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Elastic dipole tensor of a defect at a finite temperature: Definition and properties
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The concept of the elastic dipole tensor of a defect is generalized to enable the treatment of lattice distortions
produced by defects at elevated temperatures. Thermodynamic and statistical mechanics treatments show the
feasibility of applying the formalism to the evaluation of formation free energies and finite-temperature elastic
dipole tensors of 1

2 〈111〉 prismatic self-interstitial atom dislocation loops. The method exhibits good numerical
stability even in the high-temperature limit, and relates discrete atomic and continuum representations of
displacement and stress and strain fields of defects.
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I. INTRODUCTION

In a crystalline material, defects form spontaneously by
thermal excitation. At thermal equilibrium, the concentration
of defects is determined by their formation free energy and
temperature. A high concentration of defects, far above the
equilibrium value, can also be produced by mechanical defor-
mation or by exposing materials to a flux of energetic particles
[1–4].

There is an extensive variety of defects. Some of them
can be readily classified and identified as a vacancy, a self-
interstitial atom, a dislocation loop, a void, or an extended
dislocation. Defects evolve under the effect of applied stress
and temperature, segregating and agglomerating as a re-
sult of elastic interactions [5–7], or annihilate in reactions
involving defects of opposite type. The evolution of mi-
crostructure driven by the generation of defects and reactions
between them alters mechanical and physical properties of
materials [8].

Defects distort the surrounding crystal lattice, producing
spatially varying strain and stress fields. The strain field of a
localized defect can be computed from its elastic dipole tensor
and elastic Green’s function [9–18], where the elastic dipole
tensor is a fundamental quantity fully defining the elastic field
of a defect in the asymptotic far-field limit [19]. Elements
of the relaxation volume tensor and relaxation volumes of
defects can also be computed using atomistic or ab initio
methods [11–18,20,21].

The notion of an elastic dipole tensor transfers information,
derived from discrete atomic configurations, to the continuum
limit, and enables treating defects as objects of elasticity
theory. This provides a foundation for continuum models of
microstructural evolution and enables the evaluation of stress
and strain fields on the spatial scale many orders of magnitude
larger than that accessible to atomistic or electronic scale
models [7,14,22].

The energy of elastic interaction between a defect and
an external slowly spatially varying strain field εext

i j can be
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written as

Eext
int = −Pi jε

ext
i j , (1)

whereas the energy of elastic interaction between any two
defects separated by a distance many times their size is

Eab
int = Pa

i jP
b
kl

∂2

∂x j∂xl
Gik (r), (2)

where Pa
i j and Pb

kl are the dipole tensors of defects a and b, r is
the relative position vector of the defects, and Gik is the elastic
Green’s function. Gik can be evaluated numerically for an
arbitrary elastically anisotropic material [23] from its elastic
constants tensor Ci jkl . In Eq. (2), summation over repeated
indexes is assumed.

The pairwise nature of elastic interactions makes Eqs. (1)
and (2) easily suitable for implementing in coarse-grained
models, for example object kinetic Monte Carlo (kMC)
[24–26] or defect dynamics [22]. Using the dipole tensor for-
malism, Sivak et al. estimated the effect of elastic interactions
on the diffusion of defects in bcc iron and vanadium [24],
as well as on the diffusion of hydrogen in bcc iron [25,26].
Baraglia et al. [22] used Eqs. (1) and (2) to simulate the time
evolution of an ensemble of dislocation loops in tungsten.

A point that so far has not been extensively studied in the
context of models using the elastic dipole tensor formalism is
the role of temperature. All the calculations of dipole tensors
of defects [15–17] were performed without considering ther-
mal effects, despite the fact that applications always refer to
observations or simulations performed at a finite temperature
[22,24–26]. For example, it is the energy rather than the free
energy that is often used in the analysis, and all the calcula-
tions of dipole tensors performed so far use molecular statics
or density functional theory that involves the minimization of
energy via ionic relaxation [15–18].

In this study, we extend the notion of the elastic dipole
tensor to finite temperatures. We derive it from both the
thermodynamics (macroscopic) and statistical mechanics
(microscopic) perspectives using the free energy as the cen-
tral notion of the theory of elasticity [27]. We find that the
derivation leads to the same consistent result, provided that
the Cauchy stress is taken as being equivalent to the ensemble
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average of the virial stress. We develop a numerical procedure
for evaluating the formation free energy and elastic dipole ten-
sor of defects, considering 1

2 〈111〉 self-interstitial atom (SIA)
loops in tungsten as examples. We also discuss the effect of
temperature on the free energy of elastic interaction between
two isolated defects.

II. THEORY

At a finite temperature, the quantity used for evaluating the
thermodynamic properties of a material is its free energy as
opposed to energy. The free energy of an elastically strained
crystalline solid equals [27]

F = 1

2

∫
σi j (r)εi j (r)dV, (3)

where σi j (r) and εi j (r) are the spatially varying internal stress
and strain, respectively. If the elastic stress and strain fields in
the above equation are generated by the presence of a defect,
the integral above gives its elastic free self-energy.

A small variation of the elastic field gives rise to a small
variation in the free energy,

F + δF = 1

2

∫
σi j (r)εi j (r)dV +

∫
σi j (r)δεi j (r)dV

= 1

2

∫
σi j (r)εi j (r)dV +

∫
εi j (r)δσi j (r)dV, (4)

where the equivalence between the two forms of Eq. (4) stems
from the quadratic form of Eq. (3) and the fact that σi j (r) =
Ci jklεkl (r).

If the variation of strain is spatially homogeneous δεi j (r) =
δεi j , we write

F (δεi j ) = F (δεi j = 0) + ∂F
∂εi j

∣∣∣∣
δεi j=0

δεi j, (5)

and hence

F (δεi j ) = F (δεi j = 0) +
[∫

σi j (r)dV

]
δεi j . (6)

Differentiating the above equation with respect to strain,
we find the dipole tensor of the defect, expressed as a volume
integral of its stress field [11,12,19],

Pi j = ∂F
∂εi j

=
∫

σi j (r)dV = V σ̄i j . (7)

The stress field here refers to its finite-temperature value [27].
Similarly, by differentiating the free energy with respect to a
spatially homogeneous stress, we find the relaxation volume
tensor of the defect [14,28] expressed as a volume integral of
its strain field,

�i j = ∂F
∂σi j

=
∫

εi j (r)dV. (8)

The two quantities (7) and (8) are related in the same way as
elastic stress and strain, namely Pi j = Ci jkl�kl .

The free energy of interaction between a defect and a
spatially homogeneous or slowly varying external field can
now be readily derived from Eq. (4) using the fact that in
equilibrium the variation of the stress field of the defect equals

the applied external stress field taken with the opposite sign
[19,27,29],

F ext
int = −�i jσ

ext
i j = −Pi jε

ext
i j . (9)

In statistical mechanics, the free energy is related to the
partition function of the system as

F = −kBT lnZ. (10)

The partition function is

Z =
∫

exp(−βH)d�, (11)

where β = (kBT )−1 and d� refers to integration over phase
space. Taking a functional derivative of the free energy with
respect to internal strain gives

δF
δεi j

= 1

Z

∫
exp(−βH)

δH
δεi j

d� =
〈
δH
δεi j

〉
, (12)

where brackets 〈. . .〉 refer to the evaluation of an ensemble
average quantity.

For an atomic system subjected to a small spatially homo-
geneous external strain, atomic position vectors transform in
response to strain as

r → (I + εext )r. (13)

Similarly, the momenta of atoms transform as

p → (I + εext )−1p. (14)

The above scaling of momentum is consistent with the def-
inition of the momentum operator p̂ = −ih̄∂/∂r in quantum
mechanics [30] or the Lagrangian classical mechanics [31],
where the momentum is defined as a derivative of the La-
grangian function with respect to the corresponding velocity
p = ∂L/∂ ṙ. This results in(

δrnα

δεext
i j

)
εext

i j =0

= rn jδαi, (15)

(
δpnα

δεext
i j

)
εext

i j =0

= −pn jδαi, (16)

where n refers to an atom and α is an index of a Cartesian
coordinate.

Consider a generic atomic Hamiltonian of the form

H =
∑

n

p2
n

2m
+ U ({r}), (17)

where U (r1, r2, . . . , rN ) is the potential energy, the value of
which is uniquely defined by an atomic configuration {r} =
(r1, r2, . . . , rN ). The functional derivative of the Hamiltonian
with respect to an external strain is

δH
δεext

i j

=
∑
n,α

pnα

m

(
δpnα

δεext
i j

)
+

∑
n,α

∂U

∂rnα

(
δrnα

δεext
i j

)
(18)

= −
∑

n

pni pn j

m
−

∑
n

Fnirn j (19)

= −
∑

n

pni pn j

m
+ 1

2

∑
nm

Fnmi(rm j − rn j ) (20)

= V σ̄ vir
i j , (21)
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where Fni = −∂U/∂rni is the ith Cartesian component of the
force acting on atom n, Fnmi is the ith component of the force
acting on atom n due to its interaction with atom m, and V is
the volume of the system. The virial stress in an atomic system
is defined as [32,33],

σ̄ vir
i j = 1

V

(
−

∑
n

pni pn j

m
+ 1

2

∑
m,n

Fnmi(rm j − rn j )

)
. (22)

Therefore, we can write

δH
δεi j

= − δH
δεext

i j

= −V σ̄ vir
i j . (23)

The sign convention for the virial stress is that P =
− 1

3 Tr(σ̄vir ), where P is the external hydrostatic pressure. In
equilibrium, the sign of the virial stress is opposite to that of
the internal stress. Finally, we arrive at [cf. Eq. (7)]

δF
δεi j

=
〈
δH
δεi j

〉
= −V 〈σ̄ vir

i j 〉 = V 〈σ̄i j〉, (24)

where σ̄i j is the average internal stress. The last equality
holds following the same argument as that given in Ref. [14],
where a defect in a simulation cell with a finite size is treated
using periodic boundary conditions. The elastic dipole tensor,
derived using a microscopic argument, can now be written as

Pi j = V 〈σ̄i j〉. (25)

This expression has a form similar to that derived from the en-
ergy argument at 0 K [11–18]. However, now the formula also
includes averaging over the statistical ensemble of realizations
of the system. Furthermore, we find that the expression for
the elastic dipole tensor in the macroscopic thermodynamics
given by Eq. (7) is equivalent to that derived from the mi-
croscopic argument of statistical mechanics, provided that the
Cauchy stress is taken as equivalent to the ensemble average
value of the virial stress. The Cauchy stress and virial stress
are equivalent in the thermodynamic limit [32].

In the 0 K limit, the dipole tensor can also be evaluated
using the applied strain approach [11–13], which focuses on
the difference between the simulation cell shape and volume
with and without a defect, assuming stress-free conditions.
This is because elastic strain and stress are related by the
fourth-rank elastic constant tensor, according to linear elas-
ticity [27]. In finite-temperature dynamic simulations, if a
simulation cell is allowed to change its dimensions, it will not
converge to a unique box shape and volume, because stress is a
time-dependent fluctuating quantity. One needs to introduce at
least one extra parameter to control the rate of variation of cell
dimensions, which can cause bias in averaging. As a technical
note, it is hard to apply the umbrella sampling method, which
we will discuss in the next section. Our approach takes non-
interacting harmonic oscillators as a reference. Since using a
harmonic oscillator requires defining its equilibrium position
at a certain location, we cannot use it as a reference if the di-
mensions of the simulation cell vary. In this study, we perform
simulations with fixed dimensions of the simulation cell that
are more suitable for practical implementation.

III. UMBRELLA SAMPLING

The nonstationary nature of a defect presents a difficulty
in the context of evaluation of its thermodynamic properties,
since a defect migrates and evolves due to the effect of ther-
mal fluctuations. We circumvent this problem using a biased
sampling technique known as the umbrella sampling [34]. It
is a reweighting technique for evaluating a thermodynamic
quantity of a target state by sampling a reference state. We
briefly outline the method here, and then apply it specifically
to the case of a defect at a finite temperature. We note that the
method only applies in the classical limit, and it does not treat
the low-temperature case where quantum-mechanical effects
dominate the properties and dynamics of defects [35,36].

We consider two classical Hamiltonians H0 and H1, and
their difference:

δHum = H1 − H0. (26)

The ensemble average of an observable O with respect to
Hamiltonian H0 at temperature T is

〈O〉0 =
∫
O exp(−βH0)d�∫
exp(−βH0)d�

. (27)

Substituting Eq. (26) into (27), we find

〈O〉0 = 〈O exp(βδHum )〉1

〈exp(βδHum )〉1
. (28)

This formula replaces the calculation of an average of an
observable O over an ensemble defined by Hamiltonian H0 by
calculations of averages of O exp(βδHum ) and exp(βδHum )
over an ensemble defined by another Hamiltonian H1. In a
dynamic simulation, an ensemble average quantity is calcu-
lated by taking a time average and assuming ergodicity. The
values of O and δHum are calculated from the instantaneous
momenta and positions of atoms.

We apply the above formula to the calculation of the elastic
dipole tensor of a defect. The functional derivative of the free
energy of a system defined by Hamiltonian H0 is

δF0

δεi j
= 1

Z0

∫
exp(−βH0)

δH0

δεi j
d�. (29)

Combining this with Eq. (26), we arrive at

δF0

δεi j
=

∫
exp(−βH1) exp(βδHum ) δH0

δεi j
d�∫

exp(−βH1) exp(βδHum )d�
. (30)

Multiplying this by 1 = Z1/Z1, we transform the above equa-
tion into

δF0

δεi j
=

〈
δH0

δεi j
exp(βδHum )

〉
1

〈exp(βδHum )〉1
. (31)

The right-hand side of this equation is consistent with
Eq. (28), showing that the derivative of the free energy and
hence the dipole tensor of a defect can be evaluated using the
umbrella sampling approach.

In addition to providing a way of evaluating observables,
the umbrella sampling method also suggests a way of cal-
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FIG. 1. Equilibrium lattice constants, calculated using the
Mason–Nguyen-Manh–Becquart (MNB) [40] tungsten interatomic
potential over a range of elevated temperatures. Experimental curve
is given by a fitted formula taken from Ref. [41], where the measure-
ments span the range from 25 to 900 ◦C.

culating the free energy. The free energy corresponding to
Hamiltonian H0 can be written as

F0 = −kBT ln Z0 (32)

= −kBT ln
∫

exp(−βH0)d�. (33)

Using Eq. (26), we find the free energy as

F0 = −kBT ln
∫

exp(βδHum ) exp(−βH1)d� (34)

= −kBT ln〈exp(βδHum )〉1 + F1. (35)

FIG. 2. Elastic constants C11, C12, and C44 evaluated from the free
energy computed using the MNB potential for tungsten. Experimen-
tal data are taken from Ref. [42], where the measurements span the
temperature range up to 1800 ◦C.

FIG. 3. Formation free energies of hexagonal 1
2 〈111〉 SIA loops

containing 7, 19, 37, and 61 extra atoms.

This shows that the free energy F0 can be evaluated by sam-
pling over an ensemble defined by Hamiltonian H1 if F1 is
known.

In practice, assuming that the system of interest involves
N atoms, we choose Hamiltonian H1 as a sum of N three-
dimensional noninteracting harmonic oscillators

H1 = HHO =
∑

n

(
p2

n

2m
+ 1

2
mω2x2

n + C

)
, (36)

where xn = rn − Rn is the coordinate of an oscillator, defined
near an equilibrium atomic position Rn, ω is its frequency
and m its mass, and C is a constant. The free energy of this
system of oscillators, in the classical limit, can be evaluated
analytically as [37]

F1 = FHO = −3NkBT ln

(
kBT

h̄ω

)
+ NC, (37)

where the Planck constant is included for dimensional conve-
nience. In what follows, we assume that ω equals the Debye
frequency of tungsten, h̄ω = kBTD, where TD = 400 K. The
choice of ω here is a matter of numerical convenience, and is
consistent with that our case studies use the tungsten many-
body potential. It by no means represents a constraint or
limits the range of applications of the approach. Constant C
is adjusted on the fly during the thermalization of a system,
but remains fixed during sampling in order to minimize δHum

and achieve higher accuracy of the final result. The initial
atomic configuration containing a defect {Rn} is determined
through energy minimization via atomic relaxation performed
using the conjugate gradient method. The actual sampling is
performed using molecular dynamic simulations, integrating
the corresponding Langevin equations of motion [38].

IV. SIMULATIONS

Simulations exploring finite-temperature properties of de-
fects were performed for 1

2 〈111〉 SIA loops of various size
in tungsten. We computed the formation free energies and
elastic dipole tensors of loops at finite temperatures. All the
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FIG. 4. Elastic dipole tensors of 1
2 〈111〉 self-interstitial atom dislocation loops containing 7, 19, 37, and 61 extra atoms calculated using

the umbrella sampling according to Eq. (31). Standard deviations of data points are shown as error bars.

simulations were performed using the SPILADY spin-lattice
dynamics code [39] modified to include the methodology
described in this study.

The initial analysis was performed using simulation cells
containing 30 × 30 × 30 bcc cubic unit cells and 54 000
atoms. Each bcc cubic unit cell involves two atoms. We used
the Mason–Nguyen-Manh–Becquart (MNB) [40] interatomic
potential for tungsten. Simulation cells were thermalized to
temperatures in the range from from 0.1 K to 1500 K. The
volume of the cell was controlled by a barostat keeping the
pressure fluctuating around 0 GPa. Following full thermaliza-
tion, the average of cell dimensions was monitored over 2 ns
to compute the equilibrium lattice constants. The results are
shown in Fig. 1.

Using the equilibrium lattice constants computed for vari-
ous temperatures, we explored the simulation cells with fixed
shape, size, and volume containing 30 × 30 × 30 unit cells.
We evaluated the free energy of a perfect lattice using sim-
ulations involving 200 000 time steps. Then, we created six
deformed boxes with uniaxial strains of ±0.1% in the x di-
rection, biaxial strains of ±0.05% in both x and y directions,
or shear strains of ±0.1% in the xy direction. By calculat-
ing the free energies and comparing them with the perfect
lattice values, and using the expression for the elastic free
energy

F = F0 + V

2
Ci jklεi jεkl , (38)

we determined the elastic constants C11, C12, and C44 in
the Voigt notations. The resulting values of elastic constants
are shown in Fig. 2. The experimentally measured elas-
tic constants of tungsten, plotted using the fitted functions
parametrized by Lowrie et al. [42], are also shown for com-
parison. The range of experimental data extends to 1800 ◦C.

Hexagonal or nearly circular 1
2 〈111〉 self-interstitial atom

(SIA) dislocation loops containing 7, 19, 37, and 61 atoms
were created in the initially perfect 30 × 30 × 30 simulation
cells. Atomic positions were determined by energy minimiza-
tion through atomic relaxation performed using the conjugate
gradient method, while constraining the shape and volume of
the simulation cell. We evaluated the free energies of loops
using the umbrella sampling and 200 000 integration time
steps. The formation free energy was computed using the
equation

F form = Fdef − Ndef

Nperf
Fperf , (39)

where Fdef and Fperf are the free energies of configurations
containing a defect and that of a perfect crystal, and Ndef

and Nperf are the numbers of atoms in the corresponding
simulation cells. From Fig. 3 we see that all the formation free
energies decrease monotonically as a function of temperature.
The data also suggest that the rate of variation of the free
energy as a function of temperature is greater for the larger
loops.
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FIG. 5. Elastic dipole tensors of 1
2 〈111〉 SIA loops, containing 7, 19, 37, and 61 extra atoms, evaluated using Eq. (41) in the linear

elasticity approximation. Temperature-dependent elastic constants and lattice constants are taken from experiments [41,42], and calculations
are performed using the MNB potential. Pαα are the diagonal elements and Pαβ are the off-diagonal elements of the dipole tensor. Average
values of the diagonal P̄αα = (P11 + P22 + P33)/3 and off-diagonal P̄αβ = (P12 + P23 + P31)/3 elements calculated using the umbrella sampling
are presented for comparison.

There are other methods for computing the free energy, for
example the local harmonic approximation [43], where the
free energy is evaluated from the vibration frequencies deter-
mined by diagonalizing the dynamic matrix. This effectively
maps a system of interacting atoms onto a system of indepen-
dent harmonic oscillators with the same number of degrees
of freedom. Thermodynamic integration [44,45] is another
popular choice. However, in a calculation of the free energy
of a defect, one needs to guarantee that the two integration
end points are stable or at least metastable configurations.
For a mobile SIA-type defect, it is hard to confine a defect
configuration without imposing any constraint and treat it as a
stable end point. On the other hand, umbrella sampling allows
one to choose harmonic oscillators as the reference state, and
this effectively holds the defect configuration. The umbrella
sampling is a feasible way of evaluating the free energy, which
appears efficient and suitable for a variety of applications [38].
Besides, the formalism of umbrella sampling enables achiev-
ing two objectives at the same time. In addition to evaluating
the free energy, it also enables calculating various observables
through reweighting.

An evaluation of a finite-temperature elastic dipole ten-
sor involves an element of subtlety. Larger simulation cells
containing 50 × 50 × 50 unit cells are used, and the time
integration involves 500 000 steps. The use of larger cell size
offers an advantage by moderating fluctuations of the sum of
atomic stresses. Furthermore, instead of using H1 = HHO, we

choose

H1 = (1 − λ)Hl + λHHO, (40)

where Hl is a generic lattice Hamiltonian [Eq. (17)] and
λ = 1 × 10−7 is a small constant factor. The elastic dipole
tensor of a loop is calculated using Eq. (31). In the calculation
of an observable, it is not a requirement to use an analytically
solvable reference state. The choice of a reference state can
be different when a free energy calculation or a calculation
of an observable is performed. There is no requirement that
a unique reference state must always be used. The reason for
adopting the numerical procedure above is to aim at choosing
a small value of δHum. If δHum is large, the exponential
factor in Eq. (28) is also large, leading to large numerical
errors. Besides, choosing a Hamiltonian H1 that is close to
H0 implies that the phase space explored by the simulations is
close to that of the original Hamiltonian, helping better quality
sampling. The introduction of HHO serves as the means for
pinning the defect configuration.

Figure 4 shows how the elements of elastic dipole tensors
of 1

2 〈111〉 SIA loops vary as functions of temperature for var-
ious loop sizes. Standard deviations of data are indicated by
error bars. The magnitude of the standard deviation becomes
larger at higher temperatures. Their values are almost the same
in all four cases, because stress fluctuations are a consequence
of thermal excitations. The mean values are not smooth when
the loop size is small, because the error is relatively large.
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FIG. 6. Two pure prismatic dislocation loops with Burgers vec-
tors b = a

2 〈111〉 and same radii r, where a is the bcc lattice
parameter. Centers of the loops are separated horizontally by d and
vertically by z.

There is an analytical expression for Pi j of a dislo-
cation loop derived in the linear elasticity approximation
[9,14,29,46,47]:

Pi j = Ci jkl bkAl , (41)

where bk and Al are the Cartesian components of the Burgers
vector b and the loop area vector A. The loop area vector
satisfies the condition V = N�0 = b · A [14], where N is the
number of atoms forming the dislocation loop.

Using Eq. (41) we can evaluate the elastic dipole tensor of
a loop from the finite-temperature values of elastic constants
and lattice constants derived from experiment [41,42] and
numerical simulations using the MNB potential performed
in this study. Figure 5 shows values of the matrix elements
of the dipole tensor computed in this way, where Pαα are
the diagonal elements and Pαβ are the off-diagonal elements.
For comparison, we also plot the average values of diago-
nal P̄αα = (P11 + P22 + P33)/3 and off-diagonal P̄αβ = (P12 +
P23 + P31)/3 elements shown in Fig. 5.

We see that the values calculated according to linear elas-
ticity are fairly similar to those derived from direct numerical
calculations using the umbrella sampling. We note that the
linear elasticity approximation ignores the dislocation core
effects, which are more significant in the limit where a
dislocation loop is small. According to the calculated and
predicted values of Pi j of loops, we see that it is reasonable
to use Eq. (41) derived from the continuum linear elasticity
model, where the elastic constants are treated as temperature-
dependent quantities.

Given that we can now evaluate the elastic dipole tensor
of a loop at a finite temperature, what are the implications for
the elastic interaction free energy? The free energy of elastic
interaction between two defects can be written as

F (r) = Pa
i jP

b
kl Gik, jl (r). (42)

Assuming the validity of linear elasticity, we illustrate the
temperature effect by looking at loop-loop interactions. We
place two pure prismatic loops with parallel Burgers vectors
b = 1

2 〈111〉 and radii r = 2 nm in a crystal as illustrated in
Fig. 6. The loops are separated horizontally by a distance
d = 10 nm and vertically by z. Using Eq. (41) and knowing
that Gik, jl is also a function of Ci jkl [23], we can evaluate

FIG. 7. Elastic interaction free energy (top) and variation of the
free energy with respect to the relative vertical position z of two loops
as shown in Fig. 6, where r = 2 nm and d = 10 nm (bottom), as a
function of the relative vertical position z.

the elastic interaction free energy F using the temperature-
dependent elastic constants derived from experiment [42].

In Fig. 7, we plotted F and its derivative with respect to the
relative vertical position ∂F/∂z at various temperatures. The
depth of the free energy well is responsible for the correlated
motion of loops and ∂F/∂z is the force acting on the loops
[6]. As temperature increases, the free energy well becomes
shallower, and the driving force that traps the loops at around
±75 Å weakens. In this example, we observe that the elastic
dipole tensors of the loops vary as functions of temperature,
the elastic Green’s function varies because of its dependence
on elastic constants, and the elastic interaction free energy
varies as a function of temperature. In this particular exam-
ple of loop-loop interaction, when the temperature increases
the interaction weakens, implying that the two loops trapped
by their mutual elastic interaction and undergoing correlated
motion have a higher chance of being decoupled by random
thermal fluctuations.

V. CONCLUSION

We extended the concept of the elastic dipole tensor to the
treatment of the elastic field of a defect at a finite temperature.

073609-7



PUI-WAI MA AND S. L. DUDAREV PHYSICAL REVIEW MATERIALS 5, 073609 (2021)

The elastic dipole tensor is given by the volume integral of the
stress field of a defect, like in the 0 K case; however now the
calculation requires taking the ensemble average of the inte-
gral. Examples of 1

2 〈111〉 SIA loops illustrate the feasibility of
carrying out calculations of formation free energies and elastic
dipole tensors of defects at a finite temperature. We also find
that the linear elasticity formulas for the dipole tensor of
loops agree well with direct numerical simulations, enabling
application of finite-temperature analysis to the continuum
level simulations. A case study involving two interacting dis-
location loops at finite temperature illustrates the effect of
temperature on the free energy of elastic interaction, showing
that the elastic interaction between the loops becomes weaker
at higher temperatures.

Further information on the data and models underlying the
paper is available [48].
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