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Effect of stress on vacancy formation and migration in body-centered-cubic metals
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Vacancy formation and migration control self-diffusion in pure crystalline materials, whereas irradiation
produces high concentrations of vacancy and self-interstitial atom defects, exceeding by many orders of
magnitude the thermal equilibrium concentrations. The defects themselves, and the extended dislocation
microstructure formed under irradiation, generate strongly spatially fluctuating strain and stress fields. These
fields alter the local formation and migration enthalpies of defects, and give rise to the anisotropy of diffusion
even if in the absence of stress the diffusion tensor is isotropic. We have performed ab initio calculations of
formation and migration energies of vacancies in all the commonly occurring body-centered-cubic (bcc) metals,
including alkaline, alkaline-earth and transition metals, and computed elastic dipole and relaxation volume
tensors of vacancies at the equilibrium lattice positions and along the vacancy migration pathways. We find
that in all the bcc metals the dipole tensor of a migrating vacancy at a saddle point exhibits an anticrowdion
character. Applied external stresses or the local stresses generated by dislocations may enhance or suppress
anisotropic diffusion by altering the energy barriers with respect to the direction of migration of a defect.
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I. INTRODUCTION

Vacancy formation and migration are the fundamental
microscopic processes determining self-diffusion and atomic
transport in crystalline materials [1]. At thermal equilib-
rium, vacancies are formed naturally by thermal fluctuations,
whereas significantly higher concentrations of vacancies and
self-interstitial atom (SIA) defects can be produced by irradi-
ation [2,3]. Elastic dipole and relaxation volume tensors of
vacancies and self-interstitial atom defects computed from
first principles at equilibrium lattice positions for a variety
of body-centered-cubic (bcc) metals [4–6] show that for va-
cancies these tensors are entirely isotropic, whereas for SIA
defects they are strongly anisotropic. Hence at an equilibrium
lattice position, in the linear elasticity approximation a va-
cancy does not interact with a shear stress field even in an
elastically anisotropic cubic material.

Dipole or relaxation volume tensors of a vacancy may
acquire an anisotropic component if the vacancy is displaced
from an equilibrium position, for example, by a thermal
fluctuation. At a relatively low temperature this has no fun-
damental effect on the nature of interaction with external
elastic fields, as the dipole and relaxation volume tensors
now become thermodynamic average quantities, with their
symmetry still reflecting the cubic symmetry of the lattice
site occupied by a vacancy. Large anisotropic distortions
changing the symmetry of the dipole tensor may still arise
from infrequent events associated with the migration of a
vacancy from one lattice site to another. Using molecular
statics, Sivak et al. [4] computed the elastic dipole tensor of
a vacancy in iron at a saddle point between two equilibrium
lattice positions, and showed that the distortion of the lattice
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around a vacancy at a saddle point resembled the distortion
around a 〈111〉 SIA crowdion defect, taken with the opposite
sign. The anisotropic component of the dipole tensor resulting
from this directional distortion now enables elastic interaction
with a shear strain field, either applied externally or gener-
ated by other defects or dislocations. The strain and stress
dependence of the migration enthalpy of a vacancy also gives
rise to anisotropic diffusion in external elastic fields [7–10].
Strong external stresses and strains may also have an effect on
the local vacancy concentration, promoting the migration of
vacancies to the regions of high compressive strain.

Below, we explore how accurate electronic and atomic
scale simulations can help generate high quality data required
for the development of models for the diffusion-mediated
dynamics of defects in the presence of deformation and stress.
We briefly review the methods for computing the formation
and migration energies as well as elastic dipole tensors Pi j

and relaxation volume tensors �i j of defects using ab initio
density functional theory (DFT). We then explore how the
formation and migration enthalpies of defects change in the
presence of external stresses or strains. We show that the
relaxation volume tensor of a defect represents a particularly
convenient parameter, describing the response of a defect to
an external stress field.

The study below focuses on the DFT analysis of va-
cancy defects in several commonly occurring bcc alkaline
metals (Li, Na, K, Rb, Cs), an alkaline-earth metal (Ba),
several nonmagnetic transition metals (V, Nb, No, Ta, W),
and two magnetic transition metals (Cr, Fe). We compare
the calculated formation and migration energies with exper-
imental values derived from self-diffusion experiments, and
compare temperatures characterizing the onset of migration
of defects with temperatures of stage III resistivity recovery
curves observed in materials exposed to electron irradiation
at cryogenic temperatures. Using DFT supercell simulations,
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we compute elastic dipole tensor Pi j and relaxation volume
tensor �i j for a vacancy at equilibrium and at the saddle point
on its migration trajectory. Calculations show that in all the
metals investigated below, lattice distortions around a migrat-
ing vacancy exhibit anticrowdion-like anisotropic character at
all the intermediate positions along the transition pathway.
The numerical values of elastic dipole tensors and relaxation
volume tensors of defects derived from ab initio calculations
enable accurate assessment of the effect of elastic fields on the
generation and migration of vacancies in materials.

II. BASIC FORMULAS

Methods for calculating formation energies of defects us-
ing periodic boundary conditions were recently reviewed in
[5,6,11]. If a defect structure is simulated under the constraint
of vanishing average strain, corresponding to the case where
the translation vectors of the simulation cell remain fixed,
the formation energy of the defect structure is given by the
equation

EF
D = ED(ND) − ND

Nperf
Eperf (Nperf ) − E corr

el , (1)

where Nperf is the number of atoms in a perfect lattice cell,
and ND is the number of atoms in a simulation box containing
a defect, where for a vacancy ND = Nperf − 1. ED is the total
energy of the cell containing a defect, Eperf is the energy
of the perfect lattice cell, and E corr

el is a correction term
resulting from the condition of vanishing average strain and
periodic boundary conditions. Procedures for evaluating E corr

el
are detailed in Refs. [5,6,11].

Migration energy EM
D is the minimum energy required for

a defect to move from one equilibrium position to another.
Normally it is defined as the difference between the energy at
the saddle point on the trajectory of migration and the energy
at the nearest equilibrium position in the lattice.

E corr
el can be computed from the elastic dipole tensor Pi j

of the defect and anisotropic elastic Green’s function and its
derivatives [12]. Elements of the elastic dipole tensor can
be evaluated from the macrostress σ̄i j that develops in a
simulation cell due to the presence of a defect structure in it
[5,11,13], namely,

Pi j = −
∫

V
σ D

i j dV = −
∫

Vcell

σi jdV = −Vcellσ̄i j . (2)

Here σ D
i j is the stress associated with a defect in an infinite

medium subject to traction-free boundary conditions [14], and
σi j is the stress in a periodically translated simulation cell.
Domain and Becquart [15] evaluated the dipole tensor of a
vacancy at equilibrium from the Kanzaki forces, which con-
verge if the simulation cell is sufficiently large [16]. Equation
(2) applies to any cell size provided that atomic displacements
at cell boundaries are well described by linear elasticity. In
practice, the accuracy of evaluation of Pi j from Eq. (2) is
approximately 5%, assuming a typical size of the simulation
cell used in ab initio calculations [5].

Assuming the experimental conditions involving applied
constant external pressure p, we replace the formation and
migration energies of a defect by its formation and migration

enthalpies [17]

HF/M
D = EF/M

D + p�F/M
D . (3)

Formation and migration volumes of a defect �F
D and �M

D
can be evaluated from its relaxation volume �rel computed
at equilibrium and along the defect migration pathway. The
relaxation volume tensor, proportional to the so-called λ ten-
sor [18], is related to the dipole tensor through the tensor of
elastic compliance

�i j = Si jkl Pkl . (4)

The elastic compliance tensor S = C−1 is the inverse of the
elastic constant tensor C. The relaxation volume of a defect
equals the trace of the relaxation volume tensor

�rel = �11 + �22 + �33. (5)

The formation volume of a defect is related to its relaxation
volume through

�F
D = �

eq
rel + (Nperf − ND)�0, (6)

where �0 is the atomic volume. For a vacancy, �F
D=�

eq
rel +

�0. In all the cases investigated experimentally, �F
D is positive

[17], implying that the total volume of a material always
increases when vacancies are formed. Indeed, the formation
of a vacancy in the bulk of a single crystal involves depositing
an atom onto its surface. Despite the fact that the relaxation
volume of a vacancy is negative [6] and the crystal lattice con-
tracts when vacancies accumulate in the bulk of the material
[19], the net result of vacancy formation is volume increase,
since |�eq

rel| < �0 [17].
The migration volume of a defect equals

�M
D = �F,sd

D − �
F,eq
D = �sd

rel − �
eq
rel. (7)

Superscripts sd and eq refer to the saddle point and equilib-
rium configurations.

Since the application of external hydrostatic pressure does
not describe all the possible types of loading, instead of
expressing defect formation and migration enthalpies in terms
of pressure p, it is more appropriate to write them as functions
of the stress tensor σi j describing the elastic field acting on a
defect, namely,

HF/M
D = EF/M

D − σi j�
F/M
i j . (8)

It is necessary to define the defect formation volume tensor as

�F
i j = �

eq
i j + (Nperf − ND)�0,i j, (9)

where �0,i j = 1
3�0δi j . The migration volume tensor is

�M
i j = �sd

i j − �
eq
i j . (10)

The subtlety associated with the definition of formation and
migration volumes of defects and the choice of the reference
defect-free state of a material can be traced to the difference
between the definitions of enthalpy used in the context of
thermodynamics [20] and theory of elasticity [21].

Returning to the relaxation volume tensor defined by
Eq. (4) above, we note that depending on the specific ap-
plication, it may be convenient to use either the relaxation
volume tensor or the elastic dipole tensor when evaluating the
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energy of interaction between a defect and an external elastic
field [5]:

Eel = −σi j�i j = −Ci jklεklSi jmnPmn = −εklPkl . (11)

Formation and migration energies and elastic dipole and re-
laxation volume tensors can be derived from the same set of
DFT calculations.

There are two points that follow from the examination of
Eq. (8). First, consider a case where a defect adopts several
symmetry equivalent orientations in the lattice, all having the
same energy. For example, a 〈111〉 SIA has four equivalent
degenerate orientations in a crystal lattice, where each orien-
tation corresponds to the axis of the defect being parallel to
one of the four 〈111〉 type directions. In the presence of an
external stress field, the formation enthalpy is going to vary
as a function of the crystallographic orientation of the axis
of the defect. This, for example, can bias the structure of an
ensemble of interacting defects [22]. Also, stress fields can
have a biasing effect on the diffusion of defects, through the
direction-dependent contribution to the migration enthalpy,
giving rise to the anisotropy of diffusion even in the nominally
isotropic materials.

III. FORMATION AND MIGRATION ENERGIES

All the ab initio DFT calculations described below were
performed using the Vienna ab initio simulation package
(VASP) [23–26]. We used simulation cells containing 3 ×
3 × 3 bcc unit cells, or 54 atoms, in the perfect lattice con-
figuration. Calculations were performed using a 5 × 5 × 5
k-point mesh and a plane-wave cutoff energy that for Li
was chosen at 1500 eV, for Na and K at 780 eV, for Rb
and Cs at 660 eV, for Ba at 560 eV, and for all the other
elements at 450 eV. Calculations were performed using the
projector augmented-wave (PAW) method pseudopotentials
[27,28] and the generalized-gradient-approximation Perdew-
Burke-Ernzerhof (GGA-PBE) [29,30] exchange-correlation
functional. There are 3, 7, 9, 9, 9, and 10 valence electrons
per atom in Li, Na, K, Rb, Cs and Ba, respectively, and cor-
respondingly 11, 12, 14, 11, 12, 11, and 12 valence electrons
per atom in V, Cr, Fe, Nb, Mo, Ta, and W. For all the elements
we assumed a nonmagnetic configuration, with the exception
of Cr and Fe where we assumed a collinear magnetic ground
state. Although the electronic ground state of Cr is believed to
have the form of a spin density wave (SDW) [31], we adopt
an antiferromagnetic (AFM) ground state in the current study,
which has the energy indistinguishable from that of the SDW
ground state within the error margin of ab initio calculations
[32]. In the case of Fe, it is generally accepted that its ground
state is collinear and ferromagnetic [33,34].

Simulation cells containing 54 atoms in the perfect lattice
configurations were relaxed to find the equilibrium lattice
constant. Cell translation vectors then remained constant in
all the subsequent calculations. Two distinct calculations of
vacancy configurations for each element were performed by
removing an atom from two different adjacent lattice sites
displaced by one lattice vector in the [111] direction. In both
calculations, ionic positions were fully relaxed. Then, nudged
elastic band calculations [35,36] were performed, to identify
a vacancy migration trajectory, linking the two equilibrium

TABLE I. Elastic constants (GPa) are calculated following the
Le Page and Saxe [37] method, using a two-atom cell and 30 ×
30 × 30 k-points. Atomic volumes (Å

3
) and lattice constants (Å)

are computed using a 54-atom perfect lattice simulation cell. Entries
given in italics are the experimentally observed values.

C11 (GPa) C12 (GPa) C44 (GPa) �0 (Å
3
) a0 (Å)

Li 18.14 11.85 11.43 20.24 3.434
14.85a 12.53a 10.80a 21.27b 3.491b

Na 9.34 7.44 5.96 36.96 4.197
8.57c 7.11c 5.87c 37.71b 4.225b

K 3.91 3.44 2.70 73.66 5.282
4.17d 3.41d 2.86d 71.32b 5.225b

Rb 3.07 2.65 1.99 90.95 5.666
3.25e 2.73e 1.98e 87.10b 5.585b

Cs 2.16 1.85 1.38 116.75 6.158
2.47f 2.06f 1.48f 110.45b 6.045b

Ba 12.06 7.31 10.39 63.56 5.028
13.0g 7.6g 11.8g 63.25b 5.02b

V 279.59 142.02 26.72 13.43 2.995
227.9h 118.7h 42.6h 13.91b 3.03b

Nb 248.76 135.24 19.46 18.32 3.322
246.6h 133.2h 28.1h 17.97b 3.30b

Mo 469.07 157.72 99.71 15.77 3.159
464.7h 161.5h 108.9h 15.63b 3.15b

Ta 266.28 161.36 76.75 18.27 3.319
266.0h 161.2h 82.4h 17.97b 3.30b

W 518.26 199.77 142.09 16.15 3.185
522.4h 204.4h 160.6h 15.78b 3.16b

Cr 448.12 62.03 102.13 11.72 2.862
394.1i 88.5i 103.75i 11.94b 2.88b

Fe 289.34 152.34 107.43 11.36 2.832
243.1b 138.1b 121.9b 11.82b 2.87b

aRef. [38]; bRef. [39]; cRef. [40]; dRef. [41]; eRef. [42]; fRef. [43];
gRef. [44]; hRef. [45]; iRef. [46]; jRef. [47].

vacancy configurations. For each element, a vacancy migra-
tion trajectory was represented by 11 configurational images.
Convergence conditions required that the maximum force
acting on an atom in a fully relaxed ionic configuration would
not exceed 0.01 eV/Å.

To compute the relaxation volumes of defects, it is nec-
essary to evaluate matrix elements of the tensor of elastic
constants Ci jkl . This tensor is evaluated using the Le Page
and Saxe method [37] for a two-atom simulation cell and a
30 × 30 × 30 k-point mesh. The calculated values of elastic
constants for all the elements are given in Table I together
with experimental data.

Vacancy formation EF
V and migration EM

V energies derived
from DFT calculations are given in Table II and Fig. 1. The
sum of these energies ESD = EF

V + EM
V gives the activation

energy for self-diffusion [1]. The computed values compare
favorably with the experimental data compiled by Ehrhart
et al. [48]. For transition metals, the values given in Table II
also compare well with results derived from earlier ab initio
calculations [49,50].

Experimental data for Li, Na, K, V, Nb, Ta, Cr, Mo,
W, and Fe show that the vacancy migration enthalpy scales
linearly with the melting temperature of the material [51].
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TABLE II. Calculated vacancy formation energy EF
V (eV), va-

cancy migration energy EM
V (eV), and the self-diffusion activation

energy ESD(eV). Experimental data are given in italics below the
calculated values. Experimental values of EF

V , EM
V , and ESD are

taken from Ref. [48]. The data obtained using ab initio calculations
performed earlier in aRef. [52], bRef. [53], cRef. [54], dRef. [55],
eRef. [56], and fRef. [57] are shown in parentheses. These earlier
calculations were performed using the local density approximation
(LDA).

EF
V EM

V ESD

Li 0.506 0.053 0.559
0.480 0.038 0.518

(0.57)a

(0.53)b

(0.54)c

(0.52)d (0.055)d

Na 0.334 0.053 0.387
0.335 0.030 0.365

(0.34)e

(0.054)f

K 0.292 0.053 0.345
0.34 0.038 0.386

(0.30)f (0.051)f

Rb 0.261 0.046 0.306
Cs 0.249 0.047 0.296
Ba 1.009 0.216 1.225
V 2.553 0.650 3.203

2.1–2.2 0.5 2.6–3.21
Nb 2.715 0.646 3.361

2.6–3.07 0.55 3.62
Mo 2.830 1.159 3.988

3.0–3.24 1.35–1.62 4.53
Ta 2.951 0.761 3.711

2.2–3.1 0.7 3.8–4.39
W 3.354 1.729 5.083

3.51–4.1 1.70–2.02 5.45
Cr 3.015 1.105 4.120

2.0–2.27 0.95 4.58
Fe 2.370 0.682 3.052

1.59–2.0 0.55 2.36–3.01

In alkaline metals, where melting temperatures are generally
lower than those of transition metals, vacancy migration en-
thalpies are relatively small. Resistivity recovery experiments
performed on electron irradiated elemental metals [48] show
that in alkaline metals vacancies migrate at relatively low
temperatures, corresponding to migration enthalpies of 0.038,
0.03, and 0.038 eV in Li, Na, and K, respectively. These
values are at least an order of magnitude lower than vacancy
migration enthalpies in transition metals. Our calculations
confirm this.

Earlier ab initio calculations performed using the local
density approximation (LDA) show broadly similar results.
For Li, EF

V = 0.57 eV (Ref. [52]), 0.53 eV [53], 0.54 eV
[54], 0.52 eV [55], and EM

V = 0.055 eV [55]. For Na, EF
V =

0.34 eV [56] and EM
V = 0.054 eV [57]. For K, EF

V = 0.30 eV
[57] and EM

V = 0.051 eV [57]. These LDA values are similar
to those found in our GGA-PBE calculations. This is probably

FIG. 1. Energy of a monovacancy at various points along the va-
cancy migration pathway. Values indicated by symbols on the graphs
were derived from nudged elastic band calculations involving 11
images and spanning the interval between two adjacent equilibrium
positions of a vacancy in a bcc lattice.

not surprising, as these simple metals do not exhibit effects of
strong on-site electron correlations associated with localized
d or f electrons. For completeness, in Table II we also provide
data for Rb, Cs, and Ba, where the latter is an alkaline-earth
metal.

Assuming that the temperature of stage III, T (III), of
recovery of electron irradiated materials corresponds to the
onset of vacancy migration, we can estimate the vacancy
migration temperature T M from the classical transition state
theory [58]. The effective migration event frequency can be
written as

ν = ν0 exp(−EM/kBT ), (12)

where ν0 is the vacancy migration attempt frequency. The
value of ν0 can be estimated from the Debye frequency
and the corresponding Debye temperature θD. Choosing ν =
1 s−1 as a characteristic timescale of experimental observa-
tions, we can estimate T M and compare it with the temper-
ature T (III) of stage III of resistivity recovery as shown in
Table III.
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TABLE III. Estimated temperature of vacancy migration T M

(K) compared to the temperature of stage III resistivity recovery
observed in elemental metals irradiated by high-energy electrons at
cryogenic temperatures. Debye temperature values θD (K) are taken
from Ref. [39]. Values of stage III resistivity recovery temperatures
are taken from Ref. [48].

Element θD (K) Est. T M (K) Expt. T (III) (K)

Li 344 29.4 16.5
Na 158 20.1 15–15.5
K 91 20.4 14–16
Rb 56 17.9
Cs 38 18.6
Ba 110 82.7
V 380 239.2 170
Nb 275 240.0 200–270
Mo 450 424.1 400–640
Ta 240 284.0 260–300
W 400 635.2 620–900
Cr 630 400.1 350
Fe 470 249.4 220–278

IV. ELASTIC DIPOLE AND RELAXATION
VOLUME TENSORS

We now proceed to the calculation of dipole tensors Pi j of
vacancies at equilibrium and in transition state configurations.
Figure 2 shows how the diagonal Pii and off-diagonal Pi j ,
i �= j, elements of the elastic dipole tensor vary along the
vacancy migration pathway. The diagonal elements of the
dipole tensor Pii are all negative, and they vary in such a
way that no particular trend can be observed. The off-diagonal
terms all acquire negative values on the migration trajectory.
The result is similar to the one found by Sivak et al. [4] in
iron for the saddle point on the vacancy transition pathway,
investigated using molecular statics.

To gain better insight into the nature of electronic processes
associated with vacancy migration, we inspected electronic
density configurations characterizing vacancy migration. Fig-
ures 3–6 show two-dimensional plots of electron charge
density difference computed for Li, Na, V, and W. As the
atomic size increases, and the character of bonding changes
from that mediated by s electrons in alkaline metals to d
electrons in transition metals, the pattern changes. The picture

FIG. 2. Variation of the elastic dipole tensor of a vacancy along its migration pathway linking two adjacent equilibrium positions in a bcc
lattice. Pii is a diagonal element of the dipole tensor (note that P11 = P22 = P33), whereas Pi j is an off-diagonal element (where P12 = P23 = P13

for a transition in the [111] direction). The values are given in eV units.
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FIG. 3. Two-dimensional plot of electron charge density differ-
ence computed for Li in the (2̄11) plane. The plot refers to a vacancy
migrating from one equilibrium lattice position to another along the
[111] direction. (Top) the initial equilibrium position, (middle) the
saddle point, and (bottom) the final equilibrium position. Electron
charge density difference is defined as the ground-state electron
density computed for a given configuration of atoms minus the
superposition of atomic charge densities.

of density transformation is particularly simple in Li, whereas
in tungsten we observe significant effects of directionality of
interatomic bonding associated with 5d electrons. Still, the
pattern of variation of charge density deformation from the
equilibrium to the saddle point on the trajectory of vacancy
migration remains broadly similar. In all the bcc metals, an
atom exchanges its position with a vacancy, and this does

FIG. 4. Two-dimensional plot of electron charge density differ-
ence computed for Na in the (2̄11) plane. The plot refers to a vacancy
migrating from one equilibrium lattice position to another along the
[111] direction. (Top) the initial equilibrium position, (middle) the
saddle point, and (bottom) the final equilibrium position.

not involve the formation of any collective string-like con-
figuration typically associated with a self-interstitial crowdion
defect [50,59,60]. Still, the elastic dipole tensor of a migrating
vacancy exhibits the same symmetry and character as an
“anticrowdion” for all the metals explored in this study.

Using Eqs. 4–7, we evaluate relaxation volume tensors,
formation, and migration volumes of vacancies in all the
metals included in this study. The values are summarized
in Tables IV and V. Experimental information on vacancy
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FIG. 5. Same as Fig. 4, but for V.

formation and relaxation volumes is relatively limited, still
we know that the experimentally measured values of vacancy
formation volumes in noble metals vary between 0.5 and 0.7
atomic volume [17], and the relaxation volume of a vacancy
is negative [19].

Comparing the values predicted by our calculations to
earlier ab initio results derived using LDA for Li, Na, and K,
we find similar magnitudes of parameters �F

V and �M
V . For Li,

values predicted earlier are �F
V = 0.52�0 (Ref. [53]), 0.49�0

[54], 0.49�0 at 0 GPa and 0.36�0 at 3.4 GPa [61], and �M
V =

−0.2�0 at 0 GPa and −0.06�0 at 3.4 GPa [61]. For Na,
the literature values are �F

V = 0.51�0 [56], 0.5�0 at 0 GPa
and 0.29�0 at 2.8 GPa [61], and �M

V = −0.1�0 at 0 GPa
and −0.01�0 at 2.8 GPa [61]. For K, earlier calculations

FIG. 6. Same as Fig. 4, but for W.

give �F
V = 0.45�0 [57]. These values are in good agreement

with the values found in the present study. We see that
the migration volume of a vacancy is relatively small, with
the exception of the case of Cr. Our calculations complement
the data not available in the literature, and also show how the
relaxation volume tensor varies during vacancy migration.

V. STRESS-INDUCED ANISOTROPIC DIFFUSION

All the off-diagonal elements of elastic dipole tensor Pi j

of a vacancy vanish at an equilibrium position. However,
whenever a vacancy is moving away from its equilibrium
position, the off-diagonal elements of Pi j are nonzero. Fig-
ures 2 and 7 show how the dipole tensors and relaxation
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TABLE IV. Diagonal and off-diagonal elements of elastic dipole
and relaxation volume tensors of a vacancy at an equilibrium position
and in a saddle-point configuration. Elements of the elastic dipole
tensor are given in eV units, whereas the values of relaxation volume
tensors are given in atomic volume units �0. Indexes ii refer to a
diagonal elements of the tensor, whereas i j refer to an off-diagonal
element. The diagonal elements are the same, and so are the off-
diagonal elements, of both tensors. The off-diagonal elements of
elastic dipole and relaxation volume tensors vanish if the vacancy is
at an equilibrium position. A saddle point corresponds to the middle
of the transition pathway. Note that this point may not necessarily
correspond to the highest energy on the transition pathways, as it
is the case in Mo and W. The relaxation volume of a vacancy
equals the sum of diagonal elements of the relaxation volume tensor
�rel = �11 + �22 + �33.

Pii(eq) Pii(sd) Pi j(sd) �ii(eq) �ii(sd) �i j(sd)

Li −0.853 −0.949 −0.378 −0.161 −0.180 −0.131
Na −0.846 −0.871 −0.241 −0.151 −0.156 −0.088
K −0.727 −0.719 −0.246 −0.147 −0.145 −0.099
Rb −0.684 −0.683 −0.203 −0.144 −0.144 −0.090
Cs −0.548 −0.527 −0.224 −0.129 −0.124 −0.111
Ba −1.224 −1.478 −0.728 −0.116 −0.140 −0.088
V −7.756 −7.850 −2.811 −0.164 −0.166 −0.628
Nb −8.013 −8.202 −2.895 −0.135 −0.138 −0.650
Mo −9.072 −8.972 −1.808 −0.118 −0.116 −0.092
Ta −9.181 −8.232 −1.794 −0.137 −0.123 −0.102
W −10.621 −9.135 −2.683 −0.115 −0.099 −0.094
Cr −5.037 −7.962 −1.764 −0.120 −0.190 −0.118
Fe −3.589 −3.883 −1.549 −0.085 −0.092 −0.102

volume tensors vary as a vacancy moves from one equilibrium
position in the lattice to another. Figure 8 shows the variation
of the corresponding relaxation volume of a vacancy along its
trajectory of migration.

We have already observed that the elastic dipole and relax-
ation volume tensors of a vacancy at a saddle point resemble
those of a 〈111〉 SIA defect, but with an opposite sign. For
a vacancy at a saddle point or for a 〈111〉 SIA defect, there
are four symmetry-equivalent and energy-degenerate orienta-
tions, namely, [111], [1̄11], [11̄1], and [111̄]. The diagonal el-
ements of Pi j for all these orientations are the same; however,
the off-diagonal elements differ. If we take the elastic dipole
tensor of a defect in the [111] orientation as

P[111]
i j = P[1̄1̄1̄]

i j =
⎛
⎝Pa Pb Pb

Pb Pa Pb

Pb Pb Pa

⎞
⎠, (13)

then the elastic dipole tensors for the other three orientations
have the form

P[1̄11]
i j = P[11̄1̄]

i j =
⎛
⎝ Pa −Pb −Pb

−Pb Pa Pb

−Pb Pb Pa

⎞
⎠, (14)

P[11̄1]
i j = P[1̄11̄]

i j =
⎛
⎝ Pa −Pb Pb

−Pb Pa −Pb

Pb −Pb Pa

⎞
⎠, (15)

P[111̄]
i j = P[1̄1̄1]

i j =
⎛
⎝ Pa Pb −Pb

Pb Pa −Pb

−Pb −Pb Pa

⎞
⎠. (16)

The magnitude of the off-diagonal elements does not change,
but the sign changes depending on the choice of the direction
of axis of the defect.

There are eight equivalent nearest neighbor positions in
bcc lattice where a vacancy can hop from a given lattice
site. A vacancy can jump left or right along any of the four
directions, i.e., [111], [1̄11], [11̄1], and [111̄]. Whenever there
is an external stress, migration enthalpy differs depending on
the choice of direction in which a vacancy performs a hop.

Consider vanadium as an example. If a shear stress of
σ12 = σ21 = 0.5 GPa is imposed, as illustrated in Fig. 9, the
migration enthalpy for a hop in the [111] direction decreases
by about 0.05 eV, whereas the migration enthalpy in the
[1̄11] direction increases by about 0.05 eV. Considering all
four possible directions of vacancy migration, we find that a
vacancy moves easier in the [111] and [111̄] directions than
in the [1̄11] and [11̄1] directions if the material is subjected to
shear stress σ12 > 0.

A more rigorous way of treating the effect of stress on
vacancy diffusion is provided by the formalism of anisotropic
diffusion tensor. Following Dederichs and Schroeder [9], we
write the anisotropic diffusion tensor of a vacancy moving in
an applied strain field as

Di j (R) = 1

2

∑
h

λhrh
i rh

j exp

⎛
⎝εkl (R)

(
Psd,h

kl − Peq
kl

)
kBT

⎞
⎠, (17)

where λh = ν0 exp(−βEM,h
D ), index h refers to a possible

hopping site, and rh
i is a Cartesian component of the hopping

direction vector. In the limit where the applied strain field
is relatively small, the exponential factor in Eq. (17) can be
expanded in the Taylor series, where by retaining only the
linear terms we obtain

Di j (R) ≈ Di j,0 + di jklεkl (R), (18)

where the diffusion constant tensor

Di j,0 = 1

2

∑
h

λhrh
i rh

j , (19)

describes diffusion in the absence of applied field, and di jkl is
the elasto-diffusion tensor [9]:

di jkl = 1

2

∑
h

λhrh
i rh

j

(
Psd,h

kl − Peq
kl

kBT

)
. (20)

We note that linear in applied field expansion applies only in
the limit where the argument of the exponential function is
small. If elements of the dipole tensor are of the order of an
eV, at room temperature where kBT ≈ 0.025 eV, the above
equation only applies if components of the strain tensor εi j <

1 × 10−3, as noted by Jourdan and Vattré [64].
Alternatively, the anisotropic diffusion tensor can be ex-

pressed in terms of the migration volume tensor and the stress
tensor, see Eq. (11), namely,

Di j (R) = 1

2

∑
h

λhrh
i rh

j exp

(
σkl (R)�M,h

kl

kBT

)
. (21)

Using this equation and the data given in the tables, we
can estimate the variation of Di j under applied stress. For a
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FIG. 7. Variation of the relaxation volume tensor of a vacancy along its migration pathway. �ii is a diagonal element of the relaxation
volume tensor (note that �11 = �22 = �33), whereas �i j is an off-diagonal element (where �12 = �23 = �13 for a transition in the [111]
direction). The values are given in atomic volume units �0.

vacancy migrating in a cubic lattice, we write

Di j = λ

2

(a

2

)2
Xi j, (22)

where

Xi j =
∑

h

eh
i eh

j exp

(
σkl (R)�M,h

kl

kBT

)
. (23)

FIG. 8. Variation of the relaxation volume of a vacancy along the transition pathway between two equilibrium positions of a vacancy in
bcc lattice. The values are given in atomic volume units �0.
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FIG. 9. Variation of the migration enthalpy of a vacancy along
the migration pathway in the absence of applied stress, and under
shear stress of σ12 = σ21 = 0.5 GPa, computed for the hopping
trajectories extending in the [111] and [1̄11] directions.

is an auxiliary dimensionless diffusion tensor, and eh =
rh/(a/2). We note that components of vector eh

i take values
of +1 or −1. Under stress-free conditions, Eq. (21) correctly
reproduces the isotropic case where the diffusion constant
tensor is diagonal Di j = D0δi j , and

D0 = Zl2λ

2d
, (24)

where Z = 8 is the number of nearest neighbor positions
accessible to a direct vacancy hop, l = √

3a/2 is the hopping
distance, and d = 3 is the number of spatial dimensions.

Consider vanadium and tungsten as examples. Assuming
realistic applied shear stress of σ12 = σ21 = 0.1 or 0.5 GPa,
and temperatures of 500, 800, and 1000 K, we compute ele-
ments of the dimensionless auxiliary diffusion tensor Xi j , and
summarize the results in Tables VI and VII. Other elements
of Xi j not listed in the tables vanish due to symmetry. We
note that although at equilibrium, where the relaxation volume
tensor is isotropic and a vacancy does not interact with the
shear component of the applied stress, the effect of stress
on vacancy diffusion can be fairly significant. Furthermore,
the fact that a shear stress can influence vacancy migration
shows that vacancy diffusion may be affected not only by
elastic fields of edge dislocations [65,66], but also by the
elastic fields of screw dislocations where the stress field is
dominated by its shear components. Such effect has been
observed by Sivak and Sivak [67] in simulations of defect
migration in fcc copper performed using kinetic Monte Carlo
simulations.

VI. CONCLUSION

We have evaluated vacancy migration and formation ener-
gies for a number of bcc metals including alkaline, alkaline-
earth, and transition metals. We have also evaluated elastic
dipole tensors and relaxation volume tensors of vacancies at

TABLE V. Vacancy relaxation volume at equilibrium �
eq
rel, va-

cancy formation volume �F
V , vacancy migration volume �M

V , and
self-diffusion volume �SD computed using density functional theory,
see text. The values are given in atomic volume units �0. Experi-
mental data, where available, are given in italics below the computed
values. Experimental values of �SD for iRef. [62] and iiRef. [63]
are the self-diffusion activation volumes. Experimental values of
vacancy formation volumes are from iiiRef. [48]. Critical pressure
required for the spontaneous formation of a vacancy pSF is calculated
according to Eq. (3) and is given in GPa units. Data derived from ab
initio calculations performed in aRef. [53], bRef. [54], cRef. [61] (at
0 GPa), dRef. [61] (at 3.4 GPa), eRef. [56], dRef. [61] (at 2.8 GPa),
and gRef. [57] are given in parentheses. The calculations were
performed using the local density approximation (LDA).

�
eq
rel �F

V �M
V �SD pSF

Li −0.484 0.516 −0.05491 0.461 −7.76
0.28i

(0.52)a

(0.49)b

(0.49)c (−0.2)c

(0.36)d (−0.06)d

Na −0.454 0.546 −0.01356 0.532 −2.65
0.41i/0.3ii

(0.51)e

(0.5)c (−0.1)c

(0.29)f (−0.01)f

K −0.441 0.559 0.00509 0.564 −1.14
(0.45)g

Rb −0.432 0.568 0.00082 0.569 −0.81
Cs −0.386 0.614 0.01472 0.629 −0.56
Ba −0.347 0.653 −0.07219 0.581 −3.89
V −0.493 0.507 −0.00595 0.502 −60.14
Nb −0.405 0.595 −0.00955 0.586 −39.88
Mo −0.353 0.647 0.00390 0.651 −44.39

0.9iii

Ta −0.410 0.590 0.04236 0.632 −43.80
W −0.345 0.655 0.04821 0.704 −50.79
Cr −0.361 0.639 −0.20973 0.429 −64.53
Fe −0.256 0.744 −0.02098 0.723 −44.97

0.95iii

equilibrium and on trajectories of migration. We find that
since the off-diagonal elements of both elastic dipole and
relaxation volume tensors of a migrating vacancy do not
vanish, diffusion of vacancies can be significantly affected
by shear stress fields, either applied externally or generated
by other defects and dislocations. In particular, the fact that

TABLE VI. Elements of the auxiliary diffusion tensor Xi j com-
puted for vanadium assuming the shear stress of σ12 = σ21 = 0.1 and
0.5 GPa, and temperatures of 500, 800, and 1000 K. The auxiliary
diffusion tensor is defined by Eq. (22). Elements of Xi j not given in
the table vanish due to symmetry.

0.1GPa Xii X12 = X21 0.5 GPa Xii X12 = X21

500 K 8.24 −1.97 500 K 14.75 −12.39
800 K 8.09 −1.23 800 K 10.45 −6.72
1000 K 8.06 −0.98 1000 K 9.54 −5.20
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TABLE VII. Same as Table VI, but for tungsten.

0.1 GPa Xii X12 = X21 0.5 GPa Xii X12 = X21

500 K 8.01 −0.315 500 K 8.19 −1.773
800 K 8.00 −0.220 800 K 8.08 −1.103
1000 K 8.00 −0.176 1000 K 8.05 −0.881

migration barriers in different directions change due to the
interaction with external stress can give rise to anisotropic
diffusion. This phenomenon is described by the anisotropic
diffusion tensor, which can be readily computed from the ab
initio data generated and compiled in this study.
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