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1. INTRODUCTION

Within the context of plasma confinement a multipole magnetic field is defined as that
generated by a set of parallel conductors, all carrying currents in the same direction, the
return current being carried either in a conducting outer wall or in external conductors(]’z).

Ideally the conductors are coaxial axisymmetric rings but linear systems are also of inter-

est provided they are of sufficient length for end effects to be negligible,

Multipoles are of importance as plasma contaimment devices for the following reasons,
Firstly, the field lines, which lie in planes perpendicular to the conductors, are closed,
As a consequence the connection length, that is the distance over which a particle averages
favourable and unfavourable stability properties, is short. This should be contrasted with
the open line systems possessing magnetic surfaces, where particles may have to travel
much larger distances in order to detect, or produce, the average surface properties on
which the stability depends. Secondly, the magnetic fields are such that there exist
closed regions of space in which the conditions Vp x VU =0 and Vp.VU > O can be satis-
fied simultaneously, where p 1is the (scalar) plasma pressure and U = é‘d&/]B] , the
integral being taken once around a closed field line(s). The former ensures low pressure
MHD equilibrium while the latter is theoretically sufficient for the stability of (low
pressure) interchange modes. Thirdly, provided the fields are both invariant in the direc—
tion parallel to the conductors and independent of time, and collisions are negligible,
particles of a given energy and 'axial' momentum are absolutely confined within a finite

(4)

region of space' '.

The major disadvantage of the multipole, at least from a fusion reactor standpoint, is
that the regions of stability and absolute confinement both completely encircle the conduc—

tors, thereby making their support, cooling and current supply technologically difficult.

The particular class of multipole fields whose properties are listed in this report is
that generated by an even number of infinitely long, linear, current filaments placed sym—

metrically, in vacuo, within a perfectly conducting (flux conserving) cylindrical wall,

The justification for studying this model is firstly that it is particularly amenable
to analysis, thus enabling a catalogue of its properties to be drawn up in considerable
detail, Secondly, the use of infinitesimally thin filaments is not particularly restrictive
since solid conductors can always be placed on the almost circular field lines close to the

singularities without disturbing the magnetic fields elsewhere. Thirdly, in closed toroidal



multipoles the purely toroidal effects are in general so small or lie sufficiently close
toa 1/r dependence that they can be neglected. Finally the results derived from the
model are sufficiently simple in form for them to be of considerable value when studying
the behaviour of the plasma itself, particularly those aspects which do not depend on the
very detailed nature of the field configuration; overall stability characteristics(s),

(6) (7)

diffusion and single particle motion , for example.

The following sections establish the model in detail and describe the properties of the
resultant vacuum fields. The last section deals briefly with the effects of adding an

axial field component.

No attempt is made in this report to discuss the physical significance of any of the

properties derived.

2, THE COMPLEX POTENTIAL FUNCTION

Consider a vacuum magnetic field ﬁ(x,y) = (Bx(x,y),By(x,y),O) generated by currents
flowing perpendicular to the x-y plane. This field can be described either in terms of a

magnetic potential o(x,y) defined by

-
B=- Vg

or by a magnetic stream function X(x,y) defined by

B=Vx (KX) ,
where k 1is a unit normal to the x-y plane. The lines X(x,y) = const. and ¢(x,y) = const.
are mutually orthogonal, the former being the magnetic field lines. Thus each field line
is labelled by a particular value of X while each point on a line is labelled by ¢.

ﬁ Since both ¢ and X satisfy Laplace's

~+

equation, a complex potential ¥(z), an ana-

lytic function of z = x + iy, can be defined

by
¥(z) = Xx,y) + ig(x,y) .

Direct differentiation shows

-’
4
4
+
v
*x

B| = |vgl = |vx| = |d¥/dz

The complex potential function due to a

-

set of n filamentary conductors (Fig.1)},

each carrying a current I/n, spaced equally

*

-+

and symmetrically around a circle of radius a
Fig.1 Linear multipole geometry (CLM-R 95)



inside a perfectly conducting cylinder of radius R can be written

o1 AL
‘i’(z):--n— &n[(—é) .zn—_-gﬁ} y e (1)

where the cylinder has been replaced by n image currents -I/n on a circle of radius

b = R®/a. The factor (b/a)n has been introduced to give a convenient normalisation

('X. = O) at the Ol"igin. Defirlirlg bS] = (a/R)zn’ equatj_on (1) then becomes

()

21 >

}—ﬂnqéj; : s (2)
a

3. FIELD LINE GEOMETRY

¥(z) =

It is convenient to rewrite equation (2) in the form

eee (3)

-nx
nX/21 labels a field line and ¢ = - 1 labels a point on it.

where now q =e o1

. - . i0 . .
The modulus of this equation, with z = re’ , then immediately generates the polar

equation of a field line (q = const):

r\n 1 - 8q° ' .
(—a-> - I——Gz((::z |:cos nd * \ qi - 51n2n6:| 5 ees (4)

where q, = q(1-8)/(1-8q®) and the negative

<

square root applies only for q < 1,

All field lines are closed, c.f. [ig.2,

q=>I
"\ 9= those (0 < q < 1) encircling only one fila-
‘ a=<l 1,
‘:‘ ment being separated from those (1 < q < 8 72)
“
&= = *  encircling all the filaments by the separatrix
db (q =1, X =0). The separatrix, the equation
' J of which is '
ryn _ 2 cos 6
a;, 1 +86 7
Fig. 2 (CLM-R95) consists of n 'petals' radiating from the

Typical octopole (n = 4) field configuration centre, each subtending an angle © = n/n at

the origin and extending to a maximum radius

M1 8)a, c.f. Fig.3.



Fig.3 (CLM-R 95)
A segment of the general field configuration

All lines oscillate between the radii

(q) = (J'—+—(:[>l/na

Tmax 1+ 8q

and g
1 -q n
I‘min(q) = l 1-06q B s

Thus the effect of the cylindrical wall, i.e. & > 0, is to push the field lines
closer together and to the filament along the radii 6 = 0, * 2m/n, * 4x/n, etc. and to

pull them apart and away from the origin along the radii 6 = * n/n, * 3n/n, etc..

In the evaluation of several functions of position it is convenient to be able to make
transformations between the polar coordinates (r,8) and the magnetic coordinates (q,&),

This is facilitated by making use of the four functions

2

F, (q,8) = ] 1 = qelrﬁ = 1 -2qcos®+ q°
ig|®
F, (q,%) = | 1 - bqe | = 1 - 28q cosd + 6%®
Zn 2 lr‘n 1ﬂ?.n
G, (r,8) = ' 1 = (E) = 1 -2 (E) cos no + (E)
n,z n 2n
G, (r,0) = | 1 -8 <E> = 1 =26 (£> cos nb + &2 <£>
2 a a a

which are related by



and have the property

el
SIS
1
AT,
S,
o
Lo

Thus at the point (r,8), q and & are given by

G, 1/2
@

2n
B, iy, = (1-6)9<§>

3
2(G,G,)

Fal
1

cos & =

and at the point (q,2), r and © are given by

i
r_(F:\m
a |\ F, ?

Fi+ Fa - (1-8)2q2

cos nb = T
2(F,F,)"?

4. LINE CURVATURE

The radius of curvature R, at any point on a field line may be obtained by evaluat—

ing either
3,
L fary T
de
RC = =
a, o (4L’ _ dr
)
or
1 _ (el
Re ~ \ oX
P

The result is, for q } 1

i/n
1/n [coe, né + | q* -sin? neil
R 2 1
€ o 1-5q°
a - ql 2.2
1-8"q ¥ 5
|:n cos nb +|q? —sin"’ns:l

nl  n-1
2n 2n
F F.

2

.e. (8)

ql
(1+ 8q2) nli-q, cos @) +q,(q,- cos &)

where q,=q(1+8)/(1+ &q%) and R, is positive inwards.



On any particular line therefore the curvature lies between the limits

1/n
(n+qy,) <:I++6(]1) . ... (6)

_Xn X
RC q,

-1

>I/n ca

(n-a,) /_ 8q
G

q4
the curvature oscillates in sign, the zero occurring at

2
-1 ’q — ’
n®_-1

5 = +CI1C[
- qQu+ nqz

When q, > n the curvature is everywhere

When q, <n

nb

where n6 lies in the quadrant =/2 < n® < m.
The extreme curvatures given by the inequality (6) are shown in Figs.4 and 5.

positive.

Minimum U

Minimum L

(CLM-R 95)

Fig. 4
Extreme curvatures for a quadrupole
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0 H 12

o i Minimum U—=

Minimum L—=

Fig. 5 (CLM-R 95)
Extreme curvatures for an octopole

The values of q(= C[m) corresponding to q, = n, the last line with any negative

curvature, are given in Table I (see also Section 7).

TABLE I
a/R 9

n=2 n=4%
0.0 200 4+00
01 2.00 400
0-2 2-00 4-00
0-3 1-96 4-00
04 1-88 400
0-5 177 3-80
0-6 157 335
0.7 140 2-61
0-8 1-25 1-90
0-9 112 1-37




5. LINE LENGTH

The length of a field line is given by

2m s
L(a) = j( de :f [r” + (%g)] do = 41f qu’
o 0

~1/n =
- 2aq, Gﬁ%) [ d(nd)
a qi - sin® n#
%
= 2aq0-8) |~y - e ()
0 Fi2n Fz2n

This cannot be integrated analytically in the general case. For q = 1, however

= 1
] n a TE _d/
(1+6)1/n P( % )

/

k]

Lsn = Ln(qzl) i

(8)

where TIN(x) is the Gamma function . In particular

-k
L 7-42a (1+8) ?

s2

Ls4

1
11.04a (1+6)7% .

The length L (q) is not a monotonic function of q, but has a minimum at q = Qe

The variation of q, with a/R is shown in Figs.10 and 11.

The distance between the minimum L surface and the separatrix varies between the

limits
ALmax r‘min(q{’,)

rola) - (1),

A .
Lmin max

The dependence of these limits on a/R is shown in Fig.12.
6. AREA

The area, or alternatively volume/unit length, enclosed by a field line is given by

27
1 2
An = 3 j' r<do
o
5 2 n 2/n
1 - n o . D
= < T:TEEEE ) a® j' [}os no + /q;— 51n"n§} d(no) , ve. (8)

o]



Fig.6 (CLM-R 95)
The area within a field line q for a quadrupole

40

3-0r

Minimum L surfoce
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0 02 0-4 0-6 0-8 1-0
q-|
qe-!
Fig.7 (CLM-R 95)

The area within a field line q for an octopole



This is not in general integrable, but two useful particular results can be obtained,

namely . 2-n T (L)
A = Al(q=1) = —2 o "y L2
ns n “+6)27n I'(%-;-I)

(1-5%) 1
A = 2a® ——= (qE(—
() (- s7q®) TE(gE)
where the complete elliptic integral E(k®) is given by( 8)

E(k?) i/ H1 - k®sin®t dt.

Equation (8) has been evaluated numerically for n = 2 and 4, and the results are dis—

played in Figs.6,7 and 8.

2:21 Ages

0-8 -

0-6f

0 4 B ____/—_—"--

AzLs
0-2
0 Il 1 1 I
0 0-2 0-4 0-6 0-8 -0
a
R
Fig.8 (CLM-R 95)

The areas within the separatrix (Agg), between the critical
surface and separatrix (Ap¢g), and between the minimum L
surface and separatrix (Ap( g)
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7. MAGNETIC FIELD

The magnitude of the magnetic field can be calculated directly from

-1
(1-6)[2]"

-3 h-s®"

and is most conveniently expressed as a function of &,

n-1 n+1
2n 2n
B - Bl e (9)
= 5 (7=5) .
The magnetic field varies around a field line between the limits ]B ,min’ at 6=7/n,
$=0 etc. and ,B lmax, at 6=0, ¢==, etc., where
n;l n+1
n n
8] _ 21 Jq-1] (1 -8q)
min a q (1 -38)
and
n-1 n+1
] . 2t les D™ (1488 "
max ~  a q (1 - 5) :
-t nel
[B ’max is a monotonically decreasing function of q, falling from (2I/a) 2 n (1+8) nﬁl-—&)

on the separatrix to (2I/R) (1+v8)/(1-/8) at the wall, IB,min rises from zero on the
separatrix to a maximum, or more precisely a saddle point, Bm on the line q =q, (Section
4), falling to (2I/R)(1-v%)/(1+/5) at the wall. The contour |B| = B therefore bounds
the true minimum B region and all |B| contours with [B] > B intersect the wall

(Fig.9). The dependence of Bm on a/R is shown in Table II.

TABLE ITI
a/R % B
n=2 n=4
0-0 1-000 1-140
0-1 0-999 1140
0-2 0997 1-140
0-3 0-984 1-140
0-4 0-951 1-140
0.5 0-887 1-122
06 0-785 1-072
0-7 0+643 0-948
0-8 0.462 0-723
Fig.9 (CLM-R 95) 0+9 0:245 0-400
Typical | B| contours (dashed) for a quadrupole

= 11 =



The mirror ratio on the line q 1is given by

n-1 ntl
_ q+1 n 1+ 6q "
M (a) = (q_1> < ,_5q> ’ wws (10}

the value at the wall being (1+8)*/(1-/8)%. It does not fall monotonically with in-

creasing ¢q but has a minimum on the line

[ 1 n(1+8) - (1-8) %
1T =1 % n(1+8) + (1-0) .

This corresponds to a line lying between the last line with negative curvature (qm) and

=1
the wall (q =& é).

8, VOLWE OF A UNIT FLUX TUBE

The volume of a unit flux tube U can be evaluated from either

_ 4y _  ngdA
Ua) = - = *374q
or
T
de dé
u(q) =j( = 41] ’
o1 NE
o
giving
2 F dé
a 2 2
Un(q,é) =7 4 (1-8) f =T i -
o F, N n
S 8 .
This is integrable in terms of complete elliptic 1ntegrals( ) for two special cases:
when n=2 and when n=4, & =0.
o = 2 — - Ta-sam k(4 _..___25("6’“21;(‘—
= —— — - = ’
s I (1-8%7) a q;) (1-5%¢%) a5
% %
2a® - (g®-1
U (g0 = 2 A x(i—(gL—)),
2 A q
(g®-1)
where x/2
5 dt
K(k®) = ——
\,/l-kﬁsulgt
o

and E(k2?) is defined in Section 6,
The most important property of a multipole is the location of the critical surface,
denoted by a subscript c, on which dU/dX = O. The dependencies of q_, U, and IXCI

(the flux between the separatrix and the critical surface) on a/R are shown in Figs.10

and 11,

w 12 =
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0-18-] S
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Fig. 10 (CLM- R 95)

Minimum U and minimum L properties for a quadrupole

el
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TUe
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04f

o3k [ Xe/ 1)
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Fig.11 (CLM-R 95)
Minimum U and minimum L properties for an octopole
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Fig.12 (CLM-R 95)

Separation of the critical and minimum L surfaces from the separatrix

Mirror ratio

's 92 04 3 o8 70
a
R

Fig.13 (CLM-R 95)
Mirror ratios on the critical and minimum L surfaces
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A measure of the 'efficiency' with which the magnetic llux is being used can be

obtained by comparing XC with the [lux Xw beiween the separatrix and the wall, where
Xw = 2I ¢n (a/R) .
For a/R = 0-7, XC/Xw = 0-22 for a quadrupole and 0+4 for an octopole,

The distance between the critical surface and the separatrix varies between the limits
A = .
¢ max I1m1n(q<:)

and

AL r |
cmin max qC

1

) - r‘max(i) s

The dependence of these limits on a/R is shown in Fig.12.

The variation of the mirror ratio on the critical surface is shown (with the equiva-

lent quantity for the minimum [ surface) in Fig.13, (Note that the scale is logarithmic).

9. THE INTEGRAL £d¢/|[B[?

An integral of interest [(rom the point of view of Universal stability is

X

b
- dd a \3 d?
Mo =g i - [ gh- o () @0 -9 [~ e
(0]

o
n n
o 3
F, F,

This has been evaluated for the particular cases: n=2 and n=4, & =0,

5 2.2 4.4 3.3 2 _2 _51.4Y_nR2.2 2
W,(q,0) = 2xa <3_> (1-8)4g4 (1+48%q%+6%q*) (1+6°q%)+38q® [(1-8q2)(1-6%q*)-262q?(1+6q?) ]

21 qg—l (1—6q2)3 (]_qua)s

3 a3 2
W,(q,0) = 4a <2“‘—I i 2l (—1—-> = <'—2> .
S oqf-1 La-1 qa- q

These integrals have been plotted in Figs.!4 and 15 in the way which is probably most use-

ful. from the point of view of stability theory.

10, ROTATIONAL TRANSFORM

The addition of a uniform axial field B0 causes the magnetic (ield lines to break
open into helices. They still lie on the original surfaces, however, and their projection

onto planes perpendicular to the filaments remain unchanged. The helical pitch Ap and

- 15 -
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Fig. 14 (CLM-R 95)
Variation of (dU /dx)/ [ dl/B3 with q for a quadrupole
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Fig. 15 (CLM-R95)

Variation of (dU/dx/ [dl/B3 with q for an ‘unscreened’ (% < 0.6) octupole
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the corresponding rotational transform 1,

rotates about the axis in moving unit axial distance, are related by

. 2n . 2x;
= 3 = T
lp BOU
where U is evaluated as if the axial field were absent,
Thus 1 has a maximum value b corresponding to the minimum in Uc'

proportional to du/dX,

less lield. The rotational transform is zero on the separatrix and since

that is the mean angle through which a line

Since shear is

the edge of the MHD stable region must by definition be in a shear-

o mR® 148
Un(wall) = T T3

it falls to L where,

21 1-95

' T BR® T+0
o
The variation of G and bes is shown in Fig.16.
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The rotational transform on the critical surface and at the wall
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