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ABSTRACT

The low frequency electrostatic drift-acoustic mode and the gravita-
tional flute mode in a periodic gravitational field in a collisionless plasma
are examined. As a model, a one-dimensional plasma slab with straight field-
lines, a small density gradient and a perpendicular gravity periodic along
the field lines is considered. Only the long wavelength non-localised waves

are investigated.

The periodicity along the field-lines causes the modes to combine pro-
ducing unstable hybrid modes or standing waves. The energy transfer between

the resonant electrons and the waves is also examined.
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Q) = 1 - e 1 (b)

first two coefficients of the Fourier expansion of the periodic gravity

for ions (g_ > O for stability)
0

T.
radii of curvature (go == ; )
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particle masses
elementary charge (e > 0)

temperatures in energy units

_TE
T = Tf
i

2 2Ti

the thermal velocities v,. = —

Ti mj

the perturbed electrostatic potential
the perturbed number densities

the unperturbed density
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g = —é—
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1. INTRODUCTION

The aim of the present work is to summarise our studies on the stability of a colli-
sionless shear-free plasma confined by a magnetic field possessing a periodic curvature.
The theory is relevant only lor the situations where the field-lines are self-closing.

Our model is practically a one-dimensional plasma slab with the straight magnetic field
in the z-direction and a small (positive) density gradient in the y-direction. The perio-

dic curvature is simulated by a periodic gravitational g-Tield (0, g(z), 0)¢
g(z) = g, + 81 cos kiz S

where gy > 8o 2 0 (to simulate the / %g stability). We do not consider any effects of

particle tfapping, that is to say, we ignore any z-component of g throughout our

calculation.

To simplify the problem we make the electrostatic approximation and restrict ourselves
to an investigation of the longwave non-localised modes as these are generally not Landau

(1)

damped. We find that the modes of interest are the well known electrostatic flute mode

and the drift wave(z) which now, however, are coupled producing hybrid modes. So, for
instance, the magnetohydrodynamically stabilised flute model is accompanied by a pair of
long wavelength drift waves, ‘which may be unstable due to resonant electrons. On the other
hand the coupled drift waves can combine into a standing mode, that effectively behaves as

(3)

a localised wave, even if the strong localisation condition is not met.

In sections 2-7 we describe our model and develop the dispersion equation; the subse-
quent sections are devoted to its physical interpretation and solution. Throughout our

calculations we assume that the parameters

Vs 2 2 k gi
Ti oy X
( —— - and T e )

are small quantities. The first condition allows us to neglect the ion Landau damping,
the second one makes the use of our model of the gravity simulated curvature possible. To
comply with the second condition (2) it is necessary to assume that finite Larmor radius

terms are not too large, i.e.
2 <
(kx pi) =1 <iq (3)

As the first parameter (2) may remain small (i.e. no Landau damping) even il the second

one is not small we exclude the physically still interesting case of wavelengths very much

* This is a field acting on the ions, for the electrons we assume an effective
m. T
. i ‘e
field n T g(z).

1




shorter than the ion Larmor radius. For further simplification we do not consider any

propagation along the density gradient.
The concept of our calculations is rather similar to that of Rel.3 but we examine the

shear-free case in somewhat more detail.

2, THE SITUATION IN OUR MODEL

We consider a plasma slab as follows:

-84 + go
NN z

‘\/ v

81 +8,

lg(z)

B = (0, 0, B)

grad n, = (0, n; (o), 0)
(0, g(z), 0)

0, kin))

209
1]

"(k

&
|

x!

3. THE EQUILIBRIUM DISTRIBUTION FUNCTION

The equilibrium distribution function can be chosen in the following way:

F . {¥) = foi (v) (1 + Vy ¢i) ;

[0} §
1 v?
£ =n(y),———exp<—-*— (4)
oi o Yo _a v, ’ cen
S Ti
- (-1, 2
% = ( a t 2 (Z)> :
3 Ti

The above form applies to the ions. For the electrons it is necessary to replace the ion
T m.

quantities by the electron ones, including the changing of g(z) to Te ml g(z).
i'e




4. THE EQUATIONS OF PARTICLE MOTION AND THEIR SOLUTION

The ion equations of motion are

A
m X=—YB s
i e
5 C
miY=—?XB+mi(g0+gic05k1z) . ene D)
m'Z=O s
P.

with a solution to the order of accuracy ﬁ-l- {
C

Vi
n—i sin (f t - %) + sin X

X(t):x+
g g :
0 1 . .
+qt+kiv—n_ [sul.ki(vzt+z)—51nkiz] : ees (6)
z i
Z((t)=z+v_t ,

(V_L, X vz) are the polar coordinates in velocity space.

The z-dependent term in the expression for X(t) represents the particle guiding

centre wobble due to the varying curvature,

The analogous equations for electrons can be obtained again easily from the above

expressions.

5. THE SOLUTION OF THE LINEARISED VLASOV EQUATION

The linearised Vlasov equation

o, - o ‘:ei ] of, e 3F
—5-€+x-Tf+ mic,Y,xE+§(Z) ’F=m—igrad¢' & ... (7)
has a solution(1)
a &y e [° ay 1 ( Vm 5
£;(LaVat) = - 5= Foi*T[ dt'l:at Foi'foiﬁi-(Ta‘ (Z)> x |- v (B
' bl r > R(t'-t)
v = V(t-t)
P

where R(t), .Y,(t) are given by the equations (6).

To find the normal mode solution we assume that the perturbed electrostatic potential

may be written in the form:

1]!(’{‘, t) = exp i(-wt + kxx) Z ll!m exp iz(k;n) +mk, ) ve. (9)

M= — o



Substituting (9) into (8) and integrating over t’, an expression for the perturbed den-
sity may be readily obtained. There is a particle wobble term which is entirely analogous

%
to the standard gyration term. The calculations give for the perturbed densities :
2

o oo v o
N - en g dv - ____z_) ' k g4
Py t) = = > [— (1 - qb j ("’Ti . § ( x )
Ny By ) Ti Vp + Qf ))_m 7 s Ip kivzni

Zz
"= =0 Ti m

i=-w

K. 8

% X
kg, \ @+tT0-— - (p+m-rlkav,
X 1
I . (n)
p+m-T ( kivzni ) 'llfm] exp 1 [—Cl)t -!-k.x X+ (kZ +I‘k1)Z ] ;

w- =8, vz[ kin) + (p+r)k,]

5
v 2
en, - T dv,, —<;~;Z—> - k.8,
2 o, e o= B Te e 3
e 5 o] 2 T )
e TV iz i
r==-—o - Te m 3 _
. kg P
* x°0
w-w +7T — (p+m-r)k v
k. g Q. z
I <—'c =z ) = W :I-exp if=-wt+k x+(k(n)+rk )
p+m-1 ka"zni ‘ kxgo (n) .om X z O
w+ T o —vz[kZ + (p+r)k, ]
... (10)
where
Q(b) =1 - L Io(b)
— 2
B = (kx Pi)
. le
Ty
The quasi-neutrality condition
n, = ng ees (11)

gives an infinite system of equations for the coefficients Ell!m 3 and if we equate the

determinant of that system to zero we get the dispersion equation of the system.

6. THE SIMPLIFICATION OF THE EXPRESSIONS FOR THE DENSITIES

Using our original assumptions (1) and also the condition

S swn 12

(3)

* The last term in the numerator of the fractions in (10) missing in arises

due to the z-dependence of the equilibrium in (4).



we can greatly simplify the expressions for the perturbed densities (10). 1In dealing with
the resonant denominators we use the Landau prescription for each of the terms in the

sums (10). So we obtain:

(a) The ion density ()
o n
v k +rk 2
-5 [t g (Y]
i~ Ty r T w’ L) w r
'=—x ) '
* K. g
lw _x71 . (n)
* 7 o) (1]1”_1 +\|1r,_1)}] expl,i—wt+kxx+(kz +rk1)z]’
where
k_ &g
L
w = w Qi i coe (13)

We neglect in our calculations the imaginary part of the ion density responsible for

the ion Landau damping.

(b) The electron density

The simplification of the terms in the series for the electron density depends criti-

cally on the wave vector k(n). Namely, if the wave vector k(n)

a % is an integral multiple

of the curvature periodicity
k™o or ok wen (141

L ry is integer, then it is possible for the z-dependence in the

which implies that

denominator in (10) to disappear when

(n) .
kzn +lEkw) k=0 ... (15)

That particular term then assumes a form that correspends to a flute type of wave, Examin-
ing the magnitudes of those terms that are exceptional in the sense of (15) we find that

the most essential change occurs in the electron density series if

The above consideration should be applied to both real and imaginary parts of the electron
density. If the condition (14) is not fulfilled a flute-like term cannot occur. Then the
contributions of the terms in the electron series (10) are all the same and given essen-
tially by the Boltzmann law and the standard resonant term, accounting for the universal

drift instability. Thus the pure drift mode inherently cannot resonate with the flute.



Let us distinguish the two cases:

: . (n) .
(i) The pure drift mode (kZ t - ryk, forany ro).
. en ™ ¥ - k. g
ne=-._r—0 Z {...q;r_ ) l_(m—w*+'r ’((';.0>‘l’ +
e |k r'k1| 1 "

+Ekxgi( )]} i ‘ wt+ k (k(n) k,) (16)
2-——01 ¢r+l+¢r‘-1 exp i | —wt+ k. x+1k, +rk, )z

and (ii) The flute mode (k(z) - Ty Ky for some integer r_ ):
. en
n, = Te- vee + Ll!ro_ kiv L(m w )\l!
... (17a)
+'ckxg1<w*ﬂ; + w | )J}ex il:—wt+kx-—kz:]+
20 w ro ro-2 3 X B
w +7T 5o
W= 0
+1 -l 4 — e U A
s Kx8o ro 220 w ‘rotl ro-1
w+T =
1

- 2
ive [ ( kxgi > % T kxgi e
" ka vrg 7 \" (w-0) 4’!‘0_5 Qjw (w-w )wr‘,oﬂ * 1111"0—1)

+

i k g
1V * T X1 %
{“wroﬂ ol vy VI, I: (w=-w )¢P0+1 +3 e (w \!Jro-i-m ¢ro+2) ]] .
... (17¢)

exp i L— wt+kxx+kiz ]+

The remaining terms in the last series (17) are essentially of the same form as in (16).
This exemplifies the difference between the pure drift (16) and flute type of mode. In

the latter some of the terms are different, namely those where the relation (15) is valid.

7. THE PHYSICAL INTERPRETATION OF THE EXPRESSIONS FOR THE DENSITIES

(a) The real part of the densities:

The expression (13) and the real parts of (16) and (17) can be obtained in a more
obvious way simply from the two fluid equations (including the FLR terms(4)) together with
the isothermal gas laws. In the electrostatic approximation we obtain an equation connect-

ing ¢ and a perturbed density in the form:

2 ~ -~

VT, n k &(z) c"(z)

Tl%—écmaiz<_r%+—¢>+_“+b) (w— > [—+b w-—- — = 0.
Y ... (18)



A similar expression is valiid for electrons.

Substituting into (18) the series (9) we recover once again the real parts of (13)

and either (16) or (17) depending on the condition (15), It is also easy to demongtrate

from (18) that for a pure drift mode (condition (15) is not valid) (18) yields a Mathieu

equation for the real part of the perturbed potential:

% + (Alw) = 2q cos 2E) y = 0O o5 £19)
where 0
A(w)=2<_2_w)‘|:_1+ 1+ T w'’ :,
ka vy 1-Qb) 3 4

2 "
§ = < 2w ) W Kye8a
ki vrj o (tw + o) G

and

The above equation is invalid for the Tlute mode.

(b) The imaginary part of the electron density:

The most convenient way to interpret the imaginary terms in (16) and (17) is to examine

the power transfer in the electron gas. To make sure that we correctly include the

y-variations we start from the equation of the charge continuity multiplied by 1}1* :

A * £ A P s A
L ey avie-av Gy +JE .. (20)

If we integrate over a large volume, then, apart from the surface term, the right hand

side of (20) gives an increase in the electrostatic energy of the wave in terms of the

contributions from the current components. Clearly, if we examine the structure of the

an
imaginary part of - e —a%, composed of the imaginary parts of the electron currents in

the expression - div 3e s we shall find which way the energy flows.

We calculate the electron current again from (4), (6) and (8). We obtain

ne? © k g k g
. b . 0 #* X-0 T x~1
L Myl =4 T, Z [(w T )¢r_2 0 G +.¢r—1)+
I' = —

7 d i = k k
. B \V7q Z ; (_ - xgi> ( kg ) ;
B ‘quTe p kisz. pHm-r k 1Vle
ml o
k g P
-t +T %-ro— (p+m-r)k_ v k. g =
5 1’z * x°0 ] (n)
: - w =T —“5—+pk,v_J cexp if-wt+k x+ (k ~'+rk,)z
8o () Qi z/'m X z
T v, [k, +(p+r)k,] ... (20)



e
I' = - m}——m
pl=
¥ eee (21)
G =T ’5_0 —(p+m—r')k1vZ
ke - wm-expil: wt+kx+(k(n)+rki)z:l
W+ T _?{E_’ig - v [l{(n) + (p+r)k,]
e § [ s s o
0z Te p kz\rZQi p+m-r klvzﬂl
pli= )
g (22)
x°0 %
W+T —F— -0 —(p+m--r‘)k1\.rZ
. (n) (n)
e (k +rk1) vzq;m- exp i [-wt+k X +(k +r.ki)zJ
G v [k (n)+ (p+r)k, ]
Qi Z Zz

Combining the expressions (20), (21) and (22) we obtain:

% n e, k. g k. g
e B LT § * x°0 T " x°1
AV 3 = T {(w =t v )q{r‘"-i = Uy + ¥ g) #
= =0

v 2
e w
) d\o’z VTe ; kxg1 . . kxgi .
* € p T kv prn-r \ ~ kv Q

l/‘T_'-'VTe 1'z'1 X
= m}.._m
g p
WHT T W -(p+m-r)k,v
j- L]
. %o
WHT ~g— -V (k™ +(p+r)k,]
§

(n)

-expi[-wt+kx+(k +rk1)z:|=ime ﬁe

(23)

Only the integral expression in (23) is responsible for the imaginary part of ﬁe. Inside

the square bracket there we recognise the terms

Ko

&

- T +pk1v

Z



originating from the perpendicular g-drifts and the longitudinal part

(k;n) + 1‘k1>vZ .

From here it follows that energy is tranferred in two different ways:

(a) By the longitudinal motion of electrons along the field lines resonating

with the Ez component of the perturbed electric field,

(b) by the perpendicular resonance between the particle wobble due to the

g-field and the Eyx component of the field.
Both of these cases can be conveniently distinguished by the indices r and p.

So in the equation (16) just mechanism (a) produces the imaginary part, however, the
mechanism (b) is solely responsible for all the imaginary terms in (17b) and combines with

(a) in producing the terms in (17a) and (17b).

8. THE GRAVITATIONAL FLUTE MODE

The further procedure is now obvious. We substitute the expressions (13) and (17)
into the quasi-neutrality condition (11) and calculate the frequencies and growth rates

from the condition for the determinant of the system obtained to vanish. In the gravita-

tional flute case kin) = 0 (including those of the drift modes with k;n) s ki,

which can resonate with the flute) we obtain an equation governing the frequency and

growth rate:
% % k ' k
(w1]2+w:£_i xg°ﬂ+i_@_ e ..).Eil_)z (w-w*)>]°
T T 01 Q ki\'Te 2Q " -
K, v\ 2 k g
(1-Q |1+% L | T (L i St
; G Vz 5
[w’— w i T }:
4, P

+ i
'VTe 2 4 1+71Q
1+¢[Q—15C(1w—>(1—(2)]

k. g \? *
'2'15<X1> W l:'rw— @ (1-Q)+i —‘%m(m_m*):'-(1 gt XE )
e

0 (1 +1Q)w k Kavyg

eon (24)

The last equation has been derived on the assumption that only ¢0 and 1}rﬂ are the non-
zero terms in the expressions (10). The first curled bracket represents the well known
electrostatic flute mode of Ref.1, the second one the drift mode of Ref.2. The right hand
side is an interaction term, specific for our model. By the analysis of the complete

determinant it can be found that out of the two possible drift wave solutions with the



k;n) = k:L it is the even one that can resonate with the flute and appears in (24}, the

odd solution exists quite independently of the flute.

Denoting now:

w __w_*+- ﬁ)z_,,ﬁkxgol_—o. {25)
1,2 - 2t ~ 27T T Ql Q e

and assuming that the w, (unstable root) and the drift frequency are sufficiently distant

from each other, i.e.

kg 2 % *
o, - o* 120 |, ZJ( e ) (sl e (26)

1 1 + 1Q L

it is possible to calculate the growth rates both of the gravitational and the drift wave

in the non-resonant case. We obtain

(a) Non-resonant flute growth-rate (for (kxpi)2 il

2 ky2 K & # 1+ Tyo
i kg, 1 (wfw) +w(w{-w) + (w T)
e = 5= - = ee. (27)
2Qk1VTe i 2w11:+ W W= W

The last expression says that the instability condition for the non-resonant flute is now

the same as for a usual drift-wave:

% a
w1<w:$'£b >-—RC0 ... (28)

in agreement with Ref.3.

The instability is now caused entirely by the presence of the resonant electrons.

(b) The non-resonant drift wave:

If the parameter q of (19) is moderate q < 1 the drift wave associated with the
flute mode (k;n) = ki) is non-localised. Its frequency is slightly shifted, but not
enough to influence the growth rate. For the stability criterion it is possible to accept

the usual condition for the drift wave stability:

Tb ( Tb + Eg—-> ¢k, a)® ee. (29)

co

(c) The resonant case

In this case when the condition (26) is not fulfilled the flute mode strongly inter-
acts with the drift wave and the growth rate is enhanced. It can be visualised from the
equation (27) letting w, approach w*. To find the growth rate we have to go back to

the starting equation (24) and solve it for the case w, = w . The growth rate obtained

- 10 —



depends strongly on the way we order our parameters. If we assume that:

3 K 2 2
[Q -k ( kz VTe ) = xgoj : i 1 kx 8, > 1 (30)
2w | in"‘ 2Q _ Qi (14 1) (o - w,)

1
T=% ilkxgﬂ o” I (31)
i 2Q Di k4 A 1 + 2%

The opposite inequality in (30) has been examined in Ref.3.

we find that

In conclusion we shall justify the reduction of the full determinant of the system to
the 3 x 3 determinant. This is possible when the off diagonal terms are small with respect
to the diagonal one. We limit our investigation to the resonant case as there the conver-
gence is hardest to attain. We find that a typical ratio of an off-diagonal and a diagonal

term is

so that we are again limited to the long wave case in our investigations.

The order of magnitude of the growth rate of the non-resonant flute is roughly the
same as that of a conventional drift-wave and it is approximately T—J-—T higher in the
kxpi
case of the resonance (which cannot be stabilised). But the resonance band width around

o ~ w, is very narrow, given for (kxpi)2 small by the equation (26).

9. THE DRIFT WAVE

In the case of a pure drift wave the real quantities are now governed by equation (19).
If the resonant effects are included it is unfortunately impossible to replace A and q
of (19) just by the corresponding complex quantities without changing the equation itself.
The reason is that the corresponding perturbation term in (19) would have an integral form
affecting each of the harmonics composing the zero order solution of (19) (the appropriate
Mathieu function) in a different way. It is therefore more convenient to use the relevant
Hill determinant rather than the equation (19) itself. The corresponding system is
(r=..0, -1, 0, 1, ...):

2 2 .
¥ ,:A(w)— (22+2r> . 2(2(” VAR it (w—w*+'|: kxg())_] +
r v kavr; kivTe oot 4wk o

n
ip
v

s (32)

i 2w 2 x81 o
+ | -qlw) + - ; ( i ) =
[: Eﬁ-rl < k1vT1 kiVTi 0 Tw’-qu $r+i ¢r—1

v

where A(w) and q are given by (19).

- 11 =



The system (32) may be solved conveniently by regarding the imaginary temrms

The new order solutions are the well known Mathieu functions(s) cezn(g) or sezn(g).
The first order system is v v
R n I
= —_— 2 =
I:A ( v r) ]1!1 < r+1+¢r-1>“
. 2 1 kg
:—ﬁR[AI+ = 2( 2w ) kﬁ o *<m—m*+'l: éo>+ e (33)
r |E+ Pl k1VTe 3-VTe Tw + @ i
v
2 R n 2
)% 1 2w VT KB, o &o- {2y v
1 -9+t K,V kK v L * R
;+rl 1 Te 2'Te 7 "1 7w +w q

Here AR, AI etc. means the real and imaginary parts of the eigen-value etc. On multiply-

ing (33) by wl:‘ and summing, the left-hand side subsequently cancels out and the right-

hand side gives an equation for the growth rate (neglecting qI as inessential):

¥ o ﬁt— (wr)2 i T‘i )2l [(1+’F)FQ—4 (kzw )A (1 Q):] k go B kxg A —(2_-!-2!")}
+r d

k¥ 10 = L ot 2 &P o
F=—o 1+7 | Q% A (1-Q)

Z W2 = 1
' ==

Now for q moderate there is a whole class of the standing wave solutions to (19),

... (34)

with

namely those where Z_vn_ is an integer. The most interesting one is the solution sei(g)
as it has its antinodes in the unfavourably curved regions and samples the average of the
adverse curvature. Then the second term in the curly bracket in (34) becomes important

causing the growth rate of the se;(g) mode to predominate:

AR -1
= =—1-%+.. (35)
q
For the fractional order long wave modes with 2Tn < 1 we get
R 2nyz
Alon - (=)
v
(36)

’ 1
= q
R 2
v

and the last temm in (34) is again positive (amplifying) proportional to q. Here, however,
we do not get the standing waves as the odd and even modes are not distinguished by the

growth rate.

- 12 =



10.  CONCLUSTON

Both the flute and long_wavelength drift wave can be unstable in the model with perio-
dic gravity. A principal flute mode interacts'wdth the periodic geometry producing secon-
dary oblique waves. It also can absorb energy from the perpendicuiar electron wobble
motion. The result is a resonant electron instability which is strongest when the gravi-
tational flute and electron drift mode have frequencies close to each other and both waves
resonate. In the case of a pure drift mode the harmonics induced by the periodic curvature
can cdnbine into a standing wave, which effectively behaves as a localised wave modified

by the local properties of the periodic geometry.
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