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Abstract
We develop a dynamic model for the evolution of an ensemble of hundreds of
interacting irradiation-induced mobile nanoscale defects in a micrometre size
sample. The model uses a Langevin defect dynamics approach coupled to a
finite element model, treated using the superposition method. The elastic field
of each defect is described by its elastic dipole tensor, and the long-range inter-
action between defects is treated using the elastic Green’s function formalism.
The approach circumvents the need to evaluate the elastic energy by means of
volume integration, and provides a simple expression for the energy of elastic
image interaction between the migrating defects and surfaces of the sample. We
discuss the underlying theory, and also the parallelization and coarse-graining
numerical algorithms that help speed up simulations. The model addresses the
issue of imbalanced forces and moments arising as an artefact of the modi-
fied boundary problem associated with the traction free boundary condition.
To illustrate applications of the method, we explore the dynamic evolution
of an ensemble of interacting dislocation loops of various size and with dif-
ferent Burgers vectors, which proves the feasibility of performing large-scale
simulations using the proposed model.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Radiation damage in materials due to high energy neutrons is an important consideration for
the design of fission and fusion power plants. The choice of materials and their resistance to
irradiation greatly affect the performance and the lifetime of reactor components. The change
of thermal and mechanical properties due to the evolution of a radiation-induced microstruc-
ture can have significant consequences on the safety, maintenance and building cost of a reactor
[1, 2]. Predicting the strain, stress and swelling of components during operation requires knowl-
edge about the change of microstructure under irradiation [3], where local deformation of
lattice structure stems from the substantial relaxation volume of irradiation defects [4, 5].

Inside a fusion reactor, deuterium–tritium fusion reactions in the hot plasma produce high
energy neutrons that penetrate deep into the bulk of reactor components [6, 7], where they
initiate atomic collision cascades, resulting in the formation of complex microstructures con-
taining dislocation loops, vacancy clusters, networks of dislocation lines [8–13, 89]. Low
fluence irradiation damage in metals generates a variety of localized defects, typically Frenkel
pairs, dislocation loops, and voids, which degrade both thermal [14–16] and mechanical [17]
properties of plasma facing and structural materials, leading to embrittlement, and limiting
the lifetime of reactor components. Fundamentally, the above changes stem from the fact that
mechanical and physical properties of metals strongly depend on their microstructure [18].

Molecular dynamics simulations of collision cascades in perfect crystals [8–11] suggest
that the statistics of sizes and numbers of vacancy and interstitial defects formed at low dose,
below the cascade overlap dose of ∼ 0.01 dpa, follow a power-law scaling. This means that
a considerable, if not dominant, fraction of defects produced by irradiation is not visible in a
transmission electron microscope (TEM) [12, 19, 20]. The fact that the microstructure of an
irradiated material contains many defects and defect clusters that are too small to be observed
by means of even high resolution experimental methods, makes modelling and simulation a
vital tool for understanding the various aspects of microstructural evolution under irradiation
that are critical to an informed reactor design effort.

In other molecular dynamics simulations of collision cascades [10, 21], with explicit free
surfaces, we observe the formation of vacancy loops near surfaces, suggesting that surfaces
attract self-interstitial atom (SIA) defects. Vacancy loops also form during cascade collapse
when sequential cascades overlap [22]. Following a cascade collapse, elastic interaction helps
trap dislocation loops, preventing their escape to the surface [11, 12, 23]. At the same time,
elastic interaction between defects and their elastic images result in that surfaces act as strong
sinks for defects [24].

The above evidence suggests that irradiated materials likely contain dense populations of
interacting defects. This has important implications for the selection of simulation methodol-
ogy. The presence of long-range elastic interaction suggests that the movement of any given
defect, considered in the context of dynamic evolution of microstructure, depends on the posi-
tion of a large number of other defects in its neighbourhood. This implies an O(N2) naive
scaling of the computational cost of execution of each time-step, potentially improvable to
O(N) scaling if the data are efficiently reused. Object kinetic Monte Carlo (okMC) simulations
[25–32], commonly applied to simulate the dynamics of irradiation-induced defects, therefore
struggle to incorporate elastic interactions efficiently. The correlated motion of defects means
that the update time increment also must scale with the number of interacting defects as 1/N,
making the okMC computational cost for elastically interacting defects varying as O(N2) at
best.
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Figure 1. A schematic illustration of the superposition method according to van der
Giessen and Needleman [48].

Alternatively, the dynamics of an ensemble of interacting defects at a finite temperature
can be modelled using coupled over-damped Langevin equations of motion. These equations
describe the effect of temperature on the motion of interacting defects by means of random ther-
mal forces [33]. By recasting the evolution of a system of interacting defects in the Langevin
dynamics framework, we can keep a constant time increment while preserving the okMC rules
for defect interactions. This gives an improvement in the scaling of computational cost from
O(N2) to O(N).

Elastic interaction between the defects can be evaluated using the elastic dipole tensor and
Green’s function formalism [4, 34–43], where the elements of elastic dipole tensor fully define
the field of elastic displacements of a localized defect in the asymptotic far-field limit [44].
This simplifies the evaluation of elastic energy, as performing volume integration of strain and
stress fields becomes unnecessary. The elastic dipole tensor formalism has been applied in
okMC models to study the point defects diffusion under the influence of the elastic field of a
dislocation in iron and vanadium [28, 29] and of an oxide particle in ODS steel [32]. The elastic
contribution due to the interaction of defects with the surface of the sample can be evaluated
using a finite element model approach [45–47], involving the use of the superposition principle
by van der Giessen and Needleman [48].

In this work, we develop a model that in principle can simulate the dynamics of an ensemble
of arbitrary defects in a finite size sample, retaining the full complexity of microstructural evo-
lution in an irradiated sample with boundaries at a finite temperature. Knowing the distribution
of defects in space as a function of time can help develop practical computational means for
evaluating strain, stress and swelling in irradiated reactor components [3].

Below, we summarise the fundamentals of the model and explore examples of simulations
of interacting defects. All the formulae are given assuming general anisotropic elasticity, and
are not constrained to particular material. It can be extended to arbitrary defects as long as
the elastic field of a defect is treated in the elastic dipole tensor approximation [4, 44]. In
the application section, we present examples and a numerical implementation using isotropic
elasticity. We study loop–loop interactions and the effect of surfaces on the spatial distribution
of loops, demonstrating the feasibility of large-scale simulations performed using the model.
Tungsten is chosen as a representative example because of its technological relevance in fusion
energy and the availability of experimental data.

3



Modelling Simul. Mater. Sci. Eng. 29 (2021) 025004 F Baraglia and P-W Ma

2. Fundamentals

2.1. Superposition method and its implementation

According to van der Giessen and Needleman [48], a mixed traction-displacement boundary
problem describing a finite elastic body can be represented by a superposition of fields defined
in an infinite body, and a modified boundary problem (illustrated in figure 1). For a linear
elastic body of volume V , with surface boundary S = ST ∪ SU, subject to a traction boundary
condition T on ST and a displacement boundary condition U on SU , the total displacement
u, strain ε and stress σ fields in V , and traction and displacement on S can be written as a
superposition of two fields.

u = ũ + û,

ε = ε̃+ ε̂,

σ = σ̃ + σ̂,

T = T̃ + T̂,

U = Ũ + Û,

(1)

where a symbol with a tilde (◦̃) refers to a quantity in a volume of space that is a part of a
continuous infinite medium where the elastic fields can often be calculated using analytical
formulae.

This reduces the treatment to solving the so-called modified boundary problem

û = u − ũ,

ε̂ = ε− ε̃,

σ̂ = σ − σ̃,

T̂ = T − T̃,

Û = U − Ũ.

(2)

The governing equations of elasticity for the modified boundary problem are the zero body
force condition of mechanical equilibrium

∇ · σ̂ = 0

σ̂ = C : ε̂

ε̂ =
1
2

(∇û + (∇û)T)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

inV , (3)

complemented with a boundary condition at surfaces

σ̂ · n = T̂ on ST , (4)

û = Û on SU. (5)

Here n is the surface normal, C = {Cijkl} is the fourth rank elastic constant tensor. These
equations can be solved numerically using a finite element method (FEM) approach [45–47].
Previous works, coupling discrete dislocation dynamics to FEM [49–52], demonstrate the
feasibility and validity of the superposition method.

4



Modelling Simul. Mater. Sci. Eng. 29 (2021) 025004 F Baraglia and P-W Ma

There is an element of subtlety associated with the boundary part of the problem arising
in the context of the superposition method. The total applied force and its torque do not nec-
essarily vanish since T̂ is in general non-zero in equation (4). If T = 0, the total force and
torque acting on the body described by the modified boundary problem, and stemming from
the boundary conditions, are∫

ST

T̂ dS = −
∫

ST

T̃ dS �= 0, (6)

∫
ST

r × T̂ dS = −
∫

ST

r × T̃ dS �= 0. (7)

This is at odds with the expected stationary solution of the mechanical equilibrium problem.
A conventional way of addressing the issue is to impose common sense constraints on the

six degrees of freedom of the system, see for example the FEM treatment given in reference
[3]. Out of the six degrees of freedom, three describe translations of the body as a whole,
and the other three refer to its rotation. To make sure that numerical solvers do not produce
a moving and rotating FEM solution, positions of any two points in the body are assumed
stationary. However, since the FEM problem involves applied tractions at surfaces given by
equation (4), local stress concentrations naturally form near these fixed points. In the con-
text of the problem of dynamics of defects, the presence of any pinning points and stress
concentrations is undesirable.

To treat the imbalanced force and torque in a non-singular manner, avoiding the use of pin-
ning points, we introduce a modification to the superposition method. We introduce a fictitious
distributed body force Ff that compensates the effect of tractions in equation (4). This body
force should satisfy conditions that∫

ST

T̂ dS = −
∫

V
Ff dV , (8)

∫
ST

r × T̂ dS = −
∫

V
r × Ff dV. (9)

Since these conditions only involve a volume integral of the body force, there is still freedom
associated with the choice of its functional form.

To eliminate translations, we use a uniform body force field. The corresponding expression
for the spatially homogeneous body force compensating translations is

Ft = − 1
V

∮
ST

T̂ dS. (10)

To eliminate rotations, we assume that the torque associated with tractions acts to turn the
system around an axis going through the centre of mass and parallel to the torque vector. In
cylindrical coordinates, we find

Fr
z = 0, (11)

Fr
r = 0, (12)

Fr
θ = ρκr, (13)

where κ is a constant derived from the condition∮
V

r × Fr dV = −
∮

S
r × T̂ dS. (14)
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The total density of fictitious body force and its torque are now

Ff = Ft + Fr, (15)

τ f = r × (Ft + Fr). (16)

The force and torque imbalance associated with surface tractions is therefore fully solved. The
governing equations for the modified boundary problem have the form

∇ · σ̂ + F̂ = 0

σ̂ = C : ε̂

ε̂ =
1
2

(∇û + (∇û)T)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

inV , (17)

where

σ̂ · n = T̂ on ST . (18)

The superposition method is based on the linear elasticity approximation. The equations are
general, in the sense that one can choose any coordinate system. For our convenience, we
adopted the Cartesian coordinate system, but there is no restriction on the geometry of a sample,
provided that the surface boundary condition is properly defined.

2.2. Finite element method

We used CAST3M [53] to solve the modified boundary problem numerically using FEM
[45–47]. A mesh was created corresponding to the sample geometry. Cubic elements with
quadratic shape functions and seven integration points were used. Quadratic shape functions
are necessary since we need to compute the gradient of strain, which is proportional to the
gradient of the shape function. In linear elasticity, the stiffness matrix can be computed using
an established FEM procedure [54]:

Ki j = a(φi,φ j), (19)

where {φi}i�n is the set of shape functions associated with the n degrees of freedom and a is
the bilinear, symmetric and continuous form associated with the elasticity problem.

Using the tractions defined for the modified boundary condition, together with forces due
to the corrections for rotation and translation motions, one can formally write

Kû = Fl + Ff, (20)

where K is the stiffness matrix, û is the displacement field, and Fl is the external loading
due to traction T̂. By solving the above equation one can find the displacement field û. Strain
field ε̂, stress field σ̂, and the derivative of strain field can then be computed from the field
of displacements. We should note that equation (20) only works for a stationary system that
exhibits no translational and rotational motion.

In practice, we still have to fix six degrees of freedom in the FEM calculations to guarantee
numerical stability. We set the displacements of the centre of mass to zero, and the y and z
direction displacements of a very nearby point in its x direction to zero, and the z direction
displacement of another very nearby point in its y direction to zero. It is because if the net
force and torque of the whole system are zeros, the net force and torque at the centre of mass
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are zeros. We have verified this implementation and found that our force-balancing solution in
section 2.1 meant that no stress concentration formed near those points.

In fact, if we are only interested in the strain and stress field, and if an FEM solver can
handle the dynamic equation

M¨̂u + Kû = Fl, (21)

the introduction of the fictitious body Ff is unnecessary. It is because the strain and stress field
are invariant with respect to the rigid body motion. Our treatment in section 2.1 is practically
equivalent to putting Ff = −M¨̂u. Similarly, if one can solve the strain field ε̂ and stress field
σ̂ directly from traction T̂, without going through the calculation of displacement field û, the
introduction of Ff is unnecessary, either.

2.3. Langevin dynamics of defects

Langevin dynamics treatment of defects, including elastic interaction between them, was pro-
posed by Dudarev et al [33]. They showed that simulations treating nanoscale radiation defects
as elastically interacting objects, with appropriately chosen mobility parameters, can match the
real-time dynamics of defects observed in in-situ TEM experiments. The Langevin equation
of motion for a dislocation loop in the overdamped limit can be written as [33]:

dwn

dt
= − Dn

kBT
∂Eel

∂wn
+
√

2Dnξn(t), (22)

where wn is the position of loop n along the direction of its Burgers vector b, Dn is its dif-
fusion constant, and ξn is a randomly fluctuating field satisfying conditions 〈ξn(t)〉 = 0 and
〈ξn(t)ξn(t′)〉 = δ(t − t′). A stochastic force is introduced to take care of the thermally driven
diffusivity according to the fluctuation-dissipation theorem [55, 56]. In this work we assume
that a glissile loop only moves along the direction defined by its Burgers vector. We do not
consider climb or self-climb [57, 58].

Calculating the elastic energy of the system by means of a volume integral

Eel =
1
2

∫
σi j(r)εi j(r)d3r (23)

is time consuming and inefficient. Analytical expressions have been derived for the pairwise
elastic interaction between dislocation loops [33, 59], or loops and voids [60] in isotropic elas-
ticity, and these have been used in previous dynamic simulations where loop Burgers vectors
were assumed to remain normal to the loop habit planes [23, 33]. This approximation, accord-
ing to Li et al [61], has a relatively limited range of validity, as it neglects the elastic torque
acting on a loop, which alters the orientation of its habit plane.

A general way of treating long-range elastic interaction between arbitrary defects, including
dislocation loops, is the elastic dipole tensor and Green’s function formalism [4, 36–40, 43].
For a given configuration of a defect, its elastic dipole tensor Pi j fully defines its long-range
elastic field, as discussed below. It also fully defines strain and stress, and hence can be used for
finding the elastic energy contribution due to the strains induced by surfaces or applied external
stresses. The dipole tensor formalism has been used earlier to bias the movement of defects in
kinetic Monte Carlo simulations in an infinite medium [62, 63], but to our knowledge has not
been applied to the treatment of surface-induced strains explored below.

The energy of elastic interaction between defects in a finite size sample can be written as a
sum of two contributions,

Eel = Epair + EB. (24)

7
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The pairwise part is the energy of elastic interaction between all the defects n and m is [4],

Epair =
1
2

∑
n,m

Pn
i jP

m
klGik, jl(Rnm), (25)

where Gik, jl(R) = ∂
∂x j

∂
∂xl

Gik(R) is the second derivative of elastic Green’s function,

Rmn = Rn − Rm is the directional vector from defect m to n, and the Pn
i j is the elastic dipole

tensor of defect n. At this level of approximation, elements of elastic dipole tensors are treated
as constant parameters characterising the defects, and internal degrees of freedom of defects,
treated as point objects, are assumed to be independent of the action of external elastic field.

The second term is due to the modified boundary conditions. The elastic interaction energy
between a defect and strain field ε̂i j arising from the modified boundary condition, including
the constraining distributed body force, is

EB = −
∑

n

Pn
i jε̂i j(Rn). (26)

This can be calculated using FEM for the modified traction condition on ST and taking into
account the fictitious body force, such that:

T̂ = −T̃, (27)

F̂ = Ff, (28)

T̃ = σ̃ · n, (29)

σ̃ = C : ε̃, (30)

where:

ε̃i j = −
∑

n

Pn
klGik, jl(R − Rn). (31)

This completes the calculation of elastic energy Eel for an ensemble of defects in a finite size
sample, including effects of elastic interaction with the surface of the sample.

The remaining part of the analysis involves calculating the derivatives of Eel. For any mobile
defect n, we need to find

∂Eel

∂wn
= Pn

i j

(∑
m

Pm
kl
∂Gik, jl(Rnm)

∂wn
− ∂ε̂i j(Rn)

∂wn

)
. (32)

The two derivatives with respect to wn can be evaluated numerically using finite differences.
In section 3.2, we present an example of an ensemble of loops in a finite simulation volume.
We find 80% of computation time is spent on the FEM calculation for the second term in
equation (32).

For an arbitrary material, the evaluation of anisotropic elastic Green’s function and its first
and second derivative can be performed numerically according to the formula derived by Bar-
nett [64], provided that the elastic constant tensor Ci jkl is known. For an arbitrary defect, one can
compute Pi j from ab initio or molecular static calculations [4, 36–43]. Therefore, the formulae
in this and the previous section can be applied to any material or defects with no modification.

For a dislocation loop, there is an analytical expression for Pi j valid in the linear elasticity
limit [4, 34, 59, 65], namely

Pi j = Ci jklbkAl, (33)

8
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where bk and Al are the Cartesian components of the Burgers vector b and the loop vector area
A. The latter can be expressed as a contour integral over the perimeter of the loop [66]:

A =
1
2

∮
(r × dl). (34)

Note that b and A need not to be parallel.
From the elements of elastic dipole tensor, one can also compute the relaxation volume

tensor of a defect Ωi j [67], which is a quantity describing swelling of reactor components
under irradiation [3]. The relaxation volume tensor is related to the dipole tensor through the
elastic compliance tensor S = C−1, such that [4, 34, 40]

Ωi j = Si jklPkl. (35)

The relaxation volume of a defect equals the trace of the relaxation volume tensor

Ωrel = Ω11 +Ω22 +Ω33. (36)

We note that the relaxation volume of a dislocation loop, according to equation (33) is simply
Ωrel = b · A irrespective of the elastic properties of a material, and that this equals ±1 times
the total volume of atoms forming the loop (the choice of the sign is positive or negative for
an interstitial or vacancy loop, respectively).

The model presented above is based on the elastic dipole tensor and elastic Green’s function
formalism, and so is valid within the anisotropic linear elasticity approximation. The values
for the anisotropic elastic Green’s function, and its first and second derivatives can be obtained
numerically given the matrix elements of the elastic constant tensor Ci jkl [64]. On the other
hand, it is not uncommon to treat materials in the isotropic limit, and for the purposes of expo-
sition this limit can offer additional analytical formulae. In the application section, we present
examples with parameters for isotropic elasticity only. We should note that the limitation on
our numerical implementation does not affect the validity of equations written in terms of
anisotropic elasticity.

In the isotropic elasticity case, the elastic constant tensor can be written as [68],

Ci jkl = μ
2ν

1 − 2ν
δi jδkl + μ

(
δikδ jl + δilδ jk

)
, (37)

where ν is the Poisson ratio and μ is the shear modulus. The elastic Green’s function in the
isotropic limit is [68]:

Gik(r) =
1

16πμ(1 − ν)r

[
(3 − 4ν)δik +

xixk

r2

]
, (38)

and the second derivative of the elastic Green’s function is

9
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Figure 2. The sample is divided into many regions and the treatment of evolution is
implemented using a linked-cell structure. For loops within the same cell and in its
neighbouring cells, we compute the exact pairwise interaction between defects. For other
interactions, we adopted a coarse-grain method, replacing individual defects within a cell
with a single virtual defect according to equations (40) and (41).

Gik, jl(r) =
1

16πμ(1 − ν)r3

×
[
(3 − 4ν)δik

(
3ηlη j − δl j

)
+ 15ηiη jηkηl

− 3(δi jηkηl + δilη jηk + δ jlηiηk + δk jηiηl + δklηiη j)

+ (δilδk j + δi jδkl)
]

, (39)

where ηi is a component of the radial unit vector η = r/r.

2.4. Coarse-grained method and its optimization

In this section we describe an efficient numerical implementation of defect dynamics based
on the equations introduced in the previous sections. Firstly, we divided the simulation box
into many small regions and adopted a linked-cell structure similar to that used in molecular
dynamics codes [69]. A defect is put in a linked list corresponding to the cell containing a
defect. The linked lists are updated every time step. The total elastic energy and the integration
of equations of motion for mobile defects was performed in parallel using a domain decom-
position of the cells. Calculation of strain due to the boundary is also calculated in parallel
using the MPI implementation in CAST3M.

Through the linked-cell structure, we can adopt a coarse-grained method to evaluate elas-
tic long-range interaction between defects. For a group of defects at large distances, one can
approximate it as a single defect represented by a single dipole tensor, as illustrated in figure 2.
According to reference [3], one can approximate the combined far-field effects of the dipole
tensor of all defects in a linked cell α using a single virtual defect with dipole tensor

Pα
i j =

∑
m∈α

Pm
i j (40)

situated at

Rα =

∑
m∈α‖Pm‖Rm∑

m∈α‖Pm‖ , (41)

where ‖P‖ =
√
Tr(P2) is the Frobenius norm.

10
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Figure 3. Illustration of a test of the coarse-grained method. We put 40 to 200 loops
randomly in a sample of 1 μm × 1 μm × 1 μm, where the dimension of each linked cell
was 0.1 μm × 0.1 μm × 0.1 μm. The cutoff range is the layer of neighbour cells where
we still consider full interaction between defects without approximation. (a) The relative
energy difference and (b) the relative computation time using different cutoff range.

We verify this approximation using a simulation cell of 1 μm × 1 μm × 1 μm, where the
dimension of each linked cell is 0.1 μm × 0.1 μm × 0.1 μm. We created 40 to 200 loops
with random sizes and Burgers vectors inside the sample. Then, we calculate the difference
between the total elastic energy of the system with and without this approximation using dif-
ferent cutoff ranges. The cutoff range is the layer of neighbour cells where we still consider full
interaction between defects without approximation. For example, if we set the cutoff range at
Rcut = 1, then all elastic interactions between defects within the same linked cell and its nearest
neighbouring cells are considered without approximation, where all the defects starting from
the second layer of neighbour cells are approximated using equations (40) and (41).

Figure 3 shows the difference of elastic energy. Even if we consider the cutoff at the first
neighbouring cells, the difference is only 3% in a simulation involving 200 loops, yet we
achieve double the speed of computation. In figure 4, the values of ∂Eel/∂wn for 200 loops
calculated using the coarse-grained method with a cutoff distance at the first nearest neigh-
bour cell (meaning interactions outside the first nearest neighbour cell are calculated using
the coarse-grained method) are plotted against values calculated without using the coarse-
grained method (the limit of large cutoff). We can only see small deviations, and no systematic
bias. Since the dynamics of loops depends on the equation of motion, which depends on
∂Eel/∂wn, in current study, the coarse grained method should have little effect on the dynam-
ics, and thus little effect on the final microstructures. The validity of such an approximation is
related to the size of the linked cell, the number of defects in a cell, and the cutoff range. A
similar benchmarking test should be performed in any future simulation.

Another interesting observation about the computing time is that, in the limit where the
system contains >100 loops, for the calculation of defect–defect interaction, about 99% of
our computation time is spent on the calculation of elastic interactions within the cutoff range,
even when Rcut = 1. This indicates that no further coarse-graining is required.

To further speed up simulations, we implemented a simple adaptive time step method. The
idea is to have a fast time lapse when nothing interesting happens. For example, if the defects
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Figure 4. The values of ∂Eel/∂wn of 200 loops calculated without using the coarse-
grained method are plotted against the values calculated using coarse-grained method
with cutoff distance at the first nearest neighbour cell, which means interactions outside
the first nearest neighbour cell are calculated using the coarse-grained method.

do not move rapidly, we increase the time step Δt. On the other hand, if a lot of defects are
interacting and reacting, we use a smaller Δt. We calculate the displacement of each defect for
every 20 time steps. If the maximum displacement for 20 time steps is larger or smaller than
200 Å, we reduce or increase the time step, respectively. In section 3.1, we show that when
two loops come close to each other, the elastic interaction energy drops and behaves like an
energy well. For tungsten and iron, the characteristic length scale of the energy well is in the
order of 100 Å. Therefore, if we consider a displacement within a time step being in the order
of 10 Å, it should well describe the dynamics of loops due to the interactions among them. Our
implementation leads to a speed up of about five times.

2.5. Parameters and additional rules

The theoretical treatment that we have been discussing so far applies to any material within
the linear elasticity approximation, for both isotropic and anisotropic cases. To complete our
model, extra rules governing defect interactions that are material and experimental condi-
tions dependent are required. We base our rules on those typically used in okMC simulations
[25–31]. The exact parameterisation for a material in the conditions of interest is the sub-
ject of ongoing research, but our purpose of this work is to demonstrate the feasibility of our
model. Adjustment may be imposed to suit particular material and experimental conditions.
We summarize these rules and their rationale below.

We adopt parameters and rules for tungsten in our numerical implementation due to its
technological importance in fusion energy. Tungsten has the highest melting point of all the
pure metals, as well as high thermal conductivity and low thermal expansion, which makes it
ideal for a variety of high heat load applications. Tungsten also has a low physical sputtering
yield [70], and its unstable isotopes exhibit relatively fast radioactive decay following neutron
irradiation [71]. Presently, tungsten is the preferred candidate material for plasma facing and
armour components of the DEMO fusion power plant [72–74].
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Experimentally, tungsten is observed to be nearly elastically isotropic, and so we can treat
it in our model as isotropic, with Poisson ration ν = 0.278 and shear modulus μ = 160 GPa
[75]. All the simulations are performed at room temperature (300 K).

Since high energy neutron irradiation facilities are not widely available, self-ion irradia-
tion experiments are often used for mimicking the effects of high energy neutron irradiation.
TEM analysis suggests that vacancy type 1

2〈111〉 dislocation loops dominate the visible defect
populations formed in thin films at low dose ∼0.01 dpa [12, 76–80]. For doses in the interval
from 0.4 to 30 dpa, the microstructure involves a dense network of line dislocations, finely dis-
persed vacancies, and interstitial 1

2 〈111〉 loops [13]. 〈100〉 interstitial loops are also observed
[81]. These loops are believed to nucleate in collision cascades [8].

Mason et al [23], Yi et al [78] and Yi et al [79] investigated in-situ TEM experiments on
ultra high purity tungsten foil after self-ion irradiation showing that only dislocation loops
with Burgers vector of 1

2 〈111〉 and 〈100〉 were observed. At low dose, vacancy 1
2〈111〉 are

dominant. When irradiation temperature and dose increase, the fraction of interstitial 1
2〈111〉

loops increases. Therefore, we only consider interstitial and vacancy loops with Burgers vector
of 1

2 〈111〉 and 〈100〉. We assume that the Burgers vector and the habit plane normal vector of
a loop are collinear and do not change during the simulation.

To determine collisions between defects, we use the simplest model, namely that each defect
is assumed to be spherical with radius r. The size of a defect equals the absolute value of the
number of extra or missing atoms N that constitute the defect, in the unit of atomic volume
Ω0 = a3/2. The volume of a loop is V = ±NΩ0 = b · A, where b is the Burgers vector, A
is the area vector, and N is the equivalent point defect count in the defect. When the sign is
positive (negative), the defect is of interstitial (vacancy) type. The radius of a prismatic loop is
defined according to |A| = πr2.

A unique and pioneering experiment using high voltage in-situ TEM by Arakawa et al [82]
showed that when two nanoscale loops in bcc iron collide, a junction is formed between the
two loops. Then, the junction would move towards the far end of the smaller loop. Finally, the
larger loop absorbs the smaller loop. Our rule for loop coalescence is that when the distance
between the two defects is smaller than the sum of their radius, i.e. d < r1 + r2, the larger
defect absorbs the smaller one. When a defect is absorbed by another defect, all the characters
of the new defect follow the larger defect. When two defects of the same size combine, the
characters of the new defect follow one of the original defects by random. Though we have not
found similar experimental works in other bcc metals, we adopt this rule for our simulations
on tungsten based on the fact that they have the same crystal structure.

Yi et al [79] observed that 1
2 〈111〉 loops perform one dimensional diffusion in tungsten,

where 〈100〉 loops are sessile. Arakawa et al [83] observed that a nanoscale interstitial 1
2〈111〉

loop in bcc iron undergoes one dimensional Brownian type diffusion, which is not driven by
external stress. MD simulations show that 1

2 〈111〉 loops in bcc metals are extremely mobile
along their glide cylinders [84, 85]. In our model therefore a 1

2〈111〉 loop is moving in one
dimension, and performs Brownian motion biased by elastic interactions, and does not rotate,
whereas a 〈100〉 loop is sessile. When a defect moves away from the simulation box, it is
discarded.

The diffusion constant Dn for dislocation loops is assumed to be inversely proportional to
the loop area. We take the numerical value for tungsten from Swinburne et al [85]:

Dn(T, N) =
176

√
852 + T2
√

N
μm2 s−1, (42)

where T is the absolute temperature expressed in Kelvin units, and N is the number of atoms
in a 1

2〈111〉 loop.
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Figure 5. A schematic illustration of a set of two parallel loops.

All the extra rules mentioned here are deterministic. The only stochastic effect due to
thermal excitation is incorporated in the over-damped Langevin equation of motion through
the fluctuation-dissipation theorem. Selection of parameters and rules may have significant
effect on the results, as one can see in different okMC models [25–30, 32] and cluster dynam-
ics models [86, 87]. The main purpose of this work is to demonstrate the feasibility of our
defect dynamics model based on the elastic dipole tensor and elastic Green’s function. It is not
the goal of the present manuscript to determine the effect of a parameter choice or physical
interaction rule on the evolution of microstructure. A detailed analysis of such matters is an
opportunity for further research.

3. Applications

3.1. Two loops with parallel Burgers vectors

In the first example we verify the validity of the dipole tensor and Green’s function formalism,
and compare it with the analytical expression from the linear elasticity theory [33, 75]. We
put two loops with parallel Burgers vectors in an infinite medium. A schematic illustration is
shown in figure 5. They are elastically interacting and undergo Brownian motion. We observe
their displacements and compare our results with the work by Dudarev et al [33]. This also
allows us to prove the correctness of the implementation of our formula and algorithms. For
clarity of exposition, we do not consider surface effects here. The elastic contribution due to
surfaces will be examined below.

Parameters for iron and tungsten in the isotropic elasticity approximation are chosen for
demonstration. The Poisson ration ν = 0.291 and shear modulus μ = 86 GPa for iron, and
ν = 0.278 andμ = 160 GPa for tungsten [75]. Two interstitial 1

2 〈111〉 dislocation loops are put
side by side with a horizontal separation of d = 37 nm. One loop has a diameter of 16 nm and
the other has a diameter of 15 nm. The diffusion constants for the loops in the case of iron are
taken as D1 = 296 nm2 s−1 and D2 = 315 nm2 s−1, respectively. We take the same parameters
and configurations for iron as in reference [33] for direct comparison. In the tungsten case,
the diffusivity of loops is taken according to equation (42), where D1 = 929 μm2 s−1 and
D2 = 991 μm2 s−1.

Dynamic simulations are performed according equation (22). Figure 6 shows the displace-
ments of the two loops as functions of time for iron and tungsten. In both cases, the two loops
perform correlated motion. This can be understood by inspecting the elastic interaction energy
between two loops.
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Figure 6. Dynamic evolution of positions of two loops in iron and tungsten. One loop
has a diameter of 15 nm and the other has a diameter of 16 nm. Their horizontal
separation d = 37 nm. Loop move in the direction of their Burgers vectors.

The energy of two interacting circular loops with parallel Burgers vector b1 and b2 in the
isotropic limit, according to Hirth and Lothe, can be written as [33, 75]:

UHL =
μb1b2

4π(1 − ν)

∫ 2π

0
dφ1

∫ 2π

0
dφ2

{
ρ1(φ1) · ρ2(φ2)

r12

− (r12 · ρ1(φ1))(r12 · ρ2(φ2))
r3

12

}
, (43)

where r12 = l12 + ρ1 − ρ2 is a vector from a point on the perimeter of a loop to a point on the
perimeter of the other loop, l12 is the vector from the centre of one loop to the centre of the
other, and ρ1 and ρ2 are the radial vectors in the habit plane of the loops.

Alternatively, in terms of the dipole tensor and elastic Green’s function, the elastic energy
between the two loops can be written as (see equation (25)):

UGreen = P1
i jGik, jl(l12)P2

kl, (44)

where P1
i j and P2

kl are dipole tensors of loops 1 and 2. It is expected that equation (44) gives the
same value as equation (43) when the two loops are separated by a distance several times their
radius, consistent with the far field approximation. However, equation (44) is a more general
formula using which one can treat any interacting defects provided that their dipole tensors are
known.

Figure 7 shows UHL and UGreen for two circular interstitial loops with Burgers vectors point-
ing in the same 1

2〈111〉 direction. Each loop contains 55 extra atoms. The horizontal distance
between the centre of the two glide cylinders is d = 41 Å. The elastic energy of loops is plotted
against the difference between positions of the loops in the direction of their collinear Burgers
vectors.

We can see there is a clear energy well in both iron and tungsten. This is why two dislocation
loops diffuse in correlated motion as observed experimentally and explained theoretically [33].
The numerical values of UGreen is almost the same as UHL when the two loops are far apart.
When they come closer, the numerical value of UHL and UGreen are not identical, but the shape
of the well remains the same. This means that the direction of forces remains the same, even if
their magnitudes are slightly different. When the vertical distance between two loops is within
the energy well, the two loops are trapped by each other and perform correlated diffusion [33].
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Figure 7. The elastic energy of interaction between two loops in iron and tungsten with
parallel Burgers vectors plotted against their vertical separation z. Each loop contains
55 atoms. The horizontal distance between the centre of the two glide cylinders is
d = 41 Å.

The difference in UHL and UGreen when two loops come close is due to the use of the
far field approximation in UGreen. The value of UHL is obtained through double integration
around the perimeters of the two loops, summing the elastic interaction between infinitesimal
line segments of each loop. The elastic dipole tensor describes a defect as a point object, so
UGreen is less accurate when two loops are close. Nevertheless, the functional form of UGreen

allows one to treat all sort of defects in different orientations, and is not limited to parallel
dislocation loops.

The energy well is deeper in the tungsten case than in the iron case, which means the elastic
forces in tungsten case are stronger when two loops are close. Since both the force on and
diffusivity of loops in tungsten case are much larger, a smaller time-step is required to calculate
the displacement of loops in tungsten case with good numerical stability. This is the origin of
the smaller time scale in the case of tungsten in figure 6.

We can calculate the observed diffusivity of each loop and also the diffusivity of the centre
of mass of the two loops. The observed diffusivity is calculated according to

Dobs
i =

N∑
t=0

|wi(t + 1) − wi(t)|2

2NΔt
, (45)
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Figure 8. (Left) The initial configuration of a sample containing 300 dislocation loops
at 300 K. (Right) The configuration of a sample at time t = 3.0 × 10−6 s. Sessile SIA
loops are shown in blue. Glissile SIA loops are shown in red. Sessile vacancy loops are
shown in green. Glissile vacancy loops are shown in yellow.

where wi(t) is the position of a loop i at time t. The diffusivity of the set of two loops can be
calculated using the same formula, but replacing the wi(t) by W(t), which is the position of the
centre of mass.

According to reference [33], the diffusion-weighted centre of position of loops is

W(t) = (D1w2(t) + D2w1(t))/(D2 + D1), (46)

and the diffusion coefficient of the system of two loops is

D̄ =
D1D2

D1 + D2
, (47)

where Di is the diffusion coefficient of loop i in an infinite medium with no interaction with
other defects.

We calculated the expected diffusion coefficient D̄ using the values of D1 and D2 given
above, and the observed diffusion coefficient Dobs of the centre of position of the two loops
using equation (45). We found that in iron, D̄ = 152.6 nm2 s−1 and Dobs = 143 nm2 s−1,
whereas in tungsten, D̄ = 479.5 μm2 s−1 and Dobs = 477 μm2 s−1. They compare with each
other very well. The displacement and timescale in the iron case are compatible with the data
by Dudarev et al [33]. This confirms the validity of our algorithm and the feasibility of using
the elastic dipole tensor and Green’s function formalism in practical simulations.

3.2. Dislocation loops in a sample of finite size

In another example, we put a number of loops in a finite size sample. We have adopted param-
eters and rules for tungsten as discussed in section 2.5. Dislocation loops evolve dynamically,
subject to elastic interactions with other loops and also with surfaces. The example involves
using coupled Langevin defect dynamics complemented with the FEM scheme. It enables
studying the effect of surfaces on the dynamics of defects.

Initially, 300 dislocation loops were positioned randomly inside a box with dimensions of
1 μm ×1 μm ×1 μm. Loop diameters were chosen uniformly in the range of sizes from 4 nm
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Figure 9. Density of loops with respect to the original number of loops against the depth
from the surface. The initial configuration is in blue. The one with surface effects is in
green. The one without is in red. All data are calculated as an average of 50 simula-
tions, where the error bars are their standard deviation. From left to right, top to bottom:
(a) t = 0 s, (b) t = 1.0 × 10−8 s, (c) t = 5.0 × 10−8 s, (d) t = 1.0 × 10−7 s,
(e) t = 5.0 × 10−7 s, and (f) t = 3.0 × 10−6 s.

to 11 nm. There are 75% interstitial loops and 25% vacancy loops, where 75% are 1
2〈111〉

and 25% are 〈100〉 loops. Burgers vector of a loop is assigned randomly to all the crystallo-
graphically equivalent directions. These parameters are taken roughly similar to loops nature
and number density observed in self-ion irradiated TEM experiments [12, 77–79]. They are
generated and put randomly in the sample in a uniform distribution, as illustrated in figure 8.

We performed simulations with and without coupling to FEM, that is with and without
elastic coupling to surfaces. We created 50 different initial configurations as starting points
for both studies. All the results are presented as average values, with the error bars giving the
sample standard deviation. In both cases, we expect that the density of loops vanishes at the
surface after a long period of time, as surfaces acts as sinks for defects.

Figure 9 shows the time evolution of the density of loops with respect to the original number
of loops against distance to the surface. The sample is divided into cubic shells contained within
each other. Each data point is calculated within the region of an onion-like shell. The distance
of a defect from the surface is calculated according to its minimum distance to the surface. In
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Figure 10. The total number of constituent atoms being involved in different kinds of
loops with and without surface traction effects through FEM.

order to keep the volume in each onion-like shell the same, its thickness increases when it is
far away from the surface and approaching the centre of the sample.

Initially the density of loops is almost flat at 300 μm−3, which is compatible with the ini-
tial condition that 300 loops were put in a 1 μm3 box. As time progresses, the evolution of
the system proceeds differently depending on the boundary conditions. When there is elastic
coupling to surfaces, that is in simulations done using FEM, the loop density near the surfaces
decreases faster, compared to simulations neglecting the surface effects. In both cases, the loop
density stays flat in the bulk-like region. The elastic interaction between the surfaces and the
loops drives loops towards the surface, from where they can leave the box. It appears that elas-
tic contribution from the surface enhances the mobility of loops near it, and this effect is felt
over tens of nanometres.

Figure 10 shows the total number of constituent point defects in dislocation loops as a func-
tion of time. Vacancy loops correspond to negative values. For both SIA and vacancy sessile
loops, their values are generally decreasing, through coalescence and recombination with glis-
sile loops. However, their changes are small compared to glissile loops, and hardly discernible
in figure 10. This result is a consequence of the initial homogeneous distribution of defects.
If we instead use highly correlated initial positions, for example using the spatially varying
density of defects observed in MD and experiment [88], we see a very rapid initial period of
defect recombination strongly dependent on the specific rules used to generate the defect dis-
tribution and to determine defect collisions. Correctly constructing a set of quasi-independent
defects from cascade collapse is an ongoing area of research [63]. As this paper is concerned
with proving an efficient computational scheme for the evolution of quasi-independent defects,
explicit cascade relaxation simulations are outside our present scope.

Comparing the cases with and without surface traction effects, through with or without cou-
pling to FEM, the decrease on the total number of constituent atoms of SIA glissile loops and
increase in vacancy glissile loops is more significant in the case with FEM. This is consistent
with figure 9. A glissile loop away from the centre of the simulation cell is attracted elasti-
cally by its image forces, and this causes glissile loops to escape more easily from the box.
We can see a surface depletion layer when compared to the initial configuration. Figure 8 also
illustrates a configuration simulated with FEM at time t = 3.0 × 10−6 s.

Figure 11 shows the change of the average relaxation volume with and without surface
tractions. We initially put more interstitial loops in the box, so the initial relaxation volume
is positive. The relaxation volume drops in both cases because glissile loops escape from the
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Figure 11. Average relaxation volume in samples containing initially 300 dislocations
loops versus time.

simulation cell. We can also see those simulated with surface tractions have a lower relaxation
volume at finite times, again due to the enhanced glissile loop loss.

4. Discussion and outlook

A full simulation on an in-situ ion or neutron irradiation TEM experiments is very involved.
One needs to consider many other aspects beyond the scope of this work. Nevertheless, we
may discuss some of them as part of possible extension of current model.

The most significant rule we have not incorporated is the pinning of loops by carbon impu-
rities. It has been known to be a very significant factor in determining the effective diffusion
constant of mobile interstitial defects [89–91]. Carbon will slow, or even stop dislocation loops
depending on the binding energy, which may be as high as 2 eV [92]. In neglecting the retarding
effect of carbon, we are looking at the most challenging case from a computational perspective,
with all defects having maximum mobility.

In addition to dislocation loops, one could consider interstitial atom, vacancy, and void
within the formalism presented here. Frenkel pairs are generated continuously in collision
cascades. Voids can be formed through the agglomeration of vacancies, or through ther-
mal transformation from vacancy loops. Gilbert et al [93] using molecular statics showed
that prismatic 1

2 〈111〉 interstitial loop and void are most stable defect structures for inter-
stitial and vacancy type in tungsten, respectively. At high temperature, one may also con-
sider the processes of interstitial ejection or vacancy ejection from defects. The generation of
proper size and species distribution of defects due to random collision cascades may be based
work by Mason et al [23]. Guided by MD simulation [8] and in situ TEM experiments [12], we
know that the size-frequency distribution of interstitial loops, vacancy loops, and voids should
follow power laws. TEM experimental analysis also shows that loops should be spatially dis-
tributed with a number density, ρ(R), exponentially decreasing with distance from the centre
of the cascade, i.e. 4πR2ρ(R)dR ∼ exp(−R/λ)dR [88], and that individual defects are gener-
ated independently [94]. Meeting all three conditions simultaneously requires thought as the
total interstitial count must equal the total vacancy count, split between loops and clusters, and
touching defects will spontaneously transform.
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Self-climb of a dislocation loop is a result of pipe diffusion around the loop perimeter. Atoms
diffuse along the dislocation like a short circuit path [57, 58]. This effect could be incorporated
by considering stochastic motion perpendicular to the gliding direction. Defect mediated climb
changes the size and shape of a loop [57]. Our model can, in principle, incorporate such climb,
though this requires okMC-like rules for the combination of small and large defects when
they come close enough. Elastic dipole tensor and diffusivity of small mobile defects will
be required. Since we are using the elastic dipole tensor formalism, there is arbitrariness on
the choice of shape of a loops. Parameterizing such rules will rely on information input from
experiments or atomic scale simulations.

In contrast to cluster dynamics, which also describes the evolution of an ensemble of defects,
our method considers the real dynamics of defects with spatial resolution. This allows us to
consider the elastic interactions among all defects simultaneously by simply integrating the
equation of motion, whereas cluster dynamics [86, 87] is based on solving a mean-field rate
equation.

The modern okMC method [25–30, 32], using the Bortz–Kalos–Lebowitz (BKL) algorithm
[95], is often accelerated using basin-finding algorithms [96, 97]. Elastic interactions may be
introduced as a bias on the migration energy [98]. When a model contains a large amount
of defects whose migration rates depend on their relative positions, as is the case with elastic
interactions, the number of possible exit states from the equilibrating basin becomes very large
and the time progression will be slow. A recent development on parallel okMC method [31] by-
passed the BKL algorithm. They progress the time through a fixed time step, which is inversely
proportional to the maximum event rate. By exploiting the massive parallel power of GPU, they
generate random numbers for all possible processes to decide whether a process will happen or
not within a time step. However this approach makes it more difficult to correctly incorporate
long-range elastic interactions with strict causality. For these reasons okMC works considering
the elastic interaction between defects [23, 28, 29, 32, 62, 63, 99] have been restricted to small
system size.

The computation efficiency of our code implementation may be further improved. Currently,
the code for defect–defect interactions is written in Python. A substantial improvement is
expected if it is written in C++ or Fortran. The FEM simulation is performed using CAST3M.
In this study, its MPI implementation was limited to only 32 CPU cores in a single computer
node. Each time step takes about 3 min, where 80% of computer time is spent on the FEM
solver.

5. Conclusion

We have developed a Langevin dynamics model coupled to a FEM that simulates the dynam-
ics of localized defects in a finite size elastic medium, where the interaction between defects
is described by the elastic dipole tensor and elastic Green’s function formalism. The current
model is valid within the linear elasticity approximation. This is appropriate for simulating ion
and neutron irradiation experiments where localized defects are generated by collision cas-
cades. We have solved the problem of artificial imbalanced forces and moments that appears
in traction free boundary conditions when the superposition method is used. We have demon-
strated the validity and feasibility of our model through examples. We performed a dynamic
simulation of two interacting loops, that is well compatible with a previous work that used an
analytic solution and parallel loops. We have also simulated the dynamics of an ensemble of
loops in a finite size box, and observed the elastic contribution due to surfaces. We can see
that surfaces enhance the mobility of loops and so act as a strong sink. The density of loops
near surface is lower if elastic interaction with surface is considered. We have demonstrated
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that our model is capable of simulating time and length scales approaching experimental scales.
This model allows us to simulate the evolution of defects that may explain observations from
TEM.
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