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ABSTRACT

High frequency electrostatic waves which only propagate in the presence of
a density gradient and a magnetic field are described. The analysis is made in
cylindrical geometry and both conducting wall and vacuum boundary conditions are
considered. When the wave velocity has a component along the steady magnetic
field there are two branches of the dispersion relation. The two branches are
compared with the two branches of the low frequency drift waves. Landau damp-
ing is shown to be negligible for these high frequency waves provided the wave-
length along the magnetic field is much greater than the Debye length, but
collisional damping of the waves is described. Finally, in two appendices, the

use of the fluid approximation and the electrostatic approximation are justified.
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electric field

magnetic field

magnetic induction

vector potential

scalar potential

current density

average velocity of electrons
velocity of an electron
number density

mass of electron

charge of electron
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electron temperature

mean electron thermal velocity
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ion cyclotron frequency

ion plasma frequency

- electron cyclotron frequency

electron plasﬁa frequency
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axial wave vector
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1., INTRODUCTICN

The study of wave phenomena in non-uniform plasmas and in the presence of a steady

magnetic field has attained great importance since the discovery of the low frequency

(1)

Such waves can only propagate in a non-uniform plasma and

(2),

(w « uhi) drift waves
become unstable under a wide range of physical conditions

This report describes the modifications which drift waves undergo when  » uEi > u5i
and only the electrons can respond to the rapid variations of the wave fields, In the
special case when the plasma density is uniform the wave becomes that described by

(9)

Trivelpiece and Gould for w > ube' However, in contrast with the latter, the pre-

ce

sent wave retains its electrostatic character in the limit of propagation perpendicular to

5

The aim of this work is to provide a theory for comparison with an experimental study
of the high frequency limit of drift waves in the frequency range where ion motion can be
neglected. We consider a cylindrical column of plasma of infinite length and with a radial
density gradient. The dispersion equation is first obtained which together with the bound-
ary conditions specify the dispersion relation for the wave. The propagation and damping

of the wave are then described.

2, THE DISPERSION EQUATION

We consider a frequency range (wci & W « mce) such that the motion of the ions can
be neglected. The ions are simply assumed to provide a background of positive charge so
that in equilibrium the plasma is neutral and there are no electric fields., The motion
of the electrons is described by the electron fluid equation with constant temperature,
The use of the fluid equation is justified in Appendix 1 where it is shown that the effect
of Landau damping is negligible due to the high phase velocity of the waves parallel to
B . It is also shown that the fluid description is valid so long as the wavelength along

~0
the magnetic field is much larger than the electron Debye length,

The equations needed for a complete description of the wave are the following:

dv

- iT e e
E'E"'—«v-“*'vx:“ﬁg_ﬁxxﬁ’ n--(])
on
ez +l.3=0, s e {2}
-e
E-E.'—"—'("_"o)’ ees (3)
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where equations (1), (2) and (3) are respectively, the electron fluid equation, the con—
tinuity equation and Poisson's equation. As shown in Appendix 2, it is justified under
the conditions we consider to make the electrostatic approximation and assume that the

electric field is derivable from a scalar potential ¢,
E=-Y9¢. ees (4)

We choose a system of coordinates in which Bo is parallel to the z-axis and consider
a plasma with cylindrical symmetry, Perturbations of quantities about their equilibrium

values are assumed to have the following form
F = f(r) expfi(kz + €6 - wt)} eees (8)

We may write the relevant variables of the problem as a sum of a constant part, suffix O

and a perturbation, suffix 1:

Y=Y+t X

1 dﬂo &
— ],
N, dr

where (the diamagnetic drift velocity) and Ie is the unit vector

S

-kT
v = =L
~0 eBo

in the 6-direction

M
‘ ll}
o]
[y

i
==

B
The last equation follows because of equation (4). In order to obtain the dispersion
equation we express n and y in terms of E from equations (1) and (3) and then sub-
stitute these expressions into equation (2). Taking the vector product of both sides of

equation (1) with B_. and neglecting terms of order v/hﬁe and “the’ we obtain the

~0
component of y perpendicular to EO
E x B
~ "o KT
= — + B . P [
Xy B2 neBj ~ ; ()

Similarly, taking the scalar product of both sides of equation (1) with Eo’ we obtain

e KT . \ . iv
v, = Ga E, + = 1kn1> Jiw (1 + u)) . oo (7)
From equations (6) and (7) and the definition of current density J = -eny we can obtain
the current densities parallel and perpendicular to B . At this point we also make the

linearization approximation assuming that all perturbed quantities are small and that we

may neglect second order terms (and higher) in these quantities, Thus we obtain

(zqm,léo)
Ju=en, = - fE ex B s oe: 10B)



and

2
n,e £
Ty = <—‘;‘ ikg - —‘;T eikﬂi) /iw <1 + —-;“) ; eee (9)

where we have also used equation (4) and the fact that n_ depends only on r, the radial

o

coordinate., Substituting equations (8) and (9) into equation (2),

n0"V‘LPK'B'0 «T
o ety —z.(—————)+,\g.< m“B),
BS eB, ~0
. —Ngé KT iv
+11<<m ke + — kn1>/m<1+-—w— =0, wss (10)

From equation (3) we have the relation,

€0 5
=— V¢ . p—
Ry Eg ? . (11)

Substituting this into equation (10), using the fact that ¥V . (¥V x V) =0, where { is

a scalar and V a constant vector, we obtain

iv 2y e?
2 <] * m) el Idno 1 knoe
Ve + = = ® + — ¢=0.
iy kPviy we B_r dr K2y 2 EgMu
‘+T;'we> (uﬂ- T)
w w‘?

oereifl2)

This is the.required dispersion equation. We now assume a specific form for the variation

of n, with r, 1i.e,

n (F) = N (1 = x ri/a®) = N 23 , .o (13)

where x is an arbitrary dimensionless parameter whose value lies between 0O and 1,

With this form for n_ equation (12) can be written

o
2 k2 2
Vo - i 20 _ %, o f(r/a) - -
(1 iy kzv%) g “’]wce ¥ 5 ( iv kz"'ﬁ)
+ = - = W= AT o = e—s :
w w : w w

where ®_ is the electron plasma frequency referred to the centre of the plasma cylinder,

Equation (14) can be solved analytically only in cértain special cases e.g. for propagation
perjpendicularly to E'.o‘ In other circumstances (14) may be solved numerically and for this
purpose it is convenient to transform equation (14) by introducing the dimensionless vari-

able £ where & = r, We then obtain

i g A2 w? k®a®w? (&)
VQ(P - iv u;{? gy, o8 w[p I(P+ ipv av'f g=0 4 .. (15)
=KV 2 = _k
<]+w __"’Icu ) Yee m(l-z»w __w_z__>

< B



where ¢ 1is now a function of £ and

2 -1d /. d 2 22
B E'1€<Ed6>_? R

Equation (15) is-the final form of the dispersion equation in terms of the variable £ .

3. THE BOUNDARY CONDITIONS

Plasma Bounded by a Perfectly Conducting Wall

In this case the requirement that the electric fields parallel to the wall should

vanish at the boundary gives the condition

olE) =0 at E=1. ees (16)

Plasma Bounded by a Vacuum

In this case the boundary conditions depend on whether or not there is a surface charge:

lthey are{s)
Ez and Ee continuous ,
and .
(Er)vac._ (Er)p = é% )

where o is the surface charge density at the boundary and (E_)

ryac, and (Er)p are the

radial components of the electric field in the vacuum and plasma respectively. The surface

charge density o is obtained in terms of ¢ by first expressing n, in tems of ¢

(3)

from equation (10) and then integrating this over a small volume at the surface (Stratton

The vacuum boundary conditions are then expressed in terms of ¢ as

@ =9 at &=1, ... (18a)

vac, p

do B [io= ) G e
dg e 1|
dgvac. E_::l dE:,

- w
=1 ——,—L,w e < k%%) o(1) . .5+ (18b)

1+

There is only a surface charge density if the equilibrium number density becomes zero dis-
continuously at the boundary, i.e. x # 1. When x = 1 the surface charge vanishes and

equation (18b) shows that the radial electric field is also continuous across the boundary,

In order to specify the problem completely we must also obtain the solution to equation
(15) in vacuum., This equation then reduces to Bessel's equation with imaginary argument
and the solution can be written

¢ = B K, (ka&) , eee (19)



where K6 is the modified Bessel function of the second kind of order £ and we have re-
jected the other solution since it diverges at infinity. With the aid of (19) the two

conditions (18) can be expressed as one condition:

2 (1 - x)(] + J'—v)
E_‘PP. " . Ka_,(ka)_ 3wp w
E | e=1T | PTG T TR (, iv kav,ﬁ> gl1] o nun (20)
4 = =
w w”

This is the final form for the general boundary condition when the plasma is bounded by a
vacuum, The solution of equation (15) which satisfies the boundary conditions given by

either equation (16) or (20) yields the dispersion relation between w and k.,

4, THE EIGEN-FREQUENCIES

Ka'-\B,():O
This case corresponds to a wave propagating at right angles to the magnetic field and
hence no z variation of the variables. This case has already been mentioned as one for

which equation (15) can be solved analytically. The equation becomes

e w?
(a%g)—f’—wzax———@—

=0 R i |
E® wlwce] * E i)

gl =
&l

which will be recognised as Bessel's equation. There is no solution to equation (21) which
satisfies either of the boundary conditions (16) or (20) for £ 2 0. Thus, choosing £ <O

in equation (21), the solution which is finite at the origin may be written

where p?= 2€xu§/m'wce, and J, is the ﬂth order Bessel function of the first kind,

Ir Z,s is the sth zero of the Eth order Bessel function then the eigen-frequencies

for conducting wall boundaries are given by:

28x w2
w = —L eee (23)
Z s lwce’ '

and are independent of the electron mass,

We notice immediately from (23) that the high frequency electrostatic wave propagating
at right angles to Eo is independent of the temperature. This is in contrast to the low
frequency drift waves propagating perpendicularly to Eo where the phase velocity is pro-

(2)

portional to the electron temperature . The phase velocity w/£ of the high frequency

electrostatic wave is of the opposite sign to the diamagnetic drift velocity and the ratio



of these two quantities is
B B2 2
va/vol = a /266 Vg - eee (24)

» Vv for the range of parameters for which the electrostatic approxi-

We note that vphase o

mation is valid (see Appendix 2). This again contrasts with the low frequency drift wave
where the wave propagates at the diamagnetic drift velocity. The much higher phase velo-
city of the high frequency wave compared with the low frequency drift wave is evidently due
to the fact that a much larger space charge can build up in the former case because of the

inability of the ions to respond to the electric field of the high frequency wave.

The discussion so far of the eigen-frequencies with k . Eo = 0 has been for conduct-
ing wall boundaries. For a plasma bounded by a vacuum we obtain a similar result to (23)
except that Z 4 is replaced by another quantity, say Yos which corresponds to the con-
dition (20). The quantities Yisa have been obtained graphically. In Fig.1 w/w’ is
. plotted for various values of the mode number &, where ® and ' are the eigen-
frequencies for vacuum and conducting wall boundary conditions respectively. It will be
seen that the effect of the boundaries is quite marked, the frequency for the former case
being approximately 5 times larger than for the latter, Fig.2 shows the dependence of w
and ' on the plasha profile. ' increases linearly with x since this corresponds to
an increase of the density gradient., However, w decreases with x which means that the
effect of the wall charge is opposite to that of the density gradient and more than com-
pensates for the reduction in the density gradient (N.B. For the form of profile chosen

the density gradient is proportionél to x and the wall charge to 1 - x).

k . 50 #0

This condition corresponds to waves propagating obliquely to the magnetic field Eo'
For this more general case the dispersion equation (15) can still be solved analytically
but only for special density profiles and only for one frequency in each case, These

solutions are useful for checking numerical solutions however,

(4)

The eigen-frequencies were obtained numerically using a programme written by McNamara &
The method employed was to express the differential equation and the boundary conditions
as a homogeneous set of linear algebraic equations (using the method of finite differences).
Setting the determinant of this set of equations equal to zero specifies a function whose

complex zeros approximate the required eigen-values.

Figs.3 and 4 show the results of computations for the case when collisions are neglec-

ted and thus the frequencies are all real., Fig.3 corresponds to vacuum boundary conditions
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and ]zl = 1. There are now two branches, the frequency of the lower one tending to zero
with ka and that of the upper one to the value corresponding to the k . Eo = 0 case.
The appearance of two branches for finite ka is analogous to the low frequency drift

wave case (for c_. « ¢

s A) except that the phase velocities perpendicular to Eo are re-

versed., This is seen by the fact that the lower branch corresponds to < = +1 and to the
azimuthal phase velocity having the same direction of rotation as the diamagnetic drift
velocity. For the low frequency drift waves it is the upper branch whose component of
phase velocity in the direction perpendicular to Eo has the same sign as the diamagnetic
drift-velocity. (N.B. The results for the lower branch of Fig.3 are not valid for

ka < 001 since we have assumed w » “Ei)' Fig.4 is the corresponding curve for conduct-
ing wall boundary conditions. Both Figs.3 and 4 show that the phase velocity of high fre-
quency electrostatic waves along the magnetic field is much greater than the mean electron

thermal velocity (w'k 2 20 VT).

5. DAMPING OF THE HIGH FREQUENCY WAVE

Since the motions of the electrons parallel and perpendicular to the magnetic field
are coupled, a damping of either of these motions should cause damping of the wave, As a
first approximation only damping of the axial motion has been taken into account, The
damping of the motion transverse to Eo has been neglected., This is justified since the
first is of order v/w and the second v/hbe‘ Fig.5 shows the damping of the upper branch
of the high frequency electrostatic waves for three different values of the collision fre-
qUEeNcy . For very small values of ka the damping depends- inversely on the collision
freduency, whereas for larger values of ka the damping increases with the collision fre-
quency. For small values of ka, the effect of collisions is to decouple the electric
field parallel to §0 so that the wave still propagates at right angles to B'o and the
eigen-frequency corresponds to the kK . 50 = 0 case, Therefore, in this region the damp-
ing of the wave will be governed by terms ~1vﬂ%e which have so far been neglected. For

small values of v/uhe and ka, we may assume that the vacuum solution is close to the

case considered in 4 giving

‘ . ‘
@ .2 1 <1 —la‘L%) ver (25)
,QJCel wce y--1] ce

for the £ = -1 mode,

The damping of the lower branch of the high frequency electrostatic waves is shown in

Fig.6. This branch is always more heavily damped, This is not surprising since the
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branch only appears when there are electric fields in the direction of the magnetic field.
Thus, if the motion of the electrons in this direction is heavily damped one would expect

the wave corresponding to the lower branch also to be heavily damped.

6., CONCLUSIONS

The high frequency electrostatic wave is stable for a plasma in which the temperature

. (5)

is constant. However, Mikhailovskii and Pashitskil have shown that there is a high fre-

(8)

quency instability in the presence of a temperature gradient. A further calculation has
2

shown that for a temperature variation of the form T = To(l -y 25) where y 1is a dimen-
a

sionless parameter between O and 1

1L 4af . ¥
T dr a
and the condition for instability is
A2 ow Vi
ka < 20 y —g —B 7 where A, = 5
D
a” lwcel p

This leads to the real part of the frequency having the value

w
P_ ka
|ch|

w

1
Re ~ 7

lwce |

which for the conditions considered in this report would give

5
210

]wce |

where we have taken y = 0-1. This value of Re(w) is well below the ion cyclotron fre-
quency of even the heaviest ions. Therefore the high frequency electrostatic wave in the
frequency range considered in this report should be stable even in the presence of a tem—

perature gradient,
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APPENDIX 1

THE FLUID APPROXIMATION

In the above analysis, the electron fluid equation has been used to describe the
motion of the electrons, In order to justify its use we will now show that the Vlasov
equation leads to the same equation except for terms of order (va/'m)2 which is very

much less than unity because of the large axial phase velocity.

Since we consider the frequency range w

(6)

& W «lwc | we may use the Vlasov equation

cli e

in electron drift space assuming the ions to provide a background of stationary posi-

tive charge. Taking the distribution function to be,

f=r1 (EG’ s u_, t) wew (16T

-where r_ is the position of the guiding centre and p(= ZmuE/Bo) the magnetic moment of

G

the electron. In drift space Vlasov's equation becomes,

dr du
ot %o o a o0, Mpor |
el T SO i u - o . ees (1.2)

Splitting f into an equilibrium part and a perturbed part f = fo + fy and using the

dp _ .
fact that qt 0 +to order m/lmcel, we obtain

af of . of (E x B.) of

e = = (& ¢ N . i) 0

5t T3z “nEB:m B2 * Ir. ees (1.3)
z & ~G

where we have used the relations,

dEG -E\:.X Eo
—d-t—:uz+—BE_' soe (].4)
(0]
and
EEE =8 g
dt " m =z

Assuming an exp i(kz - wt) dependence, equation (1,3) gives,

£y = 2 ey Mo ExB) o (1.5)
15w - kuzj m "z du, B2 * ar : s R Te

0
If we take
2, o
B e—u;/ZvT
0
Ty = B;% f‘O(EG’uz) ’

= 12 =



calculate the perturbed charge density from,

-n, e=—ej'f1 du_ dp eee (1.6)

and substitute into Poisson's equation, we obtain,

of o/3u,
oy L EE [ L,
: (k x B,)
+—e'2—'—"(p -L = o .?du =0 5 ssa (]-7)
eomlucel B, Tw-ku,) "3r; =
Specializing to cylindrical geometry, taking
_ 2% —uZ/2vj s g S)
fo(Lgu,) = ny(r) (2nvp) 2 &2

and assuming an el{"e dependence as before, equation (1,7) becomes,

a
‘du (e i/sz)

Vgcp _ﬁl no(r) ¢ (27012)%[ —(———r du

0
+ es 1 dno(r) (2ﬂV )_6 (-UZ/2V2) du =0 . awa C149)
meglwgel T dr (w - ku, ) zZ
With the aid of a little algebra the two integrals in equation (1.9) may be expressed as
follows,
2
= aﬁ(%—uz/§v2>
Z ' J_i w w
[—(‘w—_—}a‘—z-)— du I: T W(ﬂz—-vaD:] ees (1,10)
and -
—u2 2v2
[ 7% du, _otm oy (e vos (1411)
(0 = ku, i k Jzva
where
1 0 ___t2
+ e
- ae al
W(x) qu't/ = [t (1412)
oo
(7)

the plasma dispersion function -

For x » 1, W(x) has the following asymptotic expansion,
. o 1 1 3
W(x) ~ 2iNm exp(—x>) ol 1R e Lo sww (1&15)

Now we have already seen that uyva » 1 so that we may use (1,13) to evaluate the expres—

sions (1,10) and (1.11), Since w/k » Vips the imaginary term in (1.13), which gives rise

- 13 -



to Landau damping, is completely negligible and will be omitted. Making these substitu-

tions, equation (1.9) becomes finally,

_ 2.2
o + K2e2 no(l‘) <] 2 k VT) -
5 3
Som oW’ w
fa) dn 2.2
po—tt b gy KVEY s e (1.14)
wmeg lwee | T dr w?

kv,
where we have neglected powers of _GI higher than the second. Comparing equation (1.14)

with equation (12), obtained from the fluid approach, we see that for v/w = 0, the equa—
tions differ only in the coefficients of w%/kzv;. Since we have already stressed the fact
that this is very small the fluid approach is justified.

- 14 -



APPENDIX 2

THE ELECTROSTATIC APPROXIMATION

The analysis given above was greatly simplified by neglecting ﬁerturbations of the
uniform magnetic field and assuming,
E=-Vgp .
At low frequencies it is the Alfvén mode which perturbs the magnetic field., However, at
high frequencies, this mode can be neglected since the ion motion is negligible, Instead,
we must show under what conditions the helicon mode can be neglected since it is this mode
which will cause the greatest magnetic field perturbations., Starting from the complete set

of Maxwell's equations,

oE
VxH =J —L Zal
4] =49 '_“1 C o EO dt see ( e )

oft
¥ % By =ug 5t oo (2.2)
-n,e :
P By = s se (263)
E:0

Yl =0 oo (244)

we express the fields in terms of the electromagnetic potentials A and o,

= Fip oDt
B =-%9 -5 s (245)
Hy == ¢ %A ces (2.8)
TR

For an exp(-iwt) time dependence and choosing the Lorentz gauge,

89 =
‘Yt * é'+ l“"oeo at 0 asse (2.7)
‘we obtain,
By
A= —2" sen (248)
2 w
k= + =

where

K2 = k7 + ki

(N.B., The spatial components of the gradient operator perpendicular to Eo have been
approximated by ik, since we are only interested in comparing magnitudes of various terms)

To discover the importance of magnetic perturbations we simply compare the part of E; which

=



arises from these perturbations with the total electric lield, For the field perpen-

dicular to Eo we need to evaluate,

From equation (2.8),

Ay = on v (2.9)

We obtain Ji, from equation (1) and the definition of current density J = -ney,

ém
3

Jiqy = —eno P —'BT:Q)_‘an,xEO «es (2,10)

where we have neglected collisions and terms of order “/luhel' Substituting (2,10) into
(2.9) and using equation (3) we obtain after a little manipulation,
w A 2 w’w ’ e
| 5 v, fce _k een (2.11)

[E.[ ~ c?(k® + 0¥/c®) |uee | TITTE k2. w’
& P P

where the second term was obtained assuming E = —Vq. We see immediately from the first

term on the RHS of (2.11) that, as expected, for helicon waves,

since for this case

Note also that this term is independent of (. For the electrostatic wave we are consider-
ing the second term on the RHS of (2,11) is negligible provided P « 1. For the first

term to be negligible, ub & ’uke,'

Finally, we compare the E, fields. For this we need equations (2.8), (1) and (2)

and we obtain,

A . /k_2<‘2(2; noe2 ey EL x w >
w z _—l[..lo 2 + n_l'lo . T“E"’_E—z‘

Z
E_ — W m
z L]—F’(F
Z

where we have again neglected collisions, and terms of order Q/IQEPI . Approximating

360:7

=]

aee (2012)

E. xB/E, by (kixB) okyo,

_]6..



(2.,12) may be written as,

2 K
“p ( w2 o @~ kL >
212 2.0 2
w A, r c?K K2vd Iwcel kS (1)
E - l '0.)2' LR e
z = en :
2 .
where K —1—V
~n T n ~

n_. Since we are considering waves for which t.u/kz »
o

VT we require the
following condition for the final justification of the electrostatic approximation,

2 o Lk 2

wp u)p En VT 1
21,2 2 2 8
c=k wlwael k c

ces (2,14)

The second term on the LHS is always « 1 except for relativistic plasmas since équation
(2.11) requires ®, « W+ Thus, we must ensure that w? « c?k?,
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