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Abstract
A new quasilinear saturation model SAT3 has been developed for the purpose of calculating
radial turbulent fluxes in the core of tokamak plasmas. The new model is shown to be able to
better recreate the isotope mass dependence of nonlinear gyrokinetic fluxes compared to
contemporary quasilinear models, including SAT2 (Staebler et al 2021 Nucl. Fusion 61
116007), while performing at least as well in other key equilibrium parameters. By first
quantifying the isotope scaling of gyrokinetic flux spectra, it is shown that the deviation from
the gyroBohm scaling of fluxes originates primarily in the magnitude of the saturated
potentials. Using this result SAT3 was formulated using observations made from gyrokinetic
data, including a novel and robust relation between the 1D potential spectrum and the radial
spectral widths. This serves to define the underlying functional forms of SAT3 before then
connecting to the linear dynamics, including a difference in saturation level between ITG- and
TEM-dominated turbulence, with the resulting free parameters having been fit to a database of
high-resolution nonlinear CGYRO simulations. Additional features outside of the database are
included, including E × B shear and multi-ion plasma capability. The methodology used in the
development of SAT3 represents an algorithm which can be used in the improvement and
generation of future saturation models.

Keywords: isotope, gyrokinetic, quasilinear, saturation, turbulence, transport

(Some figures may appear in colour only in the online journal)

1. Introduction

In the field of tokamak transport it is well established that the
isotope scaling of the global energy confinement time τE is
not commensurate with that suggested by simple theory [2–5],
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which assumes that local turbulent fluxes Qi follow gyroBohm
scaling, for which Qi ∝

√
A for ion mass number A, and that

there exists a simple translation between the local fluxes in the
device and the global confinement properties, τE ∝ 1/Qi ∝
A−0.5. Experimental scaling laws derived from observations
made across many tokamaks however consistently observe
positive scalings, τE ∝ Ap, p > 0 [6, 7]. While this result
bodes well for the success of future tokamak devices in their
shift from pure deuterium (D) plasmas to the operational 50/50
mix of deuterium–tritium (DT), the mechanisms responsible
for this ‘isotope effect’ remain incompletely understood.
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Figure 1. Turbulent ion energy fluxes against density gradient scale length for (a) NL CGYRO, (b) TGLF-SAT1, (c) TGLF-SAT2 and
(d) QuaLiKiz in H, D and T, from a GA-std case baseline. Note that the isotope scaling reversal present in NL CGYRO (shaded region) is
not recreated in any of the quasilinear models. Subfigure (a) reprinted from [13], with the permission of AIP Publishing.

To investigate the gyroBohm scaling assumption, nonlinear
gyrokinetic codes [8–10] can be used to accurately simulate
how local turbulent fluxes depend on isotope mass. Previous
studies have shown that in sufficiently simple cases, namely
those dominated by ITG turbulence with a single ion species
and adiabatic electrons, the gyroBohm scaling of fluxes is pro-
duced [11, 12]. The inclusion of more sophisticated physics
in these simulations breaks this scaling, as has been demon-
strated for the inclusion of kinetic electrons [13], electromag-
netic effects [14], collisions [15, 16], E × B shear [17] and fast
particles [18]. Numerous studies have also shown that not only
can local fluxes deviate from the gyroBohm prediction, but can
follow the opposite trend, the so-called anti-gyroBohm scal-
ing, in which fluxes scale inversely with isotope mass [13, 19].
The plurality of mechanisms involved in this gyroBohm-
breaking effect makes even a partial explanation of the isotope
effect on a local level challenging.

Nonlinear gyrokinetics represents the most accurate plasma
turbulence modelling paradigm available, having been exten-
sively validated against experiment [20–27]. However, its

great computational expense renders it impractical for use in
integrated modelling simulations, in which one is required
to simulate many flux surfaces over confinement timescales.
Quasilinear models such as TGLF [28] and QuaLiKiz [29]
are instead used for this purpose. These models bypass the
expense of calculating the fluxes in the nonlinear gyrokinetic
system by instead solving for the linear response of the plasma
instabilities, which is then combined with an estimation of the
magnitude of the saturated potentials via a saturation rule to
provide a calculation of the fluxes in a greatly reduced time.
A standard and relatively simple estimation of these potential
magnitudes comes from the mixing length rule [29], which
models the turbulent transport as a diffusive process, with a
step size of a characteristic wavenumber of the linear insta-
bility and a time step of the inverse of the growth rate. This
estimation is employed in QuaLiKiz [30], however satura-
tion rules can be based on other turbulence saturation mech-
anisms, such as TGLF SAT1 [31] and SAT2’s [1] paradigm
of zonal mixing. Quasilinear models have been extensively
validated against nonlinear gyrokinetic codes for deuterium

2



Nucl. Fusion 62 (2022) 096005 H.G. Dudding et al

plasmas [1, 32] and have successfully modelled deuterium
plasma discharges [11, 33–36]. However, their historically
limited considerations of plasmas in other isotopes, coupled
with their incomplete description of the isotope effect, cause
them to struggle to replicate the behaviour of nonlinear gyroki-
netic fluxes with isotope mass, rendering predictive flux-driven
modelling efforts unreliable [11, 19].

An example of the isotope effect as it appears in local non-
linear gyrokinetics was explicitly demonstrated in a paper by
Belli et al [13], focusing on the role of kinetic electrons. It was
shown using the gyrokinetic code CGYRO [9] that by increas-
ing the equilibrium density gradient from a GA-standard case
[37] baseline, one moves from a regime of ITG-dominated
turbulence to TEM-dominated turbulence, accompanied by a
reversal in the flux scaling. It was suggested that this anti-
gyroBohm scaling may not be captured by reduced turbulence
models, in part due to the observation that the mixing length
rule did not exhibit this isotope reversal.

To test the adherence between the nonlinear (NL) CGYRO
results and the quasilinear model results, the NL CGYRO data
from the density gradient scan presented in [13] is shown
in figure 1, along with the data from equivalent simula-
tions using TGLF-SAT1, TGLF-SAT2 and QuaLiKiz. Mov-
ing from a/Ln = 0.0 to a/Ln = 3.0, one observes that the
anti-gyroBohm scaling seen in the data from NL CGYRO for
a/Ln > 2.0 is not replicated in the results of any of the three
quasilinear models. These all instead exhibit positive isotope
scaling across the scan, indicating that the relevant physics to
capture this isotope scaling reversal is missing.

The inability of current models to reliably predict this scal-
ing undermines the efforts of integrated modelling in terms
of prediction and optimisation of experimental campaigns in
plasmas with compositions differing from pure deuterium.
With the advent of ITER and the subsequent shift to operations
with DT, as well as isotope experiments at the JET tokamak,
it is essential that modern quasilinear models more accurately
approximate fluxes in different isotopes.

The aim of this work is to develop a new quasilinear model
that is able to more reliably predict how turbulent fluxes scale
with isotope mass, by capturing the physics contained in local
nonlinear gyrokinetic simulations. The paper is organised as
follows: section 2 contains a discussion on the theory of turbu-
lent plasma fluxes, and how this informs the structure of quasi-
linear models. The detail of the gyrokinetic database created
for this work is given in section 3. In section 4, contemporary
reduced transport models are compared with gyrokinetic sim-
ulations, to illustrate in detail how these models fail to capture
the isotope dependence of the transport. Section 5 describes
the development of the new saturation rule SAT3, with a sum-
mary of the model given in section 5.7, and section 6 presents
the results from SAT3. A conclusion follows.

2. Turbulent fluxes

2.1. Fluxes in gyrokinetics

The following employs local flux-tube geometry [38] with
coordinates {x, y, θ} denoting the radial, binormal and
parallel-to-field coordinates respectively. A summary of the

field-aligned system, geometric conventions and averages used
in this paper is given in appendix A. This work focuses pri-
marily on electrostatic turbulence, such that the only non-
negligible component of the turbulent electromagnetic field is
the fluctuating electrostatic potential δφ.

Turbulent heat fluxes arise in the gyrokinetic system due
to the interaction between δφ and the pressure fluctuations of
the present plasma species δps (for species s) via the turbulent
E × B velocity [39, 40]. Once saturated, a statistically steady-
state flux can be defined by taking both an ensemble average
and a flux-surface average over these fluctuations. Of particu-
lar interest is the radial component of this averaged flux, due
to its integral role in determining the confinement properties
of the plasma. This is given by

Qs =

〈
∇x · b̂×∇δφ

B
δps

〉
Ens, FS

(1)

where b̂ is the unit vector in the direction of the equilibrium
magnetic field, B = |B| is the equilibrium magnetic field mag-
nitude, and 〈. . .〉Ens,FS denotes an average over the turbulent
ensemble and flux-surface respectively. By representing each
fluctuating quantity as a Fourier series in x and y, one can show
that equation (1) may be written (a step-by-step derivation is
given in appendix B):

Qs =
∑
ky>0

2
∑

kx

〈
ky Im

[
Z∗

s,kx ,ky

]
Bunit

∣∣∣δφ̂kx ,ky

∣∣∣2
〉

θ,t

=
∑
ky>0

Qs,ky

(2)

where Zs,kx ,ky = δ p̂s,kx ,ky/δφ̂kx ,ky . Here the total flux Qs

has been decomposed into a sum of discrete flux com-
ponents per positive binormal wavenumber, Qs,ky =

2
∑

kx

〈
ky Im

[
Z∗

s,kx ,ky

]
Bunit

∣∣∣δφ̂kx ,ky

∣∣∣2〉
θ,t

. Circumflexes are used to

denote Fourier amplitudes and ∗ signifies a complex conjugate.
The averages over θ and t are defined by equations (A.5)
and (A.6), and Bunit is an effective magnetic field

Bunit =
q(r)

r
dψ
dr

(3)

where ψ is the poloidal magnetic flux divided by 2π, q is the
safety factor and r denotes a given flux-surface.

Equation (2) shows that each flux component Qs,ky can be
considered as a sum over kx of averaged terms comprised of
two factors: the squared magnitude of the potential fluctuations
|δφ̂kx ,ky |2, and ky Im[Z∗

s,kx ,ky
]/Bunit, which contains the phase

difference between the pressure and potential fluctuations.

2.2. Fluxes in reduced models

Two types of reduced turbulence models are considered in this
work: those with ‘exact’ linear solvers, which compute the lin-
ear behaviour of microinstabilities using a local gyrokinetic
code, and those with ‘fast’ linear solvers, which solve a sim-
plified version of the linear gyrokinetic system to approximate
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the linear response of the plasma in a greatly reduced time. The
results of these solvers are then combined with a saturation rule
in order to calculate turbulent fluxes.

While the use of exact linear solvers is too computationally
expensive for routine use in reduced models required by inte-
grated modelling, it is useful for the purposes of saturation rule
development, as the dynamics of the linear microinstability are
computed more accurately. This model type has been used pre-
viously [41–43], including under the name ‘QLGYRO’ [44],
for which linear CGYRO results were combined with TGLF’s
SAT1 rule. In the interest of generality, in this paper reduced
models will be referred to using the taxonomy 〈linear inputs〉–
〈saturation rule〉, to clearly specify the constituents of each
model. Thus CGYRO-SAT1 refers to the QLGYRO paradigm,
TGLF-SAT1 refers to SAT1 with the reduced linear inputs of
TGLF, and the QuaLiKiz saturation rule (qlk) with the linear
inputs of QuaLiKiz is QuaLiKiz-qlk.

The flux calculation of models using an exact linear solver
will first be considered. For each ky one can define an average
phase, dubbed the ‘weight’ Ws,ky , such that

Ws,ky =

〈
ky Im

[
Z∗

s,kx ,ky

]
Bunit

〉

=

∑
kx

〈
ky Im

[
Z∗

s,kx ,ky

]
Bunit

|δφ̂kx ,ky |2
〉

θ,t∑
kx
〈|δφ̂kx ,ky |2〉θ,t

=
1
2 Qs,ky

〈|δφ̂ky |2〉x,θ,t
(4)

where the relation

〈∣∣∣δφ̂ky

∣∣∣2〉
x,θ,t

=
∑

kx

〈∣∣∣δφ̂kx ,ky

∣∣∣2〉
θ,t

(5)

is a consequence of Parseval’s theorem (appendix C). Note the
factor of 1

2 in the final expression of the weights due to his-
torical convention. One can define both a ‘nonlinear weight’
WNL

s,ky
and a ‘linear weight’ WL

s,ky
, named due to their cal-

culation from the nonlinear gyrokinetic system and the lin-
ear gyrokinetic system respectively. The flux obtained from
nonlinear gyrokinetics may therefore be written as a 1D
sum over binormal wavenumber of nonlinear weights and
potentials:

Qs = 2
∑
ky>0

WNL
s,ky

〈∣∣∣δφ̂ky

∣∣∣2〉
x,θ,t

. (6)

To express the flux in a form relevant to reduced models, and
assuming only the dominant mode is considered in the linear
solver, one multiplies and divides by the linear weight:

Qs = 2
∑
ky>0

[
WNL

s,ky

WL
s,ky

]
WL

s,ky

〈∣∣∣δφ̂ky

∣∣∣2〉
x,θ,t

= 2
∑
ky>0

Λs,ky WL
s,ky

〈∣∣∣δφ̂ky

∣∣∣2〉
x,θ,t

(7)

where Λs,ky = WNL
s,ky

/WL
s,ky

is the ‘quasilinear approximation
(QLA) function’. This defines an explicit measure of the QLA,
which assumes that the average phase between the fluctuations
in the linear regime is conserved in the nonlinear regime [45].
If this approximation were to be satisfied exactly, one would
observe Λs,ky = 1 for all species at all binormal wavenumbers,
which is typically assumed in current quasilinear models.

Finally, for the purposes of reduced modelling, one does not
mathematically describe the potentials 〈|δφ̂ky |2〉x,θ,t , but rather
the potentials normalised to the binormal grid spacing Δky,
as this can be shown to be invariant under a change of grid
resolution once past the point of convergence (appendix D).
This consideration yields

Qs = 2
∑
ky>0

Λs,ky WL
s,ky

⎡
⎢⎢⎣
〈∣∣∣δφ̂ky

∣∣∣2〉
x,θ,t

Δky

⎤
⎥⎥⎦Δky (8)

which is the final result for the structure of fluxes in quasilinear
models with an exact linear solver. Each term in the sum over
ky is comprised of four parts, two of which are obtained from
linear simulations, and two of which must be prescribed. The
two linearly determined quantities are the adopted binormal
grid spacing Δky and the linear weight, WL

s,ky
. The two quanti-

ties in need of prescription are the grid-independent potentials
〈|δφ̂ky |2〉x,θ,t/Δky, calculated by the quasilinear saturation rule,
and the QLA function, Λs,ky .

The flux calculation for the fast model type is similar to
equation (8), however as they solve a simplified version of
the linear gyrokinetic system, some additional sources of error
are incurred due to their approximate calculation of the linear
response. These errors can enter through the linear weights
and through linear quantities needed in the saturation rule,
typically the growth rate of the dominant mode.

Note that the discussion and derivations in this section
thus far hold completely analogously for the particle flux Γs

and momentum flux Πs, by simply substituting the pressure
fluctuations δps for the density fluctuations δns or velocity
fluctuations δvs respectively in equation (1).

3. Simulation database

Normalising quantities in this work are given in SI units.
These normalisations are the deuterium mass mD, the electron
temperature Te, the electron density ne, the tokamak minor
radius a and the effective magnetic field Bunit, defined by
equation (3). The reference gyroradius is therefore ρunit =√

mDTe/eBunit, with ρ∗ = ρunit/a, and the deuterium sound
speed is cs =

√
Te/mD. Other useful normalisations include

those of frequency cs/a, particle flux ΓGBD = ρ2
∗necs, energy
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Table 1. Details of the 43 nonlinear CGYRO simulations that form the database. Note that the labels in the second column correspond with
those in figure 13(c), used for discerning the cases displayed in figures 13(a) and (b), 17 and 18.

Varied parameter Values (label) Fixed Isotopes simulated

— (GA-std) — (a) — H, D, T
a/LTi = a/LTe 1.5 (b), 2.25 (c), 3.5 (d) — H, D, T
a/Ln 2.0 (e), 3.0 (f) — H, D, T
ŝ 0.25 (g), 0.5 (h), 1.5 (i) ŝ/w = 1/4 D
(a/cs)νee 0.01 (j) — H, D, T
(a/cs)νee 1.0 (k) — D
Ti/Te 0.5 (l), 1.5 (m) — D
q 1.5 (n), 2.5 (o) — D
κ 1.25 (p), 1.5 (q), 2.0 (r) — D
Δ −0.125 (s), −0.25 (t), −0.5 (u) — D
r0/R0 1/4 (v), 1/12 (w) — D
(a/cs)νee 0.01 (x) a/Ln = 3.0 H, D, T
(a/cs)νee 0.05 (y) a/Ln = 3.0 H, T
(a/cs)νee 1.0 (z) a/Ln = 3.0 D

flux QGBD = ρ2
∗neTecs and the electrostatic potential φunit =

ρ∗Te/e = Bunitρ
2
unit

(
cs/a

)
.

A database of 43 nonlinear gyrokinetic simulations was
generated using CGYRO [9]. The database is primarily cen-
tred around the GA-std case, defined by a/LTi = a/LTe = 3.0,
a/Ln = 1.0, Ti/Te = 1.0, ŝ = 1.0, q = 2.0,

(
a/cs

)
νee = 0.1

and circular Miller flux-surface geometry with r0/R0 = 1/6,
for tokamak major radius R0. Definitions of equilibrium geom-
etry quantities correspond to those found in [46]. Kinetic elec-
trons and a single ion species are used for all cases. The
three isotopes that have been simulated are H, D and T, with
mi/mD values of 0.5, 1.0 and 1.5 respectively. No rotation
is included. All simulations are predominantly electrostatic,
however include δA‖ fluctuations with a small plasma beta of
βe,unit = 0.05% to allow for an increased time-step with negli-
gible effect on the fluxes [9]. Additional parameters considered
include the elongation κ and the Shafranov shift Δ = dR0/dr,
andw is the box size integer which relates the radial and binor-
mal domains, Lx = Lyw/(2πŝ). Changes in temperature gra-
dient scale lengths were kept constant between the ions and
electrons

(
a/LTi = a/LTe

)
. In table 1, the tokamak parame-

ters that differ from the GA-std baseline are shown for the
database.

The resolutions used in this work for the nonlinear simu-
lations are Ny = 40 binormal modes, Nx = 224 radial modes,
Nθ = 32 parallel grid-points, Nξ = 16 pitch-angle grid-points
and Nu = 8 energy grid-points. The density of binormal modes
is greater than that typically used in studies of similar cases
[13], as it was found during convergence tests that this lower
resolution can cause fluxes to be under-predicted. The box size
integer w has a value of 4 for all simulations except those
changing the magnetic shear from its baseline value of ŝ = 1.
For these cases, the box length integer was also changed so
as to keep ŝ/w constant and thus the radial domain length
unchanged. All simulations were conducted at the ion scale up
to kyρi = 1.0, where ρi =

√
mi/mDρunit, to keep the radial and

binormal domains constant relative to the main ion gyroradius.

This binormal grid set-up was also used for the quasilinear
model simulations of TGLF and QuaLiKiz shown in figure 1.
Finite aspect-ratio Miller geometry was used for all simula-
tions other than those of QuaLiKiz, which used large aspect-
ratio circular geometry.

Nonlinear simulations were given sufficient time to satu-
rate, running to at least (cs/a)τ > 1000, where τ is the total
simulation time. Time averages of fluctuating data were per-
formed by taking three separate measurements with consecu-
tive time-windows of size 0.28τ between 0.16τ and τ . From
these three measurements a mean and standard deviation were
calculated for the final result. These windows were chosen
to avoid the initial linear regime of the simulations, and to
provide a representative standard deviation of the statistical
fluctuations. Unless otherwise noted, all error bars shown
in this work are the standard deviations obtained from this
method.

For each nonlinear case 39 linear simulations were also
conducted, corresponding to the 39 non-zero binormal modes
present in their respective nonlinear simulations. An altered
radial domain was used with Nx = 128 and w = 1, due to
the difference in grid requirements for convergence between
nonlinear and linear runs.

A single nonlinear simulation of the GA-std case in D was
repeated with Nx = 896 keeping w = 4, for use in figure 7.
This extended domain case plays no other part in the work.

Six additional linear simulations were also performed scan-
ning over relative concentrations of D and T in mixed DT plas-
mas for the GA-std and a/Ln = 3.0 cases in section 5.5.2. The
values simulated are nD/ne = {0.25, 0.5, 0.75}, with nT/ne =
1 − nD/ne.

4. Model comparison and isotope scaling
diagnosis

In this section, the results from the CGYRO database are com-
pared with those obtained from CGYRO-SAT1, TGLF-SAT1

5
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Figure 2. Turbulent ion energy flux against isotope mass for the GA-std case (a) and the a/Ln = 3.0 case (b), for NL CGYRO (black),
CGYRO-SAT1 (red), TGLF-SAT1 (blue), QuaLiKiz-qlk (yellow) and TGLF-SAT2 (green). Note the positive isotope scaling observed in
both cases for the three fast quasilinear models, and the difference between the CGYRO-SAT1 and the TGLF-SAT1 results, originating
solely from a difference in linear solver.

Figure 3. NL CGYRO ion flux components against wavenumber normalised to the main ion gyroradius kyρi for the a/Ln = 3.0 case in H, D
and T (a). In (b), the result of applying the αA metric at each kyρi is shown for the four models, as well as the value that would be seen if the
fluxes followed gyroBohm scaling (αA = 0.5). The error bars shown for all models in (b) are the uncertainties in the fitted parameter αA.

and QuaLiKiz-qlk4. This is done to observe from where in the
nonlinear gyrokinetic data the non-trivial isotope scaling orig-
inates, as per the flux breakdown in equation (8), as well as
to identify why the current reduced models are not reproduc-
ing the NL CGYRO results. As an example case this section
will focus on the three a/Ln = 3.0 simulations, due to the
anti-gyroBohm scaling present in the fluxes.

To analyse the isotope scaling of these models the metric
αA is introduced, such that for flux data in H, D and T, one

4 The results of TGLF-SAT2 are included in figure 2 only. The behaviour of
SAT2 with isotope mass is very similar to that of SAT1, as demonstrated by the
similarities in scaling metric between the fluxes of TGLF-SAT1 and TGLF-
SAT2 in figure 2. This is in part due to the lack of consideration of isotopes
other than deuterium in their development, as well as the similarity of their sat-
urated potentials’ functional form. Beyond figure 2 therefore only the results of
SAT1 are shown, with any conclusions regarding the isotope scaling of SAT1
also applicable to SAT2.

may fit the data with a function of the form

f (A; CA,αA) = CAAαA (9)

where the values of CA and αA are found via best fit to the
data points. An advantage to this metric is that one number
αA describes the isotope scaling for three isotopes, whereas
previously used metrics [11, 17] have been based around tak-
ing the difference between two fluxes, and thus at least two
numbers have been needed for an approximately equivalent
description. The values of αA are also intuitive: if one mea-
sures an αA value of αA ≈ 0.5, one knows that the case follows
approximate gyroBohm scaling. If one measures αA ≈ 0.0,
then the fluxes do not vary with isotope, and for αA < 0.0, the
case exhibits anti-gyroBohm scaling. Outside of these limiting
cases, one can quantify to what degree the case diverges from
gyroBohm scaling: for two hypothetical cases of αA = 0.4 and

6
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Figure 4. CGYRO ion energy QLA function against kyρi for the a/Ln = 3.0 case in H, D and T (a). In (b), the result of applying the αA

metric at each ky is shown, including the reference value one would expect if gyroBohm scaling were followed (αA = 0.0). This value is
expected as the scaling of the linear and nonlinear weights is the same, W L, W NL ∝ e2necs/T ∝ A−0.5, and thus their ratio cancels any
predicted scaling dependence. The results of the quasilinear models are not shown as their QLA functions are taken to be constant, and thus
exhibit no scaling (αA = 0.0). The error bars shown for the NL CGYRO data in (b) are the uncertainties in the fitted parameter αA.

Figure 5. NL CGYRO squared potential magnitudes against kyρi for the a/Ln = 3.0 case in H, D and T (a). In (b), the result of applying the
αA metric at each ky is shown, including the reference value one would expect if gyroBohm scaling were followed (αA = 1.0), originating
from the ordering assumption δφ2 ∝ ρ2

∗(T/e)2 ∝ A. The error bars shown for all models in (b) are the uncertainties in the fitted parameter αA.

αA = 0.1, then both exhibit positive scaling, however the sec-
ond ‘deviates more’ from gyroBohm than the first, by a defined
quantitative amount.

Figure 2 shows the total ion energy fluxes for the GA-std
case and the a/Ln = 3.0 case against A for the four models,
as well as TGLF-SAT2. Fitted to each data set is the result
of the metric fit with the measured values of αA displayed
in the legend. Positive isotope scaling is seen in the GA-std
case (figure 2(a)) for all five models, as one would expect
for ITG-dominated turbulence representative of the quasilin-
ear models’ training datasets5. QuaLiKiz remains close to the
gyroBohm result.

5 The difference in magnitude between NL CGYRO and the quasilinear mod-
els is due to the increase in the NL CGYRO fluxes compared to previous
datasets [1, 31], from the finer grid-resolutions used in this work.

For the a/Ln = 3.0 case, anti-gyroBohm scaling is
observed in the NL CGYRO data, whereas the three fast quasi-
linear models all continue to exhibit positive isotope scal-
ing, αA > 0. For CGYRO-SAT1 one finds α ≈ 0.0, implying
that the use of the linear solver of CGYRO compared with
the reduced linear solver of TGLF is having an influence on
the isotope scaling. As an exact linear solver type model, the
resulting difference in isotope scaling between CGYRO-SAT1
and NL CGYRO can only come from either the QLA function,
which is assumed to be constant in SAT1, and/or the functional
form of the saturation rule.

To probe this discrepancy further, the decomposition of the
total fluxes into their flux components Qs,ky for the a/Ln = 3.0
case is shown in figure 3(a). Here the flux components for
NL CGYRO are plotted against kyρi for the three isotope sim-
ulations, such that they have a shared ky-axis. To quantify
the isotope scaling of these flux components the isotope scal-
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ing metric αA can again be used, however now as a function
of kyρi, to quantify how the scaling of the flux components
varies across the spectrum. Hence for each value of kyρi, the
three flux component data points are fitted using equation (9)
with the resulting αA measurements forming an ‘αA line’, as
shown in black in figure 3(b). This exercise is repeated for
CGYRO-SAT1, TGLF-SAT1 and QuaLiKiz-qlk. Also shown
in figure 3(b) is a reference line at αA = 0.5, corresponding to
the expected result if the flux components followed gyroBohm
scaling.

For the NL CGYRO αA line, the isotope scaling is not uni-
form across the spectrum as one may expect, but instead two
key features can be observed: an ‘offset’ from the gyroBohm
value, most obviously seen in the region of kyρi > 0.3, and a
variation in the isotope scaling with kyρi between 0.0 < kyρi <
0.3. It is also in this low ky region that the flux component mag-
nitudes are largest, and hence contribute most to the total flux
and its isotope scaling. Upon consideration of the other cases
in the database these features can be shown to be general, with
differing offsets and degrees of steepness in the low ky region.
Because the larger kyρi region’s flux contribution is essentially
negligible in comparison, figure 3 implies that to accurately
capture the isotope scaling of the total flux, one must capture
the shape of the flux component spectrum around the peak, as
well as the isotope scaling characteristics observed in the low
ky region of the NL CGYRO data of figure 3(b).

Considering now the constituents of the flux components
relevant to reduced models, as per equation (8), the two quan-
tities in need of prescription are the QLA functions and the
potentials. The results of analogous αA fitting exercises are
shown in figures 4 and 5 for the ion energy QLA function and
the saturated potentials respectively, along with their reference
lines expected from gyroBohm scaling arguments. Looking at
the αA line of the QLA function in figure 4(b), a small vari-
ation of αA ∼ −0.1 is seen in the region of low ky. Reduced
models are not shown on this plot as they all assume the QLA
function to be exactly 1, and so would be simply aligned with
the gyroBohm-predicted result of αA = 0.0.

While there is some non-trivial isotope scaling in the low
ky region of the QLA function, this can be seen to be rela-
tively small when compared to the difference between the NL
CGYRO result and the gyroBohm-predicted scaling of the sat-
urated potentials, shown in figure 5(b). The crucial variation in
isotope scaling in the low ky region observed in the flux com-
ponents is also seen to originate here. Hence for this case, the
deviation from gyroBohm scaling of total fluxes in nonlinear
gyrokinetics originates primarily in the saturated potentials,
specifically in the region of low ky. Upon consideration of the
database more broadly this can be shown to be a general result
for the dataset.

Turning to the results of the current quasilinear models in
figure 5(b), TGLF-SAT1 and CGYRO-SAT1 both appear to
recreate a portion of the isotope scaling variation in the low
ky region, indicating a reasonably accurate spectral shape for
SAT1. This implies that it is their offsets that are primarily
responsible for the total flux scalings seen in figure 2(b), with
the different values attributed to the difference in linear solver.

QuaLiKiz-qlk on the other hand does not exhibit this con-
tinuous variation, due to the comparatively simple functional
form of its spectral shape. The majority of the scaling in the
higher ky region can also be seen to approximately lie at the
gyroBohm level for the potentials. These results indicate that
neither SAT1 or the QuaLiKiz saturation rule are fully cap-
turing the relevant physics that describes the variation in the
saturated potentials with isotope, whether as a consequence of
missing the variation in the low ky region, the correct offset
from the gyroBohm result, or a combination of the two.

To summarise the findings of this section, then in order for
quasilinear models to capture the isotope scaling of turbulent
fluxes seen in nonlinear gyrokinetics, one must have a satu-
ration rule that accurately predicts the spectral shape of the
potentials around the peak, as well as captures theαA line char-
acteristics observed in figure 5(b). The model must therefore
have sufficient functional complexity to capture the variation
of the scaling with ky in the low ky region, and an accurate pre-
diction of the offset. A new saturation rule, derived in light of
these observations, will now be considered.

5. New saturation rule

This section details the construction of the new saturation rule
SAT3, which will for the first time recreate the properties of
the isotope scaling seen in the previous section. A summary of
the model is presented in section 5.7.

In the calculation of quasilinear fluxes, saturation rules are
only strictly required to predict the 1D grid-independent sat-
urated potentials, 〈|δφ̂ky |2〉x,θ,t/Δky, however in the interest of
generality the two dimensional spectrum in ky and kx will first
be considered, 〈|δφ̂kx ,ky |2〉θ,t. One can obtain the 1D poten-
tials needed from the 2D spectrum simply by summing the
potentials over kx, as in equation (5).

5.1. 2D spectrum

For all cases in the database observed and at all values of ky,
some common features exist regarding the 2D potential slices
in kx, a representative example of which is shown in figure 6.
All spectra considered are approximately even functions about
a single peaked value, and tend to 0 for large |kx|. Due to the
absence of any symmetry-breaking effects [47] in the database,
the spectra are always observed to peak at kx = 0. It has been
shown however that in at least the case of non-zero E × B shear
a shift in the peak can be produced [48–50], and so a non-zero
peak position K(ky) is considered in the following.

The foregoing observations can all be accommodated into
a functional description of the spectra by Taylor expanding the
inverse of the potentials with the form

1〈∣∣∣δφ̂kx ,ky

∣∣∣2〉
θ,t

= C0

(
ky

)
+
(
kx − K

(
ky

))2
C1

(
ky

)

+
(
kx − K

(
ky

))4
C2
(
ky

)
+ · · · (10)

where Ci(ky) are ky-dependent Taylor coefficients yet to be
determined. Evaluating equation (10) at kx = K, one finds
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Figure 6. Example of a kx-slice of the 2D potential magnitude
spectrum, exhibiting the common features of an even, singularly
peaked function with vanishing limits. Taken from the GA-std case
in D, for kyρunit = 10/39 = 0.256.

C0(ky) = 1/〈|δφ̂kx=K,ky |2〉θ,t, the inverse of the potentials at the
peak. By truncating the expansion at O(k4

x), taking out a fac-
tor of C0, relabelling the coefficients Ci/C0 → Ci and inverting
the equation one obtains〈∣∣∣δφ̂kx ,ky

∣∣∣2〉
θ,t

=

〈∣∣∣δφ̂kx=K,ky

∣∣∣2〉
θ,t

1 + C1
(
ky

)(
kx − K

(
ky

))2
+ C2

(
ky

)(
kx − K

(
ky

))4 .

(11)

The physical interpretation of the coefficients C1, C2 and K
can be determined from considerations of the first three kx

moments of the 2D spectrum. The zeroth order moment is
simply the 1D potential, given by equation (5). The first and
second order moments define the mean value of kx

(
〈kx〉

)
and the radial width of the spectrum

(
σky =

√
〈k2

x〉 − 〈kx〉2
)

respectively,

〈kx〉 =

∑
kx

kx

〈∣∣∣δφ̂kx ,ky

∣∣∣2〉
θ,t〈∣∣∣δφ̂ky

∣∣∣2〉
x,θ,t

(12)

σ2
ky
=

∑
kx

(
kx − 〈kx〉

)2
〈∣∣∣δφ̂kx ,ky

∣∣∣2〉
θ,t〈∣∣∣δφ̂ky

∣∣∣2〉
x,θ,t

. (13)

By approximating the summations over kx in equations (5),
(12) and (13) as integrals via

∑b
x=a f (xi)Δx ≈

∫ b
a f (x)dx and

using the expression given by equation (11) for the 2D poten-
tial spectrum, one can evaluate the resulting integrals over kx

analytically (appendix E). Assuming a sufficiently small Δkx

and a sufficiently large limit, one can show

K = 〈kx〉,

C2
(
ky

)
=

1
σ4

ky

,

C1
(
ky

)
=

⎡
⎢⎢⎢⎣
⎛
⎜⎜⎝
π

〈∣∣∣δφ̂kx=〈kx〉,ky

∣∣∣2〉
θ,t

σky

Δkx

〈∣∣∣δφ̂ky

∣∣∣2〉
x,θ,t

⎞
⎟⎟⎠

2

− 2

⎤
⎥⎥⎥⎦ 1
σ2

ky

(14)

and thus equation (11) becomes

〈∣∣∣δφ̂kx ,ky

∣∣∣2〉
θ,t

=

〈∣∣∣δφ̂kx=〈kx〉,ky

∣∣∣2〉
θ,t

1 +

⎡
⎢⎣
⎛
⎝π

〈∣∣∣δφ̂kx=〈kx 〉,ky

∣∣∣2
〉

θ,t
σky

Δkx

〈
|δφ̂ky |2

〉
x,θ,t

⎞
⎠

2

− 2

⎤
⎥⎦( kx−〈kx〉

σky

)2
+
(

kx−〈kx〉
σky

)4

. (15)

The prefactor of the k2
x term can be interpreted in relation

to the normalised fall-off from the spectrum peak. Evaluating
equation (15) at kx = 〈kx〉 ± σky , one finds:

⎛
⎜⎜⎝
π

〈∣∣∣δφ̂kx=〈kx〉,ky

∣∣∣2〉
θ,t

σky

Δkx

〈∣∣∣δφ̂ky

∣∣∣2〉
x,θ,t

⎞
⎟⎟⎠

2

=

〈∣∣∣δφ̂kx=〈kx〉,ky

∣∣∣2〉
θ,t〈∣∣∣δφ̂kx=〈kx〉±σky ,ky

∣∣∣2〉
θ,t

.

(16)
Equation (15) is similar to that used in TGLF’s SAT1 and
SAT2 [1, 31], in which the potentials are modelled as a squared

Lorentzian, which assumes σ2
ky

C1

(
ky

)
= 2 for all ky in all

cases6. Equation (15) generalises this assumption, retaining a
degree of freedom in the description of the fall-off of the spec-

trum. The measured NL CGYRO values of
√
σ2

ky
C1
(
ky

)
for

the GA-standard case in D are shown in figure 7(a) exhibiting
strong variation against ky, particularly in the low ky region,
indicating the value of this generalisation.

6 The values of σky for SAT1 and SAT2 are obtained via best-fit close to the
peak of the data rather than calculation, and so can be considered an ‘effective
width’ if the spectrum were a squared Lorentzian.
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Figure 7. (a) Measured values of
√

σ2
ky

C1 against kyρunit for the radially-extended (Nx = 896) GA-standard case simulation in D, with√
σ2

ky
C1 =

√
2 marked in red, corresponding to the squared Lorentzian assumption. (b) An example of equation (15) (red) applied to NL

CGYRO data (blue) for kyρunit = 5/39 = 0.128 of the radially-extended GA-std case, plotted against kx/σky . The squared Lorentzian model
with the spectral width taken from the raw data is shown in green. (c) The same spectrum as (b) shown on a logarithmic y-axis, with the
predicted scaling regime limits marked.

The quality of adherence to the data for equation (15)
is demonstrated in figures 7(b) and (c), using the radially-
extended GA-std D simulation. Calculating the moments from
the raw data, it can be observed that the functional form
holds extremely well over a wide domain and many orders of
magnitude in range. To explore the different cascade regimes
predicted by this equation, the simplifying notation here is
introduced such that equation (15) is written:

P(X) =
P0

1 + CX2 + X4
(17)

where P = 〈|δφ̂kx ,ky |2〉θ,t, X =
∣∣(kx − 〈kx〉

)
/σky

∣∣,
P0 = 〈|δφ̂kx=〈kx〉,ky |2〉θ,t and C = σ2

ky
C1
(
ky

)
. Assuming√

C � 1, three distinct regions of scaling are predicted7:

P ≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P0 X  1√
C

P0

CX2

1√
C

 X 
√

C

P0

X4
X �

√
C

(18)

which are seen to be present in the data, as evidenced by the
model-data agreement between the limiting regions marked in
figure 7(c).

Having modelled the kx-dependence for the spectrum, the
ky-dependence will now be considered. Four as-yet unmod-
elled ky-dependent quantities are present in equation (15): the
1D potential 〈|δφ̂ky |2〉x,θ,t, the spectrum peak 〈|δφ̂kx=〈kx 〉,ky |2〉θ,t,
the peak position 〈kx〉 and the radial spectral widthσky . In order
to have a full 2D potential model, one must uniquely constrain
these quantities by providing four equations describing them.
This is the chosen method of TGLF SAT1 [31], for which one
of the four equations is the squared Lorentzian assumption.
However, flux calculations ultimately only use the 1D poten-
tial, 〈|δφ̂ky |2〉x,θ,t, and so technically this is the only quantity
that needs to be prescribed for a reduced model. This potential

7 As one reduces the value of
√

C to ∼1, and further to
√

C  1, the P0/CX2

scaling is found to be suppressed.

could be modelled directly as a 1D function of ky, such as is
done by QuaLiKiz [51], but attempting to relate the remaining
spectral quantities to one another first can help to establish a
more firm physics basis.

5.2. Saturation equations

5.2.1. Radial spectral width parameterisation. The following
relation was discovered predominantly via empirical experi-
mentation with the database, and describes a seemingly fun-
damental relation between the zeroth radial moment and the
second order radial moment of the 2D spectrum. It is observed
that the zeroth moment is very well modelled by the equation

〈∣∣∣δφ̂ky

∣∣∣2〉
x,θ,t

Δky
= c0σ

c1
ky

(19)

for ky > 0, where c0 and c1 are case-dependent parameters.
When allowing these parameters to be fitted to the NL CGYRO
data, as shown for various cases in figure 8, it can be seen
that the two curves adhere to one another extremely closely8.
Per case, this constitutes only two fitted parameters for 39
data points, rendering there no question of over-fitting. More-
over, the measured value of the exponent c1 is found to be
strongly consistent across cases, as displayed in figure 9, with
an approximate value of c1 = −2.42 for the database.

This observation is perhaps the most important point of this
work, as it appears to describe a general and robust relation
between two hypothetically-independent moments of the 2D
potential spectrum. Somewhat counter-intuitively it suggests
that the area under the radial spectrum, related to the zeroth
moment, is independent of its peak value, and instead only
depends on the width. This observed relation is understood to
be novel, and a physical mechanism for why this is the case is
yet to be put forward. It is this observation that forms the core
of the new saturation rule.

8 For reference, example data for σkyρunit corresponding to the case of
figure 8(a) is shown in figure 10.
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Figure 8. (a) The model of equation (19) (black) applied to the NL CGYRO grid-independent potentials of the GA-standard case in D (red),
allowing the two parameters to be fitted to the data. (b) Further examples of equation (19), for the a/Ln = 3.0, νee(a/cs) = 0.01 case in H, D
and T.

Figure 9. Measured values of the c1 parameter across all nonlinear
simulations in the database. The error bars shown are the
uncertainties in the fitted parameter c1.

5.2.2. Parameter considerations. Given sufficient ability to
model the case-dependent values of c0 and c1, equation (19)
provides one of the four equations necessary to uniquely
define the 2D potential spectrum. However, for every parame-
ter introduced by such equations, a linear-physics based model
for its case-dependent calculation will be required. Because
equation (19) implies that the 1D potential is independent of
the peak spectrum value and 〈kx〉, the choice is made in this
work to model σky only. Doing so will leave the 2D spectrum
with an arbitrary peak value and location, but will have both
its zeroth and second moments defined.

5.2.3. Model for the radial spectral width. To inform the
model for σky , a representative plot is shown in figure 10.
Equation (19) implies two important qualities of σky : firstly,
that the characteristic peak observed in the 1D potentials
should correspond to a minimum in σky at the same posi-
tion in ky, which is indeed seen, and is denoted kmin. This is
the first time this observation has been made, in part due to
the well-resolved fluctuation averages obtained from extended

Figure 10. Example of σkyρunit data obtained for the GA-standard
case in D (blue). In red is the model for the widths given by
equation (20), with the parameters a, b and c fitted to the data. Also
marked are kmin and kP, the positions of the minimum and piecewise
connection point respectively.

simulation times and the increased density of binormal grid-
points used in the database. The second quality is that, because
the values of the potentials away from the peak are com-
paratively small and contribute negligibly to the overall flux,
the accurate modelling of σky in this higher ky region is less
fundamental to successful flux prediction.

To incorporate the observed minimum into the model a
quadratic polynomial is used. A quadratic over the entire ky

domain capturing this minimum can however become too large
in the middle ky region, and so a piecewise function is con-
structed, with a first-order polynomial used past a certain point,
kP. This is taken to be kP = 2kmin. The two regions are con-
nected by imposing continuity of the function, as well as
continuity of the gradient, at ky = kP:

σky =

{
ak2

y + bky + c 0 < ky � kP

(2akP + b)ky + c − ak2
P kP < ky < ∞

(20)
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Figure 11. Demonstration of the calculation of kmax and γmax from a
linear growth rate spectrum, here for the a/Ln = 3.0 case in H.
Starting from γky (solid black), one divides this spectrum by ky to
obtain γky/ky (dashed green). The maximum of this curve is then
found via quadratic interpolation, with the ky value at which this
occurs being defined as kmax. Returning then to γky , the value of this
curve at kmax is defined as γmax.

Figure 12. Fitting exercise of the two quantities modelled as
proportional to kmax across the NL CGYRO database: kmin (black
circles), and c/b (red squares), used in defining the model for the
spectral shape σky/σky=k0 (equation (23)).

where a, b and c are coefficients to be modelled. Here the
function is assumed to extend to infinity.

By combining equations (19) and (20), one obtains an
equation for the 1D potentials solely as a function of ky and
the parameters {c0, c1, a, b, c}. To make progress in modelling
these parameters, they shall first be defined in terms of more
physically meaningful quantities.

5.3. Recasting the coefficients

The exponent c1 is dimensionless and has already been fitted
to the nonlinear database in figure 9, and so does not need to
be recast. An expression for c0 can be obtained by evaluating

equation (19) at some given point k0, to be determined:

c0 =

〈∣∣∣δφ̂ky=k0

∣∣∣2〉
x,θ,t

Δky

(
1

σky=k0

)c1

(21)

giving the overall saturation model as〈∣∣∣δφ̂ky

∣∣∣2〉
x,θ,t

Δky
=

〈∣∣∣δφ̂ky=k0

∣∣∣2〉
x,θ,t

Δky

(
σky

σky=k0

)c1

. (22)

Equation (22) expresses the 1D potentials as a product of
their magnitude at a given point k0, 〈|δφ̂ky=k0 |2〉x,θ,t/Δky and a
ky-dependent function describing the shape of the spectrum,(
σky/σky=k0

)c1 . These quantities are denoted the saturation
level and the spectral shape respectively. The variation with ky

observed in the potential αA plot (figure 5(b)) comes entirely
from the spectral shape, with the offset mainly attributed to the
saturation level.

As the spectral widths appear only in the above normalised
form for the saturation model, a reduction in the degrees of
freedom is provided. Assuming 0 < k0 � kP, one can divide
through by one of the expansion coefficients in the spectral
widths, chosen here to be b:

σky

σky=k0

=

⎧⎪⎨
⎪⎩

( a
b

k2
y + ky +

c
b

)
/
( a

b
k2

0 + k0 +
c
b

)
0 < ky � kP

((
2

a
b

kP + 1
)

ky +
c
b
− a

b
k2

P

)
/
( a

b
k2

0 + k0 +
c
b

)
kP < ky < ∞

(23)
and so the number of unknown coefficients reduces from 3 to 2,
now requiring only the ratios a/b and c/b. A more transparent
physical interpretation of a/b can be obtained by considering
the definition of the minimum of the spectral widths. Imposing
a minimum at kmin in equation (20), one finds

dσky

dky

∣∣∣∣
ky=kmin

= 2akmin + b = 0 (24)

and therefore a/b = −1/(2kmin). With the coefficients now
recast, this leaves three quantities to be modelled, for a given
choice of k0: kmin, c/b, and 〈|δφ̂ky=k0 |2〉x,θ,t/Δky.

Note, as of yet no appeals to linear physics have been made,
the model derived thus far has come solely from considera-
tions of nonlinear gyrokinetic spectra. By taking this bottom-
up approach, the validity of the underlying functional forms of
the saturation rule equations is guaranteed, up to the hypotheti-
cal quality observed when the parameters are fitted to the data.
This foundation implies that as linear physics based approx-
imations for c1 and the three quantities above improve, the
model will tend towards being as accurate as when fitted in
this way.

5.4. Approximating the parameters from linear physics
quantities

For TGLF’s saturation rules SAT1 and SAT2, both of which
are based on the saturation mechanism of zonal mixing, it is
argued that the linear growth of the present plasma instabil-
ities γky is damped by the competing influence of the zonal
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Figure 13. Potential magnitudes evaluated at 0.6kmin against a combination of linear quantities ((a) and (b)). Subfigure (c) displays the
marker type used for each case, with the labels corresponding to those shown in table 1. Data points of the same colour connected by a line
indicate simulations of the same equilibrium but of different isotopes. In (a), the cases with a dominant ITG instability scale approximately
with B2

unitγ
2
max/k5

max, however for those that are TEM-dominated (cases f, x, y and z, shown in (b)), a scaling of B2
unitγ

2
maxρunit/k4

max is found to
be in much better agreement, indicating a difference in saturation level between the two mode types.

Figure 14. Ratios of the linear electron energy weight magnitudes
to the linear ion energy weight magnitudes |WL

e,ky
/WL

i,ky
| against

ky/kmax for the database. Cases for which the dominant linear
instability is the TEM are in blue, and those with ITG are shown in
red. Note the disparate grouping between the mode types.

flow mixing kyVZF, where VZF is the zonal flow velocity. The
wavenumber at which the drive-to-damping ratio of these two
processes is maximised therefore provides an estimate of the
location of the peak of the turbulent transport, as well as a
characteristic length scale of the nonlinear saturation from
the linear system. This wavenumber is denoted kmax, and is
defined by

d
dky

(
γky

ky

)∣∣∣∣
ky=kmax

= 0 (25)

with the corresponding growth rate γmax providing an estimate
of the characteristic time scale of the saturation

γmax = γky=kmax . (26)

A graphical example of the determination of these quantities
for a given equilibrium is shown in figure 11.

The new saturation rule parameters kmin, c/b, and
〈|δφ̂ky=k0 |2〉x,θ,t/Δky will now be modelled entirely from linear

physics, by assuming proportionality to the dimensionally-
consistent combination of the characteristic linear quantities
γmax and kmax, as well as the equilibrium quantity Bunit.

Considering first the dimensionality of b and c individu-
ally from equation (20), one finds b to be dimensionless and
c to have dimensions of ky, giving c/b dimensions of ky. The
quantity kmin also has dimensions of ky, and so per the method
above these are both modelled as proportional to kmax. The
database-fitting exercise is carried out in figure 12, resulting
in c/b = −0.751kmax, kmin = 0.685kmax.

For the saturation level 〈|δφ̂ky=k0 |2〉x,θ,t/Δky, the value of
k0 is chosen to be k0 = 0.6kmin, as it is at this position that
the model scatter for the following is found to be minimised.
The dimensionally-consistent combination of linear quantities
for the saturation level is ∝B2

unitγ
2
max/k5

max. Note that this is
a similar form to that derived from considerations of balance
between linear growth and turbulent E × B advection [52].

When tested against the database, B2
unitγ

2
max/k5

max is found to
be a good model for the cases in which the dominant mode is
the ITG (figure 13(a)). However, for those with TEMs present,
B2

unitγ
2
max/k4

max in dimensionless units is found to be in much
better agreement, indicating a difference in physical saturation
between the two mode types (figure 13(b)). The TEM satura-
tion in dimensional units is therefore assumed proportional to
γ2

maxρunitB2
unit/k4

max. It is here explicitly that a large cause of the
difference in isotope scaling between the two mode types can
be seen, and the reason why previous saturation models have
failed to recreate the isotope scalings seen in TEM-dominated
turbulence.

To explain why this factor of kmaxρunit affects the isotope
scaling, consider first this quantity in a system with adia-
batic electrons. In such a situation, all quantities are exactly
gyroBohm scaled, such that for three linear simulations in H,
D and T the value of kmax occurs at the same value of kyρi.
Because ρi ∝

√
A, one finds in the adiabatic electron case that

kmax ∝ A−0.5. In the simulations of this work, for which kinetic
electrons have been used, the scaling of kmax with A generally
becomes slightly more positive at around αA ≈ −0.3, which
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is sufficient to capture the differences between the isotope
scalings of the two mode types’ saturation levels.

The above kinetic electron physics will be captured in the
saturation model by using two different saturation levels for
the ITG and TEM, such that one has 12.7B2

unitγ
2
maxρunit/k4

max for
the TEM, and 3.3B2

unitγ
2
max/k5

max for the ITG, where the propor-
tionality constants are taken from figure 13. In order to decide
which saturation level to use for a given simulation, the linear
physics must be considered to reveal whether the turbulence
is ITG- or TEM-dominated. For SAT3, the ratio between the
magnitude of the linear energy weights of the electrons and
ions is used, |WL

e,ky
|/|WL

i,ky
| = |WL

e,ky
/WL

i,ky
|, due to the disparate

behaviour in the ratio of the species’ energy fluxes for the two
mode types [53]. For ion-dominated turbulence, in which the
electron energy fluxes are comparatively small, one expects
the ratio of |WL

e,ky
/WL

i,ky
| to also be small. When in the regime

of TEM turbulence however, the electron turbulent energy flux

increases to approximately the level of the ions. The ratio of
|WL

e,ky
/WL

i,ky
| can be calculated from linear physics, and so rep-

resents a useful metric to select between the two saturation
levels. If new classes of modes were present, this aspect of the
saturation rule would likely need to be revisited and extended
further.

A plot of |WL
e,ky

/WL
i,ky

| for all cases in the database against
ky/kmax is shown in figure 14, with ITG cases in red and TEM
cases in blue. It can be seen that the TEM cases cluster around
a value of |WL

e,ky
/WL

i,ky
| ≈ 1, whereas ITG cases are mainly

grouped around 0.4.
A transition function is now defined for the two modes, as

a function of the weight ratio evaluated at ky = kmax. At values
below |WL

e,ky
/WL

i,ky
|ky=kmax = 0.8 the ITG scaling is used, and

at values of 1 and above the TEM scaling is used, with a first-
order polynomial in-between to connect the two regions. The
mode transition function M(x; x1, x2, y1, y2) is introduced such
that

M(x; x1, x2, y1, y2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y1 x � x1

y1
x2 − x
x2 − x1

+ y2
x − x1

x2 − x1
x1 < x � x2

y2 x2 < x

(27)

which allows the potentials evaluated at k0 to be written〈∣∣∣δφ̂ky=k0

∣∣∣2〉
x,θ,t

Δky
= M

⎛
⎝
∣∣∣∣∣W

L
e,ky

WL
i,ky

∣∣∣∣∣
ky=kmax

; 0.8, 1.0, 3.3
γ2

max

k5
max

, 12.7
γ2

maxρunit

k4
max

⎞
⎠B2

unit. (28)

It can be shown that measuring the sign of the linear fre-
quency at a position in ky can also be used to differentiate
between the two mode types, however the above was chosen
to attempt to avoid discontinuous changes in flux at the point
of a mode transition.

5.5. Model extensions

5.5.1. E × B shear. Modern quasilinear models are required
to include the effects of equilibrium E × B shear, a mechanism
that can both generate turbulent momentum transport, as well
as suppress turbulence in other channels. This effect is incor-
porated through an equilibrium input parameter, the shearing
rate γE, and the consequences of non-zero E × B shear must
be explicitly defined in the saturation rule. Although no such
cases were considered in the database, one can simply isolate
the E × B effect of a previous rule and incorporate it into the
new model. Using an apostrophe to denote said previous rule,
taken in this work to be that of TGLF’s SAT2 [1], one defines
the effect of shear F′

s,ky
as the ratio of flux components with

shear to those without

F′
s,ky

(γE) =
Q′

s,ky
(γE)

Q′
s,ky

(γE = 0)
. (29)

The flux components of the new saturation rule are
then obtained simply by multiplying F′

s,ky
by the flux com-

ponents of the new rule without flow shear, Qs,ky (γE) =
F′

s,ky
(γE)Qs,ky (γE = 0). Taking the ratio of the flux components

as opposed to the potentials bypasses any complications aris-
ing from differences in definitions between the two saturation
rules. Looking at TGLF SAT2, one finds

F′
s,ky

(γE) =
W̃L

s,ky ,kx=kx0
/W̃L

s,ky ,kx=0(
1 +

(
αx

kx0
kmodel

x

)σx
)2
(

1 +
(

kx0
kmodel

x

)2
)2 (30)

which is the function incorporated into SAT3. Here W̃L
s,ky ,kx

is the quasilinear weight defined by TGLF, which is
evaluated at a single kx rather than a sum over kx.
The two constants are αx = 1.21 and σx = 2, with kx0 =

0.32ky

(
kmax/ky

)0.7(
γE/γmax

)
and where gxx = |∇x|2.
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kmodel
x =

⎧⎪⎪⎨
⎪⎪⎩

0.76kmax√
gxx(θ = 0)

ky < 0.76kmax

0.76kmax√
gxx(θ = 0)

+
1.22√

gxx(θ = 0)
B(θ = 0)

Bunit

(
ky − 0.76kmax

)
ky � 0.76kmax

(31)

where gxx = |∇x|2.

5.5.2. Mixed plasmas. For all simulations in the database of
this work a pure plasma was used. For generality, quasilinear
models must be able to operate with multiple ion species. The
only aspect of SAT3 that is explicitly affected by this gener-
alisation is the ratio of the magnitude of the linear weights
|WL

e,ky
/WL

i,ky
|, used as an argument in the mode transition func-

tion, as this becomes ambiguously defined in a plasma with
multiple ion species.

This ambiguity is resolved by changing the denomina-
tor of the linear weight ratio to the sum over ion weights,
|WL

e,ky
/WL

i,ky
| → |WL

e,ky
/
∑

iW
L
i,ky

| for ion species i. By conduct-
ing a scan over relative concentrations of D and T in the GA-std
and a/Ln = 3.0 cases linearly (figure 15), this new ratio is
shown to be invariant with relative density and thus recreate
the expected behaviour.

5.6. Quasilinear approximation functions

Having described the saturated potentials, the QLA functions
are now considered, defined in equation (7). In general for elec-
trostatic turbulence there are 3ns of these functions, where ns is
the total number of species present, with one existing for each
combination of the 3 velocity moments and species. Histori-
cally these functions have seen a comparatively small amount
of focus compared to the potentials, and are typically modelled
as a constant [51]. By plotting these functions explicitly from
the CGYRO data, one can determine to what degree a constant
QLA is a reasonable assumption to make.

All cases in this database use kinetic electrons and a single
ion species, giving 6 functions. Of these 6, the two momen-
tum QLA functions are trivially zero, due to there being no
momentum transport in the cases considered, and the two par-
ticle functions are identical, as a consequence of ambipolarity.
This leaves three as non-trivial: the two energy functions for
the ion and electrons, and one of the particle functions.

Plots of these three QLA functions against kyρi are shown in
figure 16 for all cases in the database. The vast majority of the
energy functions for both species have a similar shape across
the spectrum, and most importantly exhibit relatively small
variation in the region where the flux components are largest
(kyρi ∼ 0.2, evidenced in figure 3(a)). A similar description
is seen for the particle function, although with more sporadic

variation in some cases. The assumption that the QLA could
be modelled as constant was found to be a reasonable approxi-
mation for the database, with the constants for the model being
set by minimising the scatter between the NL CGYRO flux
data and the CGYRO-SAT3 flux data. The values of these con-
stants for the electron and ion fluxes were found to be similar,
however were stratified by mode type and moment. These are
ΛΓ

ITG = 1.1,ΛΓ
TEM = ΛQ

TEM = 0.6 andΛQ
ITG = 0.75. To capture

these differences, the QLA functions are expressed in terms of
the mode transition function (equation (27)), such that for the
particle flux

ΛΓ
s,ky

= M

⎛
⎝
∣∣∣∣∣ WL

e,ky∑
iW

L
i,ky

∣∣∣∣∣
ky=kmax

; 0.8, 1.0, 1.1, 0.6

⎞
⎠ (32)

and for the energy flux

ΛQ
s,ky

= M

⎛
⎝
∣∣∣∣∣ WL

e,ky∑
iW

L
i,ky

∣∣∣∣∣
ky=kmax

; 0.8, 1.0, 0.75, 0.6

⎞
⎠. (33)

Any other forms of transport are assumed to have Λs,ky = 0.8.
While a mode-dependent constant remains a reasonable

model for the contribution of the QLA functions to the overall
flux in this database, it is not perfect, missing for example the
isotope scaling seen in figure 4. In future studies more exotic
tokamak equilibria may cause the QLA functions to deviate
further from those seen here, potentially necessitating an effort
to try to predict their shapes from linear physics.

5.7. Summary of new saturation model, SAT3

The entirety of SAT3 is collected here for reference. The fluxes
of the model are constructed via

Qs = 2
∑
ky>0

Λs,ky WL
s,ky

Fs,ky

⎡
⎢⎢⎣
〈∣∣∣δφ̂ky

∣∣∣2〉
x,θ,t

Δky

⎤
⎥⎥⎦Δky (34)

where Λs,ky is the QLA function, WL
s,ky

is the linear weight
for species s, Fs,ky describes the effect of E × B shear,

〈|δφ̂ky |2〉x,θ,t/Δky is the saturated potential, and Δky is the
binormal grid spacing of the simulation. The model for the
saturated potentials is
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Figure 15. Linear energy weight magnitude ratios |WL
e,ky

/
∑

iW
L
i,ky

| for different relative concentrations of D and T against ky/kmax for the
GA-std case (a) and the a/Ln = 3.0 case (b). Note the essential invariance across the spectrum for the different concentrations.

Figure 16. QLA functions for all cases in the database, showing those for (a) ion energy flux, (b) electron energy flux and (c) particle flux.

〈∣∣∣δφ̂ky

∣∣∣2〉
x,θ,t

Δky
= M

⎛
⎝
∣∣∣∣∣ WL

e,ky∑
iW

L
i,ky

∣∣∣∣∣
ky=kmax

; 0.8, 1.0, 3.3
γ2

max

k5
max

, 12.7
γ2

maxρunit

k4
max

⎞
⎠B2

unit

(
σky

σky=k0

)−2.42

(35)

where M is the mode transition function

M(x; x1, x2, y1, y2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y1 x � x1

y1
x2 − x
x2 − x1

+ y2
x − x1

x2 − x1
x1 < x � x2

y2 x2 < x

(36)

which captures the disparate saturation levels between ITG- and TEM-dominated turbulence. The wavenumber kmax is defined
as the position of the maximum of the linear growth rate divided by ky,

d
dky

(
γky

ky

)∣∣∣∣
ky=kmax

= 0 (37)

and γmax = γky=kmax . The reference magnetic field Bunit is given by equation (3), with ρunit =
√

mDTe/eBunit, and

σky

σky=k0

=

⎧⎪⎪⎨
⎪⎪⎩

(
− 1

2kmin
k2

y + ky +
c
b

)
/

(
− 1

2kmin
k2

0 + k0 +
c
b

)
0 < ky � kP((

− 1
kmin

kP + 1

)
ky +

c
b
+

1
2kmin

k2
P

)
/

(
− 1

2kmin
k2

0 + ky +
c
b

)
kP < ky < ∞

(38)
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where c/b = −0.751kmax, kmin = 0.685kmax, k0 = 0.6kmin and
kP = 2kmin.

The QLA functions Λs,ky vary depending on velocity
moment and mode type. For the particle flux and energy flux
these are

ΛΓ
s,ky

= M

⎛
⎝
∣∣∣∣∣ WL

e,ky∑
iW

L
i,ky

∣∣∣∣∣
ky=kmax

; 0.8, 1.0, 1.1, 0.6

⎞
⎠ (39)

ΛQ
s,ky

= M

⎛
⎝
∣∣∣∣∣ WL

e,ky∑
iW

L
i,ky

∣∣∣∣∣
ky=kmax

; 0.8, 1.0, 0.75, 0.6

⎞
⎠ (40)

with other fluxes taking Λs,ky = 0.8.
Finally, the function Fs,ky describes the effect of E × B shear

and is given by [1]

Fs,ky (γE) =
W̃L

s,ky ,kx=kx0
/W̃L

s,ky ,kx=0(
1 +

(
αx

kx0
kmodel

x

)σx
)2
(

1 +
(

kx0
kmodel

x

)2
)2 (41)

where W̃L
s,ky ,kx

is the quasilinear weight defined by TGLF,
which is evaluated at a single kx rather than a sum over kx.
The two constants are αx = 1.21 and σx = 2, with kx0 =

0.32ky

(
kmax/ky

)0.7(
γE/γmax

)
and

kmodel
x =

⎧⎪⎪⎨
⎪⎪⎩

0.76kmax√
gxx(θ = 0)

ky < 0.76kmax

0.76kmax√
gxx(θ = 0)

+
1.22√

gxx(θ = 0)
B(θ = 0)

Bunit

(
ky − 0.76kmax

)
ky � 0.76kmax

(42)

where gxx = |∇x|2 and B is the equilibrium magnetic field
magnitude.

6. Results

The scatter plots of the fluxes obtained from NL CGYRO
against the results of CGYRO-SAT3 are shown in figure 17
for the ion energy fluxes, electron energy fluxes and particle
fluxes. TEM-dominated cases are marked by circles (labelled
f, x, y and z in figure 13(c)), with the remainder being ITG-
dominated. Data points connected by a line denote simulations
of the same equilibrium but of different isotopes. A metric for
the quality of the model agreement can be calculated by taking
the average percentage error,

ΣQ =
1
N

N∑
m=1

∣∣∣∣Qmodel,m − QNL,m

QNL,m

∣∣∣∣ (43)

ΣΓ =
1
N

N∑
m=1

∣∣∣∣Γmodel,m − ΓNL,m

ΓNL,m

∣∣∣∣ (44)

for the energy flux and particle flux, where N is the number of
simulations in the database. The values obtained for the three
plots are displayed in their respective subfigures.

For comparison, the equivalent scatter plots for a rescaled
CGYRO-SAT1 model are shown in figure 18, with additional
fitted prefactors for each flux type, labelled CGYRO-
SAT1∗.9 Looking at figures 17 and 18 a reduction in the
average percentage error between CGYRO-SAT1∗ and
CGYRO-SAT3 is seen for the three flux types. CGYRO-
SAT1∗ and CGYRO-SAT3 can be seen to perform similarly

9 This accounts for the larger NL CGYRO fluxes compared to those of SAT1’s
training database, which resulted from an increased binormal resolution in this
work. These pre-factors were fitted to the D simulations of the ITG-dominated
cases, and are displayed in the legends of figure 18. Note that the isotope
scaling of the fluxes is unaffected by a database-wide rescaling constant.

in the ITG-dominated cases, as may be expected, however
great improvement is shown in the isotope scaling and
magnitude of the TEM cases, owing to the modelling of the
difference in saturation level between the two mode types
present in SAT3. This is demonstrated explicitly in figure 19,
which exhibits the ion and electron energy fluxes against
isotope mass for the ITG-dominated GA-std case and the
TEM-dominated a/Ln = 3.0 case compared between the three
models.

A selection of energy flux scans with various key tokamak
parameters is shown in figure 20, comparing NL CGYRO and
CGYRO-SAT3. The density gradient scan is a recreation of a
subset of the data points from figure 1, now with larger NL
CGYRO fluxes, demonstrating the recreation of the positive
isotope scaling for the ITG-dominated GA-std cases at low
density gradient, the grouping of the fluxes for the transition
case, and the anti-gyroBohm scaling at the high density gra-
dient TEM-dominated a/Ln = 3.0 case. How this a/Ln = 3.0
case varies with collisionality is then displayed in figure 20(b),
from which it is seen that the correct scaling is maintained
across a large range of collisionalities. Finally the ion and
electron heat fluxes against matched temperature gradients
(a/LTi = a/LTe ) are shown in figure 20(c). The general trend in
both isotope scaling and magnitude can be observed to agree
with the NL CGYRO data, however the fluxes appear to be
somewhat under-predicted near the point of threshold. The
generality of SAT3’s behaviour in this region presents an area
to be investigated further, as this is a key region of parameter
space for experimental conditions.

To connect these results with the observations made in
section 4, figure 21 shows a recreation of figure 3(b), exhibiting
the isotope scaling of the ion energy flux components Qi,ky in
the a/Ln = 3.0 case for the different models, now with the data
for CGYRO-SAT3 included. The improved low kyρi variation
and offset in the isotope scaling can be seen, as a consequence
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Figure 17. Scatter plots of NL CGYRO against CGYRO-SAT3 results for (a) ion energy flux, (b) electron energy flux and (c) particle flux.
The legend for these figures is shown in figure 13(c). The line to denote perfect agreement between the models is shown in black, with the
respective relative errors also shown on each plot, defined by equations (43) and (44).

Figure 18. Scatter plots equivalent to those of figure 17, however now comparing NL CGYRO against CGYRO-SAT1∗ results for (a) ion
energy flux, (b) electron energy flux and (c) particle flux. The rescaling constants for the different flux types are displayed in the legends.

Figure 19. Turbulent ion energy fluxes (solid lines) and electron energy fluxes (dashed lines) against isotope mass for NL CGYRO (black),
CGYRO-SAT3 (red) and CGYRO-SAT1∗ (blue), for the ITG-dominated GA-standard case (a) and the TEM-dominated a/Ln = 3.0 case
(b). Note the recreation of the anti-gyroBohm scaling seen in the a/Ln = 3.0 case for CGYRO-SAT3.

of the strong spectral shape and the differing TEM saturation
level in SAT3.

6.1. A note on future improvements

The SAT3 model presented above is an accurate model for the
enhanced CGYRO database generated, and is promising for
extrapolation within the most common ITG and TEM turbu-
lence regimes found in experiment. It does not however rep-
resent a complete description of turbulent plasma transport,
and will of course perform less reliably in a parameter space

far from its training database. The approach taken in SAT3’s
development however naturally presents a methodology with
which to diagnose and improve on such future discrepancies.
That is, for some hypothetical simulation that this model catas-
trophically fails to recreate, an established methodology can
be employed to effectively diagnose and attempt to rectify the
issue.

This approach starts by taking care to preserve the role of
each physical element that constitutes the model flux calcula-
tion, so as to keep separate the contributions of the QLA, the

18



Nucl. Fusion 62 (2022) 096005 H.G. Dudding et al

Figure 20. (a) Ion energy fluxes for NL CGYRO (solid lines) and CGYRO-SAT3 (dashed lines) against density gradient scale length a/Ln.
(b) Ion energy fluxes for NL CGYRO and CGYRO-SAT3 against collisionality, keeping a/Ln = 3.0 fixed. (c) Ion and electron energy fluxes
for NL CGYRO and CGYRO-SAT3 against matched temperature gradient scale length, a/LTi = a/LTe .

Figure 21. Isotope scaling metric αA of the flux components for the
a/Ln = 3.0 case, for NL CGYRO (black), CGYRO-SAT3 (purple),
CGYRO-SAT1 (red), TGLF-SAT1 (blue) and QuaLiKiz-qlk
(yellow). The error bars shown for all models are the uncertainties in
the fitted parameter αA.

weights, and the potentials. This decomposition of the reduced
model clarifies which aspect of the reduced model is respon-
sible for the recreation of each part of the nonlinear flux, and
each can be considered in turn when attempting to diagnose
future model disagreements with NL gyrokinetic results.

If the discrepancy is found to originate in the saturation
rule, then one can first test whether the underlying func-
tional relations (equations (19) and (20)) still hold when their
parameters are fitted to nonlinear data. If not, these will need
to be amended. Otherwise, one continues to the question
of the linear modelling of the parameters c1, kmin, c/b and
〈|δφ̂ky=k0 |2〉x,θ,t/Δky, each of which can be considered mod-
ularly. If a more robust method for approximating kmin from
the linear data is discovered in the future for example, one
can replace/amend that aspect of the model without requiring
change elsewhere.

7. Conclusion

The isotope scaling of fluxes in local nonlinear gyrokinet-
ics and quasilinear models has been considered. It was con-
firmed that existing quasilinear models generally struggle to

capture the isotope scaling of fluxes seen in nonlinear gyroki-
netic simulations, in part due to the historical lack of focus on
isotopes other than deuterium in the development of their sat-
uration rules and an incomplete understanding of the isotope
effect. The origin of this non-trivial isotope scaling in nonlin-
ear gyrokinetics was demonstrated to originate primarily in the
magnitude of the saturated electrostatic potentials, with cur-
rent quasilinear models failing to replicate this behaviour due
to missing one or both of the following effects in their satu-
ration rules: the variation in the isotope scaling with ky in the
low-ky region, and the ‘offset’ from the gyroBohm-predicted
level, which is sensitive to the dominant mode type.

In developing a new saturation rule to capture this
behaviour the general form of the 2D potential spectrum
in kx and ky was first considered, generalising the previous
assumption of a squared Lorentzian form. The 2D model
adhered to the data extremely well across a range of decades
in radial wavenumber.

The new 1D saturation model SAT3 was then developed
on a database of 43 simulations, including both ITG- and
TEM-dominated cases. This database is similar in scope to
those used for previous TGLF saturation models, however
now includes simulations in different isotopes. A summary of
the SAT3 model is given in section 5.7. An accurate model
for the spectral shape was built using a robust novel rela-
tionship between the 1D potentials 〈|δφ̂ky |2〉x,θ,t/Δky and the
radial spectral widthsσky that was discovered in the NL gyroki-
netic simulation results, which appears to capture a conserved
quantity in electrostatic turbulence. The resulting parameters
of SAT3, kmin, c/b, c1 and 〈|δφ̂ky=k0 |2〉x,θ,t/Δky were modelled
using linear quantities inspired from a previous work. The
database demonstrated different saturation levels for ITG and
TEM turbulence, which motivated a saturation model for each
mode type with a transition function between them. The QLA
functions were considered explicitly, however ultimately con-
stant factors to discriminate between mode type and moment
were used.

The new model has been shown to better capture the iso-
tope scaling of the cases in the database, particularly in the
cases of TEM-dominated turbulence, while performing at least
as well as existing quasilinear models in other parameters, as
exhibited via comparison with CGYRO-SAT1∗ in figures 17
and 18. Generalisations of the model outside of the dataset
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have been implemented, namely the effect of E × B shear and
multi-ion plasma operation. Having been constructed from a
database of predominantly ion-scale, electrostatic core plas-
mas, dominated by either ITG or TEM turbulence, SAT3’s
applicability is naturally most valid in these regions of param-
eter space. Caution should therefore be exercised in the use of
SAT3 away from these areas, such as plasmas for which elec-
tromagnetic effects or electron-scale dynamics are expected to
be significant, in the pedestal, or in the presence of dominant
modes other than the ITG or TEM. Generalisation of SAT3
into these regimes will require comparison to additional non-
linear gyrokinetic simulations. An algorithm for performing
such generalisations, based on the systematic comparison of
the constituent parts of SAT3 to nonlinear gyrokinetic data, is
discussed in section 6.1.

In future work SAT3 will be paired with the linear solvers
of TGLF and QuaLiKiz for use in integrated modelling suites,
to be validated against experimental data from recent isotope
campaigns on JET and other machines. While a degree of error
will be incurred in flux prediction by moving from an exact
linear solver to a fast linear solver, this effect is expected to be
small, with fast linear solvers having shown good agreement
with linear gyrokinetics in the most common experimentally-
relevant regimes [28].

Acknowledgments

The authors would like to thank Y. Camenen and J. Cit-
rin for their discussions and insights that contributed to this
work. This work has been carried out within the frame-
work of the EUROfusion Consortium and has received
funding from the Euratom Research and Training Pro-
gramme 2014–2018 and 2019–2020 under Grant Agreement
No. 633053. The views and opinions expressed herein do
not necessarily reflect those of the European Commission.
This work was supported by the Engineering and Physical
Sciences Research Council [EP/L01663X/1, EP/R034737/1,
EP/T012250/1, EP/W006839/1]. The authors would like to
acknowledge access to the CINECA High-Performance Com-
puter MARCONI, and to the JFRS-1 resource through QST.

Appendix A. Geometry and averages

The field-aligned coordinate system used in this work {x, y, θ}
is defined such that the equilibrium magnetic field can be
expressed

B = Bunit∇x ×∇y =
Bunit

Jxyθ
aθ (A.1)

where Jxyθ is the Jacobian of the field-aligned system and
aθ is the covariant basis vector of the θ coordinate. Field
lines are given by constant {x, y} and θ measures the distance
along a field line. These coordinates are equivalent to x = r′,
y = −r0α

′/q(r0) and θ = −θ′, where dashed coordinates are
those defined by CGYRO [9], with r0 being the reference
flux-surface.

Fluctuating quantities can be written as a Fourier series in
the perpendicular-to-field coordinates x and y,

δ f (x, y, θ, t) =
∑

kx

∑
ky

δ f̂ kx ,ky (θ, t)eikx x eikyy (A.2)

where kx = 2πnx/Lx and ky = 2πny/Ly. The radial domain
length Lx is quantised due to the parallel periodicity condition
such that Lx = Lyw/(2πŝ) for box size integer w.

Averages over the radial, binormal and parallel directions
are defined by

〈 f 〉x =
1
Lx

∫ x0+Lx

x0

f dx (A.3)

〈 f 〉y =
1
Ly

∫ y0+Ly

y0

f dy (A.4)

〈 f 〉θ =
∫ π

−π fJxyθ(θ) dθ∫ π

−π
Jxyθ(θ) dθ

(A.5)

where x0 and y0 are the lower bounds of the x and y domains.
The time average is given by

〈 f 〉t =
1
Δt

∫ t0+Δt

t0

f dt (A.6)

for some initial time t0. HereΔt = τ − t0, where τ is the upper
bound of the time domain. Equation (A.6) is equivalent to tak-
ing the mean of 3 time-window averages of length Δt/3 over
the same domain, the methodology discussed in section 3, by
virtue of

1
Δt

∫ t0+Δt

t0

f dt =
1
N

N∑
j=1

1(
Δt/N

)∫ t0+ j(Δt/N)

t0+( j−1)(Δt/N)
f dt (A.7)

for any integer N.
In the local limit, the combination of an ensemble average

and a flux-surface average amounts to an average over the three
spatial dimensions plus time

〈 f 〉Ens, FS = 〈 f 〉x,y,θ,t . (A.8)

Angular brackets without a subscript denote a type of
averaging weighted over the potential magnitudes, used in
equations (4) and (12).

〈 f 〉 =

∑
kx

〈
f
∣∣∣δφ̂kx ,ky

∣∣∣2〉
θ,t〈∣∣∣δφ̂ky

∣∣∣2〉
x,θ,t

. (A.9)

Appendix B. Turbulent flux calculation

This section provides a step-by-step derivation of equation (2),
taking equation (1) as the starting point. Evaluating
equation (1) in the field-aligned system, one obtains
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Qs = −
〈

1
Bunit

δps
∂δφ

∂y

〉
Ens, FS

. (B.1) Inserting the Fourier representation from equation (A.2)
for the potential and pressure fluctuations and using
equation (A.8), equation (B.1) becomes

Qs =

〈∑
kx

∑
k′x

∑
ky

∑
k′y

−ik′y
Bunit

δ p̂s,kx ,ky (θ, t)δφ̂k′x ,k′y (θ, t)ei(kx+k′x)xei(ky+k′y)y

〉
x,y,θ,t

. (B.2)

Upon carrying out the averages in x and y, the orthogonality
of the exponentials leaves only the terms with k′x = −kx, k′y =
−ky:

Qs =
∑

kx

∑
ky

iky

Bunit

〈
δ p̂s,kx ,ky (θ, t)δφ̂−kx ,−ky (θ, t)

〉
θ,t
. (B.3)

Because the quantities involved in this calculation are real,
their Fourier components satisfy δ f̂−kx ,−ky = δ f̂ ∗

kx ,ky
, which

when applied to the potentials gives

Qs =
∑

kx

∑
ky

iky

Bunit

〈
δ p̂s,kx ,ky (θ, t)δφ̂∗

kx ,ky
(θ, t)

〉
θ,t

=
∑

kx

∑
ky

Vkx ,ky (B.4)

where Vkx ,ky has been introduced to reduce clutter in the fol-
lowing. Observing Vkx ,ky=0 = 0, equation (B.4) may be written

Qs =
∑
ky>0

∑
kx

(
Vkx ,ky + Vkx ,−ky

)
. (B.5)

Using the result
∑

kx
Vkx ,−ky =

∑
kx

V−kx ,−ky , as well as the
property V∗

kx ,ky
= V−kx ,−ky :

Qs =
∑
ky>0

∑
kx

(
Vkx ,ky + V−kx ,−ky

)

=
∑
ky>0

∑
kx

(
Vkx ,ky + V∗

kx ,ky

)
. (B.6)

This may be expressed more succinctly using the definition of
the real part of a complex number, Re[z] = (z + z∗)/2:

Qs = 2
∑
ky>0

∑
kx

Re[Vkx ,ky ]. (B.7)

Here the real property of the fields has introduced a symmetry
to the terms, such that the flux contribution from the nega-
tive binormal modes is equal to that of the positive. Re-writing
equation (B.7) using Re[iz] = −Im[z] = Im[z∗] gives

Qs = 2
∑
ky>0

∑
kx

ky

Bunit

〈
Im
[
δ p̂∗s,kx ,ky

(θ, t)δφ̂kx ,ky (θ, t)
]〉

θ,t
. (B.8)

In order to express the right-hand side of equation (B.8)
in terms of the magnitude of the electrostatic poten-
tials and the phase difference between the fluctuations,

one can define Zs,kx ,ky such that for every Fourier mode

δ p̂s,kx ,ky = Zs,kx ,kyδφ̂kx ,ky . Multiplying both sides of this rela-

tion by δφ̂∗
kx ,ky

, taking the complex conjugate and isolat-

ing the imaginary part yields Im[δ p̂∗
s,kx ,ky

(θ, t)δφ̂kx ,ky (θ, t)] =

Im[Z∗
s,kx ,ky

]|δφ̂kx ,ky |2. The total flux may therefore finally be
written

Qs = 2
∑
ky>0

∑
kx

ky

Bunit

〈
Im
[
Z∗

s,kx ,ky

]∣∣∣δφ̂kx ,ky

∣∣∣2〉
θ,t

(B.9)

which is equation (2).

Appendix C. Parseval’s theorem

Parseval’s theorem relates the average of an absolute squared
function in real space to the sum of the absolute squares of its
Fourier amplitudes. Consider the Fourier representation of a
function f (x) over a finite domain {x0, x0 + L}

f (x) =
∑

kx

f̂ kx eikx x (C.1)

where kx = 2πnx/L for all integers nx . Multiplying both sides
by f ∗(x) and averaging over the domain leaves only the kx =
k′x terms, producing the result.

1
L

∫ x0+L

x0

| f (x)|2 dx =
∑

kx

∑
k′x

f̂ kx f̂ ∗
k′x

1
L

×
∫ x0+L

x0

ei(kx−k′x)x dx =
∑

kx

∣∣∣ f̂ kx

∣∣∣2
.

(C.2)

Appendix D. Grid-resolution dependence

The flux Qs in equation (2) is a physical quantity, resulting
in part from a spatial average over the x and y domains. It
should therefore be independent of the binormal wavenumber
grid resolutionΔky, once past a certain value required for con-
vergence. It then follows that the flux components Qs,ky must
depend on the grid resolution, as if one doubles the resolution,
one doubles the number of terms in the sum while maintaining
a constant total.
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Multiplying and dividing the right-hand side of equation (2)
by Δky and approximating the summation as an integral gives

Qs =
∑
ky>0

Qs,ky

Δky
Δky ≈

∫ ∞

0

Qs,ky

Δky
dky (D.1)

and thus because the area under Qs,ky/Δky is independent of
the grid resolution, so too must Qs,ky/Δky be itself. Analo-
gously for the potentials, the volume and time average of the
squared potentials in real space must be independent of Δky.
Using Parseval’s theorem,

〈
|δφ|2

〉
x,y,θ,t

=
∑

ky

〈∣∣∣δφ̂ky

∣∣∣2〉
x,θ,t

(D.2)

it follows that

〈
|δφ|2

〉
x,y,θ,t

≈
∫ ∞

−∞

〈∣∣∣δφ̂ky

∣∣∣2〉
x,θ,t

Δky
dky (D.3)

and therefore 〈|δφ̂ky |2〉x,θ,t/Δky must also be independent of
Δky. Now using equation (5), one finds〈∣∣∣δφ̂ky

∣∣∣2〉
x,θ,t

Δky
=
∑

kx

〈∣∣∣δφ̂kx ,ky

∣∣∣2〉
θ,t

ΔkyΔkx
Δkx

≈
∫ ∞

−∞

〈∣∣∣δφ̂kx ,ky

∣∣∣2〉
θ,t

ΔkyΔkx
dkx (D.4)

resulting in 〈|δφ̂kx ,ky |2〉θ,t/ΔkyΔkx being the grid-independent
version of the 2D potentials.

Appendix E. 2D spectrum moment integrals

Here the first three moments of the 2D potential spectrum
(equations (5), (12) and (13)) are integrated analytically to
obtain expressions for the coefficients C1, C2 and K in
equation (11). Starting with the zeroth moment, defined by
equation (5), then by approximating the summation as an inte-
gral and inserting equation (11) for the 2D potential spectrum,
one obtains〈∣∣∣δφ̂ky

∣∣∣2〉
x,θ,t

=
1

Δkx

∫ ∞

−∞

×

〈∣∣∣δφ̂ kx=K,ky

∣∣∣2〉
θ,t

1 + C1(kx − K)2 + C2(kx − K)4 dkx.

(E.1)

Taking out a factor of C2 from the denominator, the integral
may be written〈∣∣∣δφ̂ky

∣∣∣2〉
x,θ,t

= D
∫ ∞

−∞

1
E + Fu2 + u4

du (E.2)

where D = 〈|δφ̂kx=K,ky |2〉θ,t/(C2Δkx), E = 1/C2, F = C1/C2

and u = kx − K. The denominator can then be fac-
torised via E + Fu2 + u4 =

(
u2 + G

)(
u2 + H

)
, where

G = 1
2

(
F +

√
F2 − 4E

)
, H = 1

2

(
F −

√
F2 − 4E

)
and

F = G + H, E = GH. Note that for the integral to have no
singularities one requires G, H > 0, and hence E, F > 0. This
factorised form can then be separated using partial fractions
as〈∣∣∣δφ̂ky

∣∣∣2〉
x,θ,t

=
D

G − H

∫ ∞

−∞

[
1

u2 + H
− 1

u2 + G

]
du. (E.3)

Using the substitution u =
√

H tan(v) and u =
√

G tan(v)
respectively for the two integrals, equation (E.3) evaluates to

〈∣∣∣δφ̂ky

∣∣∣2〉
x,θ,t

=
D

G − H

[
1√
H

arctan

(
u√
H

)

− 1√
G

arctan

(
u√
G

)]∞
−∞

=
Dπ√

GH
(√

G +
√

H
) .

(E.4)

Squaring this equation, using the relations GH = 1/C2, G +
H = C1/C2 and re-arranging, one finds

C1 + 2
√

C2 =

⎛
⎜⎜⎝
π

〈∣∣∣δφ̂kx=K,ky

∣∣∣2〉
θ,t

Δkx

〈∣∣∣δφ̂ky

∣∣∣2〉
x,θ,t

⎞
⎟⎟⎠

2

. (E.5)

Turning now to the first moment, equation (12), this can be
found via

〈kx〉 =

∑
kx

(u + K)

〈∣∣∣δφ̂kx ,ky

∣∣∣2〉
θ,t〈∣∣∣δφ̂ky

∣∣∣2〉
x,θ,t

=

∑
kx

u

〈∣∣∣δφ̂kx ,ky

∣∣∣2〉
θ,t〈∣∣∣δφ̂ky

∣∣∣2〉
x,θ,t

+ K

=
D〈∣∣∣δφ̂ky

∣∣∣2〉
x,θ,t

[∫ ∞

−∞

u
E + Fu2 + u4

du

]
+ K

= K

(E.6)

as the integral of an odd function over a symmetric boundary
is zero.

The second moment, equation (13), can be written

σ2
ky
=

D〈∣∣∣δφ̂ky

∣∣∣2〉
x,θ,t

∫ ∞

−∞

u2

E + Fu2 + u4
du (E.7)
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which, following an analogous method of solution as the
zeroth moment, evaluates to

σ2
ky
=

1〈∣∣∣δφ̂ky

∣∣∣2〉
x,θ,t

D
G − H

∫ ∞

−∞

[
G

u2 + G
− H

u2 + H

]
du

=
1〈∣∣∣δφ̂ky

∣∣∣2〉
x,θ,t

D
G − H

×
[√

G arctan

(
u√
G

)
−
√

H arctan

(
u√
H

)]∞
−∞

=
1〈∣∣∣δφ̂ky

∣∣∣2〉
x,θ,t

Dπ√
G +

√
H
.

(E.8)
Squaring this result and expressing it in terms of C1 and C2

gives

C2

(
C1 + 2

√
C2

)
=

⎛
⎜⎜⎝
π

〈∣∣∣δφ̂kx=〈kx 〉,ky

∣∣∣2〉
θ,t

Δkx

〈∣∣∣δφ̂ky

∣∣∣2〉
x,θ,t

⎞
⎟⎟⎠

2

1
σ4

ky

(E.9)

which when combined with equation (E.5), produces the
desired solutions

C2 =
1
σ4

ky

,

C1 =

⎡
⎢⎢⎢⎣
⎛
⎜⎜⎝
π

〈∣∣∣δφ̂kx=〈kx〉,ky

∣∣∣2〉
θ,t

σky

Δkx

〈∣∣∣δφ̂ky

∣∣∣2〉
x,θ,t

⎞
⎟⎟⎠

2

− 2

⎤
⎥⎥⎥⎦ 1
σ2

ky

.

(E.10)

The results of this section have been derived assuming integra-
tion over the entire kx domain, which is inaccessible for tur-
bulence simulations. For some finite domain {−kx,lim, kx,lim},
these results continue to hold provided that kx,lim �
|〈kx〉|+ σky .
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