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Effect of non-Heisenberg magnetic interactions on defects in ferromagnetic iron
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Fundamental flaws in the Heisenberg Hamiltonian are highlighted in the context of its application to bcc Fe,
including the particular issues arising when modeling lattice defects using spin dynamics. Exchange integrals
are evaluated using the magnetic force theorem. The bilinear exchange coupling constants are calculated for all
the interacting pairs of atomic magnetic moments in large simulation cells containing defects, enabling a direct
mapping of the magnetic energy onto the Heisenberg Hamiltonian and revealing its limitations. We provide a
simple procedure for extracting the Landau parameters from density-functional theory calculations to construct
a Heisenberg-Landau Hamiltonian. We quantitatively show how the Landau terms correct the exchange-energy
hypersurface, which is essential for the accurate evaluation of energies and migration barriers of defects.
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I. INTRODUCTION

Magnetism is a quantum mechanical phenomenon that
arises from a combination of the Coulomb interaction between
electrons and the Pauli exclusion principle. The spin state of
the electrons affects the total energy through what is known
as exchange interaction. In transition, rare earth, and actinide
metals [1], electrides [2] and organic polyradicals [3], which
all have partially filled d or f orbitals, magnetic moments are
formed due to the exchange interaction between intra-atomic
d or f electrons. Magnetism has been highly influential on
modern technologies such as magnetic storage [4] and spin-
tronic devices [5]. Exotic noncollinear spin textures such as
skyrmions promise to revolutionize processor and data storage
technologies further [6].

Iron-based alloys are particularly important industrial ma-
terials. They attain a myriad of complex magnetic states, such
as ferro- and antiferromagnetic [7], incommensurate spin den-
sity waves [8–10] and spin-glasses [11,12]. Their mechanical
properties are partially governed by the population of mag-
netic states [13,14]. For example, in pure iron, the softening
of the tetragonal shear modulus C′ near the Curie temperature
TC is driven by magnetism [15–17].

Body-centered cubic (bcc) crystal structure of iron owes
its stability to the free energy contributions from both lat-
tice and magnetic excitations [18–23]. Magnetism also makes
the 〈110〉 dumbbell the most stable configuration of a self-
interstitial atoms (SIA) in iron. This is in contrast to other
nonmagnetic bcc transition and simple metals where a single
SIA defect adopts a 〈111〉 or 〈11χ〉 configuration [24–26].

The Heisenberg Hamiltonian [27] is a well known model
describing interaction between magnetic moments. It assumes
that electrons are reasonably well localized, which is indeed
the case in metals with d or f electrons. The Heisenberg

*Corresponding author: jacob.chapman@ukaea.uk

Hamiltonian can be written as

Ĥ = −1

2

∑
i j

Jeff
i j ŝi · ŝ j, (1)

where ŝi is a unit vector in the direction of an atomic spin Si =
Si ŝi at site i. Jeff

i j is an effective isotropic pairwise exchange
coupling parameter describing interaction between spins at
sites i and j. The local atomic magnetic moment and spin at
site i are related simply by Mi = −gμBSi, where g = 2.0023
is the electron g factor and μB is the Bohr magneton.

In the Heisenberg approximation, parameters Jeff
i j gov-

ern the magnetic order, transition temperature, and magnon
dispersion of the material [28–34]. The value of Jeff

i j can
be estimated from experimental observations by fitting the
temperature-dependent magnetic susceptibility curve [35,36].
On the other hand, Jeff

i j can be determined from density-
functional theory (DFT) calculations [28,37,38].

There are two commonly used approaches to derive Jeff
i j

from DFT calculations. The first is the real-space total en-
ergy method [39]. The total energy is evaluated for various
metastable collinear magnetic configurations. The exchange
coupling parameter is then estimated from the energy differ-
ences between various magnetic states.

This approach has several limitations. The necessity to
perform total energy calculations for multiple configurations
can be expensive in the limit of a large system size. This
size problem cannot be circumvented for classes of materials
such as organics or electrides [2]. In addition, the assumption
that Jeff

i j is a simple scalar does not help deliver information
about the contributing orbitals or the dominant mechanism of
exchange interaction.

The second approach is known as the magnetic force the-
orem (MFT) [28–34,40–47]. It was first derived within the
coherent-potential approximation (CPA) to analyze the high-
temperature properties of itinerant magnetic systems [40–42].
Later, it was re-derived using multiple scattering theory
to investigate the Ruderman-Kittel-Kasuya-Yoshida (RKKY)
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interactions between impurities in metals [43]. The resultant
expression for the exchange integrals is commonly referred to
as the Lichtenstein-Katsnelson-Antropov-Gubanov (LKAG)
equation [28]. This Green’s function based approach pro-
vides an analytical expression for parameter Jeff

i j in the form
of a response to the changes in the total energy result-
ing from small spin rotations in a particular magnetic state.
Other complementary approaches to extract the magnetic
exchange are also available, including the use of momentum-
dependent irreducible susceptibilities within the framework
of DFT+Dynamical Mean-Field Theory (DMFT). This is
particularly applicable within and in the vicinity of the para-
magnetic state of α-Fe [48,49].

The principal advantage of the MFT approach is that all
the pairwise parameters Jeff

i j can be determined for a single
magnetic configuration. The configuration does not need to
be the true magnetic ground state, which may not be known.
In addition, Jeff

i j may be decomposed into contributions from
different orbitals [33,34,46].

Early developments of MFT were implemented using the
localized orbital methods such as the linear muffin-tin orbital
(LMTO) approach [38,50] and for the linear combinations of
pseudoatomic orbitals (LCPAO) [46,47]. Recent extensions to
plane-wave DFT codes have taken advantage of maximally
localized Wannier functions [33].

Calculations of Jeff
i j are often motivated by the need to

parametrize multiscale methods as the Heisenberg model
approach can then be used to predict finite temperature prop-
erties of magnetic systems [20,23,23,51–54]. The studies
performed using the MFT primarily concerned bulk materials
or molecular magnets [28,29,55,56]. Defects [57,58] as well
as nanostructures on substrates [59] have also been consid-
ered. Nonetheless, even for perfect crystalline configurations
it has been observed that the adiabatic magnetic exchange-
energy hypersurface parametrized by the bilinear Heisenberg
Hamiltonian is incomplete [60–63]. An accurate representa-
tion necessitates longitudinal fluctuations to be considered
[62,64,65].

Despite the known shortcomings of the Heisenberg Hamil-
tonian, it remains a popular choice for multiscale modeling.
In this paper we address the consequences of the Heisen-
berg functional form of a magnetic Hamiltonian and show
that applications of this Hamiltonian to distorted lattice con-
figurations require extending it to the Heisenberg-Landau
form [20,21,66,67]. We begin by benchmarking our density
functional theory (DFT) calculations, performed using the
OPENMX code [68], against the known literature and our in-
house exchange coupling codes in Sec. III A. We then quantify
the error of an idealized mapping of the DFT magnetic energy
for pristine and defected configurations of body-centred cubic
α-Fe in Sec. III B.

Our analysis in Sec. III C reveals that the magnetic hy-
persurface of point defects can be represented qualitatively,
but the Heisenberg approximation fails to capture the rela-
tive stability of the 〈111〉 crowdion due to the mixed eg-t2g

characteristic of the bands at the Fermi energy. We assert
that even a perfectly mapped Heisenberg Hamiltonian is un-
able to predict point defect behavior in iron with reasonable
quantitative reliability. In Sec. III D we demonstrate that a
very accurate representation can be created by incorporat-

ing in the Hamiltonian the second- and fourth-order Landau
coefficients. We provide a simple procedure showing how to
extract atom-resolved Landau parameters from DFT calcula-
tions. This enables the itinerant behavior of d electrons to be
incorporated into the magnetic model. Finally, in Sec. III E we
explore the effect of magnetic interactions on the migration of
a 〈110〉 self-interstitial atom defect.

II. METHODOLOGY

A. Simulation setup

We performed DFT calculations using the OPENMX
package [68], which implements pseudopotentials and pseu-
doatomic orbitals. The bulk (pristine) simulation cell of Fe is
constructed using 4 × 4 × 4 unit cells containing 128 atoms.
We use the Perdew-Burke-Ernzerhof (PBE) generalized gra-
dient approximation exchange correlation functional [69,70],
which together with the difference Hartree potential [71] are
evaluated on a real space grid. Numerical integration of these
nonlocal terms are performed upon the discrete real-space grid
partitioned by a cutoff energy of 600 Ry.

The basis set is created via a linear combination of op-
timized pseudoatomic orbitals (LCPAO) [71–73], employing
three s, three p, and three d orbitals centered on each atomic
site, which all share a cutoff radius of 6 Bohr radii. Two-
center integrals in the Kohn-Sham Hamiltonian evaluated in
momentum space use 3 × 3 × 3 k points constructed by the
Monkhorst-Pack (MP) method [74]. We use the Fe pseu-
dopotential of the form of Morrison, Bylander and Kleinman
(MBK) [75,76] available within the OPENMX library, which
include a nonlinear partial core correction. The separable
form of the MBK pseudopotential is particularly suited for
efficient LCPAO calculations. Ionic positions are relaxed until
the maximum ionic force is smaller than 2 × 10−4 Ry/Bohr
radius.

We performed benchmark tests against literature data. We
calculated the lattice constants, elastic constants, and point
defects formation energy and compared with data calculated
by VASP [77–80] using the projector augmented wave (PAW)
potential [26] and the ultrasoft pseudopotential (USPP) po-
tential [81]. We checked the convergence of our data against
the k-points density, electronic temperature, and real-space
cutoff energy. Bulk properties of bcc and fcc phases are pre-
sented in Sec. III A. Defect formation energies are presented
in Sec. III B. They all show good compatibility and confirm
the validity of our results.

B. Exchange coupling parameter

The MFT [28] enables one to directly extract the scalar
bilinear Heisenberg exchange integral Jeff

i j from electronic
structure calculations. Here we address the Green’s function
formalism of the MFT [82,83]. The effective exchange inte-
gral can be written as

Jeff
i j (k) = 1

π
Im

∫ εF

−∞
Tr(G↑↑

k,i jV̂
↓↑

k,i G↓↓
k, jiV̂

↑↓
k, j )dε. (2)

The single-particle Greens function at a given energy ε is
defined by the resolvent of the Kohn-Sham orbitals |φσ

k,i〉 in
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momentum space k over the filled states:

Gσσ
k,i j (ε) =

∑
n

∣∣φσ
k,i

〉〈
φσ

k, j

∣∣
ε − εσ

k,n + iη
, (3)

where the spin index σ for our collinear calculations refers
to the majority ↑ and minority ↓ spins, εσ

k,n is the nth
eigenenergy, and η is a positive infinitesimal smearing factor,
implying the limit η → 0.

The philosophy leading to the derivation of the MFT
presents that a good and convenient way to determine the
electronic structure of a system is to work within the grand
canonical potential (GCP). One is then able to relate variations
in the GCP to changes in the integrated density of states. In
turn, using Lloyd’s formula [84], the integrated density of
states may be expressed by a transition matrix which relates
states of the perturbed system to the states of the unperturbed
Hamiltonian. This may be represented as an open Born series
constructed from successive expansions of retarded Green’s
functions of the unperturbed states [Eq. (3)] and an on-site
scattering potential [V̂ ↑↓

i , Eq. (4)]. As a result, changes in
the GCP owing to a small spin rotation can ultimately be
determined by knowing the relevant on-site potential. This is
taken to be the potential difference induced by the rotation of
the magnetic moment.

For collinear spins, the off-diagonal components of a local
Hamiltonian H↑↓

i and H↓↑
i representing a given atomic site

i are zero. The on-site exchange splitting potential V̂ ↑↓
k,i at

atomic site i due to an infinitesimal spin rotation can then be
approximated using the difference in the local Hamiltonian
between the up and down spin channels [47,82]:

V̂ ↑↓
k,i = 1

2

(
Ĥ↑↑

k,i − Ĥ↓↓
k,i

)
. (4)

The local Hamiltonian is the partial matrix of the
full Kohn-Sham Hamiltonian representing site i. Since our
LCPAO calculations are using three s, three p, and three d
orbitals per Fe atom, the local Hamiltonian matrices have
27 × 27 matrix elements per spin state accessed via orbital
indices.

Finally, within the LKAG formulation one can relate the
changes to the GCP to the bilinear exchange parameters
by means of Eq. (2). Detailed derivations can be found in
Refs. [28,45]. We present now the practical implementation
of the MFT as used in the current work.

For nonorthogonal LCPAO basis used in OPENMX, the
MFT within the rigid spin approximation with noncollinear
magnetic perturbations can be reexpressed in a practical man-
ner as shown in Ref. [47] by Han et al. More recently, the same
expression has been rederived using local projection operators
[29]. In the orbital representation,

Jeff
i j (ri j ) = 1

4

∫
dk

∑
α,β

( f ↑
α − f ↓

β

ε
↓
β − ε

↑
α + iη

)

×
Ni∑
a,b

C↑
k,αaV̂

↓↑
ab C↓

k,βb

Nj∑
a′,b′

C↑
k,αa′V̂

↑↓
a′b′C

↓
k,βb′ , (5)

where the indices a and b run over the pseudoatomic orbitals
centered on site i, and a′, b′ span over site j. α, β are indices
spanning all the orbitals in the system. f ↑

α and f ↓
β are the Fermi

distributions:

f σ
α = 1

1 + exp
[(

εσ
α − μ

)
/kBT

] , (6)

with electron smearing temperature T and chemical potential
μ. V̂ σσ ′

ab is the matrix element for the on-site potential at site i
between the orbitals centered at that site indexed a and b. Cσ

αa
are the molecular orbital coefficients of the self-consistently
solved generalized Kohn-Sham equations:

HCα = εαSCα, (7)

where Cα = (Cα1,Cα2, . . . ,CαNi )
T. This vector is constructed

using a Löwdin transformation with the unitary vectors U
that diagonalize the overlap of the Kohn-Sham orbitals S. The
corresponding eigenvalues e are necessarily positive definite.
The transformation is then expressed as

Cα = 1√
eα

U†
αHUα

1√
eα

. (8)

Since Eq. (8) is a matrix equation, the identical positive def-
inite terms involving the inverse square root of the overlap
eigenenergies are noncommutative.

The exchange coupling parameter Jeff
i j can then be calcu-

lated within the framework of DFT. OPENMX [68] provides
a utility that calculates Jeff

i j . However, it was primarily de-
veloped for calculation of molecules. Instead of using it, we
developed our own code that has been optimized for bulk
materials. We note that recently a new release of OPENMX
became available containing improvements to the exchange
coupling code [85].

In order to treat the variable magnitude of atomic spin,
which we discuss below, we define another Heisenberg
Hamiltonian H:

H = −1

2

∑
i j

Ji jSi · S j, (9)

where Si is the atomic spin vector at site i and Ji j is the
exchange coupling parameter. In the Heisenberg Hamiltonian
defined in Eq. (1), the magnitude of the atomic spins are sub-
sumed into Jeff

i j . Comparing Eqs. (1) and (9), the two exchange
parameters are related by

Ji j = g2μ2
B

MiMj
Jeff

i j . (10)

The magnetic moments Mi can be determined by a Mulliken
population analysis of the electronic density and overlap ma-
trices:

Mσ,iα =
∑

n

∑
jβ

ρ
(Rn )
σ,iα jβS(Rn )

iα jβ, (11)

where ρ
(Rn )
σ,iα, jβ is the density matrix pertaining to the periodic

image of the simulation cell whose origin is positioned at Rn.
S(Rn )

iα, jβ is the overlap matrix. Indices i and j refer to the atomic
sites, α and β are the orbital indices, σ denotes spin, and n
spans the periodic images of the simulation cell within a given
cutoff radius.
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TABLE I. Ground-state properties of bcc Fe as calculated using
the OPENMX [68], compared with plane-wave DFT calculations
using VASP [26] and experiment.

OPENMX VASP

Property (Present) [26] Expt.

a0 (Å) 2.842 2.831 2.87 [86]
〈M〉 (μB ) 2.25 2.21 2.22 [7]
�0 (Å3) 11.49 11.34 11.82 [86]
C11 (GPa) 242.12 289.34 243.1 [87]
C22 (GPa) 138.74 152.34 138.1 [87]
C44 (GPa) 87.72 107.43 121.9 [87]

III. RESULTS

A. Bulk iron

We compare our bulk Fe data with other DFT calculations.
The data in Table I, produced using OPENMX calculations,
show excellent agreement with other similar studies. The
ground state of iron is, as expected, found to be the bcc
ferromagnetic (α) phase with atomic magnetic moments of
2.22μB, in agreement with experiment [86].

The equilibrium lattice parameter aDFT
0 = 2.842 Å is

slightly underestimated relative to the experimental value
aexp

0 = 2.8665 Å. This is not unexpected as overbinding
effects are relatively common in the context of DFT calcu-
lations.

The lowest energy magnetic configuration in the fcc phase
is double-layer antiferromagnetic (AF2), which is 0.1 eV
higher in energy than the FM bcc α phase. They are consistent
with Ref. [23]. We notice a small discrepancy in the stability
of the fcc magnetically ordered phases (Table II). Our calcu-
lations find the next stable configurations to be the high-spin
ferromagnetic (HS) and single-layer antiferromagnetic (AF1),
which are nearly degenerate at 0.12 and 0.13 eV, respectively.
This differs from Ref. [23] where the stability was explored
using the PAW method. The AF1 phase was found to be
the next stable phase, with the HS and ferromagnetic low
spin (LS) configurations being of comparable stability. This
difference likely arises from differences between the pseu-
dopotentials used in the two approaches.

In Fig. 1 we plot the magnitude of the magnetic moments
as a function of volume for different magnetically ordered
phases. We find quantitative agreement with previous

FIG. 1. (a) Energy and (b) magnitude of magnetic moment of
different magnetic configurations of bcc and fcc Fe calculated using
OPENMX. Energies are normalized per atom and are shown relative
to the global 0 K ground state (bcc FM). Atomic volume �0 is com-
puted as the total volume of the simulation cell divided by the number
of atoms in it, |( 
Lx × 
Ly ) · 
Lz|/N . The following magnetic configu-
rations are shown for α-Fe and γ -Fe: bcc ferromagnetic (FM), bcc
nonmagnetic (NM), fcc nonmagnetic (NM), fcc high-spin (HS), fcc
low-spin (LS), fcc antiferromagnetic (AF1), and fcc double-layer
antiferromagnetic (AF2). Further properties for the relaxed structure
of each magnetic configuration are provided in Tables I and II for
α-Fe and γ -Fe, respectively.

calculations showing that the magnitude of the moments
decreases under compression due to the increasing exchange
energy to satisfy the Pauli exclusion principle. We also
observe an inflection point in the α phase when, under
tension, the lattice parameter of 1.014a/aDFT

0 (where �0 ≈ 12
Å3 in Fig. 1) is reached. This kinking is known to occur due to
large changes in the t2g density of states at the Fermi level εF

relative to smaller changes in the density of states associated
with the eg orbitals [88].

Values of the exchange coupling parameter Jeff
i j of bcc

ferromagnetic Fe calculated using the MFT [28] [Eq. (5)] are
given in Table III. The values were computed assuming the ex-
perimentally observed lattice parameter, or the lattice param-

TABLE II. Comparison of the ground state fcc Fe magnetic structures calculated with OPENMX with reference data. Reference DFT data
were collected from Ref. [89] unless stated otherwise. Atomic volumes �0 are given in Å3. Values in the last column represent the difference
between the energy per atom computed for a given structure and the energy per atom in the ferromagnetic bcc phase. Values as functions of
volume are plotted in Fig. 1.

Configuration �0 (Å3) �0 (Å3) 〈|M|〉 (μB) 〈|M|〉 (μB) Energy diff. (eV)
(Present) (Ref.) (Present) (Ref.) (Present)

AF1 11.05 10.76, 11.37 [90] 2.00 1.574 0.13
AF2 11.50 11.20 2.376 2.062 0.096
FM-HS 12.14 11.97, 12.12 [90] 2.631 2.572 0.12
FM-LS 10.84 10.52 1.324 1.033 0.21
NM 10.38 10.22 0.000 0.000 0.25
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TABLE III. Values of effective exchange coupling parameters
Jeff

i j evaluated using the magnetic force theorem. Values of Jeff
i j

were computed assuming the experimental lattice parameter aexp
0 =

2.8665 Å or the DFT equilibrium lattice parameter aDFT
0 = 2.842

Å (in parentheses). The Curie temperature TC can be estimated in
the mean field approximation using Eq. (12). We included contribu-
tions from the four nearest neighbor shells, where in the bcc case
TC ≈ 2(8J (1) + 6J (2) + 12J (3) + 24J (4) )/3kB.

Jeff
i j LCPAO (GGA) LMTO LMTO LMTO

(mRy) (Present) (GGA) [88] (LSDA) [91] (LSDA) [50]

J (1) 1.204 (1.14) 1.218 1.24 1.212
J (2) 0.953 (0.72) 1.08 0.646 0.593
J (3) −0.035 (−0.004) −0.042 0.007 0.018
J (4) −0.085 (−0.087) −0.185 −0.108 −0.07
Jeff

0 12.89 (11.30) 11.28 11.03 11.79
TC (K) 1362 (1193) 1186 1170 1240

eter corresponding to the DFT energy minimum (values given
in parentheses). The table gives the values of exchange param-
eters computed for the first four nearest neighbor shells; the
corresponding values are denoted as J (1), J (2), J (3), and J (4).

Two recent studies performed using the LMTO [33] and
LCPAO [46] tested the dependence of the computed values of
exchange parameters on the choice of the basis set. Depending
on the choice of basis functions, the calculated values of
exchange parameters Jeff

i j can vary by 3 meV (0.2 mRy). It has
also been noted that DMFT corrections affect the magnitude
of orbitally resolved Jeff

i j (ri j ), but the sign and relative strength
remain unaltered [30]. It suggests that, while we could opt
for a more sophisticated method, our results summarized in
Table III are informative and show good compatibility with
published data [50,88,91].

We explored the variation of the effective exchange cou-
pling parameter Jeff

i j (ri j ) treated as a function of interatomic
distance ri j by varying the volume of the simulation cell.
The linear dimension of the cell varied in the range of ±3%.
Figure 2 shows the calculated exchange coupling parame-
ter Ji j defined according to Eq. (10). Again, the data agree
with the results from Ref. [23], where the calculations were
performed using the LMTO Green’s function technique, de-
veloped and implemented by van Schilfgaarde et al. [28,38].

Using the values Jeff
i j computed for several coordination

shells, the TC can be estimated in the mean field approximation
[28] as

kBTC ≈ 2
3 Jeff

0 , (12)

where Jeff
0 = ∑

j �=0 Jeff
0 j . The data given in Fig. 2 show that

J (1) and J (2) give the dominant contribution to Jeff
0 . Still, we

evaluate Jeff
0 using the effective exchange parameters for the

coordination shells extending to the fourth nearest neighbor.
The estimated values of TC are given in Table III together with
other values, taken from literature and also calculated in the
mean field approximation.

Mean field Curie temperatures are known to overestimate
the experimentally measured values by 15–30%. This is due
to the MFA’s inaccurate treatment of the correlation between
spins. For the DFT equilibrium lattice parameter aDFT

0 the
TC in the MFA is calculated as 1362 K, which is consistent

FIG. 2. The exchange coupling parameter Ji j as a function of
interatomic distance. Black circles are data from Ref. [23], calculated
using the LMTO-GF method [28,38]. Purple squares are the current
results calculated using LCPAO and the MFT [28] [Eq. (5)], where
the volume of a simulation box containing 128 atoms varies such that
the linear dimension change is in the range of ±3%.

with other LCPAO and KKR calculations [85]. Factoring the
known overestimation of MFA, it is in reasonable agree-
ment with the experimental TC = 1043 K. When the magnetic
exchanges are recalculated at the experimental lattice param-
eter as provided in parenthesis in Table III, the TC in the
MFA becomes consistent with experiment. However, due to
overbinding within the DFT calculations, recalculation at the
experimental lattice parameter (2.8665 Å) reduces the overlap
of the d-band electrons which in turn reduces the exchange
contribution due to Eq. (8). The noted lowering of the calcu-
lated TC is therefore a consequence of an underestimation of
the exchange integral.

B. Point defects in iron

We now investigate magnetic interactions in iron contain-
ing point defects, and compare the results to the bulk case.
First, we benchmark the calculated formation energy of a self-
interstitial atom (SIA) defect and a vacancy against literature
data [81,92–94]. Then, we study how the exchange coupling
parameters vary in the vicinity of a defect, especially near the
core of a defect configuration.

The formation energy EF
def of a defect formed in a given

structural and magnetic phase can be written as

EF
def = Edef(Ndef) − Ndef

Nbulk
Ebulk(Nbulk), (13)

where Edef(Ndef) is the energy of a system including the defect
and Ebulk(Nbulk) is the energy of the reference perfect sys-
tem. The number of atoms in each system is Ndef and Nbulk,
respectively. For the cell size and defect structures consid-
ered here we ignore the elastic correction to the formation
energy of the defect [26], as the magnitude of the elastic
correction varies between 0.2 and 0.3 eV whereas the variation
of DFT parameters leads to an absolute error in the formation
energy of the order of 0.05–0.1 eV per SIA [95], which is a
quantity of similar magnitude.

The simulation cell for a defect calculation is chosen to
be of the same shape and volume as in the perfect lattice
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TABLE IV. Calculated defect formation energies EF
def. Calculations were performed using a LCPAO basis set. Our results are compared

with Refs. [26,81,92,93] where calculations were performed using LCPAO, plane wave with PAW, or plane wave with USPP. Values in
parentheses show the energy difference of an SIA configuration with respect to the formation energy of a 〈110〉 dumbbell. Due to the short
range of the LCPAO, we present the calculated formation energy of a vacancy with (dagger) and without the additional basis functions added
to the vacancy site. All the calculations were performed using 128 ± 1 atom cells. Units are in eV.

Defect PAO PAW PAO USPP PAW
(Present) [81] [93] [81] [26]

〈110〉D 4.49 4.02 3.64 3.94 4.42
Tetrahedral 4.98 (0.49) 4.44 (0.42) 4.26 (0.62) 4.46 (0.52) 4.88 (0.46)
〈111〉D 5.25 (0.81) 4.34 (0.70) 4.66 (0.72) 5.21 (0.79)
〈111〉C 5.27 (0.79) 4.72 (0.70) 5.21 (0.79)
〈100〉D 5.58 (1.10) 5.13 (1.11) 4.64 (1.00) 5.04 (1.10) 5.59 (1.17)
Octahedral 5.74 (1.25) 5.29 (1.27) 4.94 (1.30) 5.25 (1.31) 5.68 (1.26)
Vacancy 2.26 / 2.18† 2.15 2.07 2.02 2.19

case. SIA configurations are created by inserting additional
Fe atoms at different positions in the lattice, and all the ionic
positions are then relaxed until all the forces acting on ions are
lower than 2 × 10−4 Ry/Bohr radius. We considered the self-
interstitial atom (SIA) configurations including 〈100〉, 〈110〉
and 〈111〉 dumbbell, 〈111〉 crowdion, tetrahedral site intersti-
tial, and octahedral site interstitial. A vacancy configuration is
created by removing an atom, followed by relaxation of ionic
positions.

The formation energies of point defects in bcc Fe are
summarized in Table IV, and compared with results given
in Refs. [26,81,93]. The most stable SIA configuration
is the 〈110〉 dumbbell, which agrees with earlier results
[24,25,92,93]. The relative stability also follows the same or-
der, such that the formation energies are ordered as 〈110〉D <

tetrahedral < 〈111〉C < 〈111〉D < 〈100〉D < octahedral,
where the corresponding configurations are 0.49, 0.79, 0.81,
1.10, and 1.25 eV higher in energy than the 〈110〉 dumbbell,
respectively. Subscripts D and C denote dumbbell and crow-
dion configurations. Our results agree well with the literature
data derived using different basis sets and pseudopotentials.

The magnetic moments of SIA configurations are also con-
sistent with those reported in literature [81,92]. In general, the
magnetic moments in the core of an SIA configuration are
significantly suppressed. Moments at the tensile first nearest
neighbor (n.n.) sites are enhanced while those at sites charac-
terized by a compressive strain are slightly decreased relative
to the bulk value. A more complex relation between the local
structure and local magnetic moment was found in C15 defect
clusters [96].

In the case of a 〈110〉D, the magnetic moments of the two
Fe atoms at the core of the defect are antiparallel with respect
to the surrounding atoms, and the magnitude of both mag-
netic moments is −0.30μB. This is slightly larger than what
is found in calculations performed using the PAW method,
which predicts the value of −0.1μB [26], and using USPP,
which gives −0.2μB [81].

In the case of a 〈111〉D, the two core atoms are in the fer-
romagnetic state having moments of +0.19 μB. In Ref. [81],
the two core atoms can be ferromagnetic (0.3 μB) or anti-
ferromagnetic (−0.5 μB), if the USPP or PAW method is
used, respectively. These results are in good agreement with

literature data. We now move on to the calculations of the
exchange coupling parameters.

In Fig. 3, we present both the effective exchange coupling
parameter Jeff

i j (Eq. 5) and the exchange coupling parameter
Ji j (Eq. 10) computed for various SIA and vacancy config-
urations. Jeff

i j at around the perfect lattice first n.n. distance
has magnitude in the range of 15–25meV, whereas its value in
a perfect lattice is 19 meV. Both Jeff

i j and Ji j tail off quickly

FIG. 3. (a) Jeff
i j [Eq. (5)] and (b) Ji j [Eq. (10)] as a function of

interatomic distance ri j = |ri − r j | for SIA defects, including 〈100〉,
〈110〉, 〈111〉 dumbbells, a tetrahedral site interstitial, an octahedral
site interstitial, and a vacancy configuration. Bulk values are also
shown for comparison. (c) Ji j shown over a greater ordinate range
to include the outliers.
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TABLE V. Exchange coupling parameters between a core atom (α) and its first nearest neighbors (β). Multiplicity is defined per α atom.
The key identifies specific data point plotted in Fig. 3(c). We indicate whether the exchange coupling parameter contributes to increase (↑) or
decrease (↓) the energy of the system.

SIA Key Pair M (μB) Order Multiplicity Je f f (meV) J (meV)

〈110〉D i Jαα Mα = −0.304 FM 1 −0.05 −2 (↑)
ii Jαβ Mβ = +1.75 AFM 2 19.6 −35 (↓)

Tetrahedral iii Jαβ Mα = −0.87 AFM 4 6.8 −28(↓)
Mβ = +1.13

〈111〉D iv Jαα Mα = +0.198 FM 1 −0.84 −88 (↑)
v Jαβ Mβ = +1.49 FM 1 3.00 +38 (↓)

〈100〉D vi Jαα Mα = +0.188 FM 1 1.0 +114 (↓)
vii Jαβ Mβ = +2.14 FM 4 11.6 +116 (↓)

by the third n.n., where ri j ≈ 4 Å. The exchange coupling
parameter depends on the overlap between the localized basis
functions, and so decays rapidly. Despite overlapping with
orbitals of the core atoms, the values of Jeff

i j do not change
much for bulk-like atoms surrounding the defect core. One can
expect the bulk exchange coupling parameters to be a good
approximation to them.

Here we introduce the notation α, β, and γ as dummy
indices representing the index of the core atoms, and their
first and second n.n., respectively. For the first and second n.n.
of the core atoms, where there is a greater degree of orbital
overlapping, Jeff

i j behaves as in a glassy material with scattered
values −0.5 < Jeff

αβ < 27 meV. If we look at Ji j [Eq. (10)]
instead, the magnitudes of Jαα and Jαβ are 2 to 5 times greater
than for the bulk first n.n. interaction, as shown in Fig. 3(c).

In Table V, values of parameters Jαα and Jαβ are presented
for the 〈100〉D, 〈110〉D, 〈111〉D, and tetrahedral site intersti-
tials. They are also shown in Fig. 3(c) via the key indexes. We
can understand that the suppression of the magnetic moment
of the core atoms is responsible for the large increase in Ji j

between the core and proximate neighbors, which occurs due
to the fact that Ji j ∝ 1/MiMj .

Exchange interactions may increase or decrease the energy
of a system. According to the definition of the Heisenberg
Hamiltonian [Eq. (9)], aligned spins (Mi · M j > 0) with Ji j >

0 will lower the energy. On the other hand, if Ji j < 0, the an-
tiparallel orientation of moments is favorable. In most cases,
the magnetic energy of α-α and α-β exchange interactions
acts to lower the energy. The 〈111〉D is an exception. The
magnetic interaction between the two core atoms increases the
energy by almost 0.9 eV for each core atom. When consider-
ing all interactions in the 〈111〉D system the exchange energy
still acts to lower the total energy. However, due to these large
positive contributions the total energy is reduced by less than
the other defect configurations. This results in a change in the
order of stability relative to nonmagnetic iron (see Table IV
and Sec. III C). This observation agrees with previous studies
[24,26] suggesting that magnetism is responsible for 〈110〉D

being more stable than the 〈111〉D in contrast to other bcc
metals.

C. Failure of the Heisenberg Hamiltonian

For a fixed atomic configuration R = {ri}, we may calcu-
late the energy change due to a specific spin ordering S =

{Si}. We may define the magnetic contribution to energy as
the difference between the magnetic and nonmagnetic states
of configuration R:

EDFT
MC (R,S ) = EDFT

M (R,S ) − EDFT
NM (R), (14)

where EDFT
M and EDFT

NM are the cohesive energies calculated
with and without spin polarization from DFT, respectively.

Using the MFT [28], we aim to map the DFT magnetic
energy contribution onto the Heisenberg functional form. We
note that the MFT is derived using relations from the second
derivative of the energy with respect to the atomic spin:

∂2EDFT
MC

∂Si∂S j
= ∂2EDFT

M

∂Si∂S j
≈ −Ji j . (15)

If EDFT
MC (R,S ) varies approximately the same as the Heisen-

berg Hamiltonian EHH
MC, the system can be said to be a good

Heisenberg magnet.
In Table VI, we list the contributions of each term in

Eq. (14). The nonmagnetic calculations were performed us-
ing the relaxed atomic configuration from the corresponding
spin-polarized calculation. The use of non-spin-polarized cal-
culation changes the order of stability of SIAs. It decreases
the energy of the 〈111〉D relative to the tetrahedral site inter-
stitial. This is consistent with the values of exchange coupling
parameters between the core atoms and their neighbors of the
〈111〉D, which increases the energy (Table V).

On the other hand, the energy of the 〈100〉D in the nonmag-
netic calculations increases relative to the 〈110〉D by 0.3 eV.
Despite the 0.1 eV magnetic contributions between each of the
α and β ions, which lower the energy significantly, the 〈100〉D

remains energetically unfavorable.
As a brief note, one may consider the relaxation of defect

structures directly using non-spin-polarized DFT to determine
the nonmagnetic order of stability. However, we find that
these structures have negative tetragonal shear modulii and are
therefore mechanically unstable.

Provided that EDFT
MC ≈ EHH

MC, one may approximate the total
magnetic energy using the Heisenberg Hamiltonian as

EDFT
M (R,S ) ≈ EHH

MC(R,S ) + EDFT
NM (R), (16)

as one may wish to achieve in a multiscale model.
From Table VI, we observe that EHH

MC and EDFT
MC differ by

about 4 Ry. In terms of the relative energy difference with
respect to the 〈110〉D, the most deviated case is the 〈111〉D.
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TABLE VI. Calculated values of various energy terms computed for simulation cells containing relaxed SIA configurations (in Rydberg
units). We record them as cohesive energies, shifted relative to the energy of the ground state bcc structure (E = E calc − NatomE bcc

ref ). Energy
differences with the 〈110〉D configuration are given in parentheses in units of eV. Subscripts correspond to the following nomenclature: M =
cohesive energy in a spin-polarized calculation, NM = cohesive energy in a non-spin-polarized calculation, MC = magnetic contribution, HH
= Heisenberg Hamiltonian, and HL = Heisenberg-Landau Hamiltonian. Further, we may define the energy terms as EDFT

MC = EDFT
M − EDFT

NM ,
EHH

M = EDFT
NM + EHH

MC = EDFT
NM + H, EHL

M = EDFT
NM + HL .

〈110〉D Tetrahedral 〈111〉D 〈100〉D

EDFT
M 0.3298 0.3657 (�110 = 0.49 eV) 0.3879 (�110 = 0.79 eV) 0.4107 (�110 = 1.09 eV)

EDFT
NM 5.9319 5.9691 (�110 = 0.51 eV) 5.9604 (�110 = 0.38 eV) 6.0359 (�110 = 1.40 eV)

EDFT
MC −5.6021 −5.6033 −5.5725 −5.6252

EHH
MC −1.7206 −1.7167 (�110 = 0.06 eV) −1.7071 (�110 = 0.18 eV) −1.7423 (�110 = −0.30 eV)

EHH
M 4.2113 4.2524 (�110 = 0.56 eV) 4.2534 (�110 = 0.57 eV) 4.2935 (�110 = 1.12 eV)∑

AiS2
i −7.7630 −7.7735 −7.7318 −7.7666∑

BiS4
i 5.6021 5.6034 5.5730 5.6257

EHL
M 0.3298 0.3657 (�110 = 0.49 eV) 0.3875 (�110 = 0.79 eV) 0.4103 (1.09 eV)

EDFT
M − EHL

M 0.000 0.000 0.004 0.004

From DFT we expect it to be +0.79eV higher in energy than
the 〈110〉D, but we find that the energy difference is +0.57eV
using the Heisenberg Hamiltonian.

We would like to understand the underlying reason for
the relatively poor representation of the magnetic contribution
delivered by the Heisenberg Hamiltonian. Figure 4 plots the
orbitally projected density of states (PDOS) of the 3d-band
electrons for the core α and the first n.n. β atoms for var-
ious SIA configurations. The PDOS are calculated using a
6 × 6 × 6 MP k-point grid with the same parameters as given
in Sec. II.

For bulk Fe at aDFT
0 , the orbitals at the Fermi energy (EF )

are predominantly t2g states (see Fig. 5). We would expect the
t2g and eg orbitals to contribute differently to the magnetic
properties. In recent works by Kvashnin et al. [30] and A.
Szilva et al. [32], an orbitally resolved analysis of exchange
integrals of bcc Fe revealed that the t2g orbitals are weakly
dependent on the configuration of the spin moments and are
Heisenberg-like, whereas the magnetic behavior of eg states
originates from double exchange.

With the exception of the 〈111〉D configuration, β site
atoms have a PDOS similar to that in the bulk, while the
PDOS of all the α site (core) atoms change significantly. For
all the cases, a large van Hove singularity for the majority spin
3d electrons is observed to move into the conduction band.
However, in the case of the 〈110〉D, the Fermi energy is located
at the peak in the PDOS of the 3dxz and 3dxy states, which is
0.5 eV lower than the maximum in the t2g PDOS. In the case
of 〈100〉D, the 3dz2 and 3dx2−y2 remain near the Fermi energy
in the valence band, with the peak in the density of states of
eg orbitals moving into the conduction band. For the minority
spin 3d electrons, a deep state at EF − 4 eV develops, which
is not present in the bulk. These deep-state electrons in the
Fermi sea will not be easily excited and will not contribute to
magnetic excitations, but they give rise to the suppression of
magnetic moment at the core of SIA configurations.

The most important distinction in the PDOS calculations is
that, unlike the other SIA configurations, the Fermi surface of
the 〈111〉D is equally characterized by the t2g and eg orbitals.

Since the t2g-t2g interactions are responsible for the long-range
RKKY-like exchange oscillations in Fe [30] along the (111)
direction, the core situated along a (111) string will hinder
the long-range oscillation across the chain due to the reduced
t2g occupation at EF . eg orbitals are known not to behave in
a Heisenberg-like manner [30,32] but will contribute to the
low-energy magnetic excitations. Therefore, it is clear that the
Heisenberg Hamiltonian is unable to map the 〈111〉D magnetic
contribution well due to the increased eg occupation at the
Fermi surface.

D. Self-consistent treatment of longitudinal fluctuations

The failure of the Heisenberg Hamiltonian arises due to
the absence of the energy of formation of the magnetic
moments in the model. Further, the MFT is derived in the
long-wavelength limit where Ji j becomes unreliable due to the
severe departure from the model approximation when mag-
netic moments become small. A possible approach to improve
the magnetic description is to use an Anderson model which
treats both the localized and itinerant characteristics on equal
footing [97].

Alternatively one may incorporate longitudinal magnetic
degrees of freedom using a Heisenberg-Landau Hamiltonian
[20,21,66,67]:

HHL = H +
∑

i

(
AiS2

i + BiS4
i

)
, (17)

where A and B are the Landau coefficients and H is the
Heisenberg Hamiltonian as defined in Eq. (9). The Landau
terms act to create a double well in the energy with respect
to the magnitude of the magnetic moment. The well depth is
the energy difference between the magnetic and nonmagnetic
states. The minimum value is at the spontaneous magnetic
moment Mi,0 = −gμBSi,0 (Fig. 6).

Whilet we use a real space representation in the current
model, the Landau term is valid for arbitrary wave vectors
when transformed into momentum space [98]. This distin-
guishes the Landau Hamiltonian from collinear magnetism
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FIG. 4. Local orbitally projected density of states (PDOS) cal-
culations for the core atoms (α) and their nearest neighbors (β) of
various SIA configurations.

models. For example, the Stoner term in a collinear Stoner
model (−IM2

k=0/4) neglects gains in the exchange energy that
arise from spin fluctuations where k �= 0. Further, the pre-
sented model captures essential spin-spin correlations, which
strongly affects properties interrelated by the fluctuation-

FIG. 5. Local partial density of states of bulk α-Fe. In bcc crys-
tals, the 3d orbitals xy, xz, and yz are labeled t2g while the x2 − y2

and 3z2 − r2 are eg.

dissipation theorem [12,98]. We should note that the magnetic
moment in a Stoner or Stoner-like term can also be writ-
ten as a vector variable or operator [99,100]. Hubbard-like
Hamiltonians treat electronic structure directly, are based on
a different concept than atomistic models, and are much more
computationally demanding.

To determine the Landau parameters, we follow the logic
presented in Ref. [23], where a single set of Landau parame-
ters A and B were constructed for each simulation cell and then
parametrized as a function of an effective electron density.

FIG. 6. The Landau part of energy as a function of the magnitude
of magnetic moment. The double-well structure is a typical signature
of the Landau Hamiltonian. We plotted the energy corresponding to
the perfect lattice case and the energy of a core atom in a 〈110〉
dumbbell configuration. The spin-polarized DFT data are shown
as points. The curves are drawn using the values of parameters
A′

i = −0.247 and B′
i = 0.02436 for a bulk atom, and A′

i = −2.093
and B′

i = 11.281 for the 〈110〉 dumbbell, extracted using Eqs. (19)
and (21).
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Here, we generalize the approach to calculate a set of Landau
coefficients for each atomic site.

We begin by defining a Landau Hamiltonian in which we
only allow the atomic spin to contribute to the energy of its
site i, such that we assume no inter-site Landau-type magnetic
interactions. The atomic spins act as order parameters:

H ′
HL =

∑
i

(
A′

iS
2
i + B′

iS
4
i

)
. (18)

OPENMX allows us to calculate the energy components
per site per orbital [68,101] due to the use of LCPAO (see
Appendix B). One can calculate the energy difference for each
atomic site between the magnetic and nonmagnetic configu-
rations �Ei. Since we treat atomic spin as order parameters,
the energy difference between any two states for site i can be
expressed as

�Ei = A′
iS

2
i,0 + B′

iS
4
i,0, (19)

where Mi,0 = −gμBSi,0 is the spontaneous magnetic moment.
Knowing that the Landau Hamiltonian should have a mini-
mum at the spontaneous magnetic moment, we are able to
derive the moment in terms of the site-resolved Landau co-
efficients A′

i and B′
i:

∂�Ei

∂Si,0
= 0, (20)

⇒ Si,0 = |Si,0| =
√

−A′
i

2B′
i

�= 0. (21)

For each atomic site we end up with a pair of simultaneous
equations, i.e., Eqs. (19) and (21), from which we may deter-
mine the site-resolved Landau parameters.

We can then relate the primed Landau coefficients to those
in the interacting Heisenberg-Landau Hamiltonian, which
also includes the exchange coupling parameters. By equating
Eqs. (17) and (18), we find

AiSi = A′
iSi + 1

2

∑
j �=i

Ji jS j, (22)

= A′
iSi + 1

2
hi, (23)

Bi = B′
i. (24)

where

hi = −∂H
∂Si

=
N∑

j �=i

Ji jS j, (25)

which is the effective field of the Heisenberg Hamiltonian.
In Table VI we evaluate the contribution from the Landau

part of the Hamiltonian for each SIA configurations. When
the magnetic contribution of the Heisenberg-Landau mapping
is added to the nonmagnetic DFT energy, the total energy is
in excellent agreement with the spin-polarized DFT energy.
The small relative error (≈0.1%) in the Heisenberg-Landau
energies with respect to DFT are well within the inherent error
of DFT calculations.

In Fig. 7 we plot the resulting Landau coefficients defined
according to Eqs. (23) and (24), using the values of Ji j cal-
culated in Sec. III B. The site-resolved coefficients are plotted

FIG. 7. Values of Landau parameters as a function of the Voronoi
volume. Inset figures show the anomalously large values of the
Landau terms for core atoms, resulting from the fact that magnetic
moments are suppressed. Dashed lines guide the eye and have no
interpretation.

against the local Voronoi volume calculated using the fuzzy
cell partitioning method [102].

The site-resolved mapping confirms that Landau parame-
ters do not form a simple relation with the Voronoi volume.
Values of the Landau parameters change significantly for
atoms in the core of defects. In Fig. 11 in Appendix A
we also plot the Landau parameters with respect to a tight
binding derived effective electron density used in many-body
calculations and compare with values derived from a previous
bulk definition [23]. Work is ongoing on the development
of suitable descriptors to accurately represent exchange cou-
pling parameters and Landau parameters with respect to the
local environment, which represents a great challenge in the
development of an accurate large-scale model combining
magnetism and strong lattice deformations.

In this work, the second- and fourth-order Landau pa-
rameters were extracted from DFT calculations with the
intent to improve the exchange-energy hypersurface of a
spin-dynamics Hamiltonian when including strong lattice per-
turbing defects where the Heisenberg model becomes ill
defined. However, the implementation of Landau parameters
can also be considered a necessary inclusion for the study of
perfect bcc or face- centered cubic (fcc) phases of iron without
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FIG. 8. Migration of 〈110〉D in α-Fe via Johnson’s mechanism: rotation and translation. Part (i) shows a schematic of the transition paths.
(ii) and (iii) display the site decomposed energy and magnetic moments, respectively, with selected atoms coloured according to (i). Energies
in (ii) are translated relative to the average energy per atom (U tot = 〈U tot

i 〉).

defects, not considered here [62,63]. Indeed, entirely indepen-
dently, Refs. [23,54,48] identified that the correct assessment
of phase stability requires the simultaneous treatment of lat-
tice vibrations coupled with noncollinear excitations. When
the magnon treatment included both longitudinal and trans-
verse fluctuations the free energy differences were brought
into the experimentally observed range. The presented method
of extracting Landau terms can be used quite generally to im-
prove the quantitative success of spin dynamics Hamiltonians
when modeling iron and other ferromagnets.

E. Low energy migration pathways of atomic defects

In this section we consider the migration of a 〈110〉D

via the two lowest energy pathways. Johnson’s mecha-
nism [103], a simultaneous rotation and translation of the
dumbbell, has the lowest migration barrier. Our calculations
value the barrier at 0.34 eV, in excellent quantitative agree-
ment with previous DFT [26,93,104] and experimental [105]
studies.

The next low energy pathway with a migration energy of
0.49 eV is the second n.n. jump mechanism. Schematic illus-
trations of the migration mechanisms are shown in panels (i)
of Figs. 8 and 9. In addition, we show the decomposed energy
(relative to the average atomic energy) and their respective
magnetic moments during the transition in panels (ii) and

(iii), which are used in the calculation of the site-resolved
Landau parameters. The energy decomposition identifies that
the core atoms are approximately 1 eV more energetic than
the average.

A third pathway, the translational jump, which migrates
via an intermediate metastable 〈111〉D configuration is also
known. Since it has a large migration energy of 0.79eV it is
unfavorable and has not been considered below.

We may again observe how only using a Heisenberg
Hamiltonian leads to erroneous results. In Fig. 10 we show
the contribution to the effective field from the Heisenberg
term during the rotation translation and second n.n. jumps of
a 〈110〉D. This interaction may be represented by means of an
effective temperature Ti = |hi|/kB. Without the Landau terms,
core atoms are observed to have a negative temperature which
is known to exist in nuclear spin systems [106]. This occurs
as the magnetic moments on the core atoms oppose the effec-
tive field due to exchange interactions. However, the negative
temperature is merely a consequence of the incompleteness of
the Heisenberg model.

The Heisenberg-Landau Hamiltonian allows us to correctly
account for the transverse fluctuations of magnetic moments
in the vicinity of the core of SIA configurations. Since in
this example the spin state of our model is fed directly from
the DFT calculations which are in the adiabatic paradigm,
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FIG. 9. Migration of 〈110〉D in α-Fe via a second neighbor jump: rotation. Part (i) shows a schematic of the transition paths. (ii) and (iii)
display the site decomposed energy and magnetic moments, respectively, with selected atoms colored according to (i). Energies in (ii) are
translated relative to the average energy per atom (U tot = 〈U tot

i 〉).

we expect the effective field on each site to be zero (see the
proof of this statement given in Appendix A). When in the
ground state, the contribution to the effective magnetic field
from the Landau terms acts to directly oppose those of the
exchange such that the null condition is satisfied. We calculate
the exchange coupling parameters and Landau coefficients for
each NEB image and verify that the effective fields are zero
as required. If the model is provided with an excited spin
state, the effective fields are no longer vanishing and may be
dynamically evolved [67].

IV. CONCLUSION

In this study, we explored the connection between first
principles density functional calculations and the use of model
Hamiltonians, to describe magnetic interactions in bcc iron
containing structural defects. We benchmarked our LCPAO
DFT results against literature data to verify the accuracy of
calculations performed using the OPENMX code [68] and our
own in-house exchange coupling code. We are able to cor-
rectly explain the known order of stability of self-interstitial

defects in magnetic Fe: 〈110〉D → tetrahedral → 〈111〉D/C →
〈100〉D, where the comparison of energies derived from mag-
netic and non-magnetic calculations reveals that magnetism
causes the order of stability to change.

We explored the limits of validity of the commonly used
Heisenberg Hamiltonian for the description of the magnetic
interactions in iron containing defects. Exchange integrals
were computed using the magnetic force theorem, allowing
us to map the magnetic contribution onto the Heisenberg
Hamiltonian functional form. When the mapped Heisenberg
magnetic contribution is added to the nonmagnetic energies,
the energy differences for the self-interstitial defects is repro-
duced within 10%. The self-interstitial configuration where
the magnetic energy predicted using the Heisenberg Hamil-
tonian is the poorest is the 〈111〉D configuration. This occurs
due to the increased population of the eg orbitals at the Fermi
energy.

Failures of the Heisenberg Hamiltonian can be mitigated
by adding symmetry-breaking Landau terms to the magnetic
Hamiltonian. By projecting energies onto atomic sites we
generalize our earlier Heisenberg-Landau Hamiltonian [23]
and define site-resolved Landau coefficients, determining the
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FIG. 10. Heisenberg effective field (and temperature) during the
migration of a 〈110〉D dumbbell in bcc Fe.

values of these coefficients directly from the DFT calcula-
tions. We show that the Landau terms correct the magnetic
energy contribution of the spin dynamics Hamiltonian and
provides a significantly more accurate representation of en-
ergy hypersurfaces, matching magnetic DFT calculations. It
remains unclear as to whether non-Heisenberg interactions
truly exist in the physical system due to approximations in-
volved in the MFT. This information is used for parametrizing
a new generation of spin-lattice dynamics potentials. We
further show how a Heisenberg Hamiltonian can lead to an in-
correct interpretation of magnetism in the core of the defects,
effectively corresponding to metastable “negative tempera-
ture” magnetic configurations in the core. These anomalies
can be rectified using the Heisenberg-Landau Hamiltonian.
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FIG. 11. Extracted Landau parameters as a function of local
electron density as defined in Ref. [23]. The Landau parameters
calculated for strained perfect bcc lattice from Ref. [23] are also
shown for comparison (dagger).

APPENDIX A: EFFECTIVE FIELD OF
HEISENBERG-LANDAU HAMILTONIAN

The effective field on an atomic site k in the config-
uration R is a measure of the change in energy due to
an infinitesimal change in the spin Sk . In our construction
of the Heisenberg-Landau Hamiltonian we allow for both
transverse and longitudinal fluctuations of the semi-classical
spin-vectors:

hHL
k = − ∂

∂Sk
HHL (A1)

=
∑
i �=k

JikSi − 2AkSk − 4BkS3
k (A2)

When in the electronic ground state, the changes in energy
with respect to the spin should at be a minimum in the po-
tential energy surface, thus requiring the effective field (the
gradient of this potential) to be zero. This can be easily
verified by substituting in the definitions of Ak and Bk from
Eqs. (23) and (24). In a general spin-state this gives

hHL
k =

∑
i �=k

JikSi − 2

(
A′

kSk + 1

2

∑
j �=k

Jk jS j

)
− 4B′

kS3
k

= −2A′
kSk − 4B′

kS3
k = − ∂

∂Sk
H′

HL. (A3)
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Next we substitute A′
k for B′

k using Eq. (21):

hHL
k = −2

( − 2B′
kS2

k,0

)
Sk − 4B′

kS3
k

= 4B′
k

(
S2

k,0 − S2
k

)
Sk . (A4)

When the electronic orbitals are in their ground states for the
atomic configuration, then so too will be the spin-order such

that Sk
GS−→ Sk,0:

hHL
k,0 = 4B′

k

(
S2

k,0 − S2
k,0

)
Sk,0

= 0. (A5)

APPENDIX B: OPENMX ENERGY DECOMPOSITION

Due to the finite range of the pseudo-atomic orbitals in
the pseudopotential based DFT formulation employed within
the OPENMX code [68,101], the energy can be uniquely de-
composed into contributions from each atomic site (i) and
localized orbital (α):

Etot = Ekin + Eec + Eee + Exc + Ecc (B1)

= Ekin + (
E (L)

ec + E (NL)
ec

) + Eee + Exc + Ecc, (B2)

where the total energy terms are the kinetic energy
(Ekin), electron-core Coulomb energy (Eec), electron-electron
Coulomb energy (Eee), exchange correlation energy (Exc),
and the core-core Coulomb energy (Ecc). For practical and
efficient implementation, OPENMX reorganizes the electron
and core terms into two short-range terms and one long range
term:

Etot = Ekin + Exc + Ena + E (NL)
ec + Eδee + Escc. (B3)

Each term can be reduced into contributions from site and
orbital indices:

Etot =
∑

iα

Eiα. (B4)

The kinetic energy operator can be decomposed as

Ekin =
∑

σ

∑
iα

( ∑
jβ

N∑
n

ρ
(Rn )
σ,iα, jβh(Rn )

iα, jβ,kin

)
(B5)

=
∑

σ

∑
iα

Eσ,iα,kin, (B6)

where the matrix elements of the kinetic energy operator are
defined as

h(Rn )
iα, jβ,kin = 1

VB

∫
BZ

dk3
Occ∑
μ

〈ψ (k)
σμ |T̂ |ψ (k)

σμ 〉. (B7)

The electron-core Coulomb terms are

E (NL)
ec =

∑
σ

∑
iα

( N∑
n

∑
jβ

ρ
(Rn )
σ iα jβh(Rn )

iα, jβ,NL

)
(B8)

=
∑

σ

∑
iα

( N∑
n

∑
jβ

ρ
(Rn )
σ iα jβ〈φiα|

∑
I

VNL,I |φ jβ〉
)

(B9)

=
∑

σ

∑
iα

E (NL)
σ iα , (B10)

where VNL is the nonlocal part of the pseudopotential.

The neutral atom term is

Ena =
∫

dr n(r)Vna,I (B11)

=
∑

σ

∑
iα

(∑
jβ

N∑
n

ρ
(Rn )
σ,iα, jβh(Rn)

iα, jβ,na

)
(B12)

=
∑

σ

∑
iα

Ena
σ,iα. (B13)

The screened core correction is

Escc = 1

2

∑
I,J

(
ZI ZJ

|τI − τJ | −
∫

dr n(a)
I (r)V (a)

H,J (r)

)
(B14)

=
∑

σ

∑
iα

(
1

2Ni

∑
j

ZI ZJ

|τI − τJ |

−
∫

drn(a)
I (r)V (a)

H,J (r)

)
(B15)

=
∑

σ

∑
iα

Escc
σ,iα. (B16)

The electron-electron Coulomb term is

Eδee = 1

2

∫
dr

(
n(r) −

∑
I

n(a)
I (r)

)
δVH (r) (B17)

=
∑

σ

∑
iα

1

2

( ∑
jβ

N∑
n

ρ
(Rn )
σ,iα, jβhδV

iα, jβ

− 1

2

∫
dr

n(a)
i (r)

Ni
δVH (r)

)
(B18)

=
∑

σ

∑
iα

E δee
σ,iα. (B19)

The exchange correlation term is

Exc =
∫

dr
[
n(r) + npcc(r)]εxc(r) (B20)

=
∑

σ

∑
iα

( N∑
n

∑
jβ

ρ
(Rn )
σ,iα, jβ,xch(Rn )

iα, jβ,xc (B21)

+ 1

2Ni

∫
drnpcc,i(r)εxc(r)

)
(B22)

=
∑

σ

∑
iα

Exc
σ,iα. (B23)

The proof of the decomposition for each term in the Kohn-
Sham Hamiltonian [Eq. (B3)] can be found in the OPENMX
developer material by Ozaki [101,107]. For completeness, we
just copy their note here. Our reworked derivation is avail-
able upon request from the Culham Centre for Fusion Energy
(CCFE) PublicationsManager@ukaea.uk.

Projections of nonlocal terms in the energy are treated as
mean field. We confirm in this method the sum of the atomic
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resolved energies is equivalent to the total energy in the Kohn-
Sham DFT calculation.

This energy decomposition procedure provided the total
energy per atomic site Ei = ∑

α Eiα necessary to calculate the

site resolved Landau terms in Sec. III D. Figure 11 shows the
Landau parameters calculated using this method as a func-
tion of local electron density in comparison to results from
Ref. [23].
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