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INTRCDUCTION

The investigation of the transfer of radiation ina spectral line constitutes the theo-
retical foundation for the interpretation of the line spectra of stars (see refs.(1,2)).
This problem is important also for solar physics(3) and for the physics of interstellar
matter(4} The investigation of multiple scattering of light in a spect_ral line constitutes

5
as well one of the important problems in gas discharge optics( 267) and in other fields.

This problem will be encountered also in the investigation of high-temperature plasma.s(e'g).
It is quite natural that the theory of multiple scattering of radiationina spectral line has
long attracted attention. In papers published during the twenties and in most papers pub-
lished during the thirties the assumption was made of a strict monochromatic scattering,
i,e. it was assumed that the freqﬁengy of a quantum scattered by an atom is exactly equal
to the frequency of the absorbed quantum. On the basis of this assumption numérous_; i)rob-_
lems were solved and the theory of the formation of absorption lines in stellar spectra was
developed in detail (see, e.g. refs.(10, 2)). However as long ago as 1929 Eddington(ll) _
observed that if mecha-mism_s are discovered which cause the quantum to change its fre-
quency during scattering, the theory will have to be completely revised., Shortly there-
after, such mechanisms were in fact disc'overed(lz_ls)- However the rebuilding of radia-

tive transfer theory including the frequency changes during scattering turned out to be by

no means easy and is not yet completed.

Since the problem is a very complex one, an important step forward was the intro-
duction of an approximation which considerably sin';plified the problem and at the same time
took into account fairly adequately the above feature of scattering in a spectral line, This
is the so-called a.ppr.oxi_mation of complete frequency redistribution, according to which
the probability of the re-radiation of a quantum at a given frequency is not dependent on
the frequency of the absorbed quantum but is proportional to the absorption coefficient.
This approximation was introduced towards the end of the thirties and the beginning of the
forties (see in particular ref. 16)., In 1944 L. Spitzer(lﬂ gave a discussion of the causes

of the non-monochromatic character of scattering and wrote down the transfer equation for

scattering with complete frequency redistribution. He then arrived at the conclusion that

it is necessary to construct the theory of the formation of absorption lines in stellar



spectra on the basis of this approximation. Soon afterwards the transfer equation written

in integral form in the approximation of complete frequency redistribution also appeared

(18,19) (20-22)

in the physical literature and gradually entered into general use

It was-IOUnd that the variation of the frequency of a quantum during scattering
renders impossible the approximate reduction of the problem to a solution of the diffusion
equation. It was therefore necessary to develope effective approximate methods for solv-
ing the transfer equation for resonance radiation. This is another problem which has not

yet been completely solved. For the solution of individual problems variational methods

(19, 23) 24)

as well as a modified form of Chandrasekar's method( ? and the direct

18, 25-28 :
numerical solution of the principal integral equation( B.23 ) An approximate method

were used

proposed specially for the investigation of the transfer of radiation in a spectral line has

been fairly widely adopted(zg' 39).

In parallel with the approximate methods, rigorous methods of solving the transfer
; (31-34) . .
equation have evolved . The application of these methods to the transfer of radia-
tion with complete frequency distribution, which was started during the fortie 5(35), has
2 8
subsequently been developed to a considerable extent(36’ 38 3753 )

(39, 40)

Recently it has been pointed out that the specific features of scattering in a
line due to possible variations in frequency are, from a mathematical point of view, re-

lated to the characteristic feature of the analytical properties of the Laplace transform of

the resolvent of the principal integral equation, This feature is now discussed.

In the classical problems concerning the diffusion of particles and the scattering
of light without change of frequency, the singularity of the Laplace transform of the resol-
vent farthest to the right is a simple pole situated in the left hand-plane on the real
axis (see, e. g. refs. 41, 42, 34). This leads to an exponential decrease of the density of
the diffuse radiation at some distance away from a source. However, with complete fre-
quency redistribution during scattering and no absorption in the continuous spectrum,
there is no pole and the negative part of the real axis (- @, 0) is a branch line, This fea-
ture in particular determines the now fairly well-known fact that the density of the diffuse
radiation at large distances from a source decreases relatively slowly (non-exponentially).

This explanation of the mathematical nature of the phenomenon made it possible to



investigate the asymptotic behaviour of the solution of the principal integral equation in
deep layers (remote from a boundary of the medium), For the development of effectix;e
approximate methods of solution, a knowledge of the asymptotics is highly important.

Finally, ‘ explicit expreasions for the resolvent of the principal equation (fo.r an infinite '

; : ; (43, 44) .
medium. and half space) were determined quite recently . Moreover, under fairly
general assumptions about the distribution of the sources, the radiation intensity coming
from a semi-infinite medium can be expressed in terms of the corresponding H-function;

. : . ' o 4
which has been determined in explicit form and ta.bula.ted( 5).

Exact solutions for a fairly wide group of problems have thus been obtained. One
might think that they will in the future be épplied directly as well as for the verification

of the accuracy of various approxirna.te methods,

However, until quite fecently, applications of the theory (these are of a consider-
able variety) were severely impeded by the absence of tables of the special functions
through which the solutions are expressed, It wotild_ seem that this cir.cumstance, in par-
ticular, is the cause 7 of the present odd situation in which the experimenters (especially
astrophysicist-observers) ignore the achievements of the theory and continue to use rough
and, often, even incorrect solutions, even in those cases in which an exact solution is
known,

Recently, the tabulation has been undertaken of the principal special functions en-
countered in the theory of resonance radiation in spectral lines. At present only the first

(46, 47). One may expect that the complete real-

results in this field have been published
ization of the projected program will eliminate the above-mentioned difficulty in the

application of the theory which has been developed.

Just as previously, we Shall be interested in determining those properties of the
solutions of the transfer equation which might facilitate its numerical solution and improve
the accuracy of the approximate methods; The present paper is concerned with this range
of préblems. Simplifica'tions in the structure of the radiation field are investigated which
come about when trﬁe absorptioﬁ plays only a small part, ;ince_ then the act of photo-.
excitation of the atom is almost invariably followed by a spontaneous transition, i.e. re-

' ' (40, 45)

radiation of the quantum takes place, Some results obtained earlier are special



cases of the more general relations obtained here.

Very frequently the characteristic dimension of the region occupied by the gas
scattering the light is considerably larger than the mean free path of the quantum having
the frequency of the line centre, The first step in the investigation of the radiation field
in such systems is the investigation of scattering in an idealise.d medium 6ccupying the

half space bounded by a plane. -

The problem of the scattering of light in such a semi-infinite medium belongs
amongst the infrequent problems in scattering theory whose exact solution can be obtained
in closed form. Apart from the interest which this problem presents in itself, it assumes
considerable importance from the point of view of determining the accuracy and the
regions of validity of various approximate methods in transfer theory. Of great interest
is the investigation of asymptotic properties of the solution of the problem, since these
determine the simplifications characteristic, not only of such a semi-infinite medium,

but also of media of more complex geometry.

The equation for the transfer of radiation in a spectral line for a plane layer, as

is known, has the following form (see for instance ref. 32, chapter 8)

n HEnD o ()1 (5, 1, %) —5a(x) X (1)

X fa(x’) dx" fl(t, 7, x’)d'q’—Aa(,At)g(r),

= -1

where 7 is the cosine of the angle between the direction of the quantum and the external
normal to the layer; % is the dimensionless frequency representing the distance from the
line centre expressed in some suitable units such as Doppler widths or damping widths;
T, the optical depth in the frequency X = o, i.e. the distance from the boundary of the
medium along the normal, measured in quantum mean-{free paths, the quantum having the
frequency of the line centre; Q (%), the ratio of the coefficient of absorption in the fre-

quency % to the coefficient of absorption at the line centre; A, the normalisation con-

stant

T,-4_j;u(.-:)f.!.vc=l: sis (&)

A £ 1, the survival probability of the quantum during the elementary scattering act;

I(r,m ,%) the radiation intensity; 4mg(r), the power of the radiation sources, i.e. the



total energy supplied by the sources in the whole line per unit time in a cylinder of unit
- : 2 . :
optical length and of cross section 1 cm~. Itis assumed that the frequency distribution

of the energy emitted by the sources is proportional to the absorption coefficient,

Equation (1) describes the scattering in a line in the approximation of ‘complete '
frequency redistribution, The accuracy provided by these approximations is in practice
sufficient for all applications (ref, 34, chapt. 8; 48, 49), In writing dowin equations (1) it
has also been assumed that the absorption in the continuous spectrum is negligibly small

and that the indicatrix of scattering is spherical.

As stated earlier, equation (1) will be investigated for the simplest case in which
the optical thickness of the layer is infinitely large, i.e. where the gas scattering the
quanta occupies a half space. Wirthout loss of generality it can be assumed that no radia-
tion from the outside falls on the boundary of the medium, so that

" 10, 1, X)=0 npH 7<0. (3)

Let us introduce the source function s(T):

= - 1 .
=24 (at)dr [ 16 7, K)d +Ag (). e 8

-1

39, 40, 45, 50)

We note that S(T) differs from the previously used function B('r)( by the

factor A
s(t) = AB(T)

The normalisation of. the source function assumed here is more convenient in several
respects, in particular since S(T) goes over immediately into Plank's function in the
case of thermodynamic equilibrium.

Equation (1) with the boundary condition (3)is equivalent to the following integral

equaton for s(T) 7
sO=4[ KUz =¥DSEIE +480. vee (5)
) :

where

K(x)=A jﬂa‘(x) E;(ta(x)) dx, - @

where El(t) is the exponentia.i integral function of the first order

1 _!_ .
e t ‘ sos (7)

,El(t)_=§e L
Equation (5) will be investigated further below.

= B=



Re-writing (1) in the form
n . 4r
L =1-5 () e (8

it is seen that in reality the radiation intensity is not dependent on the individual values

of 0 and % but only on the ratio

|
z_a(x)' cae (9)
The intensity as a function of T and z will be designated as previously By I. This should

not lead to misunderstandings.. For the intensity of the emitted radiation I(0,z) we have
- dr .
10 9={e 7505, .. (10)
u N .

The kernel (6) of the principal integral equation can be brought readily into the

form Ca e
o=l Tt oo (1)
where v !
"G(.z).=_2A:.E: )a’(t)a’t. _ e (12)

where o (z) =0 for z<1 and a[%(z)] :% for z > 1.

(39,40, 45) and of Nagirner(43' 44) the method used for

53,
(51 52) and K, Ca.se( 3, 54)

In the work of the author

investigating equation (5) is that suggested by V. V. Sobolev
' (31

and which is a further development of the familiar method of Arnbartsurnyan( ) We

quote those relations which will be necessary in what follows.

Let us introduce the function P(T,z) which satisfies the equation
P'(;‘ i’)=%jk(lv—=.’l)P(f’| e {;e‘-‘:’".' S cee (13)
It has a simple physical rne-al.nin.g, narlneuly, the .qu.antity
Pz %) ‘dde.c‘zAm (x)P(-:, d—z'x-)-) ddeé
represents the probability that a quantum absorbed at the depth T will leave the medium
through an angle across ~m to the external normal within the limits of the solid angle

dw , haviﬁg a frequency from %% to X +d%. In addition to equation (13), the function

P(T,z) also satisfies the equation

0P (s, 7) . . .y ... (14
LED = Lp A HE OO, el

where Ju o g B wihe WEERRE
m(e)zggjp(t, G2, s

and H(z) is the solution of the non-linear integral equation



HE@=1+3atE (Lo, ... (16)

where
" : 4.': i "
H(z)==P(0, 2).
(=L )_ s HH
; . - i , ‘ (31)
Equation (16) is a generalisation of the familiar equation of Ambartsumyan (see also
ref, 32) to the case of scattering with complete frequency redistribution.
It follows from (14) and (17) that
s A - EEE .
.-P(-r, z)=74-;I—H(z)(e ‘+j'e 5 lI’(-c’)d-:’)_ ... (18)
b i

On the basis of the probabilistic intepretation of P(T,z), one can also write for the in-

tensity of the emergent radiation, in addition to (10),

10, z)=%AﬁfP(1’, @)L ... (19)

In a number of important special cases the integral on the right side of (19) can
be expressed directly in terms of H(z) with the aid of (14) and (17). In particular, this
situation applies when g(T) is represented by the product of a polynomial in T with an’

exponential function (see, for instance, ref, 32, chapter 6).

For g(T) of a given arbitrary form, Vthe solution of the principal integral equation,
that is, the determination of the intensity of the emitted radiafion, reduces to the identifi-
cation of the resolvent of this equa.tion.- It can be expressed by a function of one argument
® (1). This function therefore plays a fundamental part in the scattering theory for a

semi-infinite medium, Its explicit expression has the form

;o ‘o dx . -_ “ee (20)

where

1
Fe(x)=+- . I ) - ... (21)
G)o] a1y
1M 5=w | t3a 0"(7)
In the papers quoted above by D.I. Nagirner the asymptotic behaviour was also

investigated of ®(T) and P(T,z) for T > 1. The principle results are quoted here.

When the importance of true absorption is large compared with that of the radia-

tion escaping through the boundary, with an accuracy of the leading term for large T

A
7K (7) y
——r wws (22
(T)—-U"'lﬁ .



On the other hand where the escape of radiation predominates over absorption,

1 i

4

2 (r);=(%)lj"r‘(j‘.‘)‘ ' .en (23)

- ... (29)

®p () =2n-< ? (In<)",
where the first relation pertains to a Lorentz absorption coefficient
0, ()=t | (25)
L 14 x2? cee
and the second, to a pure Doppler absorption coefficient.
sp )= ' ... (26)

In (23) I‘(s)‘ is the Gamma-function.

The relative part played by the escape of radiaticn and true absorption is deter-

mined by the value of the ratio

A
L@ |
I—x ...- (27)
where
LO=] Kw)ar. | ED)

Equation (22) is valid when this ratio is small. On the other hand, (23) and (24) are

appropri'ate in the opposite case when the value of (27) is much larger than unity.

For the probability of the escape of a quantum P(T,z) from a large depth T it

was found that

Pls, z)=z‘;_zH(z)m(c) ._ 8

for T/z > 1 and

P(x 'z)=%H(zj(l -‘qih[ab'(:')d:'), .o (30)

when T/z < 1,
Below, it will be shown that in those cases in which the absorption is not large or

is practically absent, one may eliminate some of the conditions imposed hitherto to obtain
more general relations. '
II
In this section we investigate in somewhat greater detail the probability of the
escape of a quantum from great depths for cases in which true absorption is essentially

absent, i.e. when it can be assumed that A =1,



We shall seek a particular solution of equation (14) for T > 1 in the form

.

PO, =g @RS (F). cee (31)

Substituting (31) in (14) we obtain the equation determining f:
4 (7) =\ omfE T .

Let us consider first the most interesting case in practice, the Doppler absorption
coefficient. In order to indicate that any given relation is correct only with this coeffi-
cient of absorption we shall use the index D. Similarly the index L will be used to
indicate the various functions with a Lorentz absorption coefficient. The absence of an

index will imply that the given relation is valid for both absorption coefficients.

It follows from (24) that for large T

@L(-:) 1 ’ .
ot . e (33)

and (32) therefore takes the form

—rER() A=) -

or

fo@+(t —g)fp - 1=0,- B s o 00580

where we introduce the notation
- T

= : ED
The solution of this equation satisfying the condition f(oo) =1 has the form
' Vi - ¢ :
fp(f)=2]/tfe_'af etv'dy, vea (37)

so that

0

PR D)= Lo, 0,0 P Ve T e, ... (38)

By exactly the same method it is shown that in the case of a Lorentz coefficient of

absorption for T 1 and A =1 equation (14) has a particular solution of the form

- o - < 1z
1 y in — 7 d.
PP, A= 15H, @00 ()" 7 fe' . e 39

u
The function P(O)(T, z) represents a particular solution of equation (14), In order
o
( )(

"to obtain a general solution of this equation we must add to P T,z) a general solution

of the homogeneous equation corresponding to (14). The general solution of this homo-

geneous equation has the form

M)A

Pz, 2)=0Q(2) & *, _ ve. (40)



where Q(z) is an arbitrary function of z, and the general solution of equation (14) it-

self is therefore

P(s, =P (s, 24P, 2) )

It can be shown that in order to obtain a solution of (14) having the correct physical inter-

pretation, the function Q(z) must be taken equal to
" E, 1
QER)=1%" e de :
;._z‘:SM ve. (42)

22— z'%

Thus, for A =1 we have the following asymptotic expression.for the probability of

escape of a quantum from great depths, valid for all z = 0:

PG, &)= #H @O (3) 4 —— 5 —— .. (a3)
l—_zﬁlS L

Suppose the sources of radiation are concentrated within the limits of an infinitely
thin layer situated at a depth T, 1i.e. suppose
g=)=8(x—7), .o (49)
where § 1is a delta-function. It then follows from (19) that the intensity of the escaping
radiation as a ‘function of the frequency % and the angular variable Al is given by the

expression (A = 1)

‘ - \a(x)
10, x)=_4“AP‘(" ‘GT) T -vo (45)

. Fig.l shows the contour of the emission line so formed, constructed on the basis
of (45) and (43) for a Doppler coefficient of absorption and 7 = 103. It is assumed that
the radiation emerges along the normal so that | = 1. The line has the characteristic
double-peaked Torm. The position of the intensity maxima is determined by the condition
T/z ~1. The conclusion that with a distribution of sources at great depths a line must have
(39, 40) "

such a shape, has been drawn earlier . We have now succeeded in determining its

contour,

- 10 -



III
Now let us investigate a characteristic simplification which arises in the structure
of the radiation field when the probal?ility of survival of a quantum, A, differs only slightly
from unity. It is important to note that in astrophysical problems one is usually faced,
in particular, with this situation, Thus, in the scattering of LOL - quanta in the chromo-

. =B -6
sphere A differs from unity by a value of the order of 10 = - 10 ~, and values of 1-A

- -4
of the order of 10 g 10 " are typical for most problems.

Suppose a quantumis absorbed at some depth T. With a probability X it will be
re-radiated and after undergoing, generally speaking, a number of scatterings it will
leave the medium through its bot‘.mdary. It is also not impossible that it gets "stuck' in
the medium, suffering at some stagg actual absorption. The function p(T, q ,%) intro-
duced above represents the probability of the escape of the quantum from the depth T
through an angle across n in the frequency . It is obvious that the total escap;e prob-
ability is equal to the integral of this function over all frequencies and angles., Let us

denote this total probability by P(T). We have

p(t); 2n :fdxbf ‘f’(f‘ 0 X)dn==
—- 1 . ]

ces (46)
- ' A
=2rA | a(x)deP(':, )
The substitution 1) ja(x) =z gives
1
L ®D
P(x)=2=A S @(x)dx | PG, 2)dz. ce. (47)
Changing the order of integration we obtain
P()=2{ P(x, 2)G(2)dz. ... (48)
~ [1]

The quantity P(T) can be readily expressed in terms of-the function §(r). In

fact, multiplying (1) by 2nG(z) and integrating over =z we obtain

1%@:41_9@, 0 %L + THOE, ... (49)

where

;{u=§ H()G(@)dz . ... (50)

The first term on the right side of (49), according to (15), is in fact the same as T(1).

Moreover, as can be readily seen (see ref.45)

Hy=2(1—VT=0). vra (51)

~ 11 -



Therefore, instead of (49) we have
dP(x) :
— - =—V1—20(s . wnen: (B2

and finally

PE=VI=1 o) dr. e (5
Since !
p(0)=2w§ P, 2)G(2)dz =
. _ swe (54)
=%§' H(2)G(2) dz=5 Hy=1—VT—1,
the function P(T) can also be put into the form
P(t):]—]/_l——_l:(l+£®(")d")- | i w.(55)

The curves PD(T) as a function of log T for a number of A-values are given in
Fig. 2. In constructing this figure we have used the results of the numerical solution of
the transfer equation obtained by Avrett and Hummer(zs). The diagram shows that for
LA close to unity there are T values at whch P(T) differs little from unity. As T in-
creases a region is ultimately reached where P(T) begins to decrease rapidly. Itis
understandable that the reason for this rapid decrease of P(T) for large T depends on
the fact that the absorption processes begin to predominate over the escape of radiation.
Therefore the substantial decrease of P(T) Abegins when the probability of the escape of
a quantum from a given depth without subsequent scatterings, equal to

’ 1 s, - '

% S a(xr)dxlfe "'l dn=%5e-?g(z)dz=%L(t), e e (56)

0

becomes comparable with the probability equal to 1-X, that the quantum is destroyed by

true absorption in a single act of scattering.

- L2



If A is close to unity, then for quanta absorbed at such depths that A/2 L{T)> 1 -1
the part played by absorption is small compared to that played by the éscape of radiation,

In particular, for T > 1 situated in this region it follows from (55) and (33) that

@, o

and (55) and (24) give

Pp()=1— VT1—%dz * ar(in o™, i+ 58]

Using the circumstance that for 7> 1 (see ref, 39)

1 :
o
LO=3= e o (59)
P S .es (60)
LD(T)__2)/—1:—t)/1_n: ’
(57) and (58) can also be rewritten thus
ro=1—cV'zm. Se. (6)
where the value of the constant C depends on the shape of the contour:
9/4 :
C, =——=0984, ce. (62)
]
\4
3/2
Cp=-21—=0.900, _ s (63)

For T such that A/2 L(T) << 1 - X, it is possible to use the asymptotics for
@(1) relating to the case A < 1. We then find from (53), taking into account (22), that

AL ' (64)
_P(T)=21_1- & o

Thus, whatever the coefficient of absorption,. the probability of escape of a quantum from
a sufficiently large depth is proportional to the probability of its escape from this depth

, -1
without scattering. The proportionality coefficient (1-2) is equal to the mean number

of scatterings of the quantum in an infinite medium.

This result admits of a simple physical interpretation. Rewriting (64) in the form

pm:%LG)+1%L'(-.)_+)ﬂ%£(;)+._., -

we arrive at the conclusion that the total probability of escape of a quantum from a given
depth T is made up of the.probability of direct escape from this depth A/2 L(r), plus

; Z\ .
the probability of an escape after one (X% L (1), two (X 3 L(T)) and so forth scatterings

s 1



{rom this depth. Ths feature of scattering with complete frequency redistribution is the
basis of one ol the methods used for the approximate solution of the transfer equation for

2 0
this type of scattering( 7.3 )

Expressions (61) and (64) lead one to consider P(T), not as a function of T, but
as a function of the argument

A
7 L)

n= . : ... (66)

Let us denote the total probability of escape of a quantum from a given depth T,
for the given A-value, considered as a function of the variable u and the parameter A,
by F(u,\). Thus
P(=| :"):F(u! A')s
« ss 16T)
where u and 7T are related by relation (66). Schematic curves of F(u,\) for a number
of A values are shown in Fig, 3. The introduction of the function F(u,X, as we now see,

makes it possible to bring out one important feature of the scattering with complete fre-

quency redistribution.

Let us list the properties of F(u,A) following directly from its definition. It
follows from (66) that for T.» oo the value of u tends toward zero. Therefore
F(o, =0 - ... (68)
Formula (64) permits one to affirm that
F'(0, ) =1. .. (69)

Since L(Q) =1, the largest value of u for a given X is, according to (66), equal to

. ver (70
S ==y e

Yet

P(0, 1):%[10:1_]/1_1___ 1)

Lu‘- g il

Fig.3

- 14 -



Therefore assuming T =0 in (67) we obtain

Flrasy » Y)=1-VI=%. e (12)
Thus, as u increas.es from zero to C — (i.e. as T decreases from oo to 0), F(u,})
increases monotonically from zeroto 1 - JI - A . The greatest interest is presented by

the fact that F(u,\) for A= 1 tends toward some limiting function which we denote by

F(u);
F(u)=lllm F(u, M.
T ..o (73)
It follows from (68), (69) and (72) that
F0)=0; F'(0)=1; F(o)=1,
and (61) shows that for u>> 1
F@)= —7%'+--- oo (74)

The existence of the limit (73) indicates that for nearly-conservative scattering
with complete frequency redistribution the following similarity principle applies: the
total probability of escape of a quantum from the depth T = ™ from a medium w::Lth
A= ll is equal to the total probability of escape of a quantum from a medium with =7\2

from a depth T = TZ, where 'rl and TZ are related by

L) _ L) - «o 175

This principle is exceedingly useful for the numerical solution of the principal
integral equation, It makes it possible to use the solution obtained for one value of A

as a very useful approximation to the solution for a second \.

The determination in explicit form of the function F(u), at least for the two sim-
plest absorption coefficients, the Lorentz and the Doppler coefficients, constitutes an

exceedingly important problem which nevertheless remains unsolved.

(28)

To obtain the graph FD(u) we used the numerical resuli.:s of Avrett and Hummer .
These results cn.;nnstitute simultaneously an illustration of the usefulness of the similarity
princliple.

Avrett and Hummer, using numerical methods, obtained the solution of the prin-
ciple integral equatioln with uniform distribution of the sources and a A differing only

slightly from unity, They considered the equation

- i . I 6
se)=3 [ K(r—v)SE 12 (el
(1]
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It is easily shown that the solution of this equation’is

S(t)::.]/'l—-k(l +§@(‘t')d‘t"). s UI)
In fact differentiation of (76) gives
A |
S'(7) =?5‘ K(jt—|) §' (<) dv' +S(0) —;—K(‘E). sse (TB)
But ¢
D)= ke ¢ o N et 1 :
=5 [ K(==¥DOE)a +3K (), e (79)
L \ : :
This follows for instance from (13) and (15), Comparison of (78) and (79) gives
therefore |
S'()=S8(0)2(x),
... (80)
and consequently 7 i .
S(x)=S(0) k1 +§q:(e)dgw)) :
sas (BL)
Considering the relation
] 1:':—‘—_ :
b[ (v)d Y1—=1 L ... (82)

which follows from (55) for T = o, we arrive at (77).

1g5(t)
0

0"

-4

il A1

Fig.4

45 :
We note that in this author's paper( ) it is asserted that the function (81) is a

solution of the homogeneous equation corresponding to (76), i.e. a solution of Milne's

problem, This assertion is erroneous. In fact, for A <1 the homogeneous equation

o Bl



has only the trivial solution, and the solution of Milne's problem determined in fef.45 is

correct only in the conservative case A = 1.

Avrett and Hummer calculated S(T) for the Doppler absorption coefficient for

' -2 -4 -6 -8 -
values of I-K equal to 10 -, 10 , 10 7, 10 and 10 10. Their results are given in

Fig. 4,
From (77) and (55) it follows that

SRI=1—"P(), = ... (83)

and, since in Avrett and Hummer's calculations 1 - X < 1, one can put approximately

S =1—F(u), neg, A

where u is given by (66),
(47)

In a paper by the author and Shcherbakov » a table is given of the values of

LD('\") for T £ 100, and the following asymptotic expansion, valid for T > 1, is obtained

0.269 , 0573 1.566 .
s E )

B 1 "

Using this data it is possible from (66), for given A and any T, to calculate the cor-.

responding u wvalue with an accuracy sufficient for our purposes.

10

- 8
Let us consider, for example, A =1 - 10 . For 7< 10, we have u>5 and

F(u) may be found from e.quation (74). It then follows from (84) that

€ CyT=t :
S()= —_— = Y, -
( ) "/-211 /L (1) : PR (86)
-5
o . 0,900-10
Substituting the values of the constants we find that S(T) =——=——===——. The values of
o LDiT§

S(1) calculated from this simple expression agree splendidly with the results of the

laborious calculations by Avrett and Hummer.

Equation (86) should give the largest error when T is small, For T =0 equa-
tion (77) éives S(0) = JT =X, whereas‘from (86) we have S(0) = Cy1 - A. Thus with a
Doppler absorption coefficient the error in the value of S(# which we commit by using
expression (86) is, even in this unfavourable case, not more than 10%, It is well to re-

call here that the transfer equation which we solve is an approximate one and therefore

higher accuracy is hardly necessary (on this subject see ref,48), We note that for T > 1,

the accuracy of (86) increases rapidly as T,increases, so that over a major part of the

: -10
interval log T < B8, the curve of log S(T) representing (86) for A =1 - 10 is

- 17 -



indistinguishable, on the scale of Fig. 4, [rom Lhe curve calculated by Avrett and
Hummer,

For log T > 8 the value of u becomes small and equation (86) can no longer be used.
However for u<< 1 we have F(u) = u. This follows from the circumstance that
F'(0) =1 and F(0) = 0. Making use of this fact it is easy to sketch the curve log g(T)>10.
Since the curve is continuous, on the interval 8 < log T < 10 it can be plo‘tted (without
great accuracy it is true) by simple grap};lical interpolation. However one can also
proceed in the opposite way by picking off from the calculated curve the values of 5(7)

and using them to determine F(u). By this method the curve F_(u) shown in Fig.5

D

was obtained.
; . : -10

Hitherto we have considered only the curve corresponding to 1 - A =10 . However,
having the graph FD(u) obtained with its help, and using for large values of u
equation (74), curves can be easily constructed corresponding to values of 1 - A equal

- -6 -4 -2 : . . .
to 10 , 10 , 10 and 10 without resorting to a numerical solution of the
principal integral equation. It is sufficient to use the similarity principle. The curves
obtained by this method coincide with those shown in Fig. 4.

We note that in the paper by Avrett and Hummer the principal integral equation is
solved, not only for the half space, but also for plane layers of large thickness, and
taking into account not only the Doppler, but also other, contours of the absorption
coefficient, such as the Lorentz and the Voigt contours. It is true that most of the '
results given in that paper cannot be obtained by methods other than by applying numerical
techniques. It may be hoped that careful analysis of the results of that paper will make it
possible to detect the existence of some simplification in the structure of the radiation

field with nearly-conservative scattering, and also in more complex cases than the one

investigated above.

= 1 =



Iv.

Let us now use the results of the preceding section to show that in the case of pure
scattering the following asymptotic expression, valid for T >> 1, independently of the
contours of the absorption coefficient, holds good

c X
Z
@(t):..'i K(T) ['L (t)] ' . ..(87)
where C is some constant close to unity, whose value is different for different of(x).
In the case of Lorentz and Doppler coefficients the values of C are given by equation (62)
and (63).

Suppose § (T,1) is the jﬁ function for some A wvalue, and E(T, 1) the same

function for A = 1. We represent 0 (T,A) in the form

i :
7 L(x)
A . 2 e
(I)('r, )“)ZT (1 ff\?aﬂ F ( 1—2A ) Fl (t' 1)' (88)

where F(u) is the limiting function introduced in the preceding section. Sucha
representation of 0 (T,A) is, it is true, always possible since the form of the function
Fl(T, A) is in no way fixed. Yet the reason why @ (T,A) is conveniently represented in
this form must be clear from the above discussion.

In (88), M tends toward unity. It follows from (74) that for A—1
: v ¢
A7L0 1—A72 : : S
F(T_T)-‘:C[Tm e _ - (89)

Substituting this expression in (88) we obtain, in the limit

'8

@ (r, 1)=%-K(-:)1L (t)]_zi—-F:('t‘. 1) : | .-+ (90)

With the aid of relation (82) it can be easily shown that for T >> 1 the second term

on the right side can be neglected in comparison with the first. Pn fact, we obtain from (88)

_ _ C i L
, FLG .
j-n(m, 1) dr:(l__'naj_zj.’zhx(t)p(zl_l )dx—ﬁ[ Fi(r, Ndi=

oF i
L 5“0)) Fo _
=vish F(l—% Ty ) Al V= £+ (91)

~

3 l 5 K . - -
=i F(2(1—A))_5Fx(=. N de.

The relation (82) therefore takes the form

-2 A
)"F,(r, Nde=1— e ,/lltx F(za=mn)-
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Passing here to the limit X1 and using (74) we finally obtlain that
bel(t, )di=1—C. ... (93)

Thus, for XA-s. the function F (7,1) decreases sufficiently rapidly to ensure

1

convergence of this integral. Yet the first term on the right hand side of (90) decreases

more slowly than F _(7,1) since the integral

1

3 .
T

F[KEILEN T a1 - (99)

diverges for T-w , so0 that L(T) tends toward zero as T-ew . Therefore for T>> 1,
the second term in (90) can in fact be neglected in comparison with the first and we arrive
at expression (87).
We note that the functions KD(T) and LD(T) can be assumed to be known, since
. . . (47)
they were investigated and tabulated previously .

In conclusion, it may be shown that the function §(T) in the case of pure scattering

can be put into the form

r:},ca

2O=5 KOLE * 0,
where q(O)%l,
g(o)=C..
It is important that the value of C differs l‘ittle from unity. It may be inferred that CL
is not by accident closer to unity than CD and that, generally speaking, C will differ
less from unity the more slowly @(x) tends toward zero as |IE * = . The theory of
the monotonic nature of q(7) would seem exceedingly at:.tractive, although any proof is

as yet lacking.

The author is indebted to D. Hummer for communicating the results of the numerical

solution of the transfer equation privately before they were published.
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