba}qwﬂd n.fo E“ap %3 B
«+. (E.30)
and
Bds ofo ds _ ofg (re.;;!_ + curl E:L) d d ( oy )
_fq]"(asw>__j(qwﬂ E(Bew * 8 R B apqE -6_51{!
ee. (EJ31)
The evaluation of Mfg, will be completed when we have
" Bds ¥ v
_%T{Q; ]Df0>+<Dfo0>]
o,
Now G is of the form,
¥ ; ; d
G = Gg + cos¢ G, + sing Gg + (g cosg + gg sing) % sis (E.32)
Hence using (C.16) we find
<G\y Df >—1(GD G.D)f. + (gD D)
o 7 = 3\GgDe = Gl + 518D + &sPs/to
s & HES33)
<D]G¥f >—1—(DG - D.G.)fn + HAG. + AGJ)T
o7 = 2Ws ¢ c“s’to T J\fcYe s”s’lo
where
oot (18 i) iﬁ(w _a_>
Cc =" x (Bap+ae ’ G = -3 y \B 3z  de
oo (E.34)
SR TS - SO o4 oY
& = 2uB% & 5 8s = T 0B
Substituting (C.17) and (E.34) into (E.33) gives the result
Bds ¥ ¥ _Jds) 1 ( oy gy 6‘1’>
_j{ 5 [(c fo‘o>+<D-/‘Gf0>]-'{ = [E Tk
of
a¥ /1 %o dfo
+!_|‘ (211 Curl -?..1) BS(E_}J.-'-&_E P (E.35)
of
0 a¥ Qv
* 3 (Vx ay“’ya_x)]
Since the first terms of (E.22) integrates out under the %E-'- we have from (E.29),
(E.30), (E.31) and (E.35)
Bds .. _( a1 9fg aJ6f0> 3 'st
5[ q Mfo_(at e85 /T3 F ¥
... (E.36)

af of
-4 9w, . - —_0 ds . . ds 1 . .
qu.d 2<ag\y>+ oe q!u.d EW_} q BS:_ way,fo *
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We linally simplify this expression by noting that

afo o [,ds o a } ds 9o 8 a cfo 9 a
_ V=0 = — V== — = — — — i — y
30 3P q - 9P e a - a0e0p FYIB-FEe T, P Yads
. ... (E.37)
VY. vr of
ds £1 %~ o 3 ds . . ds ., . 0
=_j{_c-[_ B taf iMoo p¥ oI\ TE
Consequently the final form is
Bds e - a3 %o a3 o ” o o¥ _ Mo o¥ (E.38)
q 0~ \Jdt des ¢&e It da 9P 0P da : R *
where .
v = }4\1!95-’ .
q

When this last expression is integrated around a closed drift surface J = constant, the
second part contributes nothing to the integral and leaves us with the result quoted in

equation (7.20).
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APPENDIX &

Calculation of u_

In this appendix we derive an expression for p, from the recursion formula (6.5)

@ s a
Bds
P :[ Dp.n—o’/ —q— Lpn+f d/aﬂ' H{-l cee (Fu1)
So

The third term of this equation is independent of the coordinate s. Consequently this
term remains constant as a particle moves along its field line. In a region of straight
and constant magnetic field however Q =l SO that all the s-independent terms of each

Hn must vanish.

That is

Hyp, = 0 oo (Fa2)
This result has been proved explicitly in Appendix D for Hy, .
is

Thus the simplified formula for Hrat

=]
Bds
pm_l:f Dpn—O'/T L[.J.n eeo (F.3)
S

Double application of (F.3) gives p, in tems of g, :

¢ ¢ P q
o
p.2=/ [D[J.O—O‘/.D"B— (e'curle)+[5ds[ ‘/%Lpo-<D/D/Dpo>]
se e (F|4)
where (D.5) has been used to evaluate Lpg . Now using (C.16) we have
¢ @ ¢
P
Dyg —o [ D -—-— (e « curl e ) = (cp, cosn¢ + s, sinng) eee (Fe5)

n=1

where

[ (DD + AoDs) +3 ’: DDy # Dol =A Dy —A, D, DE’ Dyg+ DyDp +AD, + Aac%_—_l}

o
+ Dg (Pqu e,* curl §1> : ... (F.8)

w
]

1 1
[(—-D D +A D )+ |:2D D_ + D D +A D, +A25DS -:.'Z'Dc Das-Dﬂch+ ACD2c+A2ch ]} Ho

1 s 2c
o
- De (l—lqu e, * curl gi> siw (Fa?)
c ——l[DD +DD -DD +2AD +AD +AD :'p +lD (pocrq e -curle)
2" 4 ozc cc 's's 03s Ccs s¢c 0 2 "zs B ~d ~d
«es (F.8)
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Sy = - %I:DODES +DD, +D.D -2AD.  -AD_ +ASDS:} to=3 D, ( posq e, *curl e, ) (F.9)

g = (}_SI: - ';_ DiDys + Daclet APyt Achs"'% Bl gl + 8D, 4, D, _] Hg = (Fe10)
B, %[% DD, +D, D +AD, +A D +5 DD _+D D -AD, -A D J o eee (Fu11)
== -11—6 [DBCDQC “DosPos 2AlasD2c LS ] Ho v+ {Fs 18]
Sa = _ Tlg I:D:acD?.s +D25D2c —EAQCDP-C & 2AP!sDF.'s :l Ho eee (F13)

The last term of (F.4) is independent of ¢ , and has effectively been calculated already
in obtaining Hf, (Appendix D). The evaluation of this term is therefore carried out for

7, = T, and consists of collecting the s derivatives in (D.24), (D.35), (D.37), (D.66),

2 3

(D.67) and (D.70), summing the remaining terms to get (D.71) and (D.73) and integrating

S Bds :
J —= , with f, replaced by uu throughout.
Denoting this term by ¢, , we find,
2 2 2
1 (ps= pa) 5 1 (Vx"'vx) 1q* 1 g°uB 2
crcoz—gp'T(q -pB)—4 B g (o2 +P1)+Z o (e, v eurl e,)

2

VB 2
+ L8 {E' p+3p- (695 F) -zle, " curl sila}ﬂj— [% div (3 B)+ 3L (p,+p,)

B B2
2 3 "?' 1 2 1 aB 2
+ = (P2+P ) tg gty (P2P3+"7273)+ i (e - curl e ) - (B Bx + (E E)
ves (Fo14)

Returning to Appendix B, it is possible to show from (B.20) and (B.21) that the quantities
}:(pa_pg)2 + (7,-75)( and (p,p, + 7,7 ) are invariant under rotations of the £, 28,
axes. Consequently if we express (F,14) entirely in terms of such invariant quantities it

is clear that the form of the first term in an arbitrary coordinate system must be

-%‘#5 (q® - pB) L (py - Pz)a"' (T:a _Ts)a}

The final form for u, is therefore
4
Y
= Z' (¢, cos n¢ + s, sin ng) S 0 )
n=0

where the c¢'s and s's are given by (F.6) - (F.14). For the case of a vacuum lield these

quantities are given in equations (6.8) - (6.16).
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