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A B S T R A C T   

Point defects in body-centred cubic Fe, Cr and concentrated random magnetic Fe-Cr are investigated using 
density functional theory and theory of elasticity. The volume of a substitutional Cr atom in ferromagnetic bcc Fe 
is approximately 18% larger than the volume of a host Fe atom, whereas the volume of a substitutional Fe atom 
in antiferromagnetic bcc Cr is 5% smaller than the volume of a host Cr atom. In an alloy, elastic dipole P and 
relaxation volume Ω tensors of vacancies and self-interstitial atom (SIA) defects exhibit large fluctuations, with 
vacancies having negative and SIA large positive relaxation volumes. Dipole tensors of vacancies are nearly 
isotropic across the entire alloy composition range, with diagonal elements Pii decreasing as a function of Cr 
content. Fe-Fe and Fe-Cr SIA dumbbells are more anisotropic than Cr-Cr dumbbells. We find that fluctuations of 
elastic dipole tensors of SIA defects are primarily associated with the variable crystallographic orientations of the 
dumbbells. Statistical properties of tensors P and Ω are analysed using their principal invariants, suggesting that 
point defects differ significantly in alloys containing below and above 10% at. Cr. The von Mises stresses caused 
by dumbbells are notably larger than those caused by vacancies. The relaxation volume of a vacancy depends 
sensitively on whether it occupies a Fe or a Cr lattice site. A correlation between elastic relaxation volumes and 
magnetic moments of defects found in this study suggests that magnetism is a significant factor influencing 
elastic fields of defects in Fe-Cr alloys.   

1. Introduction 

Defects are the stable strong local distortions of regular atomic order 
that form in crystalline metals and alloys under irradiation or during 
mechanical deformation [1]. Defects not only affect how a material re
sponds to applied stress and deformation, but they also change elec
tronic properties, including thermal and electrical conductivity, and 
magnetism. 

Microstructural evolution of an alloy occurring as a result of accu
mulation of defects is driven by short- and long-range interactions of 
alloying elements with dislocations, surfaces, grain boundaries, and 
point defects. Short-range interactions, involving variation of chemical 
compositions in the vicinity of defects, can be investigated using Density 
Functional Theory (DFT) [2–7]. Long-range interaction between the 

defects is elastic, and it is mediated by the distortions that defects 
generate in the crystal lattice [8–17]. 

The fundamental quantities that determine the elastic fields and 
long-range elastic interaction between defects, are the elastic dipole and 
relaxation volume tensors [9–18]. These quantities can be computed 
using DFT or other atomic level simulations, and can then be used in the 
context of larger scale models, for example where the defects and en
sembles of defects are treated as objects of continuum elasticity [19,20]. 
So far, elastic dipole and relaxation volume tensors of point defects have 
been investigated primarily for pure metals [9–18,21]. 

In Refs. [14,15] it was shown that the elastic field of an isotropic 
point defect in a cubic crystal, for example a vacancy, is fully defined by 
a single parameter, the elastic relaxation volume of the defect. On the 
other hand, a self-interstitial atom (SIA) defect often adopts an 

* Corresponding author. 
E-mail address: jan.wrobel@pw.edu.pl (J.S. Wróbel).  
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anisotropic configuration, and the treatment of its elastic field requires 
using several independent parameters defining the relaxation volume of 
the defect and its spatial orientation [14,15]. 

A vacancy, because of the isotropic nature of its dipole tensor, does 
not interact with a shear strain field even in an elastically anisotropic 
cubic material, whereas the anisotropic structure of an SIA defect en
ables elastic interaction with shear strain, applied externally or gener
ated by other defects or dislocations [11]. The investigation of elastic 
dipole tensors and relaxation volumes, as well as other properties of 
point defect in concentrated alloys, is a challenging task since these 
quantities depend on the composition of the alloy, atomic short-range 
order as well as on the local environment of a defect [22–24]. In a 
magnetic alloy the structure of a defect is also affected by non-linear 
magneto-volume effects. 

Here, we focus on the investigation of point defects in concentrated 
Fe-Cr alloys, which are the base alloy system underpinning the 
composition of many industrial steels. The phase stability and properties 
of magnetic Fe-Cr alloys were extensively explored theoretically 
[2–4,25–35] and experimentally [36–39]. The analysis performed in 
Ref. [40] showed that vacancies attract Cr atoms and hence may form 
vacancy-Cr clusters in dilute bcc Fe-Cr alloys. Investigation of point 
defects in dilute Fe-Cr alloys [26,29,31,34,41,42] shows that the for
mation energy of SIA dumbbells depends on the local configuration of Cr 
atoms surrounding a defect. However, to the best of authors’ knowledge, 
elastic dipole and relaxation volume tensors of point defects, and the 
long-range elastic fields of such defects in concentrated Fe-Cr alloys 
have never been systematically explored. 

In this paper, we study point defects in concentrated random Fe-Cr 
alloys, with Cr concentration up to 35%. Since estimating the relaxa
tion volume of a defect using the stress method, which is described 
below, requires information about elastic constants of the material, 
which vary with alloy composition, elastic properties of random Fe-Cr 
alloys are investigated as a function of Cr content. To find the most 
stable point defect configurations, formation energies of defects were 
determined using concentration-dependent chemical potentials of Fe 
and Cr. Relaxation volumes of dumbbells are also correlated with the 
magnetic moments of atoms forming these defects. We also assess the 
difference between relaxation volumes of point defects computed using 
the stress method and full cell relaxation method [43,44]. 

2. Methodology 

2.1. Elastic dipole tensors and relaxation volumes 

A point defect induces a long range elastic field in the surrounding 
lattice. The energy of interaction between a localised defect and external 
homogeneous strain field ∊ext

ij , arising from the quadratic cross-terms in 
the volume integral of the density of elastic energy of the defect and 
external field, is [8] 

E = − Pij∊ext
ij , (1)  

where repeated indices imply summation, and Pij is the ij-th element of 
the elastic dipole tensor, P, of the defect. This second-rank tensor is a 
fundamental quantity relating the elastic field of a defect and its atomic 
structure. Tensor P fully characterizes the elastic properties of a local
ised defect. 

Elements of the dipole tensor of a defect can be computed using the 
equation [11,14,15,20,21,45] 

Pij = − Vcellσij, (2)  

where Vcell is the volume of the simulation cell and σij is the difference 
between the average, macroscopic, stress in the cell containing the 
defect and in the pristine structure. It should be noted that, using the 
above definition of Pij, the homogeneous stress experienced by the cell, 

which is built with the fixed lattice parameter, is not taken into account 
and thus the elastic dipole tensor of a defect is only related to the 
average stress required to comply with the fixed periodic boundary 
conditions. 

In practice, the elements of an elastic dipole tensor are determined 
using either the above stress method, Eq. (2), where the average strain in 
the simulation cell is zero [14], and hence the cell volume and its shape 
remain fixed and only the positions of ions are relaxed. Alternatively, Pij 
can be computed using the full cell relaxation method, where the cell 
volume and its shape are relaxed to the zero macroscopic stress condi
tion [21,44]. The main difference between the two methods is that the 
latter one takes into account not only the elastic relaxation effects but 
also non-elastic non-linear relaxation occurring in the core of the defect 
as well as everywhere in the simulation cell [46]. The stress and cell 
relaxation methods are reviewed together with other possible methods 
for computing elastic dipole tensors in Refs. [13,21,44,45]. 

In the full cell relaxation method, the dipole tensor is computed from 
the elements of macroscopic strain associated with the relaxation of the 
cell to the zero stress condition 

Pij = VcellCijkl∊app
kl , (3)  

where Cijkl is the fourth-rank tensor of elastic stiffness and ∊app
kl is the 

macroscopic strain developing as a result of full relaxation of atomic 
positions and the shape of the simulation cell. 

The dipole tensor is related to another fundamental tensor entity, 
also characterising the defect, via the following relation 

Pij = CijklΩkl, (4)  

where Ωkl is the kl-th element of the so-called relaxation volume tensor, 
Ω. It is related to the elastic dipole tensor through the tensor of elastic 
compliance, Sijkl: 

Ωij = SijklPkl. (5)  

Tensors Sijkl and Cijkl are related as [1] 

CijmnSnmkl =
1
2
(
δikδjl + δilδjk

)
.

The energy of interaction between a defect and external elastic field can 
be expressed in terms of either the elastic dipole or relaxation volume 
tensor as [16] 

E = − Ωijσext
ij , (6)  

where σext
ij = Cijkl∊ext

kl is the stress tensor associated with external strain. 
The elastic relaxation volume of a defect Ωrel can be computed by 

taking the trace of the relaxation volume tensor 

Ωrel = TrΩ = Ω11 +Ω22 +Ω33. (7)  

Ωrel is a convenient parameter characterizing the degree of the overall 
macroscopic expansion or contraction of the material due to the pres
ence of defects in it [20]. Also, it describes the “size” interaction between 
the defects, whereas the deviatoric component of the relaxation volume 
tensor, i.e. its off-diagonal terms and differences between diagonal 
components, gives rise to the so-called “shape” interaction. In the limit 
where elastic relaxation around the defect is isotropic and the relaxation 
volume tensor of a defect is diagonal [20] Ωij = 1

3Ωrelδij, where δij is the 
Kronecker delta-symbol, Eq. (6) can be further simplified as [47] 

E = − Ωijσext
ij = −

1
3

σext
ii Ωrel = pΩrel, (8)  

where p is the hydrostatic pressure, p = − 1
3σext

ii . 
To analyse elastic dipole and relaxation volume tensors of point 

defects, it is convenient to use the notion of principal invariants, which 
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are the quantities independent of the orientation of Cartesian coordinate 
axes. The formula relating a second-rank tensor (A) and its principal 
invariants is [48] 

A3 − I1A2 + I2A − I31 = 0, (9)  

where 1 is the identity tensor, 0 is the zero matrix, and I1, I2, I3 are the 
principal invariants that can be expressed as 

I1 = TrA, (10)  

I2 =
1
2
[
(TrA)2

− Tr
(
A2)], (11)  

I3 = detA. (12) 

The above relations apply to both elastic dipole and relaxation vol
ume tensors (A = P or Ω). In what follows, the invariants of an elastic 
dipole tensor will be denoted by IP

1, IP
2 and IP

3, whereas those of the 
relaxation volume tensor by IΩ

1 , IΩ
2 and IΩ

3 . It is worth noting that IΩ
1 is 

nothing but the relaxation volume of a defect, whereas the invariants of 
the elastic dipole tensor are directly related to the volume average von 
Mises stress σvM generated by the defects distributed periodically and 
homogeneously in the material. This stress can be evaluated from Eqs. 
(1), (2), (6), (10), (11) as [48] 

σvM =
1

Vcell

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
IP

1

)2
− 3IP

2

√

. (13)  

2.2. Elastic properties of alloys 

Bulk elastic constants are required for finding the elements of elastic 
dipole tensor using full cell relaxation, see Eq. (3). Analysis performed in 
Ref. [44] shows that relaxation volumes of clusters of point defects 
(voids and interstitial loops) may vary significantly, depending on the 
interatomic potential. Hence, having a correct starting estimate for the 
elastic stiffness parameters of Fe-Cr alloys is important for the investi
gation of elastic dipole and relaxation volume tensors of defects in these 
alloys. 

For pure elemental cubic crystals, the tensor of elastic constants Cijkl 

can be parameterized using only three independent parameters, C11,

C12 and C44, see [49]. Elastic properties of alloys are more complicated 
and generally there can be up to twenty-one non-zero independent 
elastic constants. Elastic constants of disordered alloys adopting crystal 
lattice with cubic symmetry can be approximated as 

C11 =
C11 + C22 + C33

3
, (14)  

C12 =
C12 + C13 + C23

3
, (15)  

C44 =
C44 + C55 + C66

3
, (16)  

C14 = C15 = C16 = C24 = C25 = C26 =

C34 = C35 = C36 = C45 = C46 = C56 = 0. (17) 

In this study, the second-order elastic constants were computed by 
deforming an unstrained equilibrium structure and analysing the cor
responding variation of the total energy Etot as a function of components 
of strain. Applied deformation changes the total energy as follows [49] 

U =
Etot − E0

V0
=

1
2
∑6

i=1

∑6

j=1
Cij∊i∊j, (18)  

where E0 is the total energy of the unstrained lattice, V0 is the volume of 
an undistorted cell and Cij are the elements of the elastic constant matrix 
in the Voigt notation. Indices i and j vary from 1 to 6 following the 

sequence xx, yy, zz, yz, xz, xy [49]. 
For each deformation, eight values of strain (±0.2%,±0.4%,±0.6%,

±0.8%) were considered and the corresponding energies computed. 
Each curve showing how the total energy varies as a function of defor
mation was then fitted to a quadratic form and the respective elastic 
constants obtained. Since random Fe-Cr alloys are elastically aniso
tropic, we investigated the directional dependence of Young’s modulus. 
The analysis are given in the Supplementary Information. 

2.3. Formation energies of point defects 

The formation energy of a vacancy or a self-interstitial atom (SIA) in 
an alloy is defined as 

Evac,A
f = Evac −

(
Eref − μA

)
+Ecorr

el , (19)  

ESIA,A
f = ESIA −

(
Eref + μA

)
+Ecorr

el , (20)  

where Evac and ESIA are the total energies of structures containing a 
vacancy and a self-interstitial atom, respectively, and Eref is the total 
energy of the corresponding reference structure containing no defect. μA 
is the chemical potential of atom A (here, a Cr or Fe atom), which was 
removed or inserted into the original structure in order to form a va
cancy or a self-interstitial atom defect, respectively. Ecorr

el is a correction 
term resulting from the conditions of vanishing average macroscopic 
strain (in the stress method) and periodicity [12–14,45]. Methods for 
evaluating Ecorr

el are described in Refs. [12–14,16,21,45]. It should be 
noted that the origin of Ecorr

el is purely elastic [45], and it does not include 
non-elastic effects [46]. Therefore, the formation energies of defects 
computed using full cell relaxation are usually lower than those 
computed using the stress method where the boundaries of the simula
tion cell are assumed fixed [12,45], even if the Ecorr

el term is taken into 
account [44]. 

Chemical potentials of Fe and Cr atoms are estimated from the total 
energy of the system, where at T = 0 K and p = 0 Pa in the thermody
namic limit [50] E = μFeNFe + μCrNCr, where NFe and NCr are the 
numbers of Fe and Cr atoms in the corresponding structure, respectively. 
Using this expression, we find the difference between the minimum 
substitutional energies ΔEFe→Cr and ΔECr→Fe [51] as 

μCr − μFe =
1
2

(

ΔEFe→Cr − ΔECr→Fe
)

. (21)  

For each composition of the alloy, the minimum substitution energies 
are evaluated from the total energy difference between the reference 
structure and three structures, for each element, where a randomly 
chosen Fe (or Cr) atom has been replaced by a Cr (or Fe) atom. 

2.4. Computational details 

All the total-energy calculations were performed using density 
functional theory in the plane-wave basis, and pseudopotentials derived 
within the projector augmented wave (PAW) method [52,53] imple
mented in the Vienna Ab inito Package (VASP) code [54,55]. The PAW 
pseudopotentials used here did not include the semicore electrons. Ex
change and correlation effects were treated in the generalized gradient 
approximation with the Perdew-Burke-Ernzerhof [56] parametrization. 
Collinear spin-polarized calculations, with a Vosko-Wilk-Nusair spin 
interpolation of the correlation potential, were carried out assuming 
that the initial magnetic moments of Fe and Cr atoms were 3 and − 1 
Bohr magnetons (μB), respectively. The magnetic moments of Cr atoms 
were treated as being initially antiferromagnetically aligned with 
respect to the ferromagnetically ordered magnetic moments of Fe atoms. 
The structures contained 250 (±1 Fe/Cr) atoms in the form of 5 × 5 × 5 
supercells with conventional body-centred cubic structure. Non- 
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collinear magnetic effects [57] were not treated in this study. The total 
energies were found using the Monkhorst-Pack [58] scheme to sample 
the Brillouin zone. A 3 × 3 × 3 k-point grid was used when performing 
atomic relaxations. Structures of point defects in concentrated random 
Fe-Cr alloys, with concentrations up to 35% at. Cr, were taken from 
Ref. [59] where a DFT database of point-defect relaxation energies and 
migration barriers was used for training neural-network models. Since 
Cr atoms are distributed randomly in the alloy structures included in the 
database, this study describes properties of point defects in concentrated 
random Fe-Cr alloys where the effects associated with short-range order 
are not considered. 

In this work, two types of DFT calculations were performed: 

• fixed volume calculations – these were performed using the same pa
rameters as in Ref. [59,60], namely the lattice parameter of 2.831 Å, 
the plane-wave energy cut-off of 300 eV and the convergence criteria 
of 10− 3 eV/cell and 10− 4 eV/cell set for the total energies of ions and 
electrons, respectively. The energies of structures containing defects 
and residual stresses given in Ref. [59] were directly comparable 
with results of calculations performed in this study, and they were 
used for determining the formation energies as well as elastic dipole 
and relaxation volume tensors of point defects using the stress 
method.  

• calculations involving full cell relaxation – these were performed using 
the energy cut-off of 400 eV and convergence criteria of 10− 3 eV/Å 
and 10− 6 eV/cell set for the total energies of ions and electrons, 
respectively. These calculations were used for determining the 
chemical potentials and elastic properties of alloys, as well as 
calculating the formation energies and relaxation volumes of defects 
using the cell relaxation method. We remind the reader that at T = 0 
K, an accurate evaluation of chemical potentials requires setting p =
0 Pa, which implies full relaxation of the simulation cell. 

The impact of the choice of computational approach on the accuracy 
of results is discussed in Section 4.3 below. 

3. Results 

3.1. Chemical potentials and formation energies of defects 

Chemical potentials of Fe (μFe) and Cr (μCr) atoms in random Fe-Cr 
alloys were estimated from DFT simulations assuming either a fixed 
volume of the simulation cell, or full atomic and volume relaxation. 
Simulations were performed for twenty alloy structures with concen
trations chosen approximately evenly across the range of Cr concen
trations. Fig. 1 shows that the chemical potential of Fe in Fe-Cr alloys 

remains almost constant over the entire range of compositions explored 
in this study, and its value is close to the chemical potential of pure bcc 
Fe, which is − 8.31 eV. The chemical potential of Cr atoms behaves 
differently below and above approximately 10% at. Cr, which corre
sponds to the Cr solubility limit in Fe-Cr alloys at low temperature [61]. 
Below the solubility limit, μCr increases as a function of Cr content, 
whereas above the solubility limit it slowly decreases as a function of Cr 
concentration. It should be noted that earlier theoretical and experi
mental studies show that properties of Fe-Cr alloys differ significantly 
below and above approximately 10% at. Cr [3,4,30,33,62]. Hence, not 
only the analysis of chemical potentials but also the study of formation 
energies, elastic dipole and relaxation volume tensors for point defects 
in Fe-Cr alloys in what follows is going to be split into two separate 
investigations, focusing on alloys with compositions below and above 
10% at. Cr. 

We note that the results shown in Fig. 1 are insensitive to the energy 
cut-off and the internal degrees of freedom, for example the chemical 
potentials derived from fixed-volume DFT simulations are virtually 
identical to those derived from simulations involving full cell relaxation 
– the difference is smaller than 0.1%. Bearing this in mind, still only the 
values obtained with full relaxation of simulation cells, corresponding to 
vanishing pressure p = 0 Pa, are shown in Fig. 1. Interpolated values of 
chemical potentials of Fe and Cr shown by dashed lines in Fig. 1 were 
used as a reference when evaluating the formation energies of point 
defects in Fe-Cr alloys. Values of μFe for pure bcc Fe and μCr for pure anti- 
ferromagnetic bcc Cr were derived from the total energies of bcc Fe and 
Cr, respectively. Values of μCr in bcc Fe and μFe in anti-ferromagnetic bcc 
Cr were computed using the method described in Section 2.4 for the 
structures containing one Cr atom in bcc Fe and one Fe atom in bcc Cr, 
respectively. The computed formation energies of defects in bcc Fe 
matrix and bcc anti-ferromagnetic Cr matrix are given in Table 1. 

Since most of the results for Fe-Cr alloys were obtained using fixed 
volume simulations cell, defined by the lattice parameter of pure Fe a =
2.831 Å, all the results for Cr given in this study were also computed 
assuming this lattice parameter. The computed formation energies 
include the correction term resulting from the periodic boundary con
ditions and the requirement of vanishing average strain [14,45]. 

In agreement with earlier studies [18,63], the computed formation 
energies of vacancies are significantly smaller than those of SIAs defects. 
The formation energies of defects in bcc Cr are notably larger than in bcc 
Fe. In accord with Refs. [18,64], the most stable configuration of a SIA 
defect in pure Fe is a 〈110〉 dumbbell, with the energy of formation of 
Eform = 4.019 eV found in our calculations. This formation energy is 
more than 0.7 eV lower than the formation energy of a self-interstitial 
atom defect with a 〈111〉 orientation. 

In agreement with Refs. [15,65], we find that the most stable 
configuration of a Cr-Cr dumbbell in pure anti-ferromagnetic bcc Cr is a 
symmetry-broken 〈11ξ〉 dumbbell, where ξ is 0.345. The difference be
tween Eform of 〈11ξ〉 SIA and Eform of 〈110〉 and 〈111〉 SIAs in pure Cr is 
0.14 eV and 0.23 eV, respectively. This shows that the difference be
tween energies of various SIA dumbbell configurations in bcc Cr is 
smaller than those in bcc Fe. 

A symmetry-broken 〈11ξ〉 configuration is also the most stable one 
for a Cr-Cr dumbbell in Fe matrix. This agrees with results from Ref. [26] 
showing that a Cr-Cr 〈110〉 dumbbell configuration in the presence of 
additional Cr atom in the neighbourhood (lowering the symmetry of a 
structure) may transform into a lower energy configuration, for example 

a 
〈

221
〉

Cr-Cr dumbbell. 

A mixed Fe-Cr 〈110〉 dumbbell is the most stable mixed SIA defect 
configuration in bcc Fe matrix. Fig. 3a and b show that it can be formed 
either by adding a Cr atom to a Fe site or by adding a Fe atom to a Cr site. 
The formation energies of a Fe-Cr 〈110〉 dumbbell in the former and 
latter cases are 3.964 eV and 3.975 eV, respectively. In both cases, 
formation energies of Fe-Cr dumbbells were more than 0.04 eV lower 
than that of a 〈110〉 Fe-Fe, in agreement with Ref. [66], and they were 

Fig. 1. Chemical potentials of Fe and Cr derived from DFT simulations 
involving full cell relaxation. Dashed blue and red lines show the interpolated 
values of μFe and μCr as functions of Cr content (see Table A.2). 
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Table 1 
Formation energies of defects and elements of elastic dipole tensors Pij (in eV) of defects, relaxation volume tensors Ωij (in Å3), relaxation volumes of defects and substitutional atoms Ωrel (in Å3) and relaxation volumes Ωat

rel 

expressed in the units of atomic volume Ω0 = a3/2. The reference atomic volume Ω0 = 11.345 Å3 corresponds to the bcc lattice parameter of a = 2.831 Å.   

Eform  P11  P22  P33  P12  P23  P31  P11

P22  

Ω11  Ω22  Ω33  Ω12  Ω23  Ω31  Ωrel  Ωat
rel  

Fe  
(Vac)Fe  2.183 − 3.682 − 3.682 − 3.682 0.000 0.000 0.000 1.00 − 1.015 − 1.015 − 1.015 0.000 0.000 0.000 − 3.045 − 0.268 

Ref. [15] 2.190 − 3.081 − 3.081 − 3.081 0.000 0.000 0.000 1.00 − 0.831 − 0.831 − 0.831 0.000 0.000 0.000  − 0.220 
(Cr)Fe   2.531 2.531 2.531 0.000 0.000 0.000 1.00 0.698 0.698 0.698 0.000 0.000 0.000 2.093 0.184 

(Fe-Fe)〈110〉
Fe  

4.019 24.853 20.534 20.534 0.000 4.620 0.000 1.21 6.851 5.660 5.660 0.000 1.274 0.000 18.171 1.602 

Ref. [15] 4.321 25.832 21.143 21.143 0.000 5.122 0.000 1.22 9.777 4.294 4.302 0.000 3.819 0.000  1.620 
(Fe-Fe)〈111〉

Fe  
4.762 21.596 21.596 21.596 5.204 5.204 5.204 1.00 5.953 5.953 5.953 1.435 1.435 1.435 17.859 1.574 

(Fe-Cr)〈110〉
Fe  

3.964 23.756 21.826 21.826 0.000 4.691 0.000 1.09 6.548 6.016 6.016 0.000 1.293 0.000 18.581 1.638 

(Fe-Cr)〈110〉
Cr  

3.975 21.065 19.136 19.136 0.000 4.691 0.000 1.10 5.807 5.275 5.275 0.000 1.293 0.000 16.356 1.442 

(Cr-Cr)〈110〉
Cr  

4.501 19.472 22.269 22.269 0.000 6.160 0.000 0.87 5.367 6.138 6.138 0.000 1.698 0.000 17.644 1.555 

(Cr-Cr)〈11ξ〉
Cr  

4.465 20.693 21.048 21.048 1.576 5.045 1.576 0.98 5.704 5.802 5.802 0.434 1.391 0.434 17.307 1.526 

(Cr-Cr)〈111〉
Cr  

4.554 20.092 20.092 20.092 4.585 4.585 4.585 1.00 5.538 5.538 5.538 1.264 1.264 1.264 16.614 1.462 

(Cr-Cr)〈110〉
Fe  

4.481 22.145 24.960 24.960 0.000 6.160 0.000 0.89 6.104 6.880 6.880 0.000 1.698 0.000 19.864 1.751 

(Cr-Cr)〈11ξ〉
Fe  

4.446 23.384 23.738 23.738 1.576 5.045 1.576 0.98 6.446 6.543 6.543 0.434 1.391 0.434 19.532 1.722 

(Cr-Cr)〈111〉
Fe  

4.535 22.782 22.782 22.782 4.585 4.585 4.585 1.00 6.280 6.280 6.280 1.264 1.264 1.264 18.839 1.661 

Cr 
(Vac)Cr  2.717 − 7.753 − 7.753 − 7.753 0.000 0.000 0.000 1.00 − 2.225 − 2.225 − 2.225 0.000 0.000 0.000 − 6.675 − 0.588 

Ref. [15] 3.004 − 5.777 − 5.777 − 5.777 0.000 0.000 0.000 1.00 − 1.618 − 1.618 − 1.618 0.000 0.000 0.000  − 0.414 
(Fe)Cr   − 0.726 − 0.726 − 0.726 0.000 0.000 0.000 1.00 − 0.208 − 0.208 − 0.208 0.000 0.000 0.000 − 0.625 − 0.055 

(Cr-Cr)〈110〉
Cr  

6.262 16.410 21.083 21.083 0.000 4.886 0.000 0.78 4.709 6.050 6.050 0.000 1.402 0.000 16.809 1.482 

Ref. [15] 6.515 18.955 20.530 20.530 0.000 4.790 0.000 0.92 5.166 5.820 5.820 0.000 3.757 0.000  1.434 
(Cr-Cr)〈11ξ〉

Cr  
6.116 19.755 18.445 18.445 1.098 3.629 1.098 1.07 5.669 5.293 5.293 0.315 1.041 0.315 16.256 1.433 

Ref. [15] 6.361 21.882 18.389 18.389 2.058 4.040 2.058 1.19 6.436 4.987 4.987 1.614 3.168 1.614  1.400 
(Cr-Cr)〈111〉

Cr  
6.354 18.056 18.056 18.056 3.682 3.682 3.682 1.00 5.182 5.182 5.182 1.057 1.057 1.057 15.545 1.370 

Ref. [15] 6.617 18.728 18.728 18.728 4.617 4.617 4.617 1.00 5.244 5.244 5.244 3.622 3.622 3.622  1.343 
(Fe-Cr)〈110〉

Cr  
5.085 22.180 16.622 16.622 0.000 3.753 0.000 1.33 6.365 4.770 4.770 0.000 1.077 0.000 15.905 1.402 

(Fe-Cr)〈110〉
Fe  

5.108 23.048 17.489 17.489 0.000 3.753 0.000 1.32 6.614 5.019 5.019 0.000 1.077 0.000 16.652 1.468 

(Fe-Fe)〈110〉
Fe  

4.057 25.438 15.277 15.277 0.000 4.337 0.000 1.67 7.300 4.384 4.384 0.000 1.245 0.000 16.068 1.416  
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róbel et al.                                                                                                                                                                                                                               



Computational Materials Science 194 (2021) 110435

6

0.48 eV lower than the formation energy of a 〈11ξ〉 Cr-Cr dumbbell. 
In bcc Cr matrix, the difference between the energies of the most and 

least stable dumbbell configurations is significantly larger than in bcc 
Fe. The formation energy of a 〈110〉 Fe-Fe SIA in bcc Cr equals 4.057 eV, 
and it is more than 1 eV and 2 eV smaller than that of the most stable Fe- 
Cr and Cr-Cr dumbbells, respectively. 

The formation energies of approximately 300 vacancy and 400 
dumbbell configurations derived from fixed cell volume DFT simula
tions are shown, as functions of Cr content and the number of Cr atoms 
in the local environment of a defect, in Fig. 4a–d. The figures show that 
the formation energies of vacancies and SIA dumbbells fluctuate 
significantly, depending on the alloy composition and the local chemical 
environment of a defect. 

To separate the role of the two effects and investigate properties of 
defects only as functions of the number of Cr atoms in their local envi
ronment, further 120 DFT calculations were performed for the defect- 
free structures of Fe-Cr alloys containing 5% at. Cr, and the same 
structures containing defects. Even for one alloy composition and the 
same number of Cr atoms in the 1st and 2nd nearest-neighbour (NN and 
NNN, see Fig. 2f) coordination shells around a defect, formation energies 
fluctuate by as much as 1 eV. This shows that the defect formation en
ergies depend not only on parameters like the average alloy composition 
or the number of Cr atoms in the NN and NNN coordination shells, but 
also on the configuration of Cr atoms around a defect. 

Vacancies in Fe-Cr alloys can be formed by removing either a Fe atom 
or a Cr atom from a lattice site, see Fig. 3c and d. Fig. 4a, c and e, show 
that there is a notable difference between the formation energies of 
vacancies on Fe and Cr sites. The average formation energy of a vacancy 
on a Fe site decreases slightly as a function of Cr content from approx. 
2.1 eV at low Cr concentration to approx. 2.0 eV at 30% at. Cr. On the 
other hand, the average value of Eform for a vacancy on a Cr site increases 
with Cr content. The increase is more rapid in the range of Cr 

concentration below 10% at. Cr. Formation energies of vacancies on Cr 
sites are also more scattered than those associated with Fe sites, an effect 
that is probably related to the magnetic frustration of Cr atoms in bcc Fe 
matrix. 

Fig. 4c shows the formation energy of a vacancy as a function of the 
number of Cr atoms Ndef

Cr in the NN and NNN shells around a defect. The 
data span the entire range of alloy compositions considered here, with a 
separate Fig. 4e showing the data for Fe-5%Cr alloys. Since the variation 
of formation energies as a function of Cr concentration differs for con
figurations involving small and large values of Ndef

Cr , the results are 
divided into two intervals where Ndef

Cr is smaller or larger than 3. The 
value of 3 was chosen for two reasons. Firstly, according to our statistical 
analysis, it was the optimal value for which the fitting of trend lines was 
the best for vacancies and dumbbells simultaneously. Secondly, this 
choice enables a direct comparison of trend lines obtained for small 
values of Ndef

Cr with the results computed for Fe-5%Cr alloys, where de
fects are surrounded by up to three Cr atoms in the NN and NNN shells. 

The variation of the average formation energy of vacancies in Fe-5% 
Cr alloy is similar to the variation found for other Cr concentrations. For 
the smaller number of Cr atoms, Fig. 4c and e show that the formation 
energy Eform of a vacancy on either Fe and Cr sites decreases with 
increasing Ndef

Cr . The rate of variation is more rapid for vacancies on Cr 
sites. For Ndef

Cr larger than 3, the formation energy of a vacancy on a Fe 
site slightly decreases whereas that on a Cr site increases. 

The variation formation energies of dumbbells as a function of Cr 
content is significantly different below and above approximately 10% at. 
Cr, see Fig. 4b for more detail. Above 10% at. Cr concentration, the 
average values of Eform of Fe-Cr and Cr-Cr SIAs remain almost constant, 
whereas below that concentration there is a rapid decrease of Eform as a 
function of Cr content. Only the slope of the trend line for Eform 

Fig. 2. Schematic representation of structures: (a) a Cr atom in bcc Fe, (b) a Fe atom in bcc Cr, (c) Fe-Fe, (d) Fe-Cr and (e) Cr-Cr 〈110〉 dumbbells in bcc Fe. Fe and Cr 
atoms are shown as grey and blue spheres, respectively. (f) Schematic representation of atoms in the neighbourhood of a defect (white sphere). Atoms in the first and 
second nearest neighbour shells are shown by red and green spheres, respectively. 
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computed for Fe-Fe SIAs remains similar over the whole considered 
range of Cr concentrations. Similarly to bcc Fe matrix, Fe-Cr dumbbells 
are generally the most stable interstitial defects in Fe-Cr alloys in the 
range of alloys compositions explored in this study. They exhibit the 
lowest mean values of Eform over the concentration range up to 
approximately 32% at. Cr. For each composition up to approximately 
10–12% at. Cr, the most stable Fe-Cr SIA exhibits the lowest Eform among 
all the computed dumbbell configurations. For larger Cr concentrations, 
the Cr-Cr and Fe-Fe dumbbells may be more stable than the Fe-Cr SIAs. 

Similarly to the variation of the formation energy of dumbbells as a 
function of Cr content, values of Eform shown in Fig. 4d vary differently 
for smaller and larger values of Ndef

Cr . For Fe-Cr and Cr-Cr SIAs, the 
average value of Eform decreases and then slightly increases as a function 
of Ndef

Cr when Ndef
Cr is smaller and larger than 3, respectively. For Fe-Fe 

SIAs, the mean value of Eform decreases as a function of Ndef
Cr over the 

range of Ndef
Cr . For every value of Ndef

Cr , Fe-Cr SIAs have the lowest mean 
Eform. However, for the majority of Ndef

Cr , the most stable Cr-Cr dumbbells 
have smaller Eform than the most stable Fe-Cr and Fe-Fe SIAs. 

Similarly to the case of vacancies, the trend lines of mean Eform for Fe- 
Fe and Fe-Cr dumbbells as a function of Ndef

Cr in Fe-5%Cr alloy are 
generally similar to those found for other Cr concentrations, however 
the values are usually larger, as seen from the comparison of Fig. 4d and 
f. The largest difference is found for Cr-Cr dumbbells, for which the 
mean Eform in the Fe-5%Cr alloy does not decrease as a function of Ndef

Cr as 
rapidly as for other Cr concentrations. As a result, the mean value of Eform 

for a structure with three Cr atoms in the local environment of a defect in 
the Fe-5%Cr alloy is approximately 0.5 eV larger than the one averaged 
over structures with the same Ndef

Cr value in all the other Fe-Cr alloys. 

This may stem from the fact that the magnitudes of magnetic moments 
of Cr atoms vary significantly as a function of Cr composition in Fe-Cr 
alloys [3,25,33], and this may affect the value of Eform for Cr-Cr dumb
bells. The strong dependence on Cr concentration of the formation en
ergies of Cr-Cr interstitial defect may also explain the larger spread of 
their values in comparison with Fe-Fe and Fe-Cr dumbbell defects, see 
Fig. 4b and d. 

Equations interpolating the variation of formation energies of va
cancies and dumbbells as a function of Cr concentration and a number of 
Cr atoms in NN and NNN are given in Table A.2 in Appendix. 

3.2. Elastic properties 

To investigate elastic properties of disordered Fe-Cr alloys, and their 
variation as a function of Cr content, 21 random structures with Cr 
content up to 40% at. were fully relaxed by simultaneously minimizing 
atomic forces and components of the global stress tensor. Average lattice 
parameters of the structures are shown in Fig. 5a. The values found in 
our calculations are in agreement with earlier DFT results obtained 
using special quasi-random structures [67] and are smaller than the 
values obtained using the coherent potential approximation (CPA) 
[67,68]. We note that the experimental lattice parameters [69,70] are 
significantly higher than all the predicted values. This is likely associ
ated with the approximations involved in the exchange-correlation 
functionals [67,68]. Also, calculations predict a visible maximum of 
the lattice parameter for alloys with Cr content between 7 and 12% at. 
Cr, which is less well pronounced in the experimental data. 

Elastic properties of a disordered Fe-10%Cr alloy structure evaluated 
using various approximations are summarised in Table S1 in the Sup
plementary Materials. The difference between elastic properties calcu
lated using different approaches does not exceed 1%. Therefore, it is 
appropriate to use the elastic constants of disordered Fe-Cr alloys 
derived from Eqs. (14)–(17). To verify how the elastic properties vary 
depending on the specific atomic configurations of random Fe-Cr 
structures, calculations were performed for three additional structures 
of Fe-5%Cr alloy. As Fig. 5 shows, the difference between the maximum 
and minimum values of each elastic constant does not exceed 3%. Since 
the differences between elastic properties of Fe-Cr alloys with different 
compositions can be an order of magnitude larger, the effect of atomic 
arrangement in random Fe-Cr structures can be safely neglected in the 
context of this study, in agreement with the principle that since the 
treatment of elastic properties of an alloy implies taking the macroscopic 
thermodynamic limit, the role of microscopic fluctuations of local 
atomic arrangements is expected to be small. 

Average elastic constants C11, C12, C44 of random Fe-Cr structures 
plotted as functions of Cr concentration are shown in Fig. 5b–d. They 
were computed for 21 random structures with Cr content up to 40%. For 
each fully relaxed structure, nine elastic constants were computed and 
average elastic constants C11, C12, C44 were evaluated using Eqs. (14)– 
(17). Results for C11, C12, C44 were interpolated using analytical for
mula in order to then use them in the calculations of elastic interactions 
and relaxation volumes for each alloy composition, see Fig. 5b–d. 
Analysis of earlier theoretical studies shows that the computed elastic 
constants of Fe-Cr alloys can vary depending on method used and the 
chosen value of the lattice parameter. The difference between the 
calculated values can be as large as 30–40 GPa (see Fig. 5a and b). For 
pure Fe, theoretical predictions often overestimate the experimental 
values of C11 and usually C12, and underestimate C44. 

In the calculations of relaxation volume tensors and relaxation vol
umes of point defects in bcc Fe and bcc Cr we used the following 
computed values of elastic constants: C11 = 277.29 GPa, C12 = 151.29 
GPa and C44 = 96.93 for bcc Fe, and C11 = 459.73 GPa, C12 = 49.29 
GPa and C44 = 93.65 for bcc Cr. 

The investigation of polycrystalline elastic properties and directional 
dependence of the Young’s modulus of Fe-Cr alloys, together with the 

Fig. 3. Schematic representation of the process of formation of a mixed Fe-Cr 
dumbbell (a) by adding a Cr atom to a Fe site and (b) by adding a Fe atom 
to a Cr site. Schematic representation of formation of a vacancy (c) on a Fe site 
and (d) on a Cr site. Fe and Cr atoms are shown by grey and blue spheres, 
respectively. 
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comparison of the computed values of elastic parameters with the 
available experimental data, is given in the Supplementary Materials. 

3.3. Elastic dipole and relaxation volume tensors of point defects in bcc Fe 
and bcc Cr 

Elements of elastic dipole tensor Pij, relaxation volume tensor Ωij, 
and relaxation volumes Ωrel and Ωat

rel of a vacancy as well as Fe-Fe, Fe-Cr, 
and Cr-Cr 〈110〉 dumbbells in bcc Fe and bcc Cr are listed in Table 1. 
Relaxation volumes Ωrel are given in Å3 units, whereas Ωat

rel are given in 
atomic volume units (Ω0 = a3/2), where the reference atomic volume 
Ω0 = 11.345 Å3 corresponds to the bcc lattice parameter of a = 2.831 Å. 
In agreement with the analysis given in Ref. [15], Pij, Ωij, Ωrel and Ωat

rel 
for vacancies are negative in both pure Fe and Cr, whereas for dumbbells 
they are positive and their magnitudes are significantly larger than those 
for vacancies. The fact that SIA defects have large relaxation volumes 
shows that self-interstitial atom defects are primarily responsible for the 

swelling occurring in these metals under irradiation, as a result of for
mation of Frenkel vacancy–self-interstitial pairs, and the subsequent 
clustering of SIA defects [75]. 

For vacancies in pure metals, all the diagonal elements of elastic 
dipole tensors and relaxation volume tensors are equal, and the off- 
diagonal elements vanish. Hence, the elastic properties of vacancies 
can be described by only one parameter. The values of Pij, Ωij, and Ωrel 
are approximately twice as large for vacancies in bcc Cr in comparison 
with bcc Fe. For example, the relaxation volume of a vacancy in Cr is 
− 6.513 Å3 and in Fe it is − 3.045 Å3. These values are larger (i.e. more 
negative) than the values found in Ref. [15]. The difference is larger for 
the vacancy in bcc Cr. This is mainly due to the fact that calculations for 
bcc Cr in Ref. [15] were performed for the equilibrium lattice parameter 
of 2.862 Å, whereas all the fixed-volume calculations in this work, 
including those for bcc Cr, were performed assuming the lattice 
parameter of bcc Fe of a = 2.831 Å. 

We note that substitutional atoms in bcc Fe and bcc Cr, namely Cr in 
Fe, see Fig. 2a), and Fe in Cr (see Fig. 2b), can also be treated using the 

Fig. 4. Formation energy of vacancies (a,c,e) and (b,d,f) SIA dumbbells in random Fe-Cr alloys shown over the entire range of concentrations (a–d) and for an alloy 
with 5% at. Cr (e,f) plotted as a function of Cr concentration (a,b) and the total number of Cr atoms in the NN and NNN coordination shells of a defect (c–f). Linear 
trends are indicated by dashed lines (see Table A.2). 
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relaxation volume method formalism developed for point defects. For 
example, Ωat

rel of a substitutional Cr atom in ferromagnetic bcc Fe is equal 
to 0.184 atomic volume units, which means that its volume is approxi
mately 18% larger than the volume of a host Fe atom. Interestingly, this 
value is about four times larger than the value obtained from the com
parison of metallic radii of Fe and Cr, which are 1.26 Å and 1.28 Å, 
respectively [76]. The origin of the difference is likely related to the 
magnetic state of a Cr atom, which is different in anti-ferromagnetic bcc 
Cr and in ferromagnetic bcc Fe matrix. The magnitude of the magnetic 
moment of a substitutional Cr atom in bcc Fe matrix (1.80 μB) is 70% 
larger than the magnitude of the magnetic moment of a Cr atom in 
chromium metal, where according to DFT calculations [3] it equals 1.07 
μB. 

We note also that the absolute values of Pij, Ωij, and Ωrel of a Cr atom 
in bcc Fe are only approximately 30% smaller than those of a vacancy. It 
means that elastic distortions caused by a vacancy or a Cr substitutional 
atom in bcc Fe are broadly similar. The signs of Pij, Ωij, and Ωrel for a 
vacancy and substitutional Cr are opposite, Ωrel for a vacancy is negative 
and Ωrel for a substitutional Cr is positive. The latter is important as it 
shows that a Cr atom in bcc Fe appears significantly oversized. As a 
consequence, Cr atoms should be expected to segregate to the outside 
part of an interstitial dislocation loop where strain is tensile. This is 
consistent with the interpretation of experimental data obtained using 
atom probe tomography by Jiao and Was [77], showing that Cr segre
gates to the outside of an interstitial dislocation loop. It should be noted 
that the agreement between our calculations and the above experi
mental results is not fully supported by the DFT results from Ref. [78], 
where it was found that binding of a Cr atom to a 〈111〉 interstitial loop 

in bcc Fe is insignificant on either the compressive or tensile side of the 
curved edge dislocation forming the perimeter of an interstitial loop. 

As opposed to a Cr atom in bcc Fe, a substitutional Fe atom in bcc Cr 
has a negative relaxation volume. It means that, similarly to a vacancy, a 
substitutional Fe atom in bcc Cr produces lattice contraction. The ab
solute scale of Pij, Ωij, and Ωrel characterising a Fe atom in bcc chromium 
matrix is almost ten times smaller than that of a vacancy. For example, 
Ωat

rel for a Fe atom and a vacancy in bcc Cr equals − 0.055 and − 0.588 
atomic volume units, respectively. The relaxation volume of a substi
tutional Fe atom in Cr matrix is similar to what is expected from the 
comparison of metallic radii of Fe and Cr [76]. This means that, as 
opposed to the case of a Cr substitutional atom in bcc Fe matrix, the 
relaxation volume of a Fe substitutional atom in bcc Cr is not affected by 
magneto-volume effects. 

When treating 〈110〉 Fe-Fe, Fe-Cr and Cr-Cr dumbbells (see Fig. 2c–e, 
respectively) in bcc Fe and Cr, we find that only two diagonal elements 
of the elastic dipole tensor or the relaxation volume tensor are equal 
(P22 = P33 and Ω22 = Ω33). When referring to the specific off-diagonal 
elements of tensors, we note that the results for 〈110〉 dumbbells in 
this work were computed for dumbbells with [011] orientation. For a Fe- 
Fe dumbbell in bcc Fe, the first element P11 is larger than either P22 or 
P33, whereas the first element is smaller than the other two elements for 
a Cr-Cr dumbbell in bcc Cr. The P11/P22 ratio is 1.21 and 0.78 in the 
former and latter cases, respectively. This effect is likely caused by the 
significantly different anisotropy of elastic properties of bcc Fe and bcc 
Cr, illustrated in Fig. S2b–e in the Supplementary Materials. In bcc Fe 
and bcc Cr, the lowest and the largest P11/P22 ratios are observed for Cr- 
Cr and Fe-Fe dumbbells, respectively. As opposed to vacancies, all the 

Fig. 5. (a) Average lattice parameter of fully relaxed Fe-Cr structures and average elastic moduli (a) C11, (b) C12 and (c) C44 plotted as functions of Cr content. 
Experimental: Ref. A [69], Ref. B [70], Ref. C [71], Ref. D [72], Ref. E [73], Ref. F [74]; Theoretical: Ref. G [68], Ref. H [67]. Fitted functions are given in Table A.3. 
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dumbbells in bcc Fe and Cr have non-vanishing off-diagonal elements 
P23 and Ω23 of elastic dipole and relaxation volume tensors. In bcc Fe 
and bcc Cr, the largest value of P23 is found for Cr-Cr dumbbells. 

In general, relaxation volumes of dumbbells in bcc Fe are larger than 
in bcc Cr. For example, the relaxation volume of a Fe-Fe 〈110〉 dumbbell 
in bcc Fe is 18.181 Å3, which is larger than the relaxation volume of a Cr- 
Cr dumbbell in bcc Cr, where it is equal to 16.402 Å3. Finally, we note 
that the values of Pij, Ωij, and Ωrel for mixed Fe-Cr dumbbells vary, 
depending on the type of the atom, Cr or Fe, on the defect site in the 
pristine structure (see Fig. 3a and b). For example, a Fe-Cr 〈110〉
dumbbell on a Fe or a Cr site has the relaxation volume of 18.581 Å3 and 
16.356 Å3, respectively. 

3.4. Elastic dipole tensors and relaxation volumes of point defects in 
random Fe-Cr alloys 

In random Fe-Cr alloys, the elements of Pij and Ωij depend not only on 
the type of the defect but also on the atomic configuration of Cr and Fe in 
its local environment. Due to the random choice of positions of Cr atoms, 
all the elements of Pij and Ωij of defects differ from each other and are 
non-zero, even for vacancies – whereas in pure metals, because of the 
cubic symmetry, we find that P11 = P22 = P33 and P12 = P23 = P31 = 0. 
Figs. 6 and 7 show that the values of Pij for vacancies and dumbbells 
exhibit significant scattering. However, similarly to the data for defects 
in pure metals, there are notable identifiable trends that we discuss 
below. 

For vacancies, the magnitudes of P11, P22 and P33 are notably larger 
than those of P12, P23 and P31, and the mean values of the off-diagonal 

Fig. 7. Elements of elastic dipole tensor (a) P11, (b) P22 and P33, (c) P23, and (d) P12 and P13, computed for Fe-Fe, Fe-Cr and Cr-Cr [011] dumbbells in random Fe-Cr 
alloys. The dashed trend lines equations are given in Table A.4. 

Fig. 6. (a) diagonal and (b) off-diagonal elements of elastic dipole tensor for vacancies on Fe and Cr sites in random Fe-Cr alloy structures. The dashed trend lines 
equations are given in Table A.4. 
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elements of the dipole tensor are very close to zero, see Fig. 6. This is 
expected, and is consistent with the argument given in Ref. [20] that 
averaging over configurations generally gives rise to the isotropic form 
of dipole and relaxation volume tensors. For dumbbells, as in the case of 
pure metals, values of P22 and P33 are usually similar, whereas P11 can be 
either smaller or larger than P22 and P33, cf. Fig. 7a and b. 

Similarly to pure bcc Fe and Cr, the dipole tensors of 〈110〉 Fe-Fe and 
Fe-Cr dumbbells are characterised by a significantly larger value of P11 
in comparison with P22 and P33 over the entire range of alloy compo
sitions considered here. As before, calculations for 〈110〉 dumbbells 
were performed for the [011] orientation. On the other hand, Cr-Cr 
dumbbells are characterised by notably smaller P11 values, and larger 
P22 and P33 values, than Fe-Fe and Fe-Cr dumbbells. As a result, Cr-Cr 
dumbbells have the P11/P22 ratio much closer to unity than Fe-Fe and 
Fe-Cr dumbbells. 

The fact that the values of P11, P22 and P33 for Cr-Cr dumbbells are 
similar does not mean that the elastic field of these defects is isotropic. 
The dipole tensor of every dumbbell defect has large off-diagonal terms. 
The main difference between Fe-Fe, Fe-Cr and Cr-Cr dumbbells with the 
[011] orientation is that the two former ones have only one visibly non- 
zero off-diagonal Pij element, namely P23, and the mean values of P12 

and P31 are close to zero, whereas the latter one often has all the off- 
diagonal elements that are large. The values of these off-diagonal ele
ments for Cr-Cr dumbbells also fluctuate stronger than those for Fe-Fe 
and Fe-Cr dumbbells. This effect may be related to the fact that the di
rection of a Cr-Cr dumbbell is not necessarily close to [011] as it is the 
case for Fe-Fe and Fe-Cr dumbbells. For example, the most stable Cr-Cr 
dumbbell in pure Cr is symmetry broken [17] and its orientation is close 
to 〈11ξ〉. Orientations of dumbbells in Fe-Cr alloys will be discussed in 
Section 4.1. 

To understand the changes exhibited by Pij as a function of Cr con
tent, we computed the trends shown in Figs. 6 and 7. For vacancies, P11,

P22 and P33 decrease as a function of Cr concentration. At low Cr con
centration, these values approximately approach the value observed for 
a vacancy in pure bcc Fe. Equations for the trend lines are given in 
Table A.4 in Appendix. 

The data ranges for Fe-Fe, Fe-Cr and Cr-Cr dumbbells are divided into 
two categories: those corresponding to alloy compositions below and 
above 10% at. Cr. The trend lines for these two concentration ranges 
may be significantly different. For example, the mean value of P11 for 
dumbbells in alloys with Cr concentration lower than 10% at. Cr de
creases with Cr content whereas for larger Cr concentrations it increases. 
In the low Cr concentration limit, the steepest and slightest slopes are 
observed for the Fe-Fe and Fe-Cr dumbbells, respectively. At a low Cr 
concentration, P11 is close to the value found for these defects formed on 
a Cr site in bcc Fe matrix. The mean values of P22 and P33 for Fe-Cr and 
Cr-Cr dumbbells are almost constant over the range of concentrations 
studied here, whereas for Fe-Fe, they decrease notably as a function of Cr 
content up to the Cr concentration close to approx. 10% at. 

To characterise elastic dipole and relaxation volume tensors of point 
defects in Fe-Cr alloys in a way that is independent of rotations of co
ordinates, we have computed invariants of the two tensors. Invariants of 
elastic dipole tensors IP

1, IP
2 and IP

3 are shown in Fig. S3 and the trend 
lines are given in Table S3, whereas the invariants of relaxation volume 
tensors IΩ

1 , IΩ
2 and IΩ

3 are shown in Fig. S4 and the trend lines are given in 
Table S3 in the Supplementary Materials. Although the invariants of 
elastic dipole and relaxation volume tensor can be useful for the 
development of higher scale models, in Fig. 8 we only show quantities 
that can be readily observed, the von Mises stresses produced in the 
material by the distributed defects, and the relaxation volumes of 
defects. 

Eq. (13) shows that the von Mises stress computed from invariants IP
1 

and IP
2 depend on the volume of the simulation cell or, in other words, on 

the density of defects periodically and homogeneously distributed in the 

Fig. 8. Von Mises stresses obtained form the invariants of elastic dipole tensors IP
1 and IP

2 (a,b) and first invariants of relaxation volume tensor IΩ
1 , computed for (a,c) 

vacancies on Fe and Cr sites and (b,d) Fe-Fe, Fe-Cr and Cr-Cr dumbbells in random Fe-Cr alloys. Calculations were performed using a 5 × 5 × 5 supercell with volume 
of 2836.15 Å3, corresponding to the average volume concentration of defects of 3.526⋅1026 m− 3. The dashed trend lines equations are given in Table A.5. 
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material. The values shown in the Fig. 8a and b were computed using a 
5 × 5 × 5 supercell with the volume of 2836.15 Å3, corresponding to the 
volume density of defects of 3.526⋅1026 m− 3. Values of the von Mises 
stress corresponding to any other density of defects can be readily 
computed by scaling the values given in Fig. 8 linearly to any other 
density of defects. 

Fig. 8a shows that the von Mises stress (σvM) generated by vacancies, 
homogeneously and periodically distributed in specific configurations of 
Fe-Cr alloys, exhibit considerable fluctuations. The stress developing in 
the material depends on the composition of the alloy and the location of 
a vacancy in the alloy structure. In alloys containing less that 10% at. Cr, 
σvM varies between 20 and 100 MPa. The mean value is close to 50 MPa, 
and it appears that vacancies located at Cr sites produce higher tensile 
stresses in the material. In alloys containing higher amount of Cr, σvM 
fluctuates even stronger. 

σvM for SIA dumbbells also exhibits different behaviour below and 
above 10% at. Cr. At lower Cr concentrations, values of σvM are between 
400 and 600 MPa, whereas at larger Cr concentration the results are 
more scattered and values of σvM are between 350 and 700 MPa. Mean 
values of σvM for Fe-Cr and Cr-Cr dumbbells do not change significantly 
with Cr content and over the entire range of compositions they vary 
between 450 and 500 MPa. Values of σvM for Fe-Fe SIAs are larger than 
for Fe-Cr and Cr-Cr dumbbells. At small Cr concentration, the mean 
value of σvM for Fe-Fe dumbbells is close to 500 MPa and it increases 
with Cr content. For alloys with Cr concentration above 10%, the mean 
value of σvM is larger, and is close to 575 MPa, and it does not change 
appreciably with Cr content. 

Relaxation volumes of vacancies and dumbbells in random Fe-Cr 
alloys, computed from the first invariants of the corresponding Ωij ten
sors, are shown in Fig. 8c and d, respectively. Relaxation volumes of 
vacancies in random Fe-Cr alloys are in general more negative than the 
volume of a vacancy in pure bcc Fe. Even in the low Cr concentration 

limit the mean value of Ωrel of a vacancy is − 2.4 Å3, which is approxi
mately 50% more negative than Ωrel for a vacancy in bcc Fe. Fig. 8c 
shows values of mean relaxation volumes computed for vacancies 
located at Fe or Cr sites. The results are noticeably different below and 
above 10% at. Cr concentration, and therefore the trend lines are 
described more accurately using two linear fits, one below and another 
above 10% at. Cr. The most rapid decrease of the mean relaxation vol
ume as a function of Cr content is observed for vacancies on a Fe site at 
low Cr concentration, whereas Ωrel of a vacancy on a Cr site increases as 
a function of Cr content. For Cr concentrations above 10% at. Cr, Ωrel of a 
vacancy on both sites decreases as a function of Cr content but the slope 
of the fitted line for a vacancy on a Cr site is steeper. 

Relaxation volumes of dumbbells are all positive, and their magni
tudes are much larger than those of vacancies (see Fig. 8d). Results for 
Fe-Fe, Fe-Cr and Cr-Cr dumbbells are different above and below approx. 
10% at. Cr. For Cr concentration below 10% at. Cr, the mean values of 
Ωrel for Fe-Cr and Cr-Cr SIAs increases, whereas for Fe-Fe decrease 
rapidly as a function of Cr content. As a result, the mean values of Ωrel for 
Fe-Fe dumbbells are the largest at very small Cr concentrations (below 
approx. 2% at. Cr) and the lowest for larger Cr concentrations. At a low 
Cr concentration, the mean values of Ωrel for the three types of dumb
bells are similar to the values computed for pure bcc Fe (results for Fe-Cr 
dumbbells in Fe-Cr alloys are closer to the values for a dumbbell formed 
on a Cr site than on a Fe site in bcc Fe matrix). For Cr concentrations 
above approx. 10% Cr, Ωrel for all the three types of dumbbells decreases 
as a function of Cr content, in agreement with that Ωrel for these 
dumbbells in bcc Cr is notably smaller than in bcc Fe. The slopes of the 
fitted lines in each case are similar. 

Equations for the trend lines describing how the von Mises stresses 
and relaxation volumes computed for point defects vary as a function of 
Cr concentration are given in Table A.5 in Appendix. Equations for the 
trend lines for invariants IP

1, IP
2, IP

3, IΩ
1 , IΩ

2 and IΩ
3 are given in Table S3 

Fig. 9. Relaxation volumes of vacancies on Fe and Cr sites (a,c) and dumbbells (b,d) in random Fe-Cr alloys plotted over the entire range of compositions (a,b) and 
for the alloy containing 5% at. Cr (c,d), as a function of the total number of Cr atoms in the NN and NNN coordination shells of a defect. Linear trends are indicated by 
dashed lines (see Table A.6). 
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in the Supplementary Materials. 
Comparison of relaxation volumes of vacancies and dumbbells in 

random Fe-Cr alloys for the entire range of concentrations and for the 
alloy with 5% at. Cr as a function of number of Cr atoms in the local 
environment of a defect is given in Fig. 9. As in Fig. 4, point defects in Fe- 
5%Cr alloys are surrounded by up to 3 Cr atoms in the NN and NNN 
shells. To compare results with those computed for other Fe-Cr alloys, 
the latter ones have been separated into two groups: for point defects 
with Ndef

Cr smaller and larger than 3. 
Results for the Fe-5%Cr alloy and for all the other alloys show that 

the mean relaxation volume of a vacancy on a Fe site is larger than that 
on a Cr site if Ndef

Cr equals 0 and 1, and smaller if Ndef
Cr equals 2 and 3. In 

the group with the small number of Cr atoms in the local environment of 
a defect, Ωrel on a Cr site decreases with increasing Ndef

Cr for both alloys. 
However, Ωrel for a vacancy on a Fe site, averaged over all the alloys, 
decreases as a function of Ndef

Cr whereas it slightly increases in the Fe-5% 
Cr alloy. In the region with Ndef

Cr larger than 3, Ωrel decreases with 
increasing Ndef

Cr for vacancies both on a Fe site and on a Cr site, which 
agrees with the results presented as a function of Cr concentration, cf. 
Figs. 9a and 8c. 

The trends describing mean relaxation volumes of Fe-Fe and Fe-Cr 

dumbbells as functions of Ndef
Cr are generally similar in the Fe-5%Cr 

alloy and in all the other alloys, however the mean values obtained for 
the Fe-5%Cr alloy are approx. 0.5 Å3 larger, see Fig. 9a and c. Similarly 
to the formation energies, the most notable difference between the 
groups of alloys is observed for Cr-Cr dumbbells – the mean values for a 
Fe-5%Cr alloy increase whereas those averaged over all the alloys 
decrease as a function of the number of Cr atoms in NN and NNN around 
a Cr-Cr dumbbell. The trends for the mean relaxation volumes of Fe-Fe 
and Cr-Cr dumbbells for Ndef

Cr larger than 3 are almost constant whereas 
those for Fe-Cr slightly decrease with the number of Cr atoms in the 
nearest neighbour shells. Equations for the trend lines describing mean 
relaxation volumes of point defect as functions of Ndef

Cr are given in 
Table A.6 in Appendix. 

4. Discussion 

4.1. The orientation of dumbbells 

Orientations of SIA, defined by the direction of the vector connecting 
the two central atoms forming a dumbbell defect, and explored in the 
calculations, are schematically shown – a Cr-Cr type – in Fig. 10a. Both 

Fig. 10. (a) Schematic representation of Cr-Cr dumbbell orientations – the orientations have been normalised and presented in such a way that the equivalent 
directions have positive values on X and Y axes, (b) the number of 〈11ξ〉 Cr-Cr dumbbells as a function of parameter ξ and (c) the number of Cr-Cr dumbbells in a 
particular orientation as a function of the number of Cr atoms in the NN and NNN coordination shell of a defect. Examples of alloy configurations in the local 
environment of a Cr-Cr dumbbell adopting specific orientations: (d) 〈221〉, (e) 〈110〉, (f) 〈112〉, (g) 〈331〉. Fe and Cr atoms are shown by grey and blue spheres, 
respectively. 
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Fe-Fe and Fe-Cr dumbbells adopt a 〈110〉 orientation after relaxation. 
This is similar to the orientation of a dumbbell defect in pure bcc Fe, 
where it adopts a 〈110〉 orientation [18,79,80]. Variation of directions of 
Cr-Cr dumbbells is much larger, see Fig. 10a. In general, most orienta
tions can be classified as an 〈11ξ〉 orientation where ξ spans the interval 
from 0.0 to 2.4. We have combined possible orientations of defects into 
five different groups, corresponding to different intervals of parameter ξ, 
namely 〈110〉 (0.0 < ξ < 0.2), 〈331〉 (0.2 < ξ < 0.4), 〈221〉
(0.4 < ξ < 0.6), 〈112〉 (1.6 < ξ < 2.4) orientations as well as others, see 
Fig. 10b. The number of dumbbells adopting a particular orientation as a 
function of the number of Cr atoms in the 1st and 2nd coordination 
shells around a defect is shown in Fig. 10c. Examples of alloy configu
rations in the local environment of a Cr-Cr dumbbell adopting a 

particular orientation are shown in Fig. 10d–g. The most common di
rection of a Cr-Cr dumbbell is 〈221〉 (about 48.0% of all Cr-Cr dumb
bells), however this fraction decreases as the number of Cr atoms in the 
local environment of a dumbbell increases. The prevalence of the 〈221〉
direction (indicated by the aquamarine colour in Fig. 10b) of Cr-Cr 
agrees with the earlier results by Klaver et al. [26]. For the configura
tions containing no Cr atoms in the 1st and 2nd coordination shells 
around a self-interstitial defect, the 〈331〉 (purple) and 〈110〉 (navy blue) 
orientations are more common (for example, 〈331〉 and 〈110〉 orienta
tions represent 59.1% and 35.2% of all the directions of dumbbells that 
have no Cr atoms in their vicinity). The occurrence of dumbbells with 
orientations 〈112〉 (indicated by the red colour in Fig. 10b) as well as 
with orientations with higher crystallographic indices, the so-called 
‘thers’ (green), increases with the number of Cr atoms in the local 
environment of a defect. 

4.2. Magneto-volume effects in Fe-Cr alloys 

To understand the origin of differences between the relaxation vol
umes of dumbbells on Fe and Cr sites in bcc Fe, values of Ωrel were 
correlated with the variation of the magnitude of the magnetic moment 
in the supercell ΔM caused by the defect. Fig. 11 shows that smaller 
values of relaxation volumes of dumbbells are correlated with ΔM being 
more negative. In particular, Ωrel of a 〈110〉 Fe-Cr dumbbell on a Fe site 
(18.581 Å3) is larger than that of a 〈110〉 Fe-Fe dumbbell on a Fe site 
(18.171 Å3) since the sum of magnitudes of magnetic moments for the 
former structure is almost 0.5 μB larger. This suggests that magnetism is 
a significant factor affecting structural relaxation and hence relaxation 
volumes of defects in Fe-Cr alloys. The difference in magnetic properties 
between the structures containing Fe-Fe and Fe-Cr dumbbells is caused 
mainly by the differences in magnetic moments of atoms forming the 
dumbbells, which agrees with Refs. [29,34,42]. 

Fig. 12. Relaxation volumes (a,b) and formation energies (c,d) of vacancies on Fe and Cr sites (a,c) and dumbbells (b,d) in random Fe-Cr alloys for the alloy with 5% 
at. Cr as a function of variation of the magnitude of the total magnetic moment in the supercell, caused by a defect. Linear trends are indicated by dashed lines (their 
equations and R2 values are given in Tables A.2 and A.6). 

Fig. 11. Relaxation volumes of dumbbells in bcc Fe matrix plotted as a function 
of the change in the magnitude of the total magnetic moment in the supercell 
associated with the formation of a defect. 
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In a 〈110〉Fe-Fe SIA dumbbell, the magnetic moments of Fe atoms are small 
( − 0.207 μB) and they are ordered antiferromagnetically with respect to other Fe 
atoms. In a 〈110〉Fe-Cr dumbbell the magnetic moment of Fe is larger (0.326 μB) 
and it is ordered ferromagnetically with respect to other Fe moments, and anti
ferromagnetically with respect to the moment of the Cr atom in the dumbbell, 
which has a notably larger magnitude of magnetic moment ( − 0.946 μB). 
Magnetic moments of atoms in Fe-Fe and Fe-Cr dumbbells in bcc Fe are in 
agreement with the values given in Refs. [34,66]. Magnetic moments of Cr atoms 
in a 〈11ξ〉Cr-Cr dumbbell are − 0.347 μB, and both are aligned antiferromag
netically with respect to the magnetic moments of Fe atoms. 

Similarly to dumbbells in Fe matrix, there is a correlation between 
the relaxation volume of a defect and the variation of the magnitude of 
the total magnetic moment in the supercell caused by a defect (ΔM), see 
Fig. 12a–d (equations of trend lines and R2 values are given in Tables A.2 
and A.6). For vacancies and dumbbells, Ωrel increases as a function of 
ΔM. As in bcc Fe matrix, Fe-Cr dumbbells on a Fe site in a Fe-5%Cr alloy 
have larger magnitudes of magnetic moments and consequently larger 
relaxation volumes than Fe-Fe dumbbells on a Fe site. Slopes of trend 
lines for dumbbells indicate that the largest and smallest variations of 
Ωrel with ΔM are observed for Fe-Fe and Cr-Cr dumbbells, respectively. 
Slopes of trend lines for vacancies and Fe-Cr do not change significantly 
depending on the lattice site where a defect is formed. Values of Ωrel for 
defects formed on Cr sites are generally smaller. 

Variation of magnitudes of magnetic moments associated with a 
defect also influences the formation energy of a defect. Fig. 12c shows 
that Eform of vacancies decreases with increasing ΔM. Comparing the 
results presented in Fig. 12a and c, we see a correlation between Ωrel and 
Eform of vacancies, indeed Eform decreases as the absolute value of Ωrel 

decreases. According to Fig. 12d, values of Eform for Fe-Cr and Cr-Cr 
dumbbells on a Cr site decrease whereas those for Fe-Fe and Fe-Cr 
dumbbell on a Fe site slightly increase as a function of ΔM. At the 
same time, a comparison of Fig. 12b and d does not show any clear 
correlation between Ωrel and Eform for dumbbells in Fe-Cr alloys. 

4.3. Comparison of the cell relaxation and stress methods 

A comparison of results obtained using the stress and full cell 
relaxation methods for 160 random Fe-Cr structures is shown in Fig. 13. 
Both approaches show that relaxation volumes and formation energies 
of dumbbells in random Fe-Cr alloys decrease with Cr content, see 
Fig. 13a and b. The stress method predicts somewhat larger values of 
relaxation volumes and formation energies than the cell relaxation 
method, exhibiting a correlation between Eform and Ωrel. The relaxation 
volumes of defects computed using the stress method are on average 
2.5% larger, however there are a few structures where they are more 
than 5% larger than the values derived using the cell relaxation method, 
see Fig. 13c. Fig. 13d shows that the relative difference between for
mation energies of defects Eform deduced using the stress and cell 
relaxation methods varies as a function of Cr content. Similarly to the 
majority of results given in sections above, the relative formation energy 
difference exhibits different behaviour in the two composition intervals, 
above and below 10% at. Cr. Above 10% at. Cr, the relative formation 
energy difference increases slowly as a function of Cr content. Values 
Eform obtained using the stress method do not differ in general by more 
than 2% in comparison with values computed using the full relaxation 
method, and the average relative formation energy difference in that 
interval of Cr concentrations is almost equal to zero. For Cr concentra
tions below 10%, the overestimation of Eform obtained using the stress 
method in comparison with that computed using the cell relaxation 
method increases towards low Cr content, reaching approximately − 4% 
for alloys containing approximately 3% at. Cr. It is worth noting that the 
elastic correction, implemented following Refs. [12–14,16,21], im
proves agreement between the results obtained using both methods. 
Still, the use of elastic correction often proves insufficient, as it was 
found for defect clusters in Tungsten [43,44]. 

There are several reasons that might be responsible for the discrep
ancy. The lattice parameter used in the fixed volume calculations may 

Fig. 13. Comparison of (a) relaxation volumes and (b) formation energies of SIA dumbbells evaluated using the stress and cell relaxation methods, and the relative 
difference between (c) relaxation volumes and (d) formation energies computed using both methods. 
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influence the predicted relaxation volumes derived from the stress 
method. Here the calculations were performed using the lattice 
parameter of 2.831 Å, whereas random Fe-Cr alloy structures can adopt 
the equilibrium lattice parameters up to 2.842 Å. Also, the computed 
relaxation volumes may differ depending on the elastic constants used in 
the calculations. As was noted previously, the average elastic constants 
C11, C12, C44 are the interpolations derived from DFT calculations and 
hence they may differ from the values computed for each specific 
structure. Moreover, the elastic constants were computed for the equi
librium lattice parameter whereas they were applied for the prediction 
of relaxation volumes derived from stresses computed for structures 
with fixed lattice parameter of 2.831 Å. Furthermore, slightly different 
convergence parameters were used in the calculations performed using 
stress and cell relaxation methods. For example, the plane-wave energy 
cut-off for the fixed-volume calculations was 300 eV whereas for those 
with full cell relaxation it was 400 eV. 

Table A.2 
Equations for the trend lines of chemical potentials (μFe/Cr in eV), formation energies (Eform in eV) of vacancies and dumbbells in random Fe-Cr alloys as a function of the 

chromium concentration (c(Cr)) or the number of Cr atoms in the vicinity of a defect (Ndef
Cr ) and formation energies (Eform in eV) as a function of change of magnitudes of 

magnetic moments (ΔM in μB) caused by a defect for the alloy with 5% at. Cr.  

Parameter Variation as a function of the variable 
in square brackets, denoted here as x 

Parameter Variation as a function of the variable 
in square brackets, denoted here as x 

Chemical potentials (see Fig. 1) 
μFe [c(Cr)] y = − 0.0088x − 8.3193  μCr[c(Cr)]

y =

{
3.8323x − 9.606 for x⩽0.1

− 0.2328x − 9.2251 for x > 0.1  
Formation energies of vacancies (see Fig. 4a and c) 

Evac(Fe)
form [c(Cr)] y =

{
− 0.5371x + 2.1263 for x⩽0.1
− 0.3504x + 2.1144 for x > 0.1  

Evac(Fe)
form [Ndef

Cr ] y =

{
− 0.0294x + 2.1291 for x⩽3
− 0.0066x + 2.055 for x⩾3   

Evac(Cr)
form [c(Cr)] y =

{
1.09397x + 2.02881 for x⩽0.1
0.13367x + 2.05817 for x > 0.1  

Evac(Cr)
form [Ndef

Cr ] y =

{
− 0.0613x + 2.168 for x⩽3
0.0418x + 1.9212 for x⩾3  

Formation energies of dumbbells (see Fig. 4b and d) 
EFe-Fe

form [c(Cr) ] y =

{
− 2.47363x + 4.10369 for x⩽0.1
− 2.10125x + 4.17765 for x > 0.1  

EFe-Fe
form

[
Ndef

Cr

]

y =

{
− 0.0447x + 3.929 for x⩽3
− 0.0248x + 3.8344 for x⩾3   

EFe-Cr
form [c(Cr) ] y =

{
− 4.7541x + 4.06472 for x⩽0.1
− 0.34985x + 3.63797 for x > 0.1  

EFe-Cr
form

[
Ndef

Cr

]

y =

{
− 0.0731x + 3.78 for x⩽3
0.0125x + 3.5232 for x⩾3   

ECr-Cr
form [c(Cr) ] y =

{
− 6.92687x + 4.37945 for x⩽0.1
− 0.07179x + 3.68609 for x > 0.1  

ECr-Cr
form

[
Ndef

Cr

]

y =

{
− 0.1225x + 3.985 for x⩽3
0.0322x + 3.5469 for x⩾3  

Formation energies of vacancies in alloy with 5% at. Cr (see Figs. 4e and 12c) 
Evac(Fe)

form [Ndef
Cr ]

y = − 0.0394x + 2.1451  Evac(Fe)
form [ΔM] y = − 0.054x + 2.072, R2 = 0.057  

Evac(Cr)
form [Ndef

Cr ]
y = − 0.1438x + 2.2508  Evac(Cr)

form [ΔM] y = − 0.113x + 2.125, R2 = 0.663  

Formation energies of dumbbells in alloy with 5% at. Cr (see Figs. 4f and 12d) 

EFe-Fe
form

[
Ndef

Cr

]
y = − 0.0365x + 4.1879  EFe-Fe(Fe)

form [ΔM] y = 0.073x + 4.501, R2 = 0.187  

EFe-Cr(Fe)
form [ΔM] y = 0.0176x + 3.9803, R2 = 0.0034  

EFe-Cr
form

[
Ndef

Cr

]
y = − 0.0504x + 3.942  EFe-Cr(Cr)

form [ΔM] y = − 0.1552x + 3.3731, R2 = 0.7784  

ECr-Cr
form

[
Ndef

Cr

]
y = − 0.026x + 4.3029  ECr-Cr(Cr)

form [ΔM] y = − 0.104x + 3.778, R2 = 0.738   

Table A.3 
Equations for the fitted curves of average lattice parameter (a in Å), average 
elastic moduli (C11, C12, C44 in GPa) as a function of chromium concentration 
(c(Cr)) of fully relaxed random Fe-Cr alloy structures (see Fig. 5a–d).  

Parameter Variation as a function of 
the variable in square 

brackets, denoted here as 
x 

Parameter Variation as a function of 
the variable in square 

brackets, denoted here as 
x 

a[c(Cr)] y =

1.2001x3 − 0.8763x2 +

0.1636x + 2.8325  

C11 [c(Cr)] y = 10995x4 −

8693.9x3 + 2579.2x2 −

244.75x+ 270  

C12[c(Cr)] y = 9009.7x4 −

9375.5x3 + 3527.7x2 −

476.08x+ 154.66  

C44 [c(Cr)] y =

1876.5x3 − 1373.2x2 +

309.7x + 92.402   

Table A.4 
Equations for the trend lines of diagonal (Pii in eV) elements of elastic dipole tensor for vacancies and elements of elastic dipole tensor (P11, P22/33, P23, P12/13 in eV) for 
dumbbells as a function of chromium concentration (c(Cr)) in random Fe-Cr alloy structures.  

Parameter Variation as a function of the variable 
in square brackets, denoted here as x 

Parameter Variation as a function of the variable 
in square brackets, denoted here as x 

Elastic dipole tensors for vacancies (see Fig. 6a and b) 
P11[c(Cr)]

y =

{
− 2.73089x − 4.60421 for x⩽0.1
− 5.62277x − 4.41065 for x > 0.1  

P22[c(Cr)]
y =

{
− 5.55749x − 4.51942 for x⩽0.1
− 5.52298x − 4.48534 for x > 0.1   

P33[c(Cr)]
y =

{
− 6.11801x − 4.49765 for x⩽0.1
− 5.45409x − 4.50325 for x > 0.1    

Elastic dipole tensors for dumbbells (see Fig. 7a–d) 
PFe-Fe

11 [c(Cr) ] y =

{
− 21.79723x + 23.60046 for x⩽0.1

3.73925x + 21.41589 for x > 0.1  
PFe-Fe

22/33 [c(Cr) ] y =

{
− 28.79147x + 19.55029 for x⩽0.1

0.91732x + 16.75473 for x > 0.1   
PFe-Cr

11 [c(Cr) ] y =

{
− 0.95036x + 21.64462 for x⩽0.1
2.20376x + 21.49155 for x > 0.1  

PFe-Cr
22/33 [c(Cr) ] y =

{
− 6.79236x + 19.36198 for x⩽0.1
− 0.85781x + 18.75012 for x > 0.1   

PCr-Cr
11 [c(Cr) ] y =

{
− 11.20776x + 20.84527 for x⩽0.1

3.38226x + 20.05774 for x > 0.1  
PCr-Cr

22/33 [c(Cr) ] y =

{
− 3.24615x + 20.37921 for x⩽0.1
1.13097x + 19.82221 for x > 0.1  

PFe-Fe
23 [c(Cr) ] y = 1.07363x + 4.61543  PFe-Fe

12/13 [c(Cr) ] y = 1.5062x − 0.38669  

PFe-Cr
23 [c(Cr) ] y = 0.32636x + 4.42626  PFe-Cr

12/13 [c(Cr) ] y = 0.6145x − 0.15704  

PCr-Cr
23 [c(Cr) ] y = − 2.44943x + 3.1727  PCr-Cr

12/13 [c(Cr) ] y = − 0.75586x + 1.34013   
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To evaluate the effect of differences in elastic constants computed 
using different energy cutoffs and cell relaxation conditions on the 
relaxation volumes, we performed additional calculations of elastic 
constants for Fe-5%Cr alloy structures. Ωrel for a Fe-Cr dumbbell 
computed using the plane-wave energy cut-off 300 eV and the equilib
rium lattice parameter was 17.96 Å3, for the fixed lattice parameter of 
2.831 Å and energy cut-off 400 eV it was 17.56 Å3 whereas for the 
energy cut-off 400 eV and the equilibrium lattice parameters it was 
17.80 Å3, and for the interpolated average elastic constants it was 17.60 
Å3. Variation of results is of the order of 2%, which shows that the in
accuracy of prediction of elastic constants for alloy structures might be 
one of the main reasons for the variation in relaxation volumes 
computed using cell relaxation and stress methods. We note also that the 
above inaccuracy does not influence significantly the formation energies 
of point defect since the correction terms computed with different elastic 
constants do not differ by more than 1 meV. 

Finally, we note that the values computed using the fixed cell volume 
method (the stress method) do not take into account the non-elastic 
(non-harmonic) effects, which are implicitly included in the results 
obtained using the cell relaxation method. From the comparison of 
values of Eform obtained using the stress method and the cell relaxation 
method, shown in Fig. 13d, it is reasonable to expect that the non- 
harmonic effects would play a particularly significant part in magnetic 

Fe-Cr alloys with low Cr concentration. 

5. Conclusions 

Concluding this study, we would like to highlight the clear benefits of 
an approach combining ab initio treatment of defects with auxiliary 
analysis based on elasticity. This has enabled quantifying the elastic ef
fects of expansion and contraction of the lattice due to the fact that the 
atoms forming the alloy have different volumes. For example, we found 
that the volume of a substitutional Cr atom in bcc Fe lattice is approxi
mately 18% larger than the volume of a host Fe atom. At the same time, 
the volume of a substitutional Fe atom in bcc Cr is 5% smaller than the 
volume of a host Cr atom. We also found that elastic dipole and relaxation 
volume tensors of vacancies and SIA defects exhibit large fluctuations, 
with vacancies showing negative and SIA large positive relaxation vol
umes. Dipole tensors of vacancies are nearly isotropic across the entire 
alloy composition range. Fe-Fe and Fe-Cr SIA dumbbells are more aniso
tropic than Cr-Cr dumbbells. Fluctuations of elastic dipole tensors of SIA 
defects are primarily associated with the variable orientation of defects. 
Statistical properties of tensors elastic dipole and relaxation volume ten
sors are analysed using their principal invariants, showing that properties 
of point defects differ significantly in alloys containing below and above 
10% at. Cr. The von Mises stresses caused by dumbbells in Fe-Cr alloys are 

Table A.5 
Equations for the trend lines of von Mises stresses (σvM in MPa) obtained from the invariants of elastic dipole tensors – IP

1, I
P
2 – and first invariant of relaxation volume 

tensor (IΩ
1 = Ωrel in Å3) computed for vacancies and dumbbells as a function of chromium concentration (c(Cr)) in random Fe-Cr alloy structures with a fixed volume 

equal to 2836.15 Å3.  

Parameter Variation as a function of the variable 
in square brackets, denoted here as x 

Parameter Variation as a function of the variable 
in square brackets, denoted here as x 

σvM for vacancies (see Fig. 8a)  IΩ
1 = Ωrel for vacancies (see Fig. 8c)  

σvac(Fe)
vM [c(Cr)] y =

{
54.89x + 46.60 for x⩽0.1
86.04x + 36.17 for x > 0.1  

Ωvac(Fe)
rel [c(Cr)] y =

{
− 15.957x − 3.126 for x⩽0.1
− 2.175x − 4.593 for x > 0.1   

σvac(Cr)
vM [c(Cr)] y =

{
28.97x + 55.32 for x⩽0.1
278.33x + 24.19 for x > 0.1  

Ωvac(Cr)
rel [c(Cr)] y =

{
4.515x − 4.743 for x⩽0.1
− 4.021x − 3.851 for x > 0.1  

σvM for dumbbells (see Fig. 8b)  IΩ
1 = Ωrel for dumbbells (see Fig. 8d)  

σFe-Fe
vM [c(Cr) ] y =

{
319.76x + 503.18 for x⩽0.1
− 17.90x + 575.23 for x > 0.1  

ΩFe-Fe
rel [c(Cr) ] y =

{
− 12.984x + 17.93 for x⩽0.1
− 4.776x + 17.192 for x > 0.1   

σFe-Cr
vM [c(Cr) ] y =

{
272.57x + 446.67 for x⩽0.1
60.58x + 481.42 for x > 0.1  

ΩFe-Cr
rel [c(Cr) ] y =

{
4.171x + 17.408 for x⩽0.1
− 6.777x + 18.498 for x > 0.1   

σCr-Cr
vM [c(Cr) ] y =

{
288.32x + 477.19 for x⩽0.1
− 122.73x + 501.15 for x > 0.1  

ΩCr-Cr
rel [c(Cr) ] y =

{
3.755x + 17.708 for x⩽0.1
− 5.618x + 18.779 for x > 0.1    

Table A.6 
Equations for the trend lines of relaxation volumes (Ωrel in Å3) for vacancies and dumbbells in random Fe-Cr alloys as a function of the number of Cr atoms in the 
vicinity of a defect (Ndef

Cr ) and as a function of change of magnitudes of magnetic moments (ΔM in μB) caused by a defect for the alloy with 5% at. Cr.  

Parameter Variation as a function of the variable 
in square brackets, denoted here as x 

Parameter Variation as a function of the variable 
in square brackets, denoted here as x 

Ωrel for vacancies (see Fig. 9a)  

Ωvac(Fe)
rel [Ndef

Cr ] y =

{
− 0.3185x − 3.968 for x⩽3
− 0.1766x − 4.3859 for x⩾3  

Ωvac(Cr)
rel [Ndef

Cr ] y =

{
0.2393x − 4.791 for x⩽3

− 0.2965x − 3.5152 for x⩾3  
Ωrel for vacancies in alloy with 5% at. Cr (see Figs. 9c and 12a)  

Ωvac(Fe)
rel [Ndef

Cr ]
y = 0.2662x − 4.5148  Ωvac(Fe)

rel [ΔM] y = 0.385x − 3.591, R2 = 0.157  

Ωvac(Cr)
rel [Ndef

Cr ]
y = 0.6806x − 5.4627  Ωvac(Cr)

rel [ΔM] y = 0.565x − 4.734, R2 = 0.813  

Ωrel for dumbbells (see Fig. 9b)  

ΩFe-Fe
rel

[
Ndef

Cr

]

y =

{
− 0.208x + 17.176 for x⩽3
− 0.018x + 16.486 for x⩾3  

ΩFe-Cr
rel

[
Ndef

Cr

]

y =

{
0.006x + 17.424 for x⩽3
− 0.113x + 17.595 for x⩾3   

ΩCr-Cr
rel

[
Ndef

Cr

]

y =

{
− 0.169x + 18.055 for x⩽3
− 0.002x + 17.331 for x⩾3   

Ωrel for dumbbells in alloy with 5% at. Cr (see Figs. 9d and 12b)  

ΩFe-Fe
rel

[
Ndef

Cr

]
y = − 0.3632x + 17.782  ΩFe-Fe(Fe)

rel [ΔM] y = 0.858x + 21.519, R2 = 0.293  

ΩFe-Cr(Fe)
rel [ΔM] y = 0.599x + 20.767, R2 = 0.396  

ΩFe-Cr
rel

[
Ndef

Cr

]
y = − 0.1552x + 18.204  ΩFe-Cr(Cr)

rel [ΔM] y = 0.446x + 19.184, R2 = 0.453  

ΩCr-Cr
rel

[
Ndef

Cr

]
y = 0.2287x + 17.265  ΩCr-Cr(Cr)

rel [ΔM] y = 0.403x + 19.425, R2 = 0.351   
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notably larger than those caused by vacancies, which means that the 
accumulation of dumbbell SIA defects in irradiated materials gives rise to 
the significantly larger internal stresses, and the resulting deformations, 
than the accumulation of vacancies. The relaxation volume of a vacancy 
depends sensitively on whether it occupies a Fe or a Cr lattice site. The 
observed correlation between the elastic relaxation volumes and magnetic 
moments of defects suggests that magnetism is a significant factor influ
encing elastic fields of defects in Fe-Cr alloys. These results also illustrate 
the significance of elastic relaxation effects in Fe-Cr alloys in the context of 
treatment of extended defects such as dislocation or grain boundaries, 
where elastic relaxation may affect segregation and diffusion of solute 
atoms in the alloy. 
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