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Solution reconstruction from limited number of measurements is useful in many areas of heat transfer applications.
Unlike the standard problems, such reconstruction problems are ill-posed; thus, the nonuniqueness of solution and in-
herent instability severely complicates the modeling process. Consequently, more conventional inverse analysis meth-
ods to reconstruct solutions remain computationally intractable and lacking sufficient flexibility, especially when deal-
ing with time-dependent problems. Aided by powerful graphical processing units (GPUs), machine learning (ML)
methods rose in popularity due to their flexibility and ability to efficiently process large amounts of data. In recent
years, the transformer-based ML models have gained recognition for their remarkable performance in natural language
processing (NLP) tasks as well as time-series analysis, overshadowing the performance of the ML models convention-
ally used for sequence processing, such as the long short-term memory (LSTM) models. These achievements make
transformer-based models seemingly ideal candidates for reconstructing full solutions from a few measurements. This
article compares the performance of these novel transformer-based models with a simple LSTM model in reconstructing
transient one-dimensional (1-D) and two-dimensional (2-D) thermal fields using sparse spatial measurements. Coun-
terintuitively, the simple LSTM model achieves higher or comparable prediction accuracy compared to the complex
transformer-based models while also exhibiting shorter or comparable training times, which may render transformer-
based models a suboptimal choice for reconstructing transient solutions. Instead, more traditional sequence processing
ML models, such as LSTM, might be preferred for this purpose.

KEY WORDS: machine learning, transformer, transient problem, solution reconstruction, conduction,
computational heat transfer, sparse measurements

1. INTRODUCTION

Transient inverse analysis is a research area in computational engineering which addresses solving various time-
dependent inverse problems, including solution reconstruction from a limited number of measurements. An inverse
problem significantly differs from a standard forward problem. Generally, transient forward problems are well-posed;
therefore, given the appropriate initial and boundary conditions, the numerical solution can be calculated with a
defined accuracy (Tarantola, 2004). Contrariwise, one type of transient inverse problem involves reconstructing the
full data inside a problem domain using the available sparse data (observations or measurements). Unlike the standard
forward problem, the inverse problem is ill-posed (Tarantola, 2004); consequently, the nonuniqueness of the solution
and inherent instability severely complicates the modeling process, oftentimes making it computationally intractable,
especially for challenging problems.

1940–2503/24/$35.00 © 2024 by Begell House, Inc. www.begellhouse.com 89



90 Bielajewa, Tindall, & Nithiarasu

NOMENCLA TURE

α thermaldiffusivity
αx thermal diffusivity inx direction
αy thermal diffusivity iny direction
[K] key matrix for self-attention

operation
[Q] query matrix for self-attention

operation
[Upred] predicted temperature matrix
[Utrue] true temperature matrix
[V ] value matrix for self-attention

operation
[W ]

′ scaled weight matrix for
self-attention operation

[W ] normalized weight matrix for
self-attention operation

[Wk] key weight matrix for self-
attention operation

[Wq] query weight matrix for self-
attention operation

[Wv] value weight matrix for self-
attention operation

[X] input matrix for self-attention
operation

[Y ] output matrix for self-attention
operation

{ki} key vector for self-attention
operation

{qi} query vector for self-attention
operation

{vi} value vector for self-attention
operation

{xi} input vector for self-attention
operation

{yi} output vector for self-attention
operation

b bias of the RNN cell
bf , bi, bc̃, bo biases of the modified LSTM cell
bi, bc̃, bo biases of the original LSTM cell
ct original LSTM cell state at timet

dmodel model dimension
ft forget gate value of the modified

LSTM cell at timet
h number of heads in multihead

(self) attention
ht hidden state (or recurrent

information) of the RNN, original
and modified LSTM cells at timet

it iteration number
l prediction window size (sequence

length)
lr learning rate
Nout number of output channels
Ntotal total number of temperature

data points
PEi,n prediction error at noden at time

stepi
t time
u temperature
upred i,n predictedtemperature at noden at

time stepi
upred k kth temperature value predicted by

the ML model
utrue mean truetemperature mean
utrue i,n truetemperature at noden at time

stepi
utrue k kth true temperature value out of

Ntotal temperature data points
Wh, Wx weights of the RNN cell
Wfh,Wfx,Wih,
Wix,Wc̃h,Wc̃x,
Woh,Wox

weights of the modified LSTM cell

Wih,Wix,Wc̃h,
Wc̃x,Woh,Wox

weights of the original LSTM cell

x spatial coordinate
xt input of the RNN, original and

modified LSTM cells at timet
y spatial coordinate
yt output of the RNN cell at timet

In order to combat the limitations of the more conventional approaches to reconstructing transient solutions, this
paper explores the use of two types of machine learning (ML) models to aid the process of obtaining solutions within
an acceptable margin of uncertainty. With the advent of powerful graphical processing units (GPUs), ML became
popular in many areas of science and engineering due to its flexibility and the ability to process vast amounts of data
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within a feasible timescale. In recent years, the transformer-based ML models have attained recognition by achieving
outstanding performance in various natural language processing (NLP) tasks, as evidenced by the well-known chat
generative pre-trained transformer (ChatGPT) chatbot (Qin et al., 2023), as well as numerous time-series analysis
problems (Lim and Zohren, 2021; Wen et al., 2023; Wu et al., 2021; Zhou et al., 2021, 2022). These successes in
the area of temporal sequence transformation make them seemingly ideally suited for transient inverse analysis. This
paper compares the performance of the novel complex transformer-based models with the performance of simple long
short-term memory (LSTM) model (Hochreiter and Schmidhuber, 1997), which is the ML model type traditionally
used for the sequential data processing (Yu et al., 2019), for the task of reconstructing the transient one-dimensional
(1-D) and two-dimensional (2-D) thermal fields.

The aim of the current work is to showcase the suitability of the increasingly popular transformer-based models
for reconstructing transient solutions, a problem encountered in many industrial applications, against more conven-
tional ML models such as LSTM.

2. BACKGROUND

This section provides the background information and adds context necessary for understanding the significance of
the study presented in this paper.

2.1 Transient Inverse Problem

The general definition of a transient forward problem can be given as determining the time-dependent effects of the
given causes using the applicable physical model of a system. In order to solve the transient forward problem and
obtain a full solution inside a domain using standard methods, the system parameters, the boundary conditions, and
the initial conditions of the system should be prescribed. Contrariwise, the transient inverse problems can be divided
into two types:

1. Determining the system parameters from the observed causes and effects. This is a classic definition of an
inverse problem (Tarantola, 2004).

2. Determining the causes from the observed time-dependent effects. In essence, it is a task of using the available
sparse data inside a domain (observations or measurements) to reconstruct the full data solutions.

Various methods have been employed over the years to deal with the inverse problems; however, historically,
more attention has been given to the inverse problems falling under the first type. The more traditional methods
include functional analytic regularization as well as the statistical regularization, with the most well-known example
being the Bayesian inversion (Arridge et al., 2019; Tarantola, 2004). A search-and-optimization-based approach is
another way to obtain solutions to transient problems. For instance, Bangian-Tabrizi and Jaluria (2018) solved the
inverse 2-D natural convection problem in steady state using a particle swarm optimization (PSO) algorithm (Zhang
et al., 2015), whereas Arridge et al. (2019) and Tamaddon-Jahromi et al. (2020) provide a more comprehensive review
of the various methods used to solve inverse problems.

This paper focuses on the transient inverse problem of the second type, the reconstruction of transient ther-
mal fields in particular. Perhaps the most common sources of the sparse data observed inside a domain are the data
obtained from physical experiments. Fusion energy technology research facilities, designed to test components’ suit-
ability for the extreme environment inside a fusion rector, regularly encounter transient inverse problems stemming
from the sparse experimental data. The HIVE (heating by induction to verify extremes) experimental facility (Han-
cock, 2018) is an illustrative example of that; inverse analysis has to be performed to reconstruct the full temperature
field using the temperature measurements recorded by a few thermocouples. Figure 1 shows an example of the HIVE
experimental setup.
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FIG. 1: An example of the arrangement of induction coil and sample inside HIVE (Hancock, 2018)

2.2 Long Short-Term Memory (LSTM)

Recurrent neural networks (RNNs) are extensively used for various sequential data processing tasks (Yu et al., 2019).
RRNs typically consist of a number of standard recurrent cells (Fig. 2), the mathematical representation of which can
be written as

ht = σ (Whht−1 +Wxxt + b)

yt = ht

(1)

wherext, yt, andht represent the input, output, and the hidden state (or recurrent information) of the cell at timet,
respectively,ht−1 is the hidden state at timet−1, whileWh andWx are the weights of the cell, andb is the bias. The
operatorσ is a sigmoid function.

However, an RNN comprised of the standard recurrent cells tends to experience difficulties during the training
process due to the vanishing or exploding gradients between inputs that are far apart in time (Bengio et al., 1994). In
order to address this problem of long-term dependencies, the LSTM cell, a type of RNN, was developed more than
two decades ago (Hochreiter and Schmidhuber, 1997) and successfully applied to a wide range of sequential tasks,
such as speech recognition (Hsu et al., 2016), trajectory prediction (Altché and de La Fortelle, 2017), and prediction
of the remaining useful life of lithium-ion batteries (Ren et al., 2021), to name a few. The original LSTM cell contains
only input and output gates (Fig. 3) and is represented by the following expressions:

FIG. 2: Standard recurrent cell for RNNs
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FIG. 3: Original LSTM cell (Hochreiter and Schmidhuber, 1997)

it = σ (Wihht−1 +Wixxt + bi)

c̃t = tanh (Wc̃hht−1 +Wc̃xxt + bc̃)

ct = ct−1 + it ⊙ c̃t

ot = σ (Wohht−1 +Woxxt + bo)

ht = ot ⊙ tanh (ct)

(2)

wherect andct−1 represent an LSTM cell state at timest andt− 1, respectively, whileWih, Wix, Wc̃h, Wc̃x, Woh,
andWox are the weights,bi, bc̃, andbo are the biases. The operator⊙ is the Hadamard product (also known as the
element-wise product). The input gate determines what information should be stored in the cell state, whereas the
output gate chooses what information should be extracted from the cell state for the output.

In the present work, an LSTM network comprising a modified version of the original LSTM cells is used. The
modification incorporates a forget gate, which decides what information should be eliminated from the cell state (Gers
et al., 2000). Figure 4 shows the modified LSTM cell, and the following equations represent the cell:

ft = σ (Wfhht−1 +Wfxxt + bf )

it = σ (Wihht−1 +Wixxt + bi)

c̃t = tanh (Wc̃hht−1 +Wc̃xxt + bc̃)

ct = ft ⊙ ct−1 + it ⊙ c̃t

ot = σ (Wohht−1 +Woxxt + bo)

ht = ot ⊙ tanh (ct)

(3)

whereft represents the value of the forget gate at a timet.
It should be noted that in this subsection,t is thetth time step in a sequence as it is the commonly used notation

for RNNs; however,t means the total sequence length in the subsequent subsections.

2.3 Transformers

The classic transformer model was created by the Google research team in 2017 and successfully applied to NLP, such
as natural language generation and machine translation (Vaswani et al., 2017). Nowadays, transformer is considered
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FIG. 4: Modified LSTM cell with a forget gate

to be the best model for the various NLP tasks (Wolf et al., 2020), with ChatGPT (Qin et al., 2023), an artificial
intelligence (AI) chatbot, being probably the most famous example of the impressive results transformers are capable
of achieving. However, NLP is essentially a sequence-to-sequence transformation task, since the model input and
output are almost always an ordered series of elements. This fact makes the transformer an appropriate model for
time-series prediction. Indeed, in recent years a number of transformer-based models were successfully applied to
various time-series tasks such as weather, electricity consumption, and exchange rate prediction. Wen et al. (2023)
reviewed the state-of-the-art transformer-based models used to analyze the time series; whereas Lim and Zohren
(2021) conducted a survey of deep learning (DL) methods used for time-series forecasting. The aforementioned
surveys might not be completely exhaustive; as transformers are gaining popularity, the new transformer-based models
and numerous variations of the already existing ones are created every year. Consequently, it is quite challenging to
keep track of all new developments, particularly due to the fact that these advances are oftentimes made in widely
different areas of research, such as weather prediction (Wu et al., 2022) and computer vision (Ivanovic and Pavone,
2019). This means that the process of comparing the new models between each other is complicated by the fact that
they have been tested on the research area–specific datasets; therefore it is not immediately obvious which model is
better suited for engineering applications.

The primary advantage of the transformer-based models lies in the absence of any recurrent connections, which
are present in RNNs (Hochreiter and Schmidhuber, 1997). The elimination of the recurrent connections should sig-
nificantly reduce the training times and make the model more parallelizable, which is beneficial for the model training
on GPUs. Furthermore, they were found to be excellent at detecting the long- and short-term sequence dependencies,
which should make the model more accurate (Vaswani et al., 2017).

Figure 5 shows a simplified transformer block. This paper will not provide a detailed explanation of how trans-
formers work. Readers are referred to Bloem (2019) and Vaswani et al. (2017) for a more detailed introduction to
self-attention and the classic transformer. Nevertheless, a brief overview of the classic self-attention is provided in the
next subsection.

2.4 Self-Attention

At the core of any transformer-based model is a self-attention operation or a variation thereof. Figure 6 shows the
classic self-attention operation used in the classic transformer (Vaswani et al., 2017). The input ist vectors of size
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FIG. 5: Simplified transformer block, which consists of multihead (self-)attention, layer normalization, feed-forward network, and
another layer normalization. The reader is referred to Bloem (2019) for a more detailed introduction to the classic transformer.

FIG. 6: Classic self-attention used in the classic transformer (Vaswani et al., 2017). The input ist vectors of sizeK, while the
generated output is a different set oft vectors of the same size. The input vectors together with the query, key, and value weight
matrices are used to calculate queries, keys, and values; a weight matrix is produced by multiplying queries and keys, and it is
subsequently scaled and normalized.

K, while the generated output is a different set oft vectors of the same size. The input vectors are used to calculate
queries, keys, and values using query, key, and value weight matrices:

{qi} = [Wq]{xi}
{ki} = [Wk]{xi}
{vi} = [Wv]{xi}

(4)
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where{qi}, {ki}, {vi}, and{xi} areith query, key, value, and input vectors, respectively;[Wq], [Wk], and[Wv]
are the query, key, and value weight matrices, respectively. All query, key, and value vectors can be concatenated to
obtain query, key, and value matrices, which are[Q], [K], and[V ], respectively. The scaled weight matrix[W ]

′ is
calculated using the following equation:

[W ]
′
=

[Q] [K]
T

√
K

(5)

Thescaled weight matrix is normalized using a softmax function (Goodfellow et al., 2016):

[W ] = softmax
(
[W ]

′) (6)

Finally, the normalized weight matrix[W ] is then multiplied by the values vector to finally obtain the output matrix
[Y ], consisting of output vectors{yi}:

[Y ] = [W ] [V ] (7)

The query, key, and value weight matrices are trainable parameters. The transformer-based models tend to employ
several self-attention operations in parallel (Fig. 7), which allows for a more efficient extraction of the various features
in the given time series. The self-attention operation comprises a number of matrix multiplications, which is beneficial
as they can be performed using a highly optimized and efficient matrix multiplication code.

3. METHODOLOGY

3.1 Selected Models

In this paper, LSTM model and four transformer-based models are applied to the 1-D and 2-D heat conduction
problems. Table 1 provides a summary of these models; the classic transformer will hereafter be referred to as the
transformer. The self-attention operation used in the transformer (Vaswani et al., 2017) is described in Section 2.4.
Informer (Zhou et al., 2021), Autoformer (Wu et al., 2021), and FEDformer (Zhou et al., 2022) were developed with
an aim of increasing the transformer’s efficiency by reducing its complexity and adapting the architecture specifically
to time-series processing (Table 1).

FIG. 7: Classic multi-head (self-)attention operation. Several self-attention operations are employed in parallel, which allows
for a more efficient extraction of the various features in the given time series. The output vectors with reduced dimensions are
concatenated, and then linear projection is applied to them to obtain the output vectors.
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TABLE 1: The summary of the models considered in this paper

Model type LSTM Transformer Informer Autoformer FEDformer
Original
purpose

Sequentialdata Linguistic data Temporal data Temporal data Temporal data

Self-attention
type

N/A
Classic

self-attention
Sparse

self-attention
Auto-

correlation
DiscreteFourier
transform (DFT)

3.2 Model Structure

Table 2 presents the model hyperparameters used for the transformer-based models in this paper. Three layers, two
encoder layers and one decoder layer, are used; three values of the input and output time-series length (sequence
length hyperparameter) are considered: 25, 50, and 100. For greater clarity, the sequence lengthl will be referred to
as the prediction window size, with the prediction window being defined as the time interval for which a prediction
is made by the model. The hyperparameters Nos. 4–9 are assigned the values used in literature (Vaswani et al., 2017;
Wu et al., 2021; Zhou et al., 2021, 2022).

Table 3 presents the model hyperparameters used for the LSTM model in this paper. Only one layer is used; the
model dimension is fixed at 512 to match the transformer-based models. Three values of the prediction window size
l are considered: 25, 50, and 100. Furthermore, the feed-forward layer is added after one LSTM layer in order to
reshape an output and directly predict the temperature over multiple time steps in one inference step.

3.3 Training

All transformer-based models are trained using an Adam optimizer (Kingma and Ba, 2017). Additionally, the warm-
up stage is applied to the learning rate as it was shown to improve the training process of the transformer-based
architectures (Xiong et al., 2020). The learning rate during the warm-up stage is given by

TABLE 2: Hyperparameters selected for all transformer-based models

No. Hyperparameter Value(s)
1. Encoderlayers 2

2. Decoderlayers 1

3. Prediction window size (sequence length)l 25, 50, and 100

4. Modeldimensiondmodel 512

5. Multi-head(self-)attention headsh 8

6. Feed-forward network dimension 2048

7. Dropoutrate 0.05

8. Activation function GELU

9. Attentionfactor 3

TABLE 3: Hyperparameters selected for LSTM models

No. Hyperparameter Value(s)
1. LSTM layers 1

2. Prediction window size (sequence length)l 25, 50, and 100

3. Modeldimensiondmodel 512

4. Dropoutrate 0.05
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lr(it) =
it

Twarmup
lrmax for it ≤ Twarmup (8)

wherelr is the learning rate, andit is an iteration number. The learning rate after the warm-up stage is given by

lr(it) =
lr(it− 1)

√
Twarmup√

it
for it > Twarmup (9)

Transformer-based models are trained usinglrmax andTwarmup values provided in Table 4 for 500 epochs with
the batch size of 32; then the best option is selected for each model type listed in Table 1 using normalized root mean
square error (NRMSE) as a metric:

NRMSE =
RMSE

utrue mean
and RMSE =

√∑Ntotal

k=1 (utrue k − upred k)2

Ntotal
(10)

whereNtotal is a total number of temperature data points,utrue mean is the true temperature mean,utrue k is thekth
true temperature value out ofNtotal temperature data points, whileupred k is thekth temperature value predicted by
the ML model. Further details are provided in Section 4.

The LSTM model is trained using just an Adam optimizer (Kingma and Ba, 2017) for 500 epochs. Finally,
NVIDIA A100 40GB GPU is used for training of all ML models considered in this paper. Figure 8 shows the conver-
gence during the training, with the best options shown for Transformer, Informer, Autoformer, and FEDformer.

All models are initialized with a fixed random seed to ensure the repeatability of the results. This approach
guarantees the consistency of the initial weights and any stochastic processes within the training algorithm across
different runs. Thus, the potential variability in performance due to random initialization is mitigated, allowing for a
balanced comparison of the model architectures.

4. RESULTS AND DISCUSSION

4.1 One-Dimensional Transient Heat Conduction

The linear 1-D transient heat conduction equation is given by the following expression:

∂u(x, t)

∂t
= α

∂2u(x, t)

∂x2
(11)

whereu is temperature,α is thermal diffusivity,t is time, andx is a space coordinate.

TABLE 4: Learning rates used to train the models for 500 epochs; the best option
is selected for each model type listed in Table 1 using normalized root mean square
error (NRMSE) as a metric [Eq. (10)]

Option No. Constantlr or with warm-up lrmax Twarmup

1. Constantlr = 1e−4 N/A N/A

2. With warm-up 1e−3 4000

3. With warm-up 1e−3 2000

4. With warm-up 1e−3 500

5. With warm-up 5e−4 4000

6. With warm-up 5e−4 2000

7. With warm-up 5e−4 500
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FIG. 8: Model convergence during the training process for 1-D and 2-D transient heat conduction cases discussed in Section 4

For this caseα is set to be equal to 8.6e−4 m2/s, while the boundary and initial conditions are given by (Fig. 9):

Boundary conditions:u(x = xA, t) = 255.372 K and
∂u(x = xB , t)

∂x
= 0

Initial conditions:u(x, t = 0) = 272.03 K
(12)

The ground truth (GT) solution is obtained using the finite difference method (FDM) implemented in the PyPDE
Python package (Zwicker, 2020). Figure 9 shows the grid used to generate the GT; Fig. 10 shows the GT used for
model testing. The simulation is run for 1000 s, and the temperature is recorded every second; the first 700 s of the
obtained data is used for ML training, the next 100 s for ML validation, and finally the last 200 s is used for ML
testing. The temperature values at the six input channels (Fig. 9) are given to the ML model, whereas the temperature
values at the 194 output channels are generated by the ML model (Fig. 11). The locations of the six input channels
are randomly selected.

For the training, validation, and testing, the prediction window is moved by one time step forward, which is
equal to one second in this case, to generate one input–output sample. For example, assuming that the prediction
window sizel is equal to 50, the first prediction window spans from 1 s to 50 s of 200 s used for ML testing, the
second one spans from 2 s to 51 s, the third from 3 s to 52 s, etc. Consequently, for testing whenl = 50, there are
200− 50+ 1 = 151 prediction windows for which the predicted temperature matrix[Upred] and true temperature
matrix [Utrue] are generated.[Upred] and[Utrue] are matrices of dimension((50 · 151)×Nout), whereNout is
the number of output channels, which is equal to 194 for this case. Therefore, for Eq. (10)Ntotal can be calculated as

Ntotal = (50 · 151)·Nout = (50 · 151)· 194 (13)

For other values of the prediction window sizel andNout, the calculations are performed in the same manner.

FIG. 9: The 1-D grid used to generate the GT for 1-D transient heat conduction. The input and output channels of the mesh
nodes are highlighted, with the six green crosses being the input channels and the 194 red dots being the output channels. The
temperature values at the six input channels are given to the ML model, whereas the temperature values at the 194 output channels
are generated by the ML model at every time step, which is equal to 1s in this case. The locations of the six input channels are
randomly selected.
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FIG. 10: The GT for 1-D transient heat conduction problem generated using the FDM implemented in the PyPDE Python package
(Zwicker, 2020). This region is used for the model testing. The temperature values at the six input channels (green crosses) are
given to the ML model, whereas the temperature values at the 194 output channels (not shown on this figure, please refer to Fig. 9)
are generated by the ML model. The locations of the six input channels (green crosses) are randomly selected.

FIG. 11: Outline of the ML model used for the transient thermal field reconstruction. The temperature values at the six input
channels are given to the ML model, whereas the temperature values at the 194 output channels are generated by the ML model.
The locations of the six input channels are randomly selected.

Table 5 provides testing NRMSEs calculated using Eq. (10) with Eq. (13), as well as the training times. In order
to visualize the error distribution in space and time, four consecutive prediction windows (out of 151 prediction
windows) are selected for the prediction window sizel = 50; these are four prediction windows, spanning from 1 s to
50 s of 200 s used for ML testing, from 51 s to 100 s, from 101 s to 150 s, and finally from 151 s to 200 s. Figure 12
(top row) shows the prediction error distribution defined using Eq. (14), whereas the bottom row of this figure shows
the prediction errors averaged at each time step using Eq. (15).

PEi,n =
|upred i,n − utrue i,n|

utrue i,n
(14)

PEi =

∑Nout

n=1 PEi,n

Nout
(15)

wherePEi,n is a prediction error at noden at time stepi, PEi is a prediction error averaged at time stepi; upred i,n

andutrue i,n arethe predicted and true temperatures, respectively, at noden at time stepi.

Table 5 shows that for all three values ofl, LSTM model achieves the lowest training times, whereas FEDformer
model consistently has the highest training times. Forl = 25 andl = 50, LSTM model attains the lowest NRMSE;
and, indeed, this correlates with the prediction error distribution on Fig. 12. Forl = 100, transformer displayed the
lowest NRMSE; however, the NRMSE of LSTM is only 0.004% higher. Finally, Autoformer model obtained the
NRMSE more than two times higher than the LSTM model.
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TABLE 5: Model testing errors and training times for the 1-D heat conduction calculated using
Eq. (10). The best results are highlighted in bold, and the worst results are highlighted with an
underline

Model type LSTM Transformer Informer Autoformer FEDformer
Predictionwindow sizel = 25

NRMSE[Eq. (10)] [%] 0.188 0.189 0.192 0.497 0.362

Training time [min] 35.9 39.1 40.2 40.9 46.4

Predictionwindow sizel = 50

NRMSE[Eq. (10)] [%] 0.189 0.190 0.190 0.493 0.365

Training time [min] 36.0 38.5 39.8 42.4 52.3

Predictionwindow sizel = 100

NRMSE[Eq. (10)] [%] 0.196 0.192 0.195 0.468 0.371

Training time [min] 36.3 38.5 40.9 43.8 65.2

FIG. 12:Prediction error distribution calculated using Eq. (14) (top row) and prediction errors averaged at each time step calculated
using Eq. (15) (bottom row) for the 1-D heat conduction for five models with the prediction window sizel = 50. For this error
visualization, four prediction windows located consecutively to one another are selected. The six green crosses are the input
channels.

4.2 Two-Dimensional Transient Heat Conduction

The linear 2D transient heat conduction equation is given by the following expression:

∂u(x, y, t)

∂t
= αx

∂2u(x, y, t)

∂x2
+ αy

∂2u(x, y, t)

∂y2
(16)

wherex andy are the spatial coordinates, andαx andαy are the thermal diffusivities inx andy directions.
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For this caseαx is set to be equal to 13.9e−4 m2/s, whileαy is set to be equal to 3.3e−4 m2/s. The boundary and
initial conditions are given by Eq. (17), and Fig. 13 shows the location of the domain boundaries.

Boundary Conditions:

1. u(x, y, t) = 255.372 K for x, y ∈ [AB] ∪ [BC]

2. ∇u(x, y, t) = 0 for x, y ∈ [CD] ∪ [DA]

Initial Conditions:u(x, y, t = 0) = 272.039 K

(17)

The GT solution is obtained using the finite element method (FEM) implemented in CodeAster open-source
software (́Electricit́e de France (EDF), 1989–2023). Figure 13 shows the mesh used to generate the GT; Fig. 14
shows the GT used for model testing. The simulation is run for 1000 s, and the temperature is recorded every second;
the first 700 s of the obtained data is used for ML training, the next 100 s for ML validation, and finally the last 200 s
is used for ML testing. The temperature values at the twelve input channels are given to the ML model, whereas the
temperature values at the 1142 output channels are generated by the ML model (Figs. 11 and 13). The locations of
the twelve input channels are randomly selected. Similar to 1-D case (Section 4.1), for the training, validation, and
testing, the prediction window is moved by one time step forward, which is one second in this case, to generate one
input–output sample; the procedures for calculating the total number of prediction windows and NRMSEs are exactly
the same as in the 1-D case.

Table 6 provides testing NRMSEs calculated using Eq. (10) with Eq. (13), as well as the training times. The
prediction error distributions for the prediction window sizel = 50 are visualized in the similar way to 1-D case
(Section 4.1). Figure 15 (top row) shows the time-averaged prediction error distribution defined using Eq. (18),
whereas the bottom row of this figure shows the prediction errors averaged at each time step using Eq. (15) (please
note that the different scales are used for these charts in comparison with Fig. 12).

PEn =

∑200
i=1 PEi,n

200
(18)

FIG. 13: The 2-D mesh used to generate the GT for 2-D transient heat conduction. The input and output channels of the mesh
nodes are highlighted, with the twelve green crosses being the input channels and the 1142 red dots being the output channels.
The temperature values at the twelve input channels are given to the ML model, whereas the temperature values at the 1142 output
channels are generated by the ML model. The locations of the twelve input channels are randomly selected.
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FIG. 14: The GT for 2-D transient heat conduction problem generated using the FEM implemented in CodeAsteropen-source
software EDF. It is used for model testing. The temperature values at the twelve input channels (green crosses) are given to the ML
model, whereas the temperature values at the 1142 output channels (not shown in this figure, please refer to Fig. 13) are generated
by the ML model. The locations of the twelve input channels (green crosses) are randomly selected.

TABLE 6: Model testing errors and training times for the 2-D heat conduction calculated using Eq. (10). The
best results are highlighted in bold, and the worst results are highlighted with an underline

Model type LSTM Transformer Informer Autoformer FEDformer
Predictionwindow sizel = 25

NRMSE[Eq. (10)] [%] 2.197 2.208 2.218 2.543 2.015
Training time [min] 37.9 38.3 40.9 42.7 47.5

Predictionwindow sizel = 50

NRMSE[Eq. (10)] [%] 2.170 2.191 2.193 2.415 2.015
Training time [min] 39.7 39.6 41.5 44.2 67.0

Predictionwindow sizel = 100

NRMSE[Eq. (10)][%] 2.127 2.155 2.157 2.430 1.979
Training time [min] 42.0 42.0 43.6 48.1 66.9

wherePEn is a prediction error averaged at noden. Figure 16 shows the prediction error distribution variation with
time; the four selected time instances correspond to the middle of each prediction window in Fig. 15. This figure
highlights the areas where the prediction errors tend to increase with time.

Table 6 shows that for all three values ofl, FEDformer displayed the lowest NRMSEs and the highest training
times. However, the NRMSEs achieved by LSTM model is only 0.1%–0.2% higher than FEDformer, while LSTM
model’s training is 20%–41% faster than FEDformer’s. Moreover, one-layer LSTM architecture is significantly less
complex than FEDformer structure, meaning that it is easier to troubleshoot it.

Surprisingly, the overall prediction error distribution patterns display similar features for all models (Figs. 15
and 16). For the transformer-based models, this can be potentially explained by the fact that all these models are
structured around self-attention operation of some description. However, the fact that the simple LSTM model, the
structure of which is unrelated to the self-attention operation, demonstrates almost identical error patterns is rather
counterintuitive and may potentially challenge the confidence in transformer-based models.

5. CONCLUSIONS

In conclusion, the popular transformer-based ML models are compared with the simple one-layer LSTM models for
transient thermal field reconstruction problems. Generally, there are three main reasons why it might be advantageous
to use the transformer-based models over RRNs, such as LSTM, for sequence processing (Vaswani et al., 2017):
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FIG. 15: Time-averaged prediction error distribution calculated using Eq. (18) (top row) and prediction errors averaged at each
time step calculated using Eq. (15) (bottom row) for the 2D heat conduction for five models with the prediction window size
l = 50. For this error visualization four prediction windows located consecutively to one another are selected. The twelve green
crosses are the input channels.

1. Self-attention operation is more effective at capturing the long-range dependencies in a sequence; thus the
transformer-based models should be more accurate.

2. They are more parallelizable as there are no recurrent connections; consequently, the training time should be
shorter.

3. Due to the attention maps (Appendix A), they are more interpretable, and thus suffer less from the “black
box” syndrome (Rudin, 2019), which ML models tend to be afflicted with; this should facilitate better trust in
the predictions.

However, the present work demonstrates that none of the aforementioned reasons hold true for the considered
cases of thermal problems concerned with solution reconstruction by providing the following arguments:

1. Transformer-based models exhibited lower or comparable prediction accuracy relative to the simple LSTM
model.

2. The training times of the transformer-based models are higher or comparable to the simple LSTM model.

3. The attention maps (Appendix A) may provide interpretability improvement for the language-related tasks,
such as NLP (Vaswani et al., 2017) and computer vision (Kolesnikov et al., 2021), since the significance of the
attention weights in attention maps can be easily intuitively deducted from the relationship between words in
a sentence and from the parts of an image the attention operation “pays attention” to, respectively. However,
this is not so easily done when dealing with just temporal data, as the relationship between values at different
time steps cannot be interpreted in such an intuitive fashion, especially for the problems intrinsically based
on a set of differential equations. Moreover, the LSTM layer weights can be visualized in a similar manner
(Appendix B) and have the same rather low level of interpretability for the problems considered in this paper.
Consequently, the interpretability advantage is negated.
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FIG. 16: Prediction error distribution dependence on time for the 2-D heat conduction for five models with the prediction window
sizel = 50. The four selected time instances correspond to the middle of each prediction window in Fig. 15. The prediction errors
are calculated using Eq. (14) for fixed time instancesi.

Overall, the results of this study suggest that there is no significant benefit to using complex transformer-based
ML models over the conventional simpler ML models, such as classic LSTM network, for solving transient thermal
field reconstruction problems.

Regarding the application of these models to the practical problems, such as the one outlined in Section 2.1, the
appropriate number of the reliable forward simulations would need to be available in order to generate the training
data. Or, alternatively, the abundance of experimental data would need to be collected, which is rarely possible.
Additionally, the computational effort of the training process and the memory usage increase with the length of the
input time sequence (Table 7); consequently, for more complex problems, significantly more time should be allocated
for the training and VRAM (GPU memory) more carefully managed with batching.
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TABLE 7: Computational complexity and memory usage of the models considered in this paper

Model type LSTM Transformer Informer Autoformer FEDformer
Computationcomplexity (training) O(L) O(L2) O(L logL) O(L logL) O(L)

Memoryusage (training) O(L) O(L2) O(L logL) O(L logL) O(L)

L representsthe length of the input time sequence.
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APPENDIX A. ATTENTION MAPS FOR TRANSFORMER-BASED MODELS

In general, self-attention operation, or a variation thereof, allows the model to attend to different parts of the input
vector sequence in order to generate an output vector sequence, meaning that it concentrates more on the selected
input vectors, which it deems to be more relevant, while generating a certain output vector (Vaswani et al., 2017). As
it is mentioned in Section 2.4, the queries and keys produced using query and key weight matrices are combined to
produce a weight matrix, which can be called an attention matrix; each element of this attention matrix, which can be
referred to as an attention score, represents the contribution it makes towards a certain output vector.

In order to illustrate this, the NLP example shown in Fig. A1 can be considered (Bloem, 2019). The key repre-
senting the qualities the book contains and the query, which represent the reader preferences, are matched using a dot
product to obtain the attention score. This score demonstrates how well the book matches the reader’s preferences.
Generally, the attention score indicates the degree of relevance between the key and the query; thus, it shows to what
degree a certain output vector out of the output vector sequence is influenced by a certain input vector out of the input
vector sequence. In the case of the transient thermal field reconstruction problems considered in this paper, each input
vectori contains the information provided by the input channels atith time step, while each output vectori contains
the information provided by the output channels atith time step (Figs. 9 and 13). For the classic transformer, the
attention score indicating the degree to which the output vectori is influenced by the input vectorj can be calculated
using a dot product between the queryi and the keyj [Eq. (A.1)].

Attention score(i, j) = {qi}T · {kj} i, j = 1,2, ..., t (A.1)
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FIG. A1: The book example illustrating the self-attention operation. The key representing the qualities the book contains and the
query, which represent the reader preferences, are matched using a dot product to obtain the attention score. This score demon-
strates how well the book matches the reader’s preferences. Generally, the attention score indicates the degree of relevance between
the key and the query; thus, it shows to what degree a certain output vector out of the output vector sequence is influenced by a
certain input vector out of the input vector sequence. In the case of the transient thermal field reconstruction problems considered
in this paper, each input vectori contains the information provided by the input channels atith time step, while each output vector
i contains the information provided by the output channels atith time step (Figs. 9 and 13).

where{qi} is the query vectori corresponding to the output vectori, {kj} is the key vectorj corresponding to the
input vectorj, andt is a sequence length (Table 2).

The attention matrix containing the attention scores can be visualized as a map by projecting it on an image
where each cell(i, j) corresponds to the attention score computed for query vectori and key vectorj. Figure A2
shows an example of an attention score(i, j) located on the attention map image.

Transformer-based models considered in this paper employ a multi-head attention operation (Fig. 7) where sev-
eral self-attention operations are performed in parallel (Section 2.4). Consequently, each multi-head attention op-
eration generates a number of attention maps equal to the number of self-attention heads the multi-head attention
operation is comprised of. Eight attention heads are used in this paper (Table 2); therefore, eight attention maps can
be generated per one multi-head attention operation. It is important to note that these attention scores should not be
used to compare the different heads between each other; they should only be used to compare the attention scores

FIG. A2: Attention score example. The attention matrix containing the attention scores can be visualized as a map by projecting
it on an image where each cell(i, j) corresponds to the attention score computed for query vectori and key vectorj. This figure
shows an example of an attention score(i, j) located on the attention map image.
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from one attention map between each other. Furthermore, the attention matrix size for Transformer (Vaswani et al.,
2017) and Informer (Zhou et al., 2021) is prediction window sizel by prediction window sizel (Table 2); however,
the attention matrix size for Autoformer (Wu et al., 2021) and FEDformer (Zhou et al., 2022) is sequence length by
dmodel/h (Table 2). This is because the keys are projected in the sequence length direction prior to the calculation of
attention scores.

Figures A3 and A4 show four out of eight attention maps for multi-head attention in the first layer of each model
for l = 50. The attention scores are scaled between 0 and 1 with the scaler fitting done separately for each attention
map.

FIG. A3: Attention maps for Encoder layer No. 1 for 1-D heat conduction problem for four models considered in this paper. The
prediction window sizel is equal to 50. This figure shows four out of eight attention maps for multi-head attention in the first layer
of each model. The attention scores are scaled between 0 and 1, with the scaler fitting done separately for each attention map.
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FIG. A4: Attention maps for Encoder layer No. 1 for 2-D heat conduction problem for four models considered in this paper. The
prediction window sizel is equal to 50. This figure shows four out of eight attention maps for multi-head attention in the first layer
of each model. The attention scores are scaled between 0 and 1, with the scaler fitting done separately for each attention map.

Some distinctive characteristics can be observed in these attention maps. Transformer and Informer attention
maps are diverse, which means that different attention heads tend to attend to different parts of the input vector
sequence. This is beneficial for the model’s performance because it signifies that the attention heads are extracting
different features from the input data. Transformer’s attention maps are smoother than Informer’s ones, which can
be attributed to the fact that Informer utilizes a sparse version of Transformer’s self-attention operation. On the other
hand, in spite of some differences Autoformer’s attention maps look vastly similar, which is undesirable since this
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means that the attention heads are attempting to extract the same features from the input data. The attention map
similarity might be the reason why Autoformer’s performance is worse than the performance displayed by other
models.

Overall, the ability to produce attention maps allows the transformer-based model to be more interpretable than
other ML models, as they show how the model focuses on the various sections of the input vector sequence. By
visualizing the the attention scores in this manner, it is possible to see which parts of the input sequence the model
“pays attention” to at each time step.

APPENDIX B. WEIGHT VISUALIZATIONS FOR LSTM MODELS

The purpose of this appendix is to illustrate that the weight visualizations similar to the attention maps can be easily
constructed for the one-layer LSTM model. These LSTM weight visualizations have the same low level of intuitive
interpretability as for the transformer-based models, specifically for the transient thermal field reconstruction prob-
lems considered in this paper. Figure B1 shows the values ofht for each time stepl [Eq. (3)] for LSTM models with
the prediction window size equal to 50; these values are scaled between 0 and 1, with the scaler fitting done separately
for each visualization. For consistency these values are referred to as attention scores in Fig. B1.

FIG. B1: Weight visualisations for 1-D and 2-D heat conduction problems for LSTM models with the prediction window size
equal to 50. This figure shows the values ofht for each time stepl [Eq. (3)]. The attention scores are scaled between 0 and 1, with
the scaler fitting done separately for each weight visualization.
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