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1.  Introduction

In fission and fusion nuclear installations, structural materials 
are exposed to non-homogeneous ion and or neutron fluxes. 
One challenging task pursued for more than 60 years [1] is 

the characterization of the primary damage, i.e. the defects of  
the microstructure created by the displacement cascades 
of energy varying from a few tens of eV to MeV in metals 
including Fe, Zr, W, Be and alloys. It is established that the 
number, the type and the size distribution of the defects  
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Abstract
The impacts of ions and neutrons in metals cause cascades of atomic collisions that expand 
and shrink, leaving microstructure defect debris, i.e. interstitial or vacancy clusters or loops of 
different sizes. In De Backer et al (2016 Europhys. Lett. 115 26001), we described a method 
to detect the first morphological transition, i.e. the cascade fragmentation in subcascades, 
and a model of primary damage combining the binary collision approximation and molecular 
dynamics (MD). In this paper including W, Fe, Be, Zr and 20 other metals, we demonstrate 
that the fragmentation energy increases with the atomic number and decreases with the 
atomic density following a unique power law. Above the fragmentation energy, the cascade 
morphology can be characterized by the cross pair correlation functions of the multitype 
point pattern formed by the subcascades. We derive the numbers of pairs of subcascades 
and observed that they follow broken power laws. The energy where the power law breaks 
indicates the second morphological transition when cascades are formed by branches 
decorated by chaplets of small subcascades. The subcascade interaction is introduced in our 
model of primary damage by adding pairwise terms. Using statistics obtained on hundreds 
of MD cascades in Fe, we demonstrate that the interaction of subcascades increases the 
proportion of large clusters in the damage created by high energy cascades. Finally, we predict 
the primary damage of 500 keV Fe ion in Fe and obtain cluster size distributions when large 
statistics of MD cascades are not feasible.
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depend on the material and the particle energy [2]. The  
primary damage is the source term of long time evolution 
model and the large defects are crucial as they can be immo-
bile and stable [3]. In the frame of the multiscale modelling, 
numerous approaches are pursued such as molecular dynamics 
(MD) and the binary collision approximation (BCA). The 
rationalization of the results is essential to the development 
of large scale models suitable to the study of the spatial in-
homogeneity and different neutron spectrum in the nuclear 
installations [4, 5].

The works reported in [6–11] have showed that cascades 
can split in subcascades at high energy and that the fragmenta-
tion threshold energy depends on the materials. These studies 
covered a large range of atomic numbers, atomic densities, 
displacement threshold energies and several crystal struc-
tures. Furthermore, they raised the question of the overlap 
or the vicinity of subcascades and their possible interaction. 
Interestingly, the formation of large clusters at interfaces 
between subcascades has been observed in MD cascades in Fe 
and explained by shock-wave interaction in [12, 13]. The frag-
mentation of high energy cascades in alloys has been studied 
using MD thanks to a new approach to reduce the computa-
tional time, implemented in the cell molecular dynamics for 
Cascade code [14, 15]. In [16], the same authors analysed how 
large clusters influence the output of large scale models like 
the rate equation cluster dynamics.

In [11, 17], we demonstrated the fractal nature of cascades 
in the frame of the BCA which naturally introduces power 
laws in the total number of defects. In [18, 19], we showed 
the existence of a power law in the frequency of defect clus-
ters as a function of their size in W and in Fe. Recently [20], 
we proposed a new method of decomposition of cascades in 
subcascades and a model of defect cluster production of pri-
mary knocked-on atoms (PKA) of any energy. The frequency 
of defect clusters in individual subcascades is multiplied by 
the frequency of these subcascades in the large fragmented 
cascades. The interest of our approach is that the subcascade 
frequency can be efficiently calculated using the BCA and 
that full MD cascade calculations are only necessary up to the 
fragmentation energy. In [21] we explains the deviation from 
the power law of the number of loops per ion as a function of 
the loop size, observed in experiments of 150 keV self irradia-
tion of W at cryogenic temperature [22].

In this work, we extend our cascade decomposition study 
to other metals and to MD cascades. Afterwards, cascades are 
seen as random multitype point patterns formed by the sub-
cascades, the type of which is given by their volume. Using 
the cross pair correlation functions, we derive the number of 
interacting subcascades that we include in our model of pri-
mary damage. Our model is adjusted on MD cascades and 
extrapolated to high energy cascades that are hardly acces-
sible to MD.

In the first section we describe the computational methods 
of simulation of the BCA and MD cascades. I the second sec-
tion we analyse the subcascade decomposition of BCA and 
MD cascades and we discuss the choice of the two parameters, 
i.e. the cell size and the energy criterion Ec. In the third sec-
tion, using BCA cascades in various metals, we demonstrate 

that with the strictest criterion Ec = 0, the fragmentation 
energy follows a simple power law of the atomic number and 
the atomic density. Then we study the case Ec �= 0, proposing 
a simple formula based on thermodynamic properties and 
show that it reduces the fragmentation energy of high melting 
point metals, particularly high Z ones like W where cascades 
are very compact. In the fourth section we describe the mor-
phological evolution of cascades taken as multitype point pat-
terns. Each subcascade is one point and its type is its volume. 
The cascade morphology is captured using the cross pair cor-
relation functions. The pairs are formed by subcascades of 
different volume. Pairs at close distance from each other are 
interesting as they are likely to interact. We calculate the num-
bers of interacting subcascades of different size as a function 
of the PKA energy and show that they follow broken power 
laws. This reveals the second morphological transition from 
fragmentation to branching. In the last section, we develop 
our model of primary damage for high energy cascades. Our 
model sums the defect production in individual subcascades 
and the pairwise terms of the subcascade interactions. The 
model is adjusted on full MD cascades in Fe from 1 keV to 
120 keV. We demonstrate that our model can predict the crea-
tion of large SIA clusters due to the subcascade interaction. 
We finally apply our model to the prediction of the intersti-
tial cluster distribution in the primary damage of high energy 
cascades, like 500 keV Fe self implantation performed in our 
TriCEM project, which is not feasible using full MD so far.

2.  Computational methods of BCA and MD 
cascades

BCA cascades are calculated using SDTrimSP [23], the 
slowing down of the projectile is modelled as described in 
[24] with no consideration of crystal structure by a series of 
random collisions and a continuous interaction with electrons. 
No free surface is included. The Ziegler–Biersack–Littmark 
(ZBL) potential [25, 26] is used along with the electronic 
stopping power description of Oen and Robinson [27]. Notice 
that in [28, 29], the authors demonstrated that the electronic 
stopping power and the electron-phonon coupling in high 
energy cascades have little effect on the damage at long times 
in Fe but reduce the damage in W. Our model cannot take 
into account these mechanisms. The main material parameters 
are the atomic number and atomic density. We observed that 
the threshold displacement energy and other parameters of 
the BCA model are not significant in this study because they 
modify the cascade features at smaller space scales than the 
cubic cell size used in our decomposition method.

For this work, we used MD cascades in Fe described in 
[30] using DYMOKA [31] with the embedded atom model 
potential of Ackland et al [32] hardened with ZBL [25]. We 
characterized the validity of this potential to model atomic 
collisions in the range of the threshold displacement energy 
by comparison with ab initio MD in [33]. Here, classical MD 
simulations have been performed within the NVE ensemble 
with periodic boundary conditions with up to 5 488 000 atoms 
(box of 140 × 140 × 140 cubic cells). After a thermalisation 
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stage of 3 ps at 100 K, the kinetic energy is given to the PKA. 
The time step is adjusted during the simulation which lasts  
20 ps and no electronic loss is considered. Large statistics 
have been obtained with several hundreds of cascades per 
energy up to 120 keV (800–1000 cascades in most of the 
cases). Half of the cascades were initiated with a 〈135〉 PKA 
direction and half with a random direction. No statistical dif-
ference is observed between both sets. To detect vacancies and 
SIA defects at the end of the simulation, lattice site analysis 
is performed. A cluster is defined by all entities (vacancy and 
SIA) within a critical distance, here equal to the lattice param
eter, e.g. second nearest neighbour distance, and the net defect 
sum determines the cluster size which is used for the statistics 
of defect clusters.

3.  Cascade fragmentation

In our decomposition method, the energy losses at the end of 
the BCA cascade are projected and averaged on a cubic tes-
sellation of space. The energy density exhibits fluctuations 
with hot cores separated by low energy interfaces. A criterion 
of minimum energy density, Ec, distinguishes what is part of 
the cascade or not and indicates the interfaces between sub-
cascades. The level of details of the cascade morphology is 
adjusted by the size of the cubic cells of the space tessellation 
and the energy criterion. The subcascades are determined by 
coalescence of neighbouring cells. The presence of an interface 
between subcascades means that it exists a contiguous volume 
with a thickness of at least one cell where the energy is smaller 
than Ec. As opposed to other methods based on the tracking 
of high energy knock-on atoms, we developed an effective 
decomposition method, i.e. no subcascade overlap is possible. 
However we will study their vicinity. Figure 1 shows a pic-
ture of one 100 keV BCA Fe cascade analysed with different 
cell sizes and the average number of subcascades as a func-
tion of the cell size for different PKA energies (using Ec = 44 
eV nm−3). One sees a plateau for cell sizes of 1–2.5 nm. This 
suggests an optimum of the cell size around 1 nm that will be 
used for the results of the next sections. Small cells lead to a 
description of the cascade at the level of the collisions. As the 
energy is averaged on the cell volume, large cells exclude cas-
cade regions of low energy density. One sees that our decom-
position method is a coarse-grained approach and the cell size 
varies the granularity level of the cascade.

We applied the same space tessellation and energy pro-
cedure to MD cascades, recording the kinetic energy of the 
atoms with kinetic energy larger that 0.4 eV. With MD cas-
cades, the subcascade decomposition depends on time. After 
the ballistic stage, the cascade cools down and no more hot 
region is detected. The average volumes of 20 keV Fe cas-
cades as a function of time using BCA and MD with various 
cell size and Ec are plotted in figure 2(a). During the ballistic 
phase that lasts around 0.1 ps, the volume of BCA and MD 
cascades increases linearly with a rate that is mainly affected 
by the cell size for the BCA and Ec for MD. The smaller the 
cell size, the larger the volume. This is explained by the fractal 
feature of the BCA cascades. In MD cascades, the collective 

interactions between atoms of low kinetic energy make our 
method more sensitive to Ec in the region surrounding the 
hot cores (see sketch drawn in figure  2(b)). More descrip-
tion of the thermal processes in MD is out the scope of this 
paper. With large Ec, only the hottest cores are detected and 
the total volume is small. With small Ec, subcascades are not 
distinguished. In the next section we will study both cases, i.e. 
Ec = 0 and Ec �= 0. It remains that after the ballistic stage, the 
BCA cascades do not evolve any more when the MD cascade 
volume decreases because of the cooling down. The decom-
position method is applied when the volume is maximum, the 
time of which depends mainly on the PKA energy.

The cascade fragmentation is a stochastic process which 
depends on the cascade energy. In [20], we described the 
subcascade volume distribution as a function of the energy. 
We showed that the distribution is a peak at low energy and 
turns into a power law at high energy. More precisely, the 
average number of subcascades as well as the standard devia-
tion depend on the energy. The subcascade formation in Fe 
has been studied calculating 1500 BCA cascades and several 
hundreds MD cascades per energy from 1 keV to 2 MeV and 
1 keV to 120 keV resp. The frequency of cascades fragmented 
in subcascades as a function of the energy is illustrated in 
figure 3(a) as violin plots (the thickness of the green area is 
proportional to the frequency). One sees that the standard 
deviation is very small at low energy, increases around the 
fragmentation energy and trends to saturate at high energy. In 
figure 3(a), red points are the average number of subcascades, 
nSC(E), which starts at one as there is one main volume, then 
becomes progressively proportional to the PKA energy. The 
first transition corresponds to the fragmentation energy, Efr, 
that can be determined by fitting with the function

nSC(E) =
{

1 if E � Efr

E/Efr if E > Efr
.� (1)

In figure 3(b), we plot the number of subcascades as a func-
tion of the PKA energy using MD and BCA cascades and dif-
ferent values of Ec and cell size. The fragmentation energy 
depends slightly on the cell size and Ec. Both MD and BCA 
predict that the fragmentation starts between 10 and 15 keV. 
Notice that without the high level of statistics, for example 
from a limited number of MD simulations, the point where the 
number of subcascades equals 2 could be seen as the threshold 
for subcascade splitting, and our results are in agreement with 
Stoller’s paper [34], which gives the threshold for splitting 
in Fe as 20–30 keV. The progressive increase of the number 
of subcascades is due to the averaging and the increase of 
the probability of small subcascades that decorate the main 
volume. Notice that the subcascade frequency vanishes for a 
volume close to the volume corresponding to the fragmenta-
tion energy (a thorough description is given in [20]). We deter-
mined that in Fe, Efr = 15 keV and Vfr = 90 nm3.

4.  Fragmentation energy within the periodic table

In this section, we will use both Ec = 0 and a simple expres-
sion for E �= 0. We want to capture correlations between the 
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(a) (b)

(d)

(c)

Figure 1.  ((a)–(c)) Pictures of one 100 keV BCA cascade in Fe analysed with increasing cell sizes, 0.2 nm, 1 nm and 3 nm. (d) Average 
number of subcascades as a function of the cell size and the PKA energy in Fe.

(a) (b)

Figure 2.  (a) Cascade volume as function of time for 20 keV cascades calculated with BCA and MD cascades similarly analysed with 
various cell sizes, s and Ec. (b) Sketch of the effect of Ec which reveals the interface between subcascades: with the small E1

c , only one 
subcascade A is detected, with the larger value E2

c , two subcascades B and C are detected and with a too large value, the volume of small 
subcascades would be missed.

J. Phys.: Condens. Matter 30 (2018) 405701
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density of energy required to create a hot subcascade core and 
the properties of the material, applicable to many metals. In 
[20] we proposed

Ec = (C(Tf − T) + L)� (2)

where C and L are the specific heat and the enthalpy of fusion 
respectively, Tf and T are the melting point and the material 
temperature.

The justification is that the melting of the crystal is 
observed in the hot cores of the cascades and that the formula 
(2) is a convenient estimate of the energy required to melt 
the material. The exact amount of energy required to melt 
a nano-metric cubic cell of material is a complex question. 
In particular, displacement cascades are not equilibrium pro-
cesses. The mechanical (superheating) melting temperature 
is about 15%–20% larger than the melting temperature and 
the crystal melts immediately with no enthalpy of fusion 
[35–38]. Furthermore as the specific heat does evolve with 
temperature, an integral form is more precise. Following 
[39], one sees that the proper integration from room temper
ature to melting temperature leads to a 2 times lower energy 
compared to our expression. These aspects are out of the 
scope of our paper.

With our simple formula, values of Ec for Be, Fe, Zr, Mo 
and W are given in table  1. W and Mo require the largest 
values of 77 eV and 66 eV because of their high melting point 
and Zr has the lowest value because of its low atomic density. 
Be has a low melting point but this is compensated by its high 
atomic density.

BCA cascades were done in 22 metals with PKA energy 
ranging from 1 keV to 1 MeV. 200 cascades per energy was a 
sufficient statistics. All metals present a first morphological 
transition from one single domain to an increasing number 
of subcascades. The fragmentation energy is obtained by 

fitting on equation (1). In our study, the parameters differing 
one material from another are the atomic number, Z, the 
atomic density, d and the properties included in the energy 
criterion, Ec.

We first described the effect of the atomic number and the 
atomic density by repeating the BCA cascade decomposition 
taking Ec = 0. In this case, the criterion is the strictest and 
the fragmentation energies are maximum. The atomic number 
varies from 4 for Be, to 92 for U and increases the fragmenta-
tion energy. The atomic density varies from 43 at. per nm3 
for Zr to 123 at. per nm3 for Be and also increases the frag-
mentation energy. Interestingly, the density of metals (after Be 
which has only 2s electrons per atom) evolves as three succes-
sive bell shape curves with the filling of the successive elec-
tronic bands 3d, 4d and 5d as explained in [40]. Because of the 
effect of the atomic density, the bell shapes is also observed on 
the fragmentation energy when one sweeps along the periods 
of the periodic table (with Ec = 0).

(a) (b)

Figure 3.  (a) Violin plots of the number of subcascades as a function of the energy with 1500 cascades per energy (BCA results in Fe with 
s  =  1 nm and Ec = 44 eV nm−3). E is the cascade energy and n is the number of subcascades. The thickness of the green surfaces in the E 
direction is proportional to the frequency of cascades fragmented in n subcascades. The red points are the average number of subcascades 
per cascade. (b) Average number of subcascades obtained by MD and BCA as a function of the energy for various combination of the cell 
size s (in nm) and the energy criterion Ec (in eV nm−3), in Fe. The fragmentation energy obtained by fitting on equation (1) is between 
10 keV and 15 keV. Notice that the electronic losses have been included in the BCA model and not in the MD one. Small horizontal bars 
indicate the energy shift when the electronic losses are removed and it improves the agreement between MD and BCA.

Table 1.  Atomic number, atomic density, energy criterion for 1 nm 
cells (Ec), maximum fragmentation energy (Emax

fr , with Ec = 0) and 
the fragmentation energy with Ec > 0 given by equation (2).

Atomic 
number

Atomic density 
(atom per nm−3)

Ec (eV 
nm−3)

Emax
fr  

(keV)
Efr 
(keV)

Be 4 123 37 0.75 1.1
Al 13 60 11 4 1.8
Fe 26 85 44 45 15
Ni 28 91 51 58 21
Zr 40 43 30 20 9
Mo 42 65 66 84 17
W 74 63 77 315 75a

a This value is smaller than the one in [20] because of the choice of 
equation (1).

J. Phys.: Condens. Matter 30 (2018) 405701
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In our previous work [41], we demonstrated that the frag-
mentation energy follows a power law as function of the 
atomic number when the density is constant. Using this new 
approach which easily includes the effect of the atomic den-
sity, we found that the fragmentation energy follows a power 
law,

Emax
fr = E1

(
Z

d
dFe

)qc

� (3)

function of an effective atomic number defined by Z d/dFe, 
where Z is the atomic number and d is the atomic density 
(with Fe as reference material). Our results and this expres-
sion using E1  =  0.013 keV and qc = 2.5 are plotted in 
figure 4(a). Notice that the maximum fragmentation energy 
is large, 45 keV for Fe and 315 keV for W for example. The 
reason is that Ec = 0 is too strict: it requires that no cascade 
related event occurs in an interface of 1 nm thick to identify 
two distinct subcascades.

The fragmentation energy with Ec > 0 is plotted in 
figure 4(b). It varies between 2 keV and 500 keV depending 
on the metal and follows a sawtooth evolution as a function of 
the atomic number of metals of groups 2s, 3p, 3d, 4d, 5d and 
5f because of the combined effect of the atomic density and 
now Ec. The decrease of the density is compensated by a low 
Ec (due to low melting point) for most metals of the right part 
of each period, columns 11 and 12 of the periodic table, Cu, 
Zn, Ag, Cd, Pt and Au. The fragmentation energy is 15 keV 
for Fe and 75 keV for W, which is in agreement with full MD 
cascades and experimental results [21]. Notice that this last 
value is divided by 2 compared to our previous work where 
the fragmentation energy was defined as the energy where 
cascades form two subcascades.

In figure 4(b) we also represents the fragmentation ener-
gies using the fractal approach [17, 41] and other methods 
from [8–10]. The general tendency of the effect of the atomic 

number is visible. However, in our work and proposing the 
equation (3), we separated the effect of the atomic density and 
the atomic number. The main difference between the method 
of [8] and our is the introduction of Ec which reduces (resp. 
increases) the number of subcascades for metals with a large 
Ec, i.e. a high (resp. low) melting temperature or heat capacity 
for example. Notice that our method is an effective method 
where no cascade overlap is possible, contrary to [9, 10]. 
Interestingly Heinish’s method using MARLOWE [42] takes 
into account the crystal structure. The authors noticed that the 
reduced fragmentation energies group by crystal structure but 
that study did not separate the effect of the atomic density and 
the crystal group. Notice that our study does not include the 
elongated cascades produced by ions which experience chan-
nelling due to the periodicity of the lattice. We believe that the 
effect on the fragmentation energy and the average number of 
subcascades is limited. 

The methods also sometimes differ by the choice of the 
interaction potential, ZBL and Moliere potentials, the later 
produces a larger collision cross section  at low energy, i.e. 
should predict more dense cascades and consequently larger 
fragmentation energy.

With our study of BCA cascades, we characterised, firstly, 
the evolution of the fragmentation energy with the atomic 
number, secondly, the evolution of the fragmentation with 
the atomic density, and thirdly, we have shown how the frag-
mentation energy may depend on thermodynamic properties. 
Further works are necessary to fully confirm the effect of the 
thermodynamic properties and determine the effect of the 
interatomic potentials.

5.  Subcascade spatial correlation

In this section, we further study the cascade morphology and 
derive the number of pairs of subcascades likely to interact 

(a) (b)

Figure 4.  (a) Fragmentation energy as a function of the effective atomic number equal to Zd/dFe where, Z is the atomic number and d  
is the atomic density (dFe being the atomic density of Fe), with Ec = 0. The line corresponds to the power law given by equation (3).  
(b) Fragmentation energy as a function of the atomic number, with Ec > 0 and given by the formula (2), compared to our fractal approach 
[41], the self consistent theory of Ryazanov [10], the break-up energy reported by Heinisch [8] and the analytic model of INCAS reported 
by Jumel [9]. Our results do not follow a simple power law of Z because of the effect of the atomic density and the energy criterion. These 
results have been obtained with BCA cascades.
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because they are at close distance from each other. In the next 
section we will propose the resulting correction term of our 
model of primary damage.

We used BCA cascades from 1 keV to 1.4 MeV, with 1500 
cascades per PKA energy in Fe. The centres and volumes of the 
subcascades form random multitype point patterns. Fe is a par
ticularly interesting metal as the fragmentation energy is rela-
tively low, and both sides of the first transition are covered by 
the energy range studied here. Fe BCA cascades described as 
multitype point patterns are illustrated in figure 5. For simplicity, 
subcascades are divided into 5 subgroups depending on their 
volume. The subgroups are named XS, S, M, L and XL and are 
respectively coloured in blue, cyan, green, yellow and red, with 
the size limit given in table 2. One can describe the growth of the 
random multitype point patterns as function of the energy as fol-
lows. At low energy they consist of one small sphere. When the 
energy increases, the spheres first grow. Around 15 keV, small 
decorations start to appear in some patterns. At higher energy, 
multiple spheres of various size are visible at random distance 
from each other. Above 100 keV, small spheres align along 
branches and large ones are found at the intersections or ends 
of branches.

The cross pair correlation function characterizes the spatial 
distribution of points composing random multi-type patterns. 
It is used in other studies of multicomponent systems, like 
the modelling of the structure of GeO2 glasses [43, 44], the 
analysis of atom probe tomography data [45], the study of dif-
ferent species of trees [46] or other examples of spatial point 
patterns [47, 48]. It quantifies the frequency of objects as a 
function of their mutual distance and we will use it to count 
the interacting subcascade number considering a vicinity 
criterion.

Because of the continuous variation of the subcascade 
volume, the cross pair correlation function depends on 4 
continuous variables, g(r, vi, vj, E) where r is the distance 
between the centres, vi and vj are the subcascade volumes and 
E is the PKA energy. The centre of the subcascade is defined 

as �ri =
1
ni

∑ni
k=1 �ρk where �ρk are the positions of the ni cubic 

cells forming the subcascade after our decomposition method. 
One has vi = nivEC where vEC is the volume of the cubic cell 
equal to 1 nm3.

Instead of continuous variable for vi and vj, we used 5 
volume subgroups, XS, S, M, L and XL. The cross pair cor-
relation functions can be calculated as

Figure 5.  1 keV–1.4 MeV Fe BCA cascades analysed with our decomposition method. Subcascades are represented by spheres. The 
colours distinguish 5 different subgroups based on a volume criterion given in table 2. Blue, cyan, green, yellow and red are resp. XS, S, M, 
L and XL subcascades.
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Gi,j(r, E) =
1

4πr2dr
1
nc

×
nc∑

k=1


 1

ni,k nj,k

ni,k∑
i′=1

nj,k∑
j′=1

H(|�ri′ − �rj′ | − r)H(r + dr − |�ri′ − �rj′ |)




� (4)

where i and j can be XS, S, M, L or XL, r is the distance 
between subcascades, dr  is the bin width of r, ni,k is the 
number of points in subgroup i in the cascade k, H(x) is the 
Heaviside step function and nc is the number of cascades.

First the contributions of the 5 subgroups to the average 
number of subcascades and the cascade volume as a func-
tion of the PKA energy were calculated (see figure  6). At 
low energy, the average number of subcascades is one, suc-
cessively of XS and S type. At the first transition when the 
number of subcascades becomes larger than one, M and L 
subcascade types appear associated with subcascades of XS 
and S type. Above the fragmentation energy, the number of 
subcascades increases linearly with the PKA energy. One sees 
the large contribution of XS and S subcascades in agreement 
with what we described in [20]: the subcascade distribution 
follows a power law of the subcascade volume for PKA ener-
gies above the fragmentation energy.

The total cascade volume and the different contributions 
are plotted in figure 6(b). At low energy, one type of subcas-
cade, successively of XS, S, M and L type, mainly contributes 
to the cascade volume. Above around three times the frag-
mentation energy (� 50 keV), all categories contribute to the 
total volume, however the L and XL subcascades contribute 
the most.

We analysed the 15 cross pair correlation functions for 
each PKA energy. Figure 7 shows only the cross pair correla-
tion functions of the 500 keV cascades in Fe. They exhibit 
a maximum as function of r. The position of this maximum 
depends on the i, j pair. The main reason is that our decomposi-
tion method excludes the possibility of overlap which imposes 
a minimum distance between subcascades. On the other side, 
the whole cascade is enclosed in a limited volume then the 

pair correlation function vanishes when r increases. Notice 
that GXS,L(r, E) is not negligible at short distance because 
the shape of a large subcascade is not spherical and there is 
a probability that one XS subcascade is almost enclosed in 
a large one. The position of the maximum roughly increases 
with the subcascade volume, for example 3 nm for XS–XS 
subcascades and 6 nm for the S–S subcascades.

When the number of subcascades per PKA becomes larger 
than 2, the subcascade interaction is possible. For nSC(E) subcas-
cades, the number of pairs is simply 1

2 nSC(E)(nSC(E)− 1). As 
the number of subcascades is almost proportional to the energy 
(see equation (1)), the total number of interacting subcascades is

N tot(E) =
1
2

E
Efr

(
E
Efr

− 1
)

∝ E2� (5)

which is approximately proportional to the square of the 
energy but does not detail the type of subcascades, and does 
not take into account their mutual distance. It is reasonable 
to consider that only subcascades close to each other will 
interact. The frequency of interacting subcascades is then 
reduced to integration of the cross pair correlation function on 
a limited distance interval. We propose a simple estimate of 
the number of interacting subcascades of volume vi and vj in 
cascades of energy E, equal to

Ni,j(r, E) = 4πr2 Gi,j(r, E)ni(E)nj(E)∆r� (6)

where ni(E) is the average number of subcascades of volume 
vi in cascades of energy E and ∆r  is the distance range where 
the interaction is significant. We naturally propose to take 
r = rmax

i,j  where the cross pair correlation functions are close 
to the maximum and we observed that

rmax
i,j � Ri + Rj +∆r

with Ri =

(
3

4π
vi

) 1
3

�

(7)

where Ri is our definition of the subcascade dimension and 
∆r  is 1 nm which is also the size of the cubic cells used in 
our decomposition method. The number of pairs of effectively 
interacting subcascades of size i, j is finally

Ni,j(E) = 4π(rmax
i,j )2 Gi,j(rmax

i,j , E)ni(E)nj(E)∆r.� (8)

This simplification will be also justified in the next section, 
where the effect of the subcascade interaction on the primary 
damage will be discussed.

Using the equations (5) and (8), we can study the number 
of interacting subcascades as a function of the PKA energy 
and the i, j pairs and some of them (XS–S, M–L and  
XL–XL) are plotted in figure 8. With our estimate, the number 
of interacting subcascades is several times smaller than the 
total number, N tot(E). The difference increases with energy 
because the fragmentation of high energy cascades in a large 
volume reduces the probability of pairs of subcascades at short 
distance from each other. Interestingly, the number of XS–S 
pairs which is an important term of the sum evolves propor-
tionally to E2 around the fragmentation energy and becomes 
∝E at high energy. This is a feature of the cascade branching. 

Table 2.  Description of the subcascades distributed in 5 subgroups 
of different volume, XS, S, M, L, XL. Radius and PKA energy 
that can be associated with each group. For 500 keV Fe cascades, 
average nk

i  (number of subcascades of group i per cascade) and Ni,j, 
average numbers of interaction of subcascades for all cross pairs, 
XS–XS, XS–S, ..., XL–XL (see equation (8)).

i or j XS S M L XL

Volume (nm3) 0–10 10–40 40–90 90–180 180–1500
Ri (nm) 1.1 1.7 2.5 3.5 5
Energy (keV) 1 5 10 20 50

for E  =  500 keV

average nk
i

19 8 5 3 2

NXS,j 0.51 1.0 0.09 0.11 0.025
NS,j 0.027 0.067 0.013 0.044
NM,j 0.006 0.057 0.01
NL,j 0.014 0.003

NXL,j 0.012
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Indeed, the high energy cascades are made of a number of XS 
and S subcascades ∝E which are found along the branches 
formed by the fast knock-on atoms (see blue small spheres 
in figure 5). The number of close pairs is then proportional to 
E. The number of medium and large interacting subcascades 
is ∝Es with s smaller than 1 and equal to 0.5 and 0.25 for 
M–L and XL–XL. This is due to the sub-linear increase of the 
number of these subcascades as function of the PKA energy 
and the reduction of the cross pair correlation function due to 
the expansion of the cascades in space.

6.  Subcascade interaction and primary damage

In the previous section, we studied and characterized the cas-
cade morphological transitions and evolution with the PKA 

energy using our subcascade decomposition method. We pro-
posed a simple expression of the number of interacting pairs 
of subcascades of size i, j. We now include the subcascade 
interaction in our model of the primary damage.

Firstly the key features of the evolution of cascade morph
ology with energy will be described. Secondly, they are 
included in our model of point defect and defect cluster pro-
duction. Then we will demonstrate the relevance of the sub-
cascade interaction and adjust the model by direct comparison 
with defect production in high energy cascades in Fe calcu-
lated by full MD. Finally, we will predict the defect cluster 
size distribution at even higher energy when MD cascades are 
not available.

(a) (b)

Figure 6.  (a) Number of subcascades as function of the PKA energy in the XS, S, M, L and XL subgroups described in table 2. The 
subcascade subgroups correspond roughly to 1, 5, 10, 20 and 50 keV cascades. (b) Total volume of cascades as function of the PKA energy 
and the contributions of the XS, S, M, L and XL subcascades. Lines are guides for the eyes. The number of subcascades is proportional to 
the energy over the fragmentation energy and the cascade volume is proportional to the energy, slightly sub-linear because of the electronic 
stopping power. BCA cascades have been used for this analysis.

Figure 7.  Cross pair correlation functions versus the distance 
between XS, S, M, L and XL subcascades for E  =  500 keV and 
BCA cascades.

Figure 8.  Number of XS–S, M–L and XL–XL pairs of interacting 
subcascades per cascade as a function of the PKA energy calculated 
with equation (8). Comparison with the maximum number of pairs, 
N tot (equation (5)). BCA cascades in Fe have been used for these 
results.
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As a premise, figure  9 illustrates two 80 keV MD cas-
cades. The subcascades at the maximum volume expansion 
(formed by cubes of different colours) are superposed to the 
large spheres of the multitype point pattern and to the defects 
remaining at the end of the cascade (small white and pink 
spheres). One sees the vacancy defects (in white) mainly in the 
centre of the subcascades. The small SIA defects (magenta) 
are found around the subcascades. Interestingly, a large SIA 
loop is found between one L and one XL subcascade.

When the PKA energy increases, the probability of large 
energy secondary knock-on atoms that create subcascades 
without overlap becomes possible. This causes the spatial 
fluctuations of the density of energy used to detect the cas-
cade fragmentation in two or more intense cores of subcas-
cades, separated by interfaces where knocked-on atoms loose 
no or very few energy. The atoms are ejected from the hot 
cores to their periphery. Interfaces are thus susceptible of col-
lecting atoms ejected from two different cores. Moreover, 
shock-waves are emitted by the cascade cores and are likely 
to interact at interfaces.

The average number of subcascades per cascade is equal 
to one for small PKA energies and proportional to the energy 
above the fragmentation energy, Efr (see figure 3). Statistics of 
subcascades as a function of their volume reveals one aspect 
of the first morphological transition described in [20]. At low 
energy, the distribution can be described by a peak around 
the average volume and a power law of small volumes that 
represents rare small subcascades decorating the main one. 
The position of the peak moves toward large volumes when 
the PKA energy increases. The power law contribution also 
increases with the PKA energy. Above the first transition, the 

peak disappears and only the power law is visible and con-
tinues to increase. A deviation to the power law is observed 
when the frequency of subcascades vanishes, which indicates 
the maximum subcascade volume, as described in [20, 21].  
The maximum subcascade volume slowly increases with 
the energy up to 2–3 times the fragmentation volume. The 
total volume of the cascade remains proportional to the PKA 
energy. The number of subcascades as described in the pre-
vious section can be obtained by integration of the distribu-
tion. One has

V(E) =
∫

vD(v, E)dv = Vfr
E
Efr

nSC(E) =
∫

D(v, E)dv
�

(9)

where V(E) is the total volume, D(v, E) is the distribution of 
subcascades and Vfr and Efr are the fragmentation volume and 
energy.

In [17], we proposed that the total defect production at any 
PKA energy, P(E), is the sum of the defect production in indi-
vidual subcascades. In [20], we extended this approach to the 
different contributions of clusters of n defects p(n, E). One 
has

P(E) =
∫

p(n, E)n dn.� (10)

At this stage, we do not know if the interaction of subcascades 
will increase or decrease the number of defects of size n. We 
introduce the subcascade interaction as pairwise terms and the 
production of defects of size n becomes

(a) (b)

Figure 9.  Two examples of 80 keV MD cascades in Fe. Our subcascade decomposition method at the maximum expansion of the cascade 
determined 4 (in (a)) and 8 subcascades (in (b)) illustrated by cubes of different colours. The associated multitype point patterns are 
schematized by large spheres: blue, cyan, green, yellow and red are resp. XS, S, M, L and XL subcascades. Defects remaining after the 
cooling of the cascades are superposed as small white for vacancies and magenta spheres for SIAs. Vacancy defects are found mainly in 
the cores of the subcascades. The SIA defects are found at the periphery of the subcascades. Particularly large SIA clusters are indicated 
between two L and XL subcascades.
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p(n, E) = F1(n, E) + F2(n, E)

=

∫
f1(n, v)D(v, E)dv

+

∫ ∫ ∫
f2(n, vi, vj, r)S(E, vi, vj, r)dvidvjdr

�

(11)

where F1(n, E) is the defect production in individual subcas-
cades and F2(n, E), the subcascade interaction pairwise terms. 
f1(n, v) is the number of defect of size n created by a cascade 
of volume v, f2(n, vi, vj, r) is the interaction of two cascades  
of volume vi and vj at distance r from each other and 
S(E, vi, vj, r) the average number of pairs of subcascades 
of volume vi and vj at a distance r in cascades of energy E. 
Subcascades are described in discrete subgroups of volume, 
XS, S, M, L and XL and in the previous section, we detailed 
the expression (6) and one sees that

S(E, vi, vj, r) � Ni,j(r, E)� (12)

where Ni,j(r,E) was simplified in Ni,j(E) (see equation  (8)). 
Here also, f2(n, vi, vj, r) depends on the distance between sub-
cascades and should also vanish at large distance. This sug-
gests a similar simplification and equation (11) simplifies in

p(n, E) �
∫

f1(n, v)D(v, E)dv +
∑

i,j

f2,i,j(n)Ni,j(E)

with f2,i,j(n) � f2(n, vi, vj, rmax
i,j )

�
(13)

where the second term is a sum of the product of the elements 
of two matrices, the first one gives the interaction of two sub-
cascades of volume i and j at a distance rmax

i,j , and an example 
of the second one is given in table 2 for E  =  500 keV.

Different approaches are surely possible to determine 
f2,i,j(n) as for example, the overlap study of [49]. For our work, 
after analysis of the defect production by MD cascades we 
propose functional forms for f1(n, v) and f2,i,j(n) with a limited 
number of parameters. Like in [20, 21], one has

f1(n, v) =
A(v)
nS

(
1 − n

nmax(v)

)

with A(v) = Afr

(
v

Vfr

)T

and nmax(v) = nmax
fr

(
v

Vfr

)U

�

(14)

where S is the exponent of the power law already observed 
in [18], nmax(v) is the maximum defect size that can be cre-
ated in a subcascade of volume v and nmax

fr  is the maximum 
cluster size at the fragmentation energy. A convenient func-
tional form for f2,i,j(n) is

f2,i,j(n) =
Fi,j

nα


δ1,n + cos


3π

2

(
log(n)

log(nmax
i,j )

)β





Fi,j = γ

(√vivj

Vfr

)ε

nmax
i,j = ζ

(√vivj

Vfr

)κ

�

(15)

where nmax
i,j  is the maximum defect size impacted by the inter-

action of two subcascades of volume vi and vj. The cosine 
(with the logarithmic argument) leads to a positive and a 
negative part with a zero at an adjustable defect size equal 

to (nmax
i,j )1/31/β

. δ1,n is the Kronecker delta and the power law 

of n is similar to f1(n, v). In equation  (15), we assume that 
Fi,j increases with the subcascade volume because a larger 
effect is expected from the interaction of a pair of large sub-
cascades than small subcascades. Notice that this functional 
form is adimensional, symmetric in i and j and determined by 
6 parameters, α, β, γ, ε, κ and ζ. Also, f2,i,j(n) is independent of 
E and can be adjusted on the defect production of PKA energy 
larger than the fragmentation energy.

For this work, we applied our approach using partially the 
database of MD cascades in Fe from [30]. Further results will 
be reported separately. Below the fragmentation energy, the 
defect cluster production follows a simple power law with the 
expected deviation due to the maximum defect size. At high 
energy, a hump is visible for the large defects and we see that 
it cannot be explained by the production of individual subcas-
cades. We adjusted the parameters of f1(n, v) given by equa-
tion  (14) on these low energy cascades (from 1 to 10 keV) 
using Openturns [50]. The 6 parameters of f2,i,j(n) has been 
adjusted using the 80 keV MD cascades. Because the elec-
tronic stopping power is included in our BCA cascades and 
not in the MD cascades, we use the matrix Ni,j(E) of the 100 
keV BCA cascades. The parameters are given in table 3.

We are now able to extrapolate our model of primary 
damage to 500 keV cascades, using the morphological 
description given by the BCA. Both contributions, i.e. the 
defect production of subcascades taken individually, and the 
correction due to the subcascade interaction, have been calcu-
lated. In figure 10(a), we plot the defect production calculated 
with and without subcascade interaction for the 5 keV, 80 keV 
and 500 keV, and compared to the defect production from the 
MD cascades. The defect production in 5 keV cascades where 
the subcascade interaction is insignificant is correctly given 
by the main term F1(n, E). For the 80 keV cascades, the sub-
cascade interaction causes a reduction of the frequency of the 
small defects and a hump of the large defects. In figure 10(b) 
the functions f2,i,i(n) are plotted. 

One sees that they are first negative then positive when n 
increases, which causes the reduction of the production of 

Table 3.  Parameters of the model of primary damage, p(n, E), that 
includes two terms: F1(n, E), the defect production of subcascades 
taken individually and F2(n, E), the correction due to the subcascade 
interaction. Notice that the fragmentation energy and volume have 
been determined in the first section, Efr = 15 keV and Vfr = 90 
nm3.

F1(n, E) F2(n, E)

S 2.77 α 2.2
Afr 22 β 1.7
T 0.61 γ −950
nmax

fr 61 ε 0.8
U 0.82 ζ 75

κ 0.9
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small clusters, and the increase of the production of large 
clusters when two subcascades interact. The positions of the 
zero and the maximum cluster size increase with the volume 
of the interacting subcascades. The consequence is visible on 
the extrapolation to the primary damage of the 500 keV cas-
cades, where our model predicts an increase of the fraction of 
clusters due to the subcascade interaction.

7.  Discussion

We proposed a systematic method that decomposes any cas-
cade in subcascades with no overlap. We described how two 
parameters, the cell size and the energy criterion influence 
the subcascade decomposition. The method has been applied 
to BCA and MD cascades and it appears that the number of 
subcascades is independent of the cell size in a wide range 
of value from 1 nm to 2 nm. With a strict criteria consid-
ering no collision in the subcascade interface (Ec = 0), we 
found that the fragmentation energy is a power law of an 
effective atomic number given by the product of the atomic 
number and the atomic density, due to the fractal nature of 
the cascades. To improve the subcascade interface detec-
tion, we proposed a less strict criterion, Ec given by a simple 
formula (2) and applied our method to more than 20 metals. 
It decreases the fragmentation energy to values which are 
in agreement with MD and experimental results for W. The 
fragmentation energy of W is 75 keV with Ec = 76 eV nm−3 
compared to 315 keV with Ec = 0. Still these values slightly 
vary with the cell size and the energy criterion. There is no 
well-established definition of the threshold energy of cascade 
fragmentation. With significant statistics, our method dem-
onstrated that this is a stochastic process with a continuous 
increase of the frequency of small decorations around the 
main subcascade. Clear features of the subcascade decom-
position above the fragmentation energy are the disappear-
ance of any specific subcascade volume and the existence of 

a maximum subcascade volume. Indeed, the distribution of 
subcascade volume turns from a peak to a power law that 
vanishes for the maximum subcascade volume (described in 
[20, 21]). Comparison between MD and BCA cascades show 
a good agreement because the MD empirical potential has 
been adjusted on the ZBL potential used in BCA on the short 
distance range, that intervenes during the ballistic stage of the 
cascades. Notice that some atoms in MD cascades can experi-
ence channelling due to the crystal structure, and this is not 
accounted for in our BCA model. The channelling effect has 
been studied with other BCA codes that account for crystal 
structure, MARLOWE in [51] and MDRANGE compared to 
MD in [52]. Another difference is that in high energy MD 
cascades, small subcascades can disappear before the end of 
the ballistic stage. The BCA is still a convenient method to 
reach the number of trials necessary for good statistics, espe-
cially at high energy.

Subcascades can be seen as forming a multitype point pat-
tern characterised by cross pair correlation functions. With no 
loss of generality we proposed to simplify the volume, which 
in principle evolves in continuous way, in discrete categories, 
reducing integrals into sums. The cross pair correlation func-
tions exhibit a maximum because of the minimum distance 
required by the no overlap criterion and because the cascade 
is enclosed in a finite volume. Still the number of interacting 
pairs of subcascades is in principle given by the integral of 
the cross pair correlation function on a range of distance (and 
subcascade volume) but we consider that only close pairs are 
of interest. We propose a strong simplification taking the value 
of the cross pair correlation functions at their maximum mul-
tiplied by a thickness of 1 nm. We then studied the number of 
interacting pairs of subgroups i and j in cascade as a function 
of the PKA energies.

Cascade exhibiting branching are formed by elongated tracks 
decorated by small subcascades, which causes that the number 
of interactions of small subcascades increases proportionally to 

(a) (b)

Figure 10.  (a) The comparison of defect cluster frequencies from MD and our model with and without the subcascade interaction for 5 keV 
and 80 keV cascades and our model prediction for 500 keV cascades based on the morphology given by the BCA only. The solid and dotted 
lines have been obtained with our model (equation (11)) that consists in two terms, i.e. the first one counts the defect created in subcascades 
and the second one is a correction due to the subcascade interaction. The model has been adjusted on the defects created in MD cascades 
in two steps: F1 using statistics made on low energy cascades only where subcascade interaction is extremely rare and F2 using the defects 
created in large energy cascades where the subcascade interaction is significant. Consequently, F1 curves fit well the defects of the 5 keV 
cascades but poorly the 80 keV ones. (b) f2,i,j(n) functions of the subcascade interaction used in (13).
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the PKA energy. The number of medium (resp. large) subcas-
cades pairs increases as square root of E (resp. E1/4).

We included the number of interacting subcascades in our 
model of primary damage. In [20], a first term was determined 
for the defect cluster production in individual subcascades. 
Here pairwise terms have been added that correspond to the 
effect of subcascade interactions on the defect production. 
Three body terms could in principle be included and other 
mechanism of enhanced cluster formation cannot be excluded. 
Indeed, in [21], for example, we observed a change of the 
power law slope of defect cluster production in W cascades 
of energy smaller than the fragmentation energy. We proposed 
functional forms for the unknown features and ended up with 
a model with a limited number of parameters and physical 
meaning. Using our large database or MD cascades from [30], 
we directly compared and adjusted our model to the defects 
created in MD cascades. We showed that below the fragmen-
tation energy, the defect production is correctly given by the 
first term of our model. The defect production of high energy 
cascade is not correctly predicted by the defect production in 
individual subcascades only. We explained and illustrated that 
this is due to the interaction of subcascades which increases 
the cluster fraction, i.e. the reduction of the frequency of 
small clusters and the enhanced formation of large ones. We 
observed that the subcascade interaction stabilizes large SIA 
clusters, resulting in fewer small ones, than with isolated 
subcascades without creating significantly more defects. We 
adjusted interaction functions, which permits the predic-
tion of the primary damage of cascades whose energy is not 
accessible by full MD. More accurate results can be obtained 
by adjusting our model with more high energy cascades, or 
combining with other approaches to model the mechanism of 
these interactions. Further works are necessary to characterize 
the effect of subcascade interaction on vacancy clusters. We 
observed a correlation between the frequency of subcascade 
interactions and the enhanced formation of large clusters. 

Still the physical mechanism must be clarified. It may be due 
to interaction of shock-waves as explained in [12]. Another pos-
sibility could be the migration of small interstitials that could 
be attracted or trapped in these regions. Other mechanisms 
could also impact the defect cluster production as the electronic 
losses and electron-phonon interaction. In this work, the cas-
cade description along its main direction has not been taken into 
account. Indeed, in high energy ion irradiation, it is established 
that, the average damage distribution and the defect versus size 
frequency depends on the distance from the source (or surface) 
in the direction of the impinging particle. Also, the presence of 
a surface can change the frequency of clusters as described in 
[53]. Finally, though our model takes partially into account the 
electronic stopping power, it does not account for this specific 
heat transport and its effect on the defect recovery.

8.  Conclusion

Using MD and BCA calculations we studied two morpholog-
ical transitions of collision cascades in a large range of PKA 
energy. A first transition from compact to fragmented cascades 
is observed in all metals and the mean features depend on the 

atomic number and the atomic density. The fragmentation 
energy follows a simple power law of these two parameters. 
We introduced an energy criterion that improves the sensitivity 
of our method especially in high Z materials, and includes ther-
modynamic properties such as the melting point temperature.

The distribution of subcascade volumes and the spatial cor-
relation of the subcascades can be accurately and efficiently 
studied using the BCA and statistics of random multitype point 
patterns. We derived the number of interacting subcascades 
as function of their volume described as a limited number of 
subgroups. We shown that a second transition exists when the 
cascade branching starts and the number of interacting small-
small subcascades increases proportionally to the PKA energy 
while the number of medium (resp. large) subcascade pairs 
increases as square root of E (resp. E1/4).

We developed our model of primary damage now including 
two terms: the production of defects in subcascades taken 
individually, and the pairwise terms of the subcascade interac-
tion. The model has been applied to Fe. We have shown that 
the subcascade interaction increases the SIA cluster fraction 
in high energy cascades. It has been used to extrapolate the 
defect production for even larger PKA energy, but it could also 
be convoluted with the neutron PKA spectrum. Our approach 
is also valid for other metals or materials.
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