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Electromagnetic (EM) instabilities and turbulence driven by the electron-temperature
gradient (ETG) are considered in a local slab model of a tokamak-like plasma. Derived in a
low-beta asymptotic limit of gyrokinetics, the model describes perturbations at scales both
larger and smaller than the electron inertial length de, but below the ion Larmor scale ρi,
capturing both electrostatic and EM regimes of turbulence. The well-known electrostatic
instabilities – slab and curvature-mediated ETG – are recovered, and a new instability
is found in the EM regime, called the thermo-Alfvénic instability (TAI). It exists in
both a slab version (sTAI, destabilising kinetic Alfvén waves) and a curvature-mediated
version (cTAI), which is a cousin of the (electron-scale) kinetic ballooning mode. The
cTAI turns out to be dominant at the largest scales covered by the model (greater than
de but smaller than ρi), its physical mechanism hinging on the fast equalisation of the
total temperature along perturbed magnetic field lines (in contrast to kinetic ballooning
mode, which is pressure balanced). A turbulent cascade theory is then constructed, with
two energy-injection scales: de, where the drivers are slab ETG and sTAI, and a larger
(parallel system size dependent) scale, where the driver is cTAI. The latter dominates
the turbulent transport if the temperature gradient is greater than a certain critical value,
which scales inversely with the electron beta. The resulting heat flux scales more steeply
with the temperature gradient than that due to electrostatic ETG turbulence, giving rise
to stiffer transport. This can be viewed as a physical argument in favour of near-marginal
steady-state in electron-transport-controlled plasmas (e.g. the pedestal). While the model
is simplistic, the new physics that is revealed by it should be of interest to those attempting
to model the effect of EM turbulence in tokamak-relevant configurations with high beta
and large ETGs.
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1. Introduction

An understanding of the heat transport properties of a magnetically confined plasma
is crucial to the design of successful tokamak experiments. Since the characteristic
correlation lengthscales associated with the turbulence are small in comparison with
the scale of the device, one can usually assume that the turbulence depends only on
local equilibrium quantities – such as density, velocity, temperature, electromagnetic
fields – and their gradients (though there are cases where the global features of the
equilibrium can become important; see, e.g., Hatch et al. 2021). Much of the focus of
current research is on the turbulence consisting of unstable microscale perturbations,
the most important of which are driven either by the ion-temperature gradient (ITG)
(see, e.g., Waltz 1988; Cowley, Kulsrud & Sudan 1991; Kotschenreuther et al. 1995) or
by the electron-temperature gradient (ETG) (see, e.g., Dorland et al. 2000; Jenko et al.
2000). These perturbations typically live on ion and electron scales, respectively. Strongly
driven plasma turbulence – i.e. plasma turbulence with temperature gradients far above
the linear-instability thresholds – is believed to saturate by reaching a ‘critically balanced’
state (Barnes, Parra & Schekochihin 2011), where, by analogy with the Kolmogorov
(1941) theory of hydrodynamic turbulence, free energy injected by linear instabilities
is nonlinearly transferred (cascaded) to smaller scales, at which it is thermalised by
collisions. If one can determine the turbulent state of the plasma at saturation, then it
is, in principle, possible to determine how the turbulent heat fluxes carried by these
perturbations depend on the temperature gradients. Knowing this relationship, one can
invert it to find the heating power that needs to be provided to support a particular
temperature gradient. In many cases, the heat transport found in this context is described
as ‘stiff’ (Wolf 2003): the heat flux scales sharply with the temperature gradient, so a large
increase in heating power does very little to increase the temperature gradient, making
achieving temperature gradients far above marginal a difficult task.

Though it has long been understood that ion-scale physics can play a significant role in
plasma transport (see references cited above), there is evidence to suggest that instabilities
driven by the ITG can be suppressed by strong E × B shear in steep-gradient regions of a
tokamak (e.g. the pedestal), particularly in spherical or low-aspect-ratio configurations
(see Roach et al. 2005, 2009; Guttenfelder et al. 2013, 2021; Ren et al. 2017, and
references therein). This has the effect of reducing the ion contribution to the turbulent
heat transport, which instead becomes dominated by the electron channel. This means
that the characterisation of electron-scale instabilities is not only worthwhile, but indeed
necessary for a complete understanding of the heat transport in such systems.

Furthermore, a comprehensive understanding of electromagnetic effects on the
microinstability properties of the plasma, and the resultant turbulence, is becoming
increasingly important as experimental values of the plasma beta (the ratio of the thermal
and magnetic pressures) and, therefore, electromagnetic fluctuations, will be higher in
reactor-relevant tokamak scenarios. For example, ITER is projected to have a plasma beta
of up to 2.5 % (Shimomura et al. 2001; Sips 2005), while this value could exceed 15 %
in a recently proposed STEP equilibrium (Patel et al. 2021). Though the investigation of
electromagnetic instabilities and turbulence is of general importance within many different
types of plasma systems (e.g. astrophysical plasmas, laser plasmas), much of the research
in fusion has focused on two particular microinstability classes: micro-tearing modes
(MTMs) – initially, in simplified models (Hazeltine, Dobrott & Wang 1975; Drake &
Lee 1977; Drake et al. 1980; Hassam 1980a,b; Zocco et al. 2015; Larakers, Hazeltine
& Mahajan 2020; Larakers et al. 2021), later in tokamak geometry (Applegate et al. 2007;
Guttenfelder et al. 2012; Dickinson et al. 2013; Moradi et al. 2013; Predebon & Sattin
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2013; Rafiq et al. 2016) – and kinetic ballooning modes (KBMs) (Tang, Connor & Hastie
1980; Snyder 1999; Snyder & Hammett 2001b,a; Pueschel, Kammerer & Jenko 2008;
Pueschel & Jenko 2010; Waltz 2010; Wan et al. 2012, 2013; Guttenfelder et al. 2013;
Ishizawa et al. 2013, 2014, 2019; Terry et al. 2015; Aleynikova & Zocco 2017). Both
of these are intrinsically electromagnetic, requiring the ability to perturb the magnetic
field’s direction and (sometimes) magnitude. Despite significant numerical progress in
understanding the behaviour of such modes, however, there is still a certain lack of
clarity about the fundamental physical processes that are responsible for them, owing to
the complexity of these modes in the general tokamak geometry. Progress in distilling
the essential physical ingredients behind electromagnetic destabilisation can be made by
means of constructing minimal models.

To this end, in this paper, we consider electromagnetic instabilities and turbulence
driven by the ETG in a local slab model of a tokamak-like plasma, with constant
equilibrium gradients, including magnetic drifts but not magnetic shear. The inclusion of
the finite gradient and curvature of the magnetic field – in addition to the conventional
slab geometry (see, e.g., Howes et al. 2006) – is motivated by recent evidence (Abel
& Hallenbert 2018; Parisi et al. 2020) that the modes mediated by these equilibrium
quantities can often be the fastest-growing ones in steep-gradient regions of the plasma
(e.g. the pedestal), and thus significant in determining its nonlinear saturated state. The
governing equations are derived in the low-beta asymptotic limit of gyrokinetics (see,
e.g., Abel et al. 2013), and describe perturbations on scales both larger and smaller
than the electron inertial scale de, at which flux unfreezes, capturing both electrostatic
and electromagnetic regimes of turbulence. Formally, the electron beta is ordered as
βe ∼ me/mi (electron–ion mass ratio), while perpendicular wavenumbers are ordered as
ρ−1

i � k⊥ ∼ d−1
e � ρ−1

e (sub-ion-Larmor scales). The ordering is discussed in detail in
Appendix A.2.

At appropriately short perpendicular wavelengths (below the de scale), we recover
the well-known electrostatic slab ETG (sETG) (Liu 1971; Lee et al. 1987) and
curvature-mediated ETG (cETG) (Horton, Hong & Tang 1988) instabilities. Turning
our attention to longer perpendicular wavelengths (above the de scale, but still smaller
than the ion gyroradius), we demonstrate the existence of the novel thermo-Alfvénic
instability (TAI) that arises in the electromagnetic regime. We show that it exists in
both a slab version (sTAI, destabilising kinetic Alfvén waves) and a curvature-mediated
version (cTAI), the latter of which is related to the (electron-scale version of) the KBM.
In particular, we find that cTAI is the dominant instability on the largest scales covered
by the model, with a maximum growth rate that is greater than that of the cETG. This
maximum growth rate occurs at a specific, finite parallel wavenumber, unlike cETG,
which is two-dimensional. Its physical mechanism hinges on the fast equalisation of the
total temperature along perturbed magnetic field lines (in contrast to the KBM, which is
approximately pressure balanced; see, e.g., Snyder & Hammett 2001b; Kotschenreuther
et al. 2019) due to the dominance of either parallel streaming (in the collisionless limit)
or thermal conduction (in the collisional one). We also show that the sTAI is stabilised
at large parallel wavenumbers by compressional heating, and at large perpendicular
wavenumbers by the effects of finite electron inertia (in the collisionless limit) or finite
resisitivty (in the collisional one). We then map out all of these instabilities in parallel and
perpendicular wavenumber space.

Using a critical-balance phenomenology analogous to Barnes et al. (2011), we then
construct a turbulent-cascade theory for the free energy injected by these instabilities.
Assuming the cascade to be local, the theory is shown to allow two injection
scales: de, where the drivers are sETG and sTAI, and a larger scale dependent on the
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parallel size of the system (the connection length, in the case of a tokamak), where the
principal driver is cTAI. We find that the latter dominates the turbulent transport if the
temperature gradient is greater than a certain critical value, which scales inversely with
the electron beta. Using constant-flux arguments, we then derive scaling estimates for the
turbulent electron heat flux carried by fluctuations at these injection scales, finding that the
heat flux due to electromagnetic cTAI turbulence scales more steeply with the temperature
gradient than the heat flux due to electrostatic sETG turbulence in this regime, and thus
gives rise to stiffer transport. Note that we do not engage with ion physics here, formally
assuming that the scale of dominant energy injection for the turbulent cascade lies on
sub-Larmor scales.

The rest of the paper is organised as follows. In § 2, we describe and physically motivate
our low-beta model equations, in both the collisionless and collisional limits. Section
3 recovers the well-known electrostatic instabilities – sETG and cETG – while § 4 is
devoted to the characterisation of the TAI, including detailed treatments of both sTAI
and cTAI. Section 5 is a summary of the asymptotic behaviour of these instabilities in
wavenumber space, providing a graphical representation of the linear results of this paper.
In § 6, we construct a cascade theory for the turbulence driven by these instabilities, and
derive scaling estimates for the turbulent electron heat fluxes as functions of the ETG,
parallel system size and the electron beta. Finally, results are summarised and limitations,
implications and future directions are discussed in § 7.

2. Low-beta equations

We wish to describe dynamics at electron scales (below the ion Larmor scale) of a
magnetised plasma, in the presence of electromagnetic perturbations. Our electron species
will have an equilibrium temperature gradient, and will be advected by the magnetic drifts
associated with a magnetic geometry of constant curvature. Our equations will be derived
in a low-beta asymptotic limit of gyrokinetics; this allows us to order out compressive
magnetic-field perturbations while retaining Alfvénic ones. In this section, we present
a summary of these equations and the physical motivation behind them; their detailed
derivation can be found in Appendix A.

2.1. Magnetic equilibrium and geometry
The magnetic geometry that we adopt is one of constant magnetic curvature, as this allows
us to capture the effect of the magnetic drifts on our plasma while retaining most of
the simplicity associated with conventional slab gyrokinetics (Howes et al. 2006; Ivanov
et al. 2020). We consider a domain positioned in the magnetic field of a current line at
a radial distance R from the central axis, and define the x̂ and ŷ directions as pointing
radially outwards and parallel to the central axis, respectively, as shown in figure 1. In the
context of the outboard midplane in tokamak geometry, these are the ‘radial’ and ‘poloidal’
coordinates, respectively, terms that we adopt in our later discussions. In such a geometry,
the magnetic field consists of an equilibrium part that is oriented in the b0 = ẑ direction
and varies radially, plus a time- and space-dependent fluctuating part:

B(r, t) = B0(x)b0 + δB⊥(r, t). (2.1)

In what follows, we express the perpendicular magnetic-field fluctuations in terms of the
parallel component of the magnetic vector potential:

δB⊥(r, t) = ∇ × A = −b0 × ∇A‖. (2.2)

The component of the magnetic-field fluctuations parallel to the mean field is negligible
in the limit of low beta [see (A20)]. The electric field is related to the magnetic vector
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FIGURE 1. Illustration of the constant-curvature geometry, showing the domain positioned at
a distance R from the current axis, with the x̂ and ŷ directions pointing radially outwards and
parallel to this axis, respectively. The equilibrium magnetic field is in the b0 direction. Both the
equilibrium temperature T0e and equilibrium magnetic field B0 vary radially, with their scale
lengths LT and LB, respectively, assumed constant across the domain.

potential A and electrostatic potential φ by

E(r, t) = −1
c
∂A
∂t

− ∇φ, (2.3)

and is assumed to have no mean part. The equilibrium (mean) magnetic field has the scale
length and radius of curvature

L−1
B = − 1

B0

dB0

dx
, R−1 = |b0 · ∇b0| , (2.4a,b)

respectively, both of which are assumed to be constant across our domain. Note that for
a low-beta plasma, R = LB (see Appendix A.1). We assume that the background gradient
of the temperature T0e associated with the equilibrium distribution of the electrons also
varies radially, with scale length

L−1
T = − 1

T0e

dT0e

dx
, (2.5)

which, similarly, is assumed to be constant over the domain. The thermal speed of the
electrons is then given by vthe = √

2T0e/me, where me is the electron mass.
With this local equilibrium, and adopting a low-beta ordering (see Appendix A.2),

we derive evolution equations for the density (δne), parallel velocity (u‖e), parallel
temperature (δT‖e) and perpendicular temperature (δT⊥e) perturbations of the electrons.
These equations are presented in the following sections. We assume everywhere that the
electron Larmor radius ρe is small, and so work in the drift-kinetic approximation for the
electrons.

2.2. Density perturbations
The perturbed electron density satisfies the continuity equation:

d
dt
δne

n0e
+ ∇‖u‖e + ρevthe

2LB

∂

∂y

(
δT‖e

T0e
+ δT⊥e

T0e

)
= 0. (2.6)
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This says that the density perturbation is subject to three influences: (i) advection by the
E × B motion of the electrons:

d
dt

= ∂

∂t
+ vE · ∇⊥, vE = ρevthe

2
b0 × ∇⊥ϕ, ϕ = eφ

T0e
, (2.7)

where −e is the electron charge; (ii) compression or rarefaction due to the perturbed
parallel electron flow u‖eb along the exact magnetic field, including the perturbation of
the magnetic field direction:

∇‖=b · ∇ = ∂

∂z
+ δB⊥

B0
· ∇⊥,

δB⊥
B0

= −ρeb0 × ∇⊥A, A = A‖
ρeB0

; (2.8)

and (iii) the magnetic drifts due to the finite curvature and gradient of the magnetic
field. The parallel and perpendicular temperature perturbations arise from the velocity
dependence of the curvature and ∇B drifts in the gyrokinetic equation [see (A29)]. The
presence of these magnetic drifts is essential for the curvature-mediated instabilities that
are the focus of § 3.3 and much of § 4.

The continuity equation (2.6) is (A68) in Appendix A.5, except that in (2.6) we have set
the equilibrium density gradient to zero, and ignored the magnetic-drift terms proportional
to δne/n0e and ϕ, as they will always turn out to be smaller than the magnetic-drift
terms proportional to the temperature perturbations in what follows. This is in a bid to
make our equations as simple as possible, while retaining all of the relevant physics
(see Appendix A.7 for further details). We shall ignore similar terms in our other equations
for the perturbations, for the same reason. Cautious readers may be reassured by the fact
that all of the instabilities considered in §§ 3 and 4 are derived in a limit in which this is a
valid approximation.

2.3. Parallel velocity perturbations
The parallel momentum equation associated with the electrons is [see (A69)]

n0eme
du‖e

dt
= −∇‖p‖e − eneE‖−νeimeu‖e. (2.9)

The three forces appearing on the right-hand side are, from right to left: (i) the collisional
drag against the ions (which are assumed motionless), where νei is the electron–ion
collision frequency; (ii) the parallel electric field

E‖=b · E = −
(

1
c
∂A‖
∂t

+ ∇‖φ
)

= −
(

1
c

dA‖
dt

+ ∂φ

∂z

)
; (2.10)

and (iii) the parallel pressure gradient, which consists of both the parallel gradient of the
parallel-pressure perturbation and the projection of the equilibrium temperature gradient
onto the perturbed magnetic field:

∇‖p‖e = ∇‖δp‖e + n0e
δBx

B0

dT0e

dx
= n0eT0e

[
∇‖

(
δne

n0e
+ δT‖e

T0e

)
− ρe

LT

∂A
∂y

]
. (2.11)

Since an electron flow uncompensated by an ion flow is a current, u‖e is related to A‖ via
Ampère’s law [see (A41)]:

− en0eu‖e = j‖ = c
4π

b0 · (∇⊥ × δB⊥) ⇒ u‖e = vthed2
e∇2

⊥A, (2.12)

where c is the speed of light, de = c(me/4πe2n0e)
1/2 = ρe/

√
βe is the electron inertial scale

and βe = 8πn0eT0e/B2
0. The electron inertial scale de is an important quantity throughout
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this work, as it demarcates the boundary between the electrostatic and electromagnetic
regimes in the collisionless limit (see § 2.7). In the collisional limit [see (A74)], the
frictional term on the right-hand side of (2.9) dominates over the electron inertial term
on the left-hand side, meaning that the electron inertia can be neglected.

2.4. Temperature perturbations
The parallel temperature T‖e = T0e + δT‖e is advected by the local E × B flow and is
locally increased (or decreased) by the compressional heating (or rarefaction cooling) due
to u‖e, as well as by the (appropriately normalised) perturbed parallel heat flux δq‖e [see
(A70)]:

dT‖e

dt
= dδT‖e

dt
+ vE · ∇⊥T0e = −∇‖

δq‖e

n0e
− 2T0e∇‖u‖e − 4

3
νe
(
δT‖e − δT⊥e

)
. (2.13)

The factor of 2 in the compressional-heating term (the second on the right-hand side) is
due to the fact that we only consider the parallel (one-dimensional) motion of the electrons
[perpendicular motions are formally small within our ordering; see (A22)]. The last term
on the right-hand side is a consequence of our choice of collision operator [see (A55) and
the subsequent discussion], and is responsible for collisional temperature isotropisation,
with νe = νee + νei, and νee = νei/Z the electron–electron collision frequency (Ze is the
ion charge).

Similarly, the perpendicular temperature T⊥e = T0e + δT⊥e evolves according to
[see (A71)]

dT⊥e

dt
= dδT⊥e

dt
+ vE · ∇⊥T0e = −∇‖

δq⊥e

n0e
− 2

3
νe
(
δT⊥e − δT‖e

)
, (2.14)

where δq⊥e is the perturbed perpendicular heat flux. Note the absence of perpendicular
compressional heating (perpendicular flows are incompressible).

The term expressing the seeding of both parallel and perpendicular temperature
perturbations via the advection of the equilibrium temperature profile by the E × B flow
becomes, after a straightforward manipulation, the familiar (electrostatic) linear drive
responsible for extracting (‘electrostatic’) free energy from the equilibrium temperature
gradient:

vE · ∇⊥T0e = T0e
ρevthe

2LT

∂ϕ

∂y
, (2.15)

where LT is defined in (2.5). In order to determine the heat fluxes δq‖e and δq⊥e, kinetic
theory is needed, and so we must append to our emerging system of equations the
drift-kinetic equation for electrons (see Appendix A.5), of which (2.6), (2.9), (2.13) and
(2.14) are four lowest-order moments.

In the collisional limit [see (A73)], the temperature isotropisation terms in (2.13) and
(2.14) are dominant, enforcing δT‖e = δT⊥e = δTe to leading order. In this limit, therefore,
we no longer distinguish between parallel and perpendicular temperature perturbations,
and obtain an equation for δTe from the linear combination (1/3)(2.13)+(2/3)(2.14) [see
(A83) and (A90)]:

dδTe

dt
+ vE · ∇⊥T0e = −2

3
∇‖
δqe

n0e
− 2

3
T0e∇‖u‖e, (2.16)

where the (collisional) heat flux δqe = δq‖e/2 + δq⊥e can be expressed in terms of the
parallel gradient of the total temperature Te = T0e + δTe along the exact magnetic field
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direction [see (A87)]:

δqe

n0eT0e
= −3

2
κ∇‖ log Te, κ = 5v2

the

18νe
, (2.17)

where κ is the electron thermal diffusivity and

∇‖ log Te = ∇‖
δTe

T0e
+ δBx

B0

1
T0e

dT0e

dx
= ∇‖

δTe

T0e
− ρe

LT

∂A
∂y

(2.18)

is the parallel gradient of the total electron temperature, which will prove a key quantity
in what follows.

2.5. Quasineutrality
Finally, as usual, particle density is related to φ via quasineutrality, which is the route
whereby ions contribute to dynamics. Since, at scales smaller than their Larmor radius
∼ ρi, ions can be viewed as large motionless rings of charge, their density response is
Boltzmann:

δne

n0e
= δni

n0i
= −Zeφ

T0i
= −τ̄−1ϕ, τ̄ = τ

Z
, (2.19)

where τ = T0i/T0e is the ratio of the ion to electron equilibrium temperatures. The more
general quasineutrality closure, for which τ̄−1 is an operator and which includes scales
comparable to the ion Larmor radius, is given in Appendix A.3, but, since we focus on
scales smaller than this in our discussions, (2.19) is sufficient for our purposes.

2.6. Summary of equations
Assembling together all of the above, we end up with the following systems of equations,
in the collisionless limit [see (A8) with νei, νee → 0]:

d
dt
δne

n0e
+ ∇‖u‖e + ρevthe

2LB

∂

∂y

(
δT‖e

T0e
+ δT⊥e

T0e

)
= 0, (2.20)

d
dt

(
A − u‖e

vthe

)
= −vthe

2

[
∂ϕ

∂z
− ∇‖

(
δne

n0e
+ δT‖e

T0e

)
+ ρe

LT

∂A
∂y

]
, (2.21)

d
dt
δT‖e

T0e
+ ∇‖

(
δq‖e

n0eT0e
+ 2u‖e

)
+ ρevthe

2LT

∂ϕ

∂y
= 0, (2.22)

d
dt
δT⊥e

T0e
+ ∇‖

δq⊥e

n0eT0e
+ ρevthe

2LT

∂ϕ

∂y
= 0, (2.23)

or, in the collisional limit [see (A74)]:

d
dt
δne

n0e
+ ∇‖u‖e + ρevthe

LB

∂

∂y
δTe

T0e
= 0, (2.24)

dA
dt

+ vthe

2
∂ϕ

∂z
= vthe

2

(
∇‖
δne

n0e
+ ∇‖ log Te

)
+ νei

u‖e

vthe
, (2.25)

d
dt
δTe

T0e
− κ∇2

‖ log Te + 2
3
∇‖u‖e + ρevthe

2LT

∂ϕ

∂y
= 0, (2.26)
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to which we append the field equations:

δne

n0e
= −τ̄−1ϕ,

u‖e

vthe
= d2

e∇2
⊥A. (2.27)

This system is a minimal model for describing low-beta electromagnetic plasma dynamics
– whether collisionless or collisional – driven by a background ETG, and in the presence
of magnetic drifts.

2.7. Flux freezing
These equations describe two broad classes of physical phenomena: electrostatic and
electromagnetic, distinguished by whether the magnetic field lines are frozen into the
electron flow or not. We refer to the perpendicular scale at which the transition between
these two regimes occurs as the ‘flux-freezing scale’. In the collisionless limit, this scale
is given by the balance between the electron inertia and the inductive parallel electric field
on the left-hand side of (2.21), viz.,

k⊥de ∼ 1. (2.28)

In the collisional limit, the analogous balance involves, instead of electron inertia, the
resistive term – the last on the right-hand side of (2.25). However, in this limit, we always
deal with perturbations for which the term in (2.25) that contains the projection of the
equilibrium temperature gradient onto the perturbed magnetic field [the second part of
∇‖ log Te written in (2.18)] is larger than ∂A/∂t. Therefore, it is with this term that the
effect of resistivity will be usefully compared:

ω � ω∗e ≡ kyρevthe

2LT
∼ k2

⊥d2
eνei, (2.29)

where ω∗e is the drift frequency associated with the ETG. For modes with ky ∼ k⊥, the
balance (2.29) can be written as

k⊥de ∼ ρe

de

vthe

LTνei
=
√
βe
λe

LT
≡ χ−1, (2.30)

where λe = vthe/νe is the electron mean free path. It is the scale at which k⊥deχ ∼ 1
that will effectively play the role of the flux-freezing scale in the collisional limit. Note
that χ−1 � 1 [see (A82)], meaning that the flux-freezing scale occurs at much longer
perpendicular wavelengths than in the collisionless limit.

We refer to scales below the flux-freezing scale (2.28) or (2.30) as electrostatic scales
(on which electrons are free to flow across field lines without perturbing them) and to
scales above the flux-freezing scale as electromagnetic scales (on which the magnetic field
is frozen into the electron flow). In Appendix C, we show that the electron flow into which
the magnetic field lines are frozen on electromagnetic scales (while still remaining below
the ion Larmor scale) is given by

ueff = vE − ρevthe

2
b0 × ∇p‖e

n0eT0e
, (2.31)

where p‖e = neT‖e, ne = n0e + δne and T‖e = T0e + δT‖e are the total parallel pressure,
density and parallel temperature, respectively; in the collisional limit, δT‖e → δTe, as in
§ 2.4. The flow (2.31) is simply the part of the electron flow velocity perpendicular to the
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total magnetic field B, comprised of the usual E × B drift velocity vE [see (2.7)] and a
‘diamagnetic’ contribution coming from the electron (parallel) pressure gradient, manifest
in the right-hand side of (2.21) or (2.25). This is distinct from the magnetohydrodynamic
(MHD) limit (above the ion Larmor scale), in which the magnetic field is only frozen into
vE due to the dynamics being pressure balanced, a distinction that will prove important in
our considerations of electromagnetic instabilities in § 4.

In what follows, all orderings introduced should be considered subsidiary to the
orderings that define the collisionless and collisional limits [(A8), with νee, νei → 0, and
(A74), respectively], and the resultant reduced equations thus to be particular limits of the
collisionless [(2.20)–(2.23)] or collisional [(2.24)–(2.26)] equations.

3. Electrostatic regime: ETG instability

Let us begin by examining the more familiar instabilities that occur at electrostatic
scales, before considering what happens at electromagnetic ones.

3.1. Collisionless slab ETG
As explained above, the electrostatic limit corresponds to perpendicular scales k⊥de � 1.
If we strengthen this condition to [cf. (2.29)]

k2
⊥d2

e � ω∗e

ω
� 1, (3.1)

then both A terms in (2.21) can be neglected in comparison with the electron inertia.
Furthermore, we would like to consider the slab approximation, in which the magnetic
drifts are negligible in comparison with parallel compressions. In terms of wavenumbers,
this means that we assume

k‖vthe � ωde

(
LB

LT

)1/4

, ωde = kyρevthe

2LB
, (3.2)

where ωde is the magnetic-drift frequency. Though not immediately obvious, it turns out
that the limit (3.2) allows us to neglect the magnetic drifts in (2.20) [this follows from
comparing the sizes of the last two terms in (D35) under the ordering (D34)]. Then,
the perpendicular temperature perturbation (2.23) becomes decoupled from the remaining
equations, leaving us with an electrostatic three-field (δne, u‖e and δT‖e) system of the kind
traditionally used to describe temperature-gradient instabilities in a slab (Cowley et al.
1991). The slab electron-temperature-gradient (sETG) instability (Liu 1971; Lee et al.
1987) in its most explicit, fluid form is obtained if one further assumes [see (D34)]

k‖vthe � ω � ω∗e. (3.3)

Then (2.20)–(2.22) reduce to, approximately,

d
dt
τ̄−1ϕ = ∇‖u‖e,

du‖e

dt
= −v

2
the

2
∇‖
δT‖e

T0e
,

d
dt
δT‖e

T0e
= −ρevthe

2LT

∂ϕ

∂y
. (3.4)

Linearising and Fourier-transforming, we find the familiar dispersion relation [see (D36)]:

ω3 = −k2
‖v

2
theω∗eτ̄

2
⇒ ω = sgn(ky)

(
−1,

1
2

± i

√
3

2

)(
k2

‖v
2
the|ω∗e|τ̄

2

)1/3

. (3.5)

The unstable root is the collisionless sETG.
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In this limit, the instability works as follows. Suppose that a small perturbation
to the parallel electron temperature is created with ky �= 0 and k‖ �= 0, bringing the
plasma from regions with higher T0e to those with lower T0e (δT‖e > 0), and vice versa
(δT‖e < 0). This temperature perturbation produces alternating hot and cold regions
along the (unperturbed) magnetic field. The resulting perturbed temperature gradients
drive electron flows from the hot regions to the cold regions [second equation in (3.4)],
giving rise to increased electron density in the cold regions [first equation in (3.4)]. By
quasineutrality, the electron-density perturbation is instantly replicated in the ion-density
perturbation, and that, via Boltzmann-ion response, creates an electric field that produces
a radial E × B drift that pushes hotter particles further into the colder region, and vice
versa [third equation in (3.4)], reinforcing the initial temperature perturbation and thus
completing the positive feedback loop required for the instability. This is illustrated in
figure 2.

The ‘fluid’ limit (3.3) is physically transparent and easy to handle, primarily because
the heat flux (and thus all kinetic effects, such as Landau damping; Landau 1946) can, in
this limit, be neglected in (2.22). However, the approximation contains the seed of its own
destruction: according to (3.5), perturbations with a larger k‖ grow faster, and can only be
checked by Landau damping when [see (D56)]

k‖vthe ∼ ω ∼ ω∗e. (3.6)

Thus, the fastest-growing collisionless sETG modes are expected to sit in this latter, kinetic
regime.

3.2. Collisional slab ETG
An important difference between the collisionless and collisional limits, exemplified by
the form of the collisonal heat flux (2.17), is the replacement of the parallel-streaming rate
of electrons k‖vthe with the parallel conduction rate (k‖vthe)

2/νei. The collisional analogues
of (3.1), (3.2) and (3.3) are thus [see (E19)]

k2
⊥d2

e � ω∗e

νei
,

(k‖vthe)
2

νei
� ωde,

(k‖vthe)
2

νei
� ω � ω∗e, (3.7)

respectively, for which (2.24), (2.25) and (2.26) reduce to, approximately,

d
dt
τ̄−1ϕ = ∇‖u‖e, νeiu‖e = −v

2
the

2
∇‖
δTe

T0e
,

d
dt
δTe

T0e
= −ρevthe

2LT

∂ϕ

∂y
. (3.8)

These equations are similar to (3.4), except that the parallel temperature gradient is now
balanced by the electron–ion frictional force, rather than by electron inertia. The dispersion
relation is [see (E20)]

ω2 = i
k2

‖v
2
theω∗eτ̄

2νei
⇒ ω = ±1 − i sgn(ky)√

2

(
k2

‖v
2
the|ω∗e|τ̄
2νei

)1/2

, (3.9)

where the unstable root is the collisional sETG. The physical mechanism of the instability
is analogous to that for the collisionless sETG, except that the parallel electron flow is
now determined instantaneously by the parallel temperature gradient. Similarly to the
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(b)

(a)

(c)

FIGURE 2. A cartoon illustrating the feedback mechanism of the (collisionless) sETG
instability. (a) An electron-temperature perturbation with ky �= 0 and k‖ �= 0 (red-and-blue
curves) has alternating hold and cold regions along the (unperturbed) magnetic field (grey
arrows), and also along ŷ. (b) The resulting perturbed temperature gradients drive parallel
electron flows u‖e (dashed arrows) from the hot regions into the cold regions, giving rise
to increased electron density in the cold regions (over- and under- densities are indicated
by the dark- and light-grey ellipses, respectively). (c) By quasineutrality, the electron-density
perturbation gives rise to an exactly equal ion-density perturbation, and that, via Boltzmann-ion
response, creates alternating electric fields E in the perpendicular plane (vertical black arrows).
This produces an E × B drift vE (horizontal black arrows), which pushes hotter particles further
into the colder region, and vice versa, reinforcing the initial temperature perturbation and
thus completing the positive feedback loop required for the instability. In this cartoon, for the
sake of simplicity, we have chosen not to include the phase information between the various
perturbations involved; a reader seeking such information will find it in figure 1 of Cowley et al.
(1991) (the equivalent picture for ITG).
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collisionless sETG, the point of maximum growth of the instability occurs when

(k‖vthe)
2

νei
∼ ω ∼ ω∗e, (3.10)

which is a balance between dissipation (through conduction, rather than Landau damping)
and energy injection due to the background temperature gradient [see (E22) and the
following discussion].

3.3. Curvature-mediated ETG
Both the collisionless and collisional sETG instabilities were derived assuming that the
parallel wavelengths were sufficiently short for the compressional terms in (2.20) and
(2.24) to be dominant in comparison with the magnetic-drift terms, while still satisfying
(3.3) and (3.7). We now consider very long parallel wavelengths for which this is no longer
true, ordering our frequencies as

k‖vthe � ωde � ω � ω∗e,
(k‖vthe)

2

νei
� ωde � ω � ω∗e (3.11)

in the collisionless and collisional regimes, respectively. This, in fact, amounts to
setting k‖ = 0 everywhere, i.e. we are considering purely two-dimensional modes (see
Appendices D.2 and E.1). In both regimes, our equations reduce to

d
dt
τ̄−1ϕ = ρevthe

LB

∂

∂y
δT‖e

T0e
,

d
dt
δT‖e

T0e
= −ρevthe

2LT

∂ϕ

∂y
,

δT‖e

T0e
= δT⊥e

T0e
. (3.12)

The equality between the perpendicular and parallel temperature perturbations arises in the
collisionless regime because the dominant balance in both (2.22) and (2.23) is between the
time derivative and the ETG injection term, which is also true in the collisional limit and
with strengthened isotropisation from collisions. The dispersion relation is [see (D31) or
(E14)]

ω2 = −2ωdeω∗eτ̄ ⇒ ω = ±i (2ωdeω∗eτ̄ )
1/2 , (3.13)

which is the familiar growth rate of the curvature-mediated ETG (cETG) instability
(Horton et al. 1988). Physically, this arises due to the fact that the magnitude of the
magnetic-drift velocity for a particle is proportional to its kinetic energy, and thus
temperature. The presence of some temperature perturbation will cause an electron-density
perturbation, as electrons in the hotter regions will drift faster than those in colder regions
[first equation in (3.12)]. By quasineutrality, the electron-density perturbation gives rise to
an exactly equal ion-density perturbation, and that, via Boltzmann-ion response, creates
an electric field that produces an E × B drift which pushes hotter particles further into
the colder region, and vice versa [second equation in (3.12)], completing the feedback
loop required for the instability, as illustrated in figure 3. This mechanism is unaffected
by collisionality; hence the cETG instability is obtained in both the collisionless and
collisional limits.

Given that both the collisionless and collisional sETG instabilities have maximum
growth rates γmax ∼ ω∗e [see (3.6) and (3.10), respectively], the growth rate of the cETG
instability is always small in comparison, at least for large temperature gradients, viz.,

γmax√
2ωdeω∗e

∼
(

LB

LT

)1/2

� 1. (3.14)

However, the sETG instabilities only exist at perpendicular scales below the flux-freezing
scales (2.28) or (2.30), as they require electrons to be able to flow across field lines without
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(b)(a)

FIGURE 3. A cartoon illustrating the feedback mechanism of the (two-dimensional) cETG
instability. (a) An electron-temperature perturbation with ky �= 0 (red-and-blue curve) has
alternating hot and cold regions along ŷ. Due to the temperature dependence of the magnetic
drifts vde, electrons in the hot regions will drift faster than those in the cold regions (red and
blue arrows), creating an electron-density perturbation (over- and under-densities are indicated
by the dark- and light-grey ellipses, respectively). (b) By quasineutrality, the electron-density
perturbation gives rise to an exactly equal ion-density perturbation, and that, via Boltzmann-ion
response, creates alternating electric fields E in the perpendicular plane (vertical black arrows).
This produces an E × B drift vE (horizontal black arrows), which pushes hotter particles further
into the colder region, and vice versa, reinforcing the initial temperature perturbation and thus
completing the positive feedback loop required for the instability.

perturbing them. While sETG is stabilised by magnetic tension above the flux-freezing
scale, cETG is unaffected by flux freezing as it is an interchange (k‖ = 0) mode and does
not trigger perpendicular magnetic-field perturbations δB⊥. This means that it will happily
survive in the electromagnetic regime.

4. Electromagnetic regime: thermo-Alfvénic instability

In the electromagnetic regime [i.e. at perpendicular scales above the flux-freezing scales
(2.28) or (2.30)], the magnetic field becomes frozen into the electron flow (2.31), meaning
that perpendicular magnetic-field perturbations δB⊥ are created as electrons move across
field lines and drag the latter along. This has two important physical consequences that
make electrostatic and electromagnetic phenomena distinct: (i) perturbed magnetic fields
give rise to currents that, being electron flows, oppose electron-density perturbations [this
is the sub-ion-scale version of Lorentz tension, manifest in the second term in (2.6)] and
(ii) the radial equilibrium temperature gradient now has a component along the exact field
line, viz., its projection onto the radial perturbation of the magnetic field. As discussed
above, the first effect stabilises the sETG instabilities at the flux-freezing scale (see
Appendix D.4), as well as giving rise to other electromagnetic phenomena to which we
shall return shortly. It is the second effect, however, that will turn out to be crucial in the
physics of instabilities in the electromagnetic regime.

Throughout this section, we focus on the collisional limit – equations (2.24), (2.25)
and (2.26) – as this will allow us to discuss all of the physics characteristic of the
electromagnetic regime without being hampered by the technical detail associated with
the full kinetic system. The physical similarly between the instability mechanisms in the
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collisionless and collisional limits means that we can just signpost the differences between
these two limits where appropriate.

Recalling the definition of the parallel derivative (2.8), we consider the parallel gradient
of the total temperature (2.18). The first term is the familiar parallel gradient of the
temperature perturbation that is present also in the electrostatic regime; the second is
the projection of the equilibrium temperature gradient onto the perturbed magnetic field
line that arises only in the electromagnetic regime. This is the familiar magnetic-flutter
drive (Callen 1977; Manheimer & Cook 1978). Like the electrostatic linear drive
term (2.15), this term can also be responsible for extracting free energy from the
equilibrium temperature gradient.

To aid our discussion, let us derive an evolution equation for ∇‖ log Te. A useful result
is that, for any field ψ ,

∇‖
dψ
dt

− d
dt

∇‖ψ = − c
B0

{
E‖, ψ

} = ρe

{
dA
dt

+ vthe

2
∂ϕ

∂z
, ψ

}
. (4.1)

The first equality follows by writing the nonlinear operators d/dt and ∇‖, which we defined
in (2.7) and (2.8), respectively, in terms of the Poisson bracket

{f , g} = b0 · (∇f × ∇g) = ∂f
∂x
∂g
∂y

− ∂f
∂y
∂g
∂x

(4.2)

as follows:
d
dt

= ∂

∂t
+ ρevthe

2
{ϕ, . . .} , ∇‖= ∂

∂z
− ρe {A, . . .} , (4.3)

and noticing that the Poisson bracket satisfies the Jacobi identity:

{A, {ϕ,ψ}} + {ϕ, {ψ,A}} + {ψ, {A, ϕ}} = 0. (4.4)

Therefore, taking ∇‖ of (2.26), we find

d
dt

∇‖
δTe

T0e
+ ρevthe

2LT
∇‖
∂ϕ

∂y
+ ρe

{
dA
dt

+ vthe

2
∂ϕ

∂z
,
δTe

T0e

}

− κ∇3
‖ log Te + 2

3
∇2

‖u‖e = 0. (4.5)

Now taking ∂/∂y of (2.25) we find

∂

∂y

(
dA
dt

+ vthe

2
∂ϕ

∂z

)
= d

dt
∂A
∂y

+ vthe

2
∇‖
∂ϕ

∂y
= vthe

2
∂

∂y
∇‖ log pe + νei

∂

∂y
u‖e

vthe
, (4.6)

where we have recognised the first two terms on the right-hand side for what they are –
the parallel gradient of the total electron pressure:

∇‖ log pe = ∇‖
δne

n0e
+ ∇‖ log Te. (4.7)

Subtracting (ρe/LT)·(4.6) from (4.5), we arrive at

d
dt

∇‖ log Te + ρe

{
dA
dt

+ vthe

2
∂ϕ

∂z
,
δTe

T0e

}
+ 2

3
∇2

‖u‖e + νei
ρe

LT

∂

∂y
u‖e

vthe

= κ∇3
‖ log Te − ρevthe

2LT

∂

∂y
∇‖ log pe. (4.8)
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Let us now consider the regime

(k⊥de)
2νei ∼ ωde � ω � ω∗e ∼ κk2

‖. (4.9)

The ordering of the resistive rate and the magnetic-drift frequency is such that we can
retain perturbations of similar frequencies to the cETG, by analogy to (3.11). However,
this time, we assume the parallel wavelength of the perturbations to be short enough, or,
equivalently, their frequency to be low enough, for thermal conduction along the field lines
to be rapid in comparison to the mode frequency. Then, in the limit (4.9), the left-hand
side of (4.8) is negligible in its entirety (being smaller than the right-hand side by a factor
of at least ω/ω∗e), while the outcome of the competition between the two terms on the
right-hand side is controlled by the ratio of the perpendicular drift-wave frequency to the
parallel conduction rate:

ξ∗ = ω∗e

κk2
‖
. (4.10)

This divides our electromagnetic modes into two physically distinct classes: isothermal
(ξ∗ � 1) and isobaric (ξ∗ � 1), the former of which is the focus of the next section, and
the latter is discussed in § 4.4.

4.1. Isothermal curvature-mediated TAI
Previous studies of electromagnetic phenomena driven by an ETG have often assumed the
electrons to be isothermal along the perturbed field line (e.g. Schekochihin et al. 2009;
Schekochihin, Kawazura & Barnes 2019; Abel & Cowley 2013; Zielinski et al. 2017). In
our system, this assumption is valid if the thermal-conduction time dominates over all
other timescales, viz., in addition to (4.9),

ξ∗ � 1. (4.11)

In the electrostatic regime, without the ability to have perturbations of the magnetic-field
direction, adopting such a limit would simply lead to erasure of the temperature
perturbation due to Landau damping or thermal conduction [see (D36) or (E20) and
the following discussions], suppressing both the collisionless and collisional sETG,
respectively.

The isothermal limit allows the system more leeway in the electromagnetic regime.
Given (4.11), the dominant term in (4.8) is the first term on the right-hand side, meaning
that, to leading order,

∇‖ log Te = ∇‖
δTe

T0e
− ρe

LT

∂A
∂y

= 0, (4.12)

i.e. the temperature perturbations, rather than being zero, will always adjust to cancel the
variation of the equilibrium temperature along the perturbed field line. At the next order
in ξ∗,

κ∇3
‖ log Te = ρevthe

2LT

∂

∂y
∇‖
δne

n0e
⇒ |∇‖ log Te|

|∇‖δne/n0e| ∼ ξ∗ � 1, (4.13)

meaning that we can neglect ∇‖ log Te in (2.25). The ∇‖u‖e term in (2.24) is also
negligible, as can be confirmed a posteriori. Our system (2.24)–(2.26) therefore becomes

d
dt
δne

ne
= −ρevthe

LB

∂

∂y
δTe

T0e
,

dA
dt

+ vthe

2
∂ϕ

∂z
= vthe

2
∇‖
δne

ne
, ∇‖

δTe

T0e
= ρe

LT

∂A
∂y
, (4.14)

https://doi.org/10.1017/S0022377822000654 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000654


Electromagnetic instabilities and plasma turbulence 17

where, by (2.19), ϕ = −τ̄ δne/ne. The associated dispersion relation is

ω2 = −2ωdeω∗e(1 + τ̄ ) ⇒ ω = ±i [2ωdeω∗e(1 + τ̄ )]1/2 , (4.15)

which looks like the familiar cETG growth rate (3.13), but enhanced by an extra
order-unity contribution. In fact, this is a physically different and (as far as we know)
new1 instability, which we refer to as the curvature-mediated thermo-Alfvénic instability
(cTAI).

Physically, cTAI proceeds as follows. Suppose that a perturbation δBx = B0ρe∂yA of
the magnetic field is created, with ky �= 0 and k‖ �= 0. According to the second equation
in (4.14), such a perturbation is brought about by a radial displacement of the electron fluid
associated with the velocity (2.31), which, recalling the isothermal condition (4.12), can
be written as

ueff = vE − ρevthe

2
b0 × ∇ δne

n0e
= −ρevthe

2
b0 × ∇ (1 + τ̄ )

δne

n0e
. (4.16)

Due to the presence of the equilibrium temperature gradient, this magnetic-field
perturbation will set up an apparent (parallel) variation of the equilibrium temperature
along the perturbed field line, as the field line makes excursions into hot and cold
regions. However, rapid thermal conduction along the field line instantaneously creates
a temperature perturbation that compensates for this temperature variation, in order to
enforce isothermality (4.12) [last equation in (4.14)]. This temperature perturbation will
cause a parallel density gradient, as electrons in the hotter regions will curvature-drift
faster than those in colder regions [first equation in (4.14)]. The resulting parallel pressure
gradient must be balanced by a parallel electric field [second equation in (4.14)], whose
inductive part leads to an increase in the perturbation of the magnetic field, deforming the
field line further into the hot and cold regions, and in doing so completing the feedback
loop required for the instability.2 This is illustrated in figure 4.

The physical distinction between cTAI and cETG can be made obvious by the following
two observations. First, unlike cETG, cTAI relies vitally on k‖ �= 0 and, indeed, on k‖
being large enough for the condition (4.11) to be satisfied – even though the growth rate
(4.15) ends up being independent of k‖. In § 4.2, we show that this is the peak growth
rate of the instability and that it is achieved at a finite k‖, while at k‖ = 0, the cETG
growth rate (3.13) is recovered. Second, perturbations described by (4.14) can be unstable
without the need for them to contain any E × B flows (i.e. any electrostatic potential ϕ)
– this becomes obvious in the formal limit ϕ = −τ̄ δne/n0e → 0 as τ̄ → 0 (cold ions).
In contrast, the cETG growth rate (3.13) disappears in this limit. This is because cTAI
extracts energy from the background temperature gradient not via E × B advection of said

1Zielinski et al. (2017) proposed a fluid mechanism for the destabilisation of KAW (see § 4.3) via their interaction
with the cETG mode (see § 3.3), adopting a purely isothermal limit ξ∗ = 0 and thus neglecting any finite-heat-flux
contributions. Under the ordering (4.9), neglecting equilibrium density gradients and electron finite Larmor radius
contributions, their dispersion relation (23) becomes, in our notation, ω2 = −(2ωdeω∗e − ω2

KAW)(1 + τ̄ ). This the same
as (4.18) to lowest order in ξ∗ � 1. Obviously, it does not match the cETG growth rate (3.13) at k‖ = 0, because the
isothermal limit cannot be valid as k‖ → 0. Their dispersion relation displays behaviour qualitatively similar to ours in
the isobaric limit for k‖ < k‖c (see § 4.4), in that they capture the stabilising effect of the KAW restoring force at k‖ > 0,
but miss the fact that the peak growth rate (4.15) is achieved at a finite k‖ (see § 4.2). Their dispersion relation also does
not contain the slab TAI mode (see § 4.3) or any isobaric physics (§ 4.4).

2Physically, this feedback loop is perhaps reminiscent of some MHD-like instabilities, such as KBMs (see references
cited in § 1). However, as is evident from the second equation in (4.14), the isothermal cTAI does not satisfy the MHD
constraint that E‖ = 0 typical of such modes. Indeed, in the isothermal regime, the magnetic field lines are not frozen
into the E × B flow, as they would be in MHD, but instead into the electron flow velocity (4.16). We therefore consider
that the isothermal cTAI can be regarded as a separate instability, rather than a subspecies of KBM – unlike its isobaric
counterpart discussed in § 4.4.
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(b)

(a)

(c)

FIGURE 4. A cartoon illustrating the feedback mechanism of the (isothermal) cTAI.
(a) A perturbation δBx = B0ρe∂yA (solid black lines) to the equilibrium magnetic field (grey
arrows, darker grey corresponding to the plane of constant y containing δBx, or the relevant
perturbation in subsequent diagrams) is created with ky �= 0 and k‖ �= 0 (we show half a
wavelength of the mode along both ŷ and ẑ). Due to the presence of the equilibrium temperature
gradient, this will set up a (parallel) variation of the total temperature along the perturbed
field line, as the field line makes excursions into hot and cold regions (on the left and right,
respectively). However, rapid thermal conduction along the field line instantaneously creates a
temperature perturbation that compensates for this temperature variation (red and blue ovals,
located in the same planes of constant y as δBx). (b) This temperature perturbation will cause
a parallel density gradient (over- and under-densities are indicated by the dark- and light-grey
ellipses, respectively, lying in the planes of constant y a quarter of a wavelength above those of
δBx), as electrons in hotter regions will curvature-drift faster than those in colder regions (vde, red
and blue arrows). (c) The parallel density gradient must be balanced by a parallel electric field
(black arrows, in the same planes of constant y as the density perturbations), whose inductive
part leads to an increase in the perturbation of the magnetic field (maroon arrows), deforming
the field line further into the hot and cold regions, and in so doing completing the feedback loop
for the instability. Note that the maximal rate of change of δBx occurs where the y-gradient of E‖
is at a maximum, as shown.
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equilibrium gradient but via thermal conduction of it along the perturbed field lines. In
order to complete the instability loop and reinforce the magnetic perturbation δBx required
for this mechanism to work, the system only needs a perturbed density gradient. This is
due to the fact that, as we discussed in § 2.7, below the ion Larmor scale, the magnetic
field lines are frozen not into the E × B flow but into the electron flow (2.31), which
involves also a ‘diamagnetic’ contribution from the electron pressure gradient – which,
in the isothermal limit, consists just of the perturbed density gradient, as in (4.16). It is
because of the presence of this distinct destabilisation mechanism that the cTAI growth
rate (4.15) is always strictly greater than the cETG one (3.13). Thus, cTAI is not simply
an ‘electromagnetic correction’ to cETG, but rather the main effect at scales above the
flux-freezing scale (2.30) [or (2.28) in the collisionless limit, where, as we shall see shortly,
the same instability is present]. This suggests that a purely electrostatic description of these
scales is inadequate.

4.2. General TAI dispersion relation
As we have noted above, despite cTAI relying on parallel dynamics, the dispersion relation
(4.15) is itself independent of k‖. This is because we have thus far only captured the
leading-order behaviour in our analysis, and further diligence is required in order to
determine the details associated with the parallel dynamics. Let us give this problem the
diligence that it is due, and adopt the ordering (4.9) but, for now, ξ∗ ∼ 1. Neglecting both
the resistive term in (2.25) and the compressional term in (2.26) – since both are small
under (4.9) – and determining ∇‖ log Te in (2.25) from the balance of the two terms on the
right-hand side of (4.8), viz.,(

ρevthe

2LT

∂

∂y
− κ∇2

‖

)
∇‖ log Te = −ρevthe

2LT

∂

∂y
∇‖
δne

n0e
, (4.17)

we arrive at the following dispersion relation:

ω2 = − (
2ωdeω∗e − ω2

KAW

) (
τ̄ + 1

1 + i ξ∗

)
, (4.18)

where ωKAW = k‖vthek⊥de/
√

2 is the kinetic-Alfvén-wave (KAW) frequency, the physical
origin of which is discussed in § 4.3. The cTAI growth rate is manifest in this expression;
adopting the isothermal limit (4.11) and neglecting ωKAW, we re-obtain (4.15) to lowest
order in ξ∗.

Though we have thus far focused on the collisional limit, it turns out that much of
what we have done is directly applicable to the collisionless limit if we simply replace the
parallel conduction rate with the parallel-streaming rate [see (D51)], viz., (4.18) remains
valid but with

ξ∗ =
√

π

2
ω∗e

k‖vthe
. (4.19)

The equivalent of the ordering (4.9) in the collisionless regime is [see (D45)]

ωde � ω � ω∗e ∼ k‖vthe, (4.20)

and equations (4.14) are the same; note that in this regime, δT‖e = δT⊥e = δTe
because both the parallel and perpendicular temperatures are constant along the
field lines to leading order in ω/ω∗e. Furthermore, it is possible to show that (4.8)
is also valid in the collisionless limit if one replaces δTe → δT‖e, −κ∇‖ log Te →
δq‖e/n0eT0e, (2/3)∇2

‖u‖e → 2∇2
‖u‖e, νeiu‖e → du‖e/dt, and the heat flux must now be

https://doi.org/10.1017/S0022377822000654 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000654


20 T. Adkins, A.A. Schekochihin, P.G. Ivanov and C.M. Roach

determined kinetically [see (D63)]. The effect is still to enforce isothermality along the
field lines, but by means of parallel particle streaming, rather than collisional conduction.
This means that cTAI, while being a ‘fluid’ instability, is not an intrinsically collisional
one, occurring also in the collisionless, kinetic limit. Its physical picture in the collisionless
limit is exactly the same as in the collisional one.

The dispersion relation (4.18) contains most of the interesting features of the TAI physics
(see, however, §§ 4.3.3 and 4.4.2). The most obvious feature of (4.18) is that both the
growth rate and frequency vanish when

2ωdeω∗e = ω2
KAW ⇒ k‖cLT√

βe
=
(

LT

LB

)1/2 ky

k⊥
. (4.21)

This corresponds to the point of transition from the curvature-dominated regime (k‖ <
k‖c), on which we focus in this section, to the KAW-dominated regime (k‖ > k‖c), which
is the subject of § 4.3.

If we extract the real and imaginary parts of (4.18), the (real) frequency ωr = Re(ω) and
the growth rate γ = Im(ω) of the growing modes can be written as

ω2
r = ∣∣2ωdeω∗e − ω2

KAW

∣∣ τ̄ f−(ξ∗), γ 2 = ∣∣2ωdeω∗e − ω2
KAW

∣∣ τ̄ f+(ξ∗), (4.22)

where

f±(ξ∗) = 1
2τ̄

⎡
⎣
√(

τ̄ + 1
1 + ξ 2∗

)2

+ ξ 2∗
(1 + ξ 2∗ )2

± sgn
(
2ωdeω∗e − ω2

KAW

) (
τ̄ + 1

1 + ξ 2∗

)⎤⎦ .
(4.23)

The growth rate and frequency (4.22) are plotted as functions of k‖LT/
√
βe in figure 5.

For k‖ < k‖c, the growth rate has a maximum for some non-zero k‖; it is about to turn out
that this maximum corresponds to the cTAI growth rate (4.15), which was derived in the
isothermal limit, ξ∗ � 1. Expanding (4.23) in small ξ∗ to leading and subleading order,
and seeking the maximum of the resultant expression with respect to k‖, we find that this
maximum occurs approximately at [see (F14)]

k‖maxLT√
βe

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
π

64
3 + 4τ̄
(1 + τ̄ )2

LT

LB

]1/4
(

k2
yde

k⊥

)1/2

, collisionless,

[
81
50

3 + 4τ̄
(1 + τ̄ )2

LT

LB

]1/6
(

k2
yde

k⊥
χ

)1/3

, collisional,

(4.24)

indicated by the vertical dashed lines in figure 5(a), (c); χ is defined in (2.30). Calculating
the growth rate (4.22) at k‖ = k‖max, one recovers (4.15) up to small corrections [see (F16)],
as promised.

This solution, however, is only valid so long as it remains in the isothermal limit (4.11).
Evaluating ξ∗ at k‖ = k‖max, we find, defining α = 1, 2 in the collisionless and collisional
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(a) (b)

(c) (d )

FIGURE 5. (a), (c) The growth rate and (b), (d) the real frequency of the TAI (4.22) in the
isothermal limit (4.11), plotted as functions of k‖LT/

√
βe and normalised to the cETG growth

rate (3.13) (τ̄ = 1). (a) and (b) correspond to the collisionless case, while (c) and (d) the
collisional one. The vertical dashed lines in (a) and (c) are for k‖ = k‖max given by (4.24). The
dashed lines in (b) and (d) show the isothermal KAW frequency (4.29). Both the growth rate
and the real frequency vanish at the critical parallel wavenumber k‖cLT/

√
βe = 0.32, given by

(4.21). The insets in (a) and (c) show details of the behaviour of the growth rate for k‖ > k‖c; the
vertical dashed line in the inset of (c) is the (secondary) maximum at k‖ = √

2k‖c discussed at
the end of § 4.3. The perpendicular wavenumbers chosen in this figure are all safely below the
transition wavenumber (4.26), which is k⊥∗de = 0.71 or k⊥∗deχ = 0.03 in the collisionless or
collisional cases, respectively.

limits, respectively [see (F15)],

ξ∗
(
k‖max

) ∼ k‖max

k‖c
∼
(

k⊥
k⊥∗

)1/(1+α)
� 1 (4.25)

provided that k⊥ � k⊥∗, where k⊥∗ is the perpendicular wavenumber at which ξ∗(k‖c) ∼ 1,
viz.,

k⊥∗de =

⎧⎪⎪⎨
⎪⎪⎩

4√
π

(
LT

LB

)1/2

, collisionless,

5
9

LT

LB
χ−1, collisional,

⇒ ξ∗(k‖c) =

⎧⎪⎪⎨
⎪⎪⎩

k⊥
k⊥∗

, collisionless,

k2
⊥

k⊥∗ky
, collisional.

(4.26)
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Thus, the isothermal regime is valid at sufficiently long perpendicular wavelengths. At
k⊥ > k⊥∗, a different, isobaric regime takes over, which is considered in § 4.4.

Lastly, we note that, for k‖ < k‖c, the magnitude of the real frequency is vanishingly
small when compared with the growth rate: expanding both the growth rate and the real
frequency in (4.22) for ξ∗ � 1, we find

ω2
r

γ 2
≈ ξ 2

∗
4(1 + τ̄ )2

� 1. (4.27)

Thus, cTAI is, like cETG, an (almost) purely growing mode; this is distinct from the
case of sETG, whose frequency and growth rate are comparable at the latter’s maximum
(see § 3).

4.3. Isothermal KAWs and slab TAI
4.3.1. Isothermal KAWs

If k⊥ � k∗
⊥, i.e. ξ∗(k‖c) � 1, then the isothermal approximation (4.12) continues to be

satisfied at k‖ > k‖c, but the effects of the magnetic drifts become negligible for k‖ � k‖c.
In this region, our system (2.24)–(2.26) becomes, approximately,

d
dt
δne

n0e
= −vthe∇‖d2

e∇2
⊥A,

dA
dt

+ vthe

2
∂ϕ

∂z
= vthe

2
∇‖
δne

n0e
, ϕ = −τ̄ δne

n0e
. (4.28)

These equations are also valid in the collisionless limit [there is no intrinsically collisional
physics in (4.28), as the resistive term in (2.25) is negligible under the ordering (4.9)]. We
recognise these as the equations of electron reduced MHD (see Schekochihin et al. 2009
or Boldyrev et al. 2013), which describe the dynamics, linear and nonlinear, of kinetic
Alfvén waves (KAWs). Indeed, linearising and Fourier transforming (4.28), we find the
dispersion relation

ω2 = k2
‖v

2
thek

2
⊥d2

e
1 + τ̄

2
= ω2

KAW (1 + τ̄ ) . (4.29)

These are the familiar (isothermal) KAWs that arise in homogeneous systems (Howes et al.
2006; Schekochihin et al. 2009, 2019; Zocco & Schekochihin 2011; Boldyrev et al. 2013;
Passot, Sulem & Tassi 2017). The physics of these waves is as follows. Suppose that a
density perturbation δne/n0e = −τ̄−1ϕ with k‖ �= 0 is created. This gives rise to a parallel
pressure gradient, which manifests itself as a parallel (perturbed) density gradient, as any
parallel temperature variation is instantaneously ironed out by rapid parallel streaming
or thermal conduction. This parallel pressure gradient must be balanced by the parallel
electric field [second equation in (4.28)], whose inductive part, through Ampère’s law
(2.27), leads to a parallel current. But a parallel current is a parallel electron flow,
which leads to compressional rarefaction along the field that opposes the original density
perturbation [first equation in (4.28)]. This is also the reason for the reduction of the
cTAI growth rate at k‖ > k‖max and its vanishing at k‖ = k‖c (see figure 5a,c): the parallel
compression that provides the restoring force for the KAW perturbations increases as k‖
increases, weakening the instability mechanism of the cTAI described in § 4.1.

4.3.2. Isothermal slab TAI
Remarkably, however, it turns out that isothermal KAWs, at k‖ > k‖c, are still unstable

in the presence of an equilibrium ETG: expanding (4.18) or (4.22) for ξ∗ � 1 at k‖ � k‖c
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(the latter in order to drop the ωde effects), we find

ω2
r ≈ ω2

KAW(1 + τ̄ ), γ 2 ≈ ω2
KAW

ξ 2
∗

4(1 + τ̄ )
. (4.30)

By analogy with sETG, we henceforth refer to this KAW-dominated TAI as the sTAI; it
was our original motivation for calling the instability ‘thermo-Alfvénic’.3

The precise mechanism by which the isothermal sTAI operates is somewhat subtler than
that for cTAI, relying on the fact that the isothermal condition (4.12) that led to (4.29) is, in
fact, only approximately satisfied. Indeed, ∇‖ log Te is determined, in the collisional limit,
at next order in ξ∗ by (4.13) which, linearising and Fourier transforming, can be written as

(∇‖ log Te
)

k = −i ξ∗

(
∇‖
δne

n0e

)
k

. (4.31)

This means that a small but finite parallel gradient of temperature effectively introduces
a correction to the parallel density gradient in (4.28) that is π/2 out of phase with the
contribution that enables the isothermal KAWs. This gives rise to the instability (4.30) in
both the collisional limit and, it turns out, the collisionless one, where (4.31) also holds
but with ξ∗ given by (4.19) [see (D74)]. Restoring finite parallel temperature gradients in
(4.28), we have

d
dt
δne

n0e
= −vthe∇‖d2

e∇2
⊥A,

dA
dt

+ vthe

2
∂ϕ

∂z
= vthe

2
∇‖
δne

n0e
+ vthe

2
∇‖ log Te, (4.32)

with dispersion relation

ω2 = ω2
KAW(1 + τ̄ − i ξ∗) ⇒ ω ≈ ±ωKAW

(√
1 + τ̄ − i ξ∗

2
√

1 + τ̄
+ · · ·

)
, (4.33)

whose real and imaginary parts are exactly the frequency and growth rate (4.30).
If we restore the magnetic-drift terms in the density equation, we find, in the

collisionless limit, that the sTAI growth rate increases from zero at k‖ = k‖c to a finite,
k‖-independent limit (4.30) at k‖ � k‖c, viz.,

γ → 1
4

√
π

2(1 + τ̄ )
k⊥deω∗e =

√
ωdeω∗e

2(1 + τ̄ )

k⊥
k⊥∗

, (4.34)

where k⊥∗ is given by (4.26) (see figure 5a, inset). As we shall see shortly in § 4.3.3, this
value only persists up to a certain k‖ where sTAI is stabilised by compressional heating,
which was neglected in (4.18). In the collisional limit, γ → 0 as k‖ → ∞ (also, in fact,
shown to go to γ < 0 in § 4.3.3). The growth rate has a maximum at k‖ = √

2k‖c, which
is shown by the vertical dashed line in the inset of figure 5(c). The growth rate at this
maximum is

γ = k2
⊥d2

ev
2
the

8
√

2(1 + τ̄ )κ

√
ω∗e

ωde
= 1

2

√
ωdeω∗e

2(1 + τ̄ )

k2
⊥

k⊥∗ky
. (4.35)

These results are derived at the end of Appendix F.1. Both the maximum growth rates
(4.34) and (4.35) are manifestly much smaller than the maximum growth rate of cTAI

3The sTAI instability appears to be a close relative of the ‘electron magnetothermal instability’ discovered by Xu &
Kunz (2016) in their treatment of stratified plasma atmospheres, and analysed by them in the high-beta limit appropriate
to the astrophysical applications on which they were focused.
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(4.15) as long as k⊥ � k⊥∗, i.e. as long as the isothermal approximation, in which all of
these results have been derived in the first place, is valid.

Thus, at long perpendicular wavelengths (k⊥ � k⊥∗), the dominant instability is cTAI,
reaching its maximum growth rate (4.15) at the parallel wavenumber (4.24).

4.3.3. Stabilisation of isothermal slab TAI
The sTAI growth rates do not, in fact, stay positive to infinite parallel wavenumbers. The

instability is eventually quenched by the compressional-heating term in the temperature
equation [(2.22) or (2.26) in the collisionless or collisional limits, respectively] that begins
to compete with the TAI drive.

To show this, let us consider the collisional limit and, instead of (4.9), the ordering

(k⊥de)
2νei � ω ∼ ω∗e � κk2

‖. (4.36)

In this limit, the system is still isothermal to leading order in ξ∗ � 1, but now we must
also retain the compressional heating term in (4.8) to determine ∇‖ log Te at next order:
instead of (4.13), we have, therefore,

κ∇3
‖ log Te = ρevthe

2LT

∂

∂y
∇‖
δne

n0e
+ 2

3
∇2

‖u‖e. (4.37)

Furthermore, it turns out that we must also retain the resistive term in (2.25) at this order
as it will end up making a contribution of the same order as the second term in (4.37).
Thus, the second equation in (4.32) is replaced by

dA
dt

+ vthe

2
∂ϕ

∂z
= vthe

2
∇‖
δne

n0e
+ vthe

2
∇‖ log Te + νei

u‖e

vthe
. (4.38)

Combining (4.37) and (4.38) with the density equation, still the same as in (4.32), we
obtain the following dispersion relation:

ω2 − ω2
KAW(1 + τ̄ − i ξ∗) = −i

(
2
3

+ a
)
ω

κk2
‖
ω2

KAW, (4.39)

where a is a numerical constant of order unity [see (E17)]. This is the same as (4.33) apart
from the right-hand side, previously neglected. At the stability boundary, the frequency
ω must be purely real, and both the real and imaginary parts of (4.39) must vanish
individually, giving [cf. (E36)]

ω2 = ω2
KAW(1 + τ̄ ), ω = − ω∗e

a + 2/3
⇒ ∓ωKAW

√
1 + τ̄ = ω∗e

a + 2/3
. (4.40)

For ky ∼ k⊥, (4.40) are lines of constant k‖ in wavenumber space, limiting the isothermal
sTAI at large parallel wavenumbers:

k‖LT√
βe

= ± 1
(a + 2/3)

√
2(1 + τ̄ )

ky

k⊥
. (4.41)

This stabilisation of the isothermal sTAI was not captured in the TAI dispersion
relation (4.18) because the ordering (4.9) did not formally allow frequencies comparable
to the drift-wave frequency, required by (4.40).
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(a) (b)

(c) (d )

FIGURE 6. (a), (c) The growth rate and (b), (d) the real frequency of the TAI (4.22) in the
isobaric limit (4.43), plotted as functions of k‖LT/

√
βe and normalised to the cETG growth rate

(3.13) (τ̄ = 1). (a) and (b) correspond to the collisionless case, while (c) and (d) the collisional
one. The vertical dashed line in (c) is for k‖max given by (4.54). The dashed and dotted lines in
(b) and (d) are the isothermal (4.29) and isobaric (4.49) KAW frequencies, respectively. Both the
growth rate and the real frequency vanish at the critical parallel wavenumber k‖cLT/

√
βe = 0.1,

given by (4.21). The perpendicular wavenumbers chosen in this figure are all safely above the
transition wavenumber (4.26), which is k⊥∗de = 0.23 or k⊥∗deχ = 0.003 in the collisionless or
collisional cases, respectively. The parallel wavenumber corresponding to the transition between
the isobaric and isothermal regimes at a fixed ky (viz., for ξ∗ ∼ 1) is given by k‖LB/

√
βe = 0.35

or 0.36 in the collisionless or collisional cases, respectively. We chose a very large value of
LB/LT to show the asymptotic regimes clearly.

In the collisionless limit, we also find that the sTAI is stabilised above a line of
constant k‖ [cf. (D78)]:

ωKAW ∼ ω∗e, (4.42)

due again to the competition between the compressional heating in the equation for the
parallel temperature (2.22) and the TAI drive. In Appendix D.7.2, we detail a collisionless
calculation analogous to that performed above in the collisional limit, but the latter is
sufficient here for illustrating the physics underlying the stabilisation mechanism. In
both cases, the stabilisation of sTAI does not appear in figure 5 (and, later, in figure 6)
because the orderings (4.9) or (4.20) that lead to the TAI dispersion relation (4.18) do
not formally allow this stabilisation; instead, readers will find it in figures 11(c) and 14(c)
in the collisionless and collisional limits, respectively, where solutions of a more precise
dispersion relation are shown.
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Though useful for delineating the precise regions of instability in the (k⊥, k‖) space,
this stabilisation of the isothermal sTAI is of secondary importance because it is cTAI that
is the dominant instability at long perpendicular wavelengths (k⊥ � k⊥∗), which was the
main conclusion of § 4.3.2.

4.4. Isobaric limit
Let us now consider what happens in the opposite limit of short perpendicular
wavenlengths, k⊥ � k∗

⊥, corresponding to thermal conduction (or its collisionless
analogue, parallel streaming) being weak in comparison with the ω∗e driving, viz.,

ξ∗ � 1. (4.43)

Assuming this in addition to (4.9) or (4.20), we find that the dominant term in (4.8) is the
second term on the right-hand side, meaning that, to leading order,

∇‖ log pe = ∇‖ log Te + ∇‖
δne

n0e
= 0. (4.44)

This is the isobaric limit, in which the total pressure is constant along the perturbed
field lines, rather than just the total temperature. That is, the temperature perturbation
has to adjust to cancel not just the variation of the equilibrium temperature along the
perturbed field line, as was the case in the isothermal limit, but now also the variation of
the perturbed density. At next order in ξ∗, from (4.8), we have

ρevthe

2LT

∂

∂y
∇‖ log pe = −κ∇3

‖
δne

n0e
⇒ |∇‖ log pe|

|∇‖δne/n0e| ∼ 1
ξ∗

� 1, (4.45)

so we can now neglect the entire right-hand side of (2.25), reducing the latter equation to
E‖ = 0. For k‖ � k‖c, i.e. neglecting the KAW restoring force, our system (2.24)–(2.26)
therefore becomes

d
dt
δne

n0e
= −ρevthe

LB

∂

∂y
δTe

T0e
,

dA
dt

+ vthe

2
∂ϕ

∂z
= 0, ∇‖

δTe

T0e
= ρe

LT

∂A
∂y

− ∇‖
δne

n0e
, (4.46)

where ϕ = −τ̄ δne/ne. As with the isothermal cTAI, these equations remain valid in the
collisionless limit, because δT‖e = δT⊥e = δTe to leading order in ω/ω∗e.

In (4.46), the temperature perturbation is determined from the third equation, which is
simply the isobaric condition (4.44). However, given the ordering (4.9), the correction to
δTe due to the density perturbation is small, viz., δne/n0e ∼ (ωde/ω)δTe/T0e, which follows
from the first equation in (4.46). That is, to leading order, there is no difference between
the isothermal and isobaric conditions when it comes to determining the temperature
perturbation. Hence, the associated dispersion relation is

ω2 = −2ωdeω∗eτ̄ ⇒ ω = ±i (2ωdeω∗eτ̄ )
1/2 . (4.47)

Analysing – and plotting, in figure 6 – the dispersion relation (4.22) in the isobaric
regime, both collisional and collisionless, we find that the maximum of the growth rate in
the region k‖ < k‖c occurs at k‖ = 0, i.e. it is, in fact, the two-dimensional cETG mode that
has the fastest growth. At finite k‖, it is weakened by the presence of the restoring force
associated with KAWs, reaching γ = 0 at k‖ = k‖c – this is evident in figure 6(a), (c).

The dispersion relation (4.47) is identical to the cETG dispersion relation (3.13). This
is because the second equation in (4.46) is simply E‖ = 0, implying that the magnetic
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field is now frozen into the E × B flow, as are the temperature perturbations [see (2.31),
wherein the second term vanishes in the isobaric limit]. This is distinct from the case of the
isothermal cTAI introduced in § 4.1, where the magnetic field was frozen into a different
velocity field from the temperature perturbations, viz., the mean electron flow (4.16). As a
result, unlike in the isothermal case, there is no enhancement of the cETG growth rate by
the TAI mechanism in the isobaric regime: (4.47) can simply be regarded as an extension
of the familiar cETG into the electromagnetic regime. However, physically, the isobaric
cTAI is not an interchange mode, since it involves k‖ �= 0. Its mechanism is similar to its
isothermal cousin (figure 4), except the balance along the perturbed field is of pressure
rather than temperature. It may therefore be appropriate to regard it as an electron-scale
extension of MHD-like modes, such as the KBM – indeed, the condition E‖ = 0, which
is a direct consequence of pressure balance (4.44), is often invoked as a signature of such
modes (Snyder & Hammett 2001b; Kotschenreuther et al. 2019).

4.4.1. Isobaric slab TAI
For k‖ � k‖c, and still assuming (4.43), our system (2.24)–(2.26) becomes,

approximately,

d
dt
δne

n0e
= −vthe∇‖d2

e∇2
⊥A,

dA
dt

+ vthe

2
∂ϕ

∂z
= 0, ϕ = −τ̄ δne

n0e
. (4.48)

As with the isothermal KAW, these equations are also valid in the collisionless limit. These
equations are similar to (4.28), except that the parallel electric field is now zero because
the parallel gradient of the perturbed pressure vanishes. This new system describes the
dynamics of isobaric KAWs – so called because they obey (4.44). Their dispersion
relation is

ω2 = k2
‖v

2
thek

2
⊥d2

e
τ̄

2
= ω2

KAWτ̄ . (4.49)

These isobaric KAWs, which arise in strongly driven systems (large ω∗e), work in a similar
fashion to their isothermal cousins described at the beginning of § 4.3, except the inductive
part of the parallel electric field now creates a magnetic perturbation and, therefore, a
parallel current, from the electrostatic part of the parallel electric field, rather than from a
combination of the latter and the parallel pressure gradient.

Like the isothermal KAWs, the isobaric KAWs are unstable to sTAI: expanding (4.18)
or (4.22) for ξ∗ � 1 at k‖ � k‖c, we find

ω2
r = ω2

KAWτ̄ , γ 2 = ω2
KAW

1
4τ̄ ξ 2∗

, (4.50)

which is (4.49) once again but with a small, but finite, growth rate. In a similar fashion
to the isothermal sTAI described in § 4.3, the instability arises due to the fact that the
isobaric condition (4.44) that led to (4.48) is, in fact, only approximately satisfied. In the
collisional limit, ∇‖ log pe is determined at next order in ξ−1

∗ by (4.45), which, linearising
and Fourier transforming, can be written as

(∇‖ log pe
)

k = 1
i ξ∗

(
∇‖
δne

n0e

)
k

. (4.51)

This means that there will be a term in the second equation in (4.48) that is π/2 out
of phase with the electrostatic contribution to the parallel electric field that enables the
isobaric KAWs. The result is the instability (4.50), which exists also in the collisionless
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limit, but with ξ∗ given by (4.19) [see (D74)]. Indeed, restoring finite pressure gradients in
(4.48), we have

d
dt
δne

n0e
= −vthe∇‖d2

e∇2
⊥A,

dA
dt

+ vthe

2
∂ϕ

∂z
= vthe

2
∇‖ log pe, (4.52)

leading to the dispersion relation

ω2 = ω2
KAW

(
τ̄ + 1

i ξ∗

)
⇒ ω ≈ ±ωKAW

(√
τ̄ − i

2
√
τ̄ ξ∗

+ · · ·
)
, (4.53)

whose real and imaginary parts are exactly the frequency and growth rate (4.50).
As k‖ is increased, the isobaric limit (4.43) must eventually break down and be replaced

by the isothermal limit (4.11). This means that there will be a transition between isobaric
and isothermal KAWs, and the associated limits of sTAI, occurring, clearly, at ξ∗ ∼ 1.
In the collisionless limit, the growth rate once again asymptotes to a constant value as
k‖ → ∞ (ξ∗ → 0) – this is just the isothermal limit (4.34) except now, since k⊥ � k⊥∗,
this growth rate is large in comparison with the cETG growth rate achieved at k‖ = 0 (see
figure 6a, noting the normalisation). Note that γ ∼ ωKAW near the transition ξ∗ ∼ 1 (i.e. at
k‖ ∼ ω∗e/vthe), but γ � ωKAW as k‖ → ∞. In the collisional limit, there is peak growth at
ξ∗ ∼ 1, or

k‖max ∼
√
ω∗e

κ
∼ 1
vthe

√
ω∗eνe. (4.54)

Determining the precise prefactor, which depends only on τ̄ and is, thus, order unity,
is only possible numerically, but is, at any rate, inessential. The growth rate at this
wavenumber is

γ ∼ ωKAW ∼ k⊥de
√
ω∗eνe. (4.55)

Again, this growth rate is large in comparison with the cETG peak growth rate at k‖ = 0:

γ√
2ωdeω∗e

∼ k⊥de

√
νe

ωde
∼
(

k⊥
k⊥∗

)1/2

� 1. (4.56)

Figure 6 illustrates all of this behaviour. We remind the reader that at large k‖ (i.e. in
the deep isothermal regime), the instability is quenched by compressional heating in both
collisional and collisionless limits (see § 4.3.3).

Thus, the isobaric (k⊥ � k⊥∗) regime of the TAI is quite different from the isothermal
one: the dominant instability is again electromagnetic, rather than electrostatic, but it is the
slab TAI – an instability of KAWs reaching peak growth at the parallel wavenumber where
the relevant parallel timescale — either the parallel-streaming or thermal-conduction rate
in the collisionless or collisional regimes, respectively — is comparable to ω∗e. It must
be appreciated, of course, that this behaviour only occurs in a relatively narrow interval
of perpendicular wavelengths satisfying k⊥∗ � k⊥ � d−1

e (or � d−1
e χ

−1 in the collisional
regime). For k⊥de � 1 (or χ−1 in the collisional regime), it is replaced by the electrostatic
instabilities described in § 3.

4.4.2. Stabilisation of isobaric slab TAI
As was the case with the isothermal sTAI, the isobaric sTAI is also stabilised within

a certain region of wavenumber space, this time due to the effects of finite resistivity,
or finite electron inertia, in the parallel momentum equation – (2.21) and (2.25) in the
collisionless and collisional limits, respectively.
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To work out this stabilisation, we once again consider the collisional limit and, instead
of (4.9), the ordering

(k⊥de)
2νei ∼ ω ∼ κk2

‖ � ω∗e. (4.57)

A direct consequence of this ordering is that one has to retain the resistive term in the
leading-order parallel momentum equation, viz., the second equation in (4.52), coming
from (2.25), is replaced with

dA
dt

+ vthe

2
∂ϕ

∂z
= vthe

2
∇‖ log pe + νei

u‖e

vthe
. (4.58)

This means that, instead of the system being isobaric to leading order in ξ∗ � 1, the
parallel pressure gradient now balances the electron–ion frictional force:

∇‖ log pe + 2νeiu‖e

v2
the

= 0. (4.59)

This is obvious from (4.8) in the limit (4.57). To next order, we must now retain both the
time derivative of ∇‖ log Te and the compressional heating term in (4.8):

ρevthe

2LT

∂

∂y

(
∇‖ log pe + 2νeiu‖e

v2
the

)
=
(

d
dt

− κ∇2
‖

)(
∇‖
δne

n0e
+ 2νeiu‖e

v2
the

)
− 2

3
∇2

‖u‖e.

(4.60)
Combining (4.58), (4.60) and the density equation from (4.52), we find the dispersion
relation

ω2 − ω2
KAW

(
τ̄ + 1

i ξ∗

)
= − 1

i ξ∗

(k⊥de)
2νei

κk2
‖

ω2 − 1
ξ∗

(
5
3

+ a
)
ω

κk2
‖
ω2

KAW, (4.61)

where a is the same numerical constant as in (4.39) [see (E17)]. This is the same as (4.53),
apart from the right-hand side, previously neglected. The second term on the right-hand
side simply leads to a small, in ξ∗ � 1, modification of the (real) frequency, and so can be
neglected.

As usual, at the stability boundary, the frequency ω must be purely real, and both the
real and imaginary parts of (4.61) must vanish individually, giving [cf. (E38)]

ω2 = ω2
KAWτ̄ ,

(k⊥de)
2νei

κk2
‖

ω2 = ω2
KAW ⇒ (k⊥de)

2νei

κk2
‖

= 1
τ̄
. (4.62)

This is a line k‖ ∝ k⊥ in wavenumber space; moving from small to large parallel
wavenumbers, there is a sliver of stability around this line, above which (viz., towards
higher k‖) the isobaric sTAI grows again to its peak at ξ∗ ∼ 1: see figures 14(a) and 15(a)
in Appendix E, where the stability boundary is worked out exactly. As with the case of the
isothermal sTAI, this stabilisation was not captured by the general TAI dispersion relation
(4.18) because the ordering (4.9) did not formally allow frequencies comparable to both
the heat-conduction and the resistive-dissipation rates, required by (4.62).

In the collisionless limit, we find that the isobaric sTAI is stabilised at the flux-freezing
scale (2.28) [cf. (D84)]:

k⊥de ∼ 1. (4.63)

This is not via a mechanism analogous to the collisional case, as there are no resistive
effects in the collisionless limit, but is instead due to the effect of finite electron inertia
appearing in the parallel-momentum equation (2.21) (see Appendix D.7.3).
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The stabilisation of the isobaric sTAI is somewhat more relevant than the stabilisation
of the isothermal sTAI (§ 4.3.3), owing to the fact that the isobaric sTAI is the dominant
instability for k⊥∗ � k⊥ � d−1

e (or � d−1
e χ

−1 in the collisional regime). However, we
shall discover in § 6.3.1 that the isobaric sTAI contributes only an order-unity amount to
the turbulent energy injection – rather than introducing significant qualitative differences –
and so the (linear) stabilisation thereof appears to be of little consequence in the nonlinear
context.

5. Summary of linear instabilities

In §§ 3 and 4, we introduced the linear instabilities supported by our low-beta system
of equations in the electrostatic and electromagnetic regimes, respectively. In both the
collisionless and collisional limits, we found that there were four main instabilities: sETG
[(3.5) or (3.9)], cETG (3.13), sTAI [(4.34) or (4.55)] and cTAI (4.15). Before moving on
to our discussions of the turbulence supported by these modes, it will be useful to take
stock of what we have learned by surveying the locations of each of these instabilities
in wavenumber space. Throughout the discussions that follow, we assume ky ∼ k⊥, and so
consider (k⊥, k‖) to be the relevant wavenumber-space coordinates. We also assume τ̄ ∼ 1,
implying that both species have roughly comparable temperatures and, more crucially, that
τ̄ has no dependence on perpendicular wavenumbers (as it could do, for example, on scales
comparable to the ion Larmor radius; see Appendix A.4).

5.1. Collisionless limit
Let us first focus on the collisionless limit. At electrostatic scales k⊥ � d−1

e [i.e. below the
flux-freezing scale (2.28)], we have both the sETG and cETG instabilities. The transition
between these two instabilities occurs when their growth rates are comparable, viz.,

(k2
‖v

2
theω∗e)

1/3 ∼ (ωdeω∗e)
1/2 ⇒ k‖LT√

βe
∼
(

LT

LB

)3/4

kyde. (5.1)

The sETG instability begins to be quenched by Landau damping when its growth rate
becomes comparable to the parallel-streaming rate:

(k2
‖v

2
theω∗e)

1/3 ∼ k‖vthe ⇒ k‖LT√
βe

∼ kyde. (5.2)

Note that this is the same line as that corresponding to the maximum of the sETG growth
rate, viz., k‖vthe ∼ ω∗e. However, it must be stressed that this is only true asymptotically,
as is evident from figures 11(a) and 12(a). Furthermore, careful analysis of collisionless
dispersion relation reveals that the sETG instability is also effectively stabilised – with
only exponentially small growth rates remaining – around the flux-freezing scale [see
(D43) and the surrounding discussion]. This ‘fluid’ stabilisation occurs when its growth
rate becomes comparable to the KAW frequency:

(k2
‖v

2
theω∗e)

1/3 ∼ ωKAW ⇒ k‖LT√
βe

∼ (k⊥de)
−2. (5.3)

For k⊥∗ � k⊥ � d−1
e , the dominant instability is the isobaric sTAI, which is

separated from the cETG instability by k‖ = k‖c. The cETG instability in this
perpendicular-wavenumber range, and for k‖ � k‖c, can also be thought of as either the
isobaric version of cTAI or the electron version of KBM (see § 4.4). The isobaric sTAI
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instability at k‖ � k‖c is stabilised around the flux-freezing scale k⊥de ∼ 1 [see (4.63)]. The
area bounded by the lines k⊥de ∼ 1, k‖ = k‖c and (5.3) thus contains only exponentially
small growth rates that would be quenched by the effects of finite dissipation in any real
physical system.

For k⊥ � k⊥∗, the cETG (or isobaric cTAI) instability is superseded by the isothermal
cTAI, which is now the dominant instability, and is separated from sTAI along the
horizontal line k‖ = k‖c.

The sTAI growth rate is cut off at large parallel wavenumbers due to the effect of parallel
compression [see (4.42)], i.e. when

ωKAW ∼ ω∗e ⇒ k‖LT√
βe

∼ 1. (5.4)

This is all illustrated in figure 7, where the solid line shows the location of the peak
growth rate at each ky – following, at k⊥ � k⊥∗, the peak growth of the isothermal cTAI
(4.24), and at k⊥ � k⊥∗, the boundary ξ∗ ∼ 1 between the isothermal and isobaric regimes.
The increase of the growth rate with ky is unchecked in the drift-kinetic approximation
that we have adopted, and requires the damping effects associated with the finite Larmor
radius of the electrons to be taken into account; this will introduce some ultraviolet cutoff
in perpendicular wavenumbers. At the largest scales, we must eventually encounter ion
dynamics, but the effects that this may have are outside the scope of this paper. All of
these modes are, of course, limited by the finite parallel system size L‖, meaning that the
smallest accessible parallel wavenumber is k‖ ∼ L−1

‖ .

5.2. Collisional limit
The picture is qualitatively similar in the collisional limit, except the transition between
the electrostatic and electromagnetic regimes is modified, as discussed in § 2.7. At
electrostatic scales k⊥ � d−1

e χ
−1 [i.e. those below the flux-freezing scale (2.30)], we once

again have both the (collisional) sETG and cETG instabilites, whose growth rates become
comparable when

(
k2

‖v
2
theω∗e

νei

)1/2

∼ (ωdeω∗e)
1/2 ⇒ k‖LT√

βe
∼
(

LT

LB

)1/2

(kydeχ)
1/2. (5.5)

The sETG instability is now quenched by thermal conduction at

(
k2

‖v
2
theω∗e

νei

)1/2

∼ κk2
‖ ⇒ k‖LT√

βe
∼ (kydeχ)

1/2. (5.6)

Note that this is the same line as that corresponding to the maximum of the collisional
sETG growth rate, viz., (k‖vthe)

2/νei ∼ ω∗e. As in the collisionless case, this is, of course,
only true asymptotically (see figures 14a and 15a).

For k⊥∗ � k⊥ � d−1
e χ

−1, the dominant instability is once again the isobaric sTAI,
separated from cETG by k‖ = k‖c. As in the collisionless limit, the cETG instability in
this perpendicular-wavenumber range, and for k‖ � k‖c, can also be thought of as either
the isobaric version of cTAI or the electron version of KBM (see § 4.4). The isobaric sTAI
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FIGURE 7. Collisionless modes in the (k⊥, k‖) plane, where the axes are plotted on logarithmic
scales. The dotted lines are the asymptotic boundaries between the various modes, with the
shaded regions indicating stability. The stable region and the stability boundary are derived and
plotted in a more quantitative way in Appendix D.6 (see figure 12a). At electrostatic scales (i.e.
those below the flux-freezing scale, k⊥de > 1), the cETG (3.13) transitions into the sETG (3.5)
along the boundary (5.1), while the sETG is damped by parallel streaming above (5.2). ‘Fluid’
stabilisation of the sETG occurs along (5.3). At electromagnetic scales (i.e. those above the
flux-freezing scale, k⊥de < 1), sTAI (4.50) is stabilised along k⊥de ∼ 1, meaning that the
region enclosed by the lines k⊥de ∼ 1, k‖ = k‖c and (5.3) contains only exponentially small
growth rates, and can thus effectively be considered stable [note that k‖cLT/

√
βe = (LT/LB)

1/2;
see (4.21)]. The cETG transitions into the cTAI (4.15) along k⊥ = k⊥∗, with k⊥∗ defined
in (4.26). The cTAI is separated from sTAI by the horizontal line k‖ = k‖c, while sTAI is
stabilised by compressional heating at the horizontal line given by (5.4), transitioning into purely
oscilliatory (isothermal) KAWs (4.29). Electron finite-Larmor-radius effects eventually provide
an ultraviolet cutoff at large perpendicular wavenumbers k⊥de, though this is outside the range of
validity of our drift-kinetic approximation. Note that the transition to ion-scale physics at small
perpendicular wavenumbers k⊥ρi � 1 lies outside our adiabatic-ion approximation. The solid
black line indicates the location of the maximum growth rate at each fixed k⊥, while the solid
dots are the (possible) locations of the energy-containing scale(s) (see § 6). The dotted vertical
lines indicate the location in k⊥ of figures 5 and 6, which show the isothermal and isobaric
regimes, respectively.

is stabilised due to the effects of finite resistivity along the line [see (4.62)]

κk2
‖ ∼ (k⊥de)

2νei ⇒ k‖LT√
βe

∼ k⊥deχ. (5.7)

For k⊥ � k⊥∗, the cETG (or isobaric cTAI) instability is superseded by the isothermal
cTAI, which is once again the dominant instability, and is separated from the isothermal
sTAI by k‖ = k‖c. As in the collisionless case, the isothermal sTAI is cut off at large
parallel wavenumbers due to the effects of parallel compression [see (4.40)], viz.,

ωKAW ∼ ω∗e ⇒ k‖LT√
βe

∼ 1. (5.8)
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FIGURE 8. Collisional modes in the (k⊥, k‖) plane, where the axes are plotted on logarithmic
scales. The dotted lines are the asymptotic boundaries between the various modes, with the
shaded regions indicating stability. The stable region and the stability boundary are derived
and plotted in a more quantitative way in Appendix E.4 (see figure 15a). At electrostatic
scales (i.e. those below the flux-freezing scale, k⊥deχ > 1), the cETG (3.13) transitions into
the (collisional) sETG (3.9) along the boundary (5.5). The sETG is damped by parallel heat
conduction above (5.6). At electromagnetic scales (i.e. those above the flux-freezing scale,
k⊥deχ < 1), the sTAI (4.50) is stabilised by the effects of finite resistivity along (5.7), while
cETG transitions into the cTAI (4.15) at k⊥ = k⊥∗, with k⊥∗ defined in (4.26). The cTAI
is separated from sTAI by the horizontal line k‖ = k‖c [note that k‖cLT/

√
βe = (LT/LB)

1/2;
see (4.21)], while the sTAI is stabilised by compressional heating at the horizontal line given
by (5.8), transitioning into purely oscilliatory (isothermal) KAWs (4.29). Perpendicular electron
viscosity will eventually provide an ultraviolet cutoff for these modes at large perpendicular
wavenumbers k⊥de, though this is outside the range of validity of our drift-kinetic approximation.
As in figure 7, the ion-scale range k⊥ρi � 1 is left outside our considerations. The solid black line
indicates the location of maximum growth at each fixed k⊥, while the solid dots are (possible)
locations of the energy-containing scale(s) (see § 6). The dotted vertical lines indicate the
location in k⊥ of figures 5 and 6, which show the isothermal and isobaric regimes, respectively.

This is all illustrated in figure 8, where the solid line again shows the location of the
fastest growth for each ky. As in the collisionless case, modes are stabilised at large
perpendicular numbers, this time by perpendicular electron viscosity, and limited by
the parallel system size for small parallel wavenumbers. However, they are now also
limited at large parallel wavenumbers by the mean free path λe, at which the collisional
approximation breaks down. This means that the maximum parallel wavenumber allowed
in this collisional limit is k‖ ∼ λ−1

e .
All of the boundaries between modes derived in this section are, of course, only

asymptotic illustrations, and do not quantitatively reproduce, for example, the exact
stability boundaries in wavenumber space (which are derived in Appendices D.6 and E.4).
However, given that the arguments of the following section rely on scaling estimates,
rather than quantitative relationships between parameters, the illustrations of the layout
of wavenumber space provided by figures 7 and 8 will be sufficient for our purposes.
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6. Electromagnetic turbulence and transport
6.1. Free energy

Magnetised plasma systems containing small perturbations around a Maxwellian
equilibrium nonlinearly conserve free energy, which is a quadratic norm of the magnetic
perturbations and the perturbations of the distribution functions of both ions and electrons
away from the Maxwellian. In the system that we are considering, the (normalised) free
energy takes the form

W
n0eT0e

=
∫

d3r
V

(
ϕτ̄−1ϕ

2
+ |de∇⊥A|2 + 1

2
δn2

e

n2
0e

+ u2
‖e

v2
the

+ 1
4

δT2
‖e

T2
0e

+ 1
2
δT2

⊥e

T2
0e

+ · · ·
)
.

(6.1)
The ‘· · · ’ stand for the squares of further moments of the perturbed distribution function
(such as the parallel and perpendicular heat fluxes δq‖e, δq⊥e, etc.). The derivation of (6.1)
can be found in Appendix B.1. In the collisional limit, these further moments of the
perturbed distribution function are negligible, and (6.1) becomes [see (B8)]

W
n0eT0e

=
∫

d3r
V

(
ϕτ̄−1ϕ

2
+ |de∇⊥A|2 + 1

2
δn2

e

n2
0e

+ 3
4
δT2

e

T2
0e

)
. (6.2)

The free energy is a nonlinear invariant, i.e. it is conserved by nonlinear interactions
(Abel et al. 2013), but can be injected into the system by equilibrium gradients, and is
dissipated by collisions; even when these are small, they are always eventually accessed
via phase-mixing of the distribution function towards small velocity scales and nonlinear
interactions towards small spatial scales.

In view of this, the time evolution of the free energy (6.1) can be written as [see (B22)]

1
n0eT0e

dW
dt

= ε − D, (6.3)

where D stands for the collisional dissipation [see (B11) and (B18)] and ε is the injection
rate due, in our system, to the ETG [see (B14) and (B19)]:

ε = 1
LT

∫
d3r
V

⎧⎪⎪⎨
⎪⎪⎩
(

1
2
δT‖e

T0e
+ δT⊥e

T0e

)
vEx +

1
2δq‖e + δq⊥e

n0eT0e

δBx

B0
, collisionless,

3
2
δTe

T0e
vEx + δqe

n0eT0e

δBx

B0
, collisional,

(6.4)

where

vEx = −ρevthe

2
∂ϕ

∂y
,

δBx

B0
= ρe

∂A
∂y
,

δqe

n0eT0e
= −3

2
κ∇‖ log Te. (6.5)

The expression multiplying 1/LT is the ‘turbulent’ heat flux due to the energy transport by
the E × B flows and to the heat fluxes along the perturbed field lines. The first term in (6.4)
is the energy injection by ETG (§ 3), the second that by TAI (§ 4). Evidently, the latter
is only present in the electromagnetic regime, when perturbations of the magnetic-field
direction are allowed.

Free energy is normally the quantity whose cascade from large (injection) to
small (dissipation) scales determines the properties of a plasma’s turbulent state (see
Schekochihin et al. 2008, 2009, and references therein). Temperature-gradient-driven
turbulence is no exception (Barnes et al. 2011), and so we devote the remainder of this
section to working out at what scales and to what saturated amplitudes the ETG–TAI
injection (6.4) will drive turbulent fluctuations.
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6.2. Electrostatic turbulence
6.2.1. Collisionless slab ETG turbulence

Following Barnes et al. (2011), we conjecture that our fully developed electrostatic
turbulence always organises itself into a state wherein there is a local cascade of the free
energy (6.1) that carries the injected power ε from the outer scale, through some putative
‘inertial range’, to the dissipation scale. The outer scale is something that we will have to
determine, while the dissipation scale will be near k⊥ρe ∼ 1, and so outside the range of
validity of our drift-kinetic approximation.

The perpendicular nonlinearity in our equations is the advection of fluctuations by the
fluctuating E × B flows. Therefore, we take the nonlinear turnover time associated with
such a cascade to be the nonlinear E × B advection rate:

t−1
nl ∼ k⊥vE ∼ ρevthek2

⊥ϕ̄ ∼ Ωe(k⊥ρe)
2ϕ̄. (6.6)

Here and in what follows, ϕ̄ refers to the characteristic amplitude of the electrostatic
potential at the scale k−1

⊥ , rather than to the Fourier transform of the field. More formally,
we take ϕ̄ to be defined by

ϕ̄2 =
∫ ∞

k⊥
dk′

⊥ Eϕ⊥(k
′
⊥), Eϕ⊥(k⊥) ≡ 2πk⊥

∫ ∞

−∞
dk‖

〈|ϕk|2
〉
, (6.7)

where Eϕ⊥(k⊥) is the one-dimensional perpendicular energy spectrum, ϕk the spatial
Fourier transform of the potential and the angle brackets denote an ensemble average.
Perturbations of other quantities, such as the velocity, parallel temperature, magnetic
field, etc., will similarly be taken to refer to their characteristic amplitude at a given
perpendicular scale.

Assuming that any possible anisotropy in the perpendicular plane can be neglected,4
a Kolmogorov-style constant-flux argument leads to the scaling of the amplitudes in the
inertial range:

τ̄−1ϕ̄2

tnl
∼ ε = const. ⇒ ϕ̄ ∼

(
ε

Ωe

)1/3

(k⊥ρe)
−2/3 . (6.8)

The scaling (6.8) translates into the following one-dimensional spectrum:

Eϕ⊥(k⊥) ∼ ϕ̄2

k⊥
∝ k−7/3

⊥ , (6.9)

the same as was obtained, using a similar argument, and confirmed numerically, by
Barnes et al. (2011) for electrostatic, gyrokinetic ITG turbulence. In making this argument,
we have assumed that the free-energy density at a given scale k−1

⊥ can be adequately
represented by the first term in the integrand of (6.1), i.e. that all the other fields whose
squares contribute to the free energy are either small or comparable to ϕ, but never
dominant in comparison with it. Whether this is true will depend on the nature of the
turbulent fluctuations supported by the system in any given part of the (k⊥, k‖) space
through which the cascade might be taking free energy on its journey towards dissipation.
Let us specialise to the region of the wavenumber space (marked ‘sETG’ in figure 7) where

4The existence of such a state is not always guaranteed. For example, Colyer et al. (2017) found that the saturated
state of electrostatic ETG turbulence existed in a zonally-dominated state, which evidently violates this assumption. In
fact, the zonal state is much closer to being two-dimensionally isotropic than a streamer-dominated state; Barnes et al.
(2011) explicitly invoked zonal flows to enforce isotropy.
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the fluctuations are collisionless, electrostatic drift waves described by (3.4). From the first
two equations of (3.4),5

τ̄−1ϕ̄ ∼ k‖vthe

ω

ū‖e

vthe
∼
(

k‖vthe

ω

)2
δT̄‖e

T0e
, (6.10)

where evidently we ought to estimate ω ∼ t−1
nl . Then, all three fluctuating fields do indeed

have the same size and the same scaling if we posit

t−1
nl ∼ k‖vthe. (6.11)

This is a statement of critical balance, whereby the characteristic time associated with
propagation along the field lines is assumed comparable to the nonlinear advection rate t−1

nl
at each perpendicular scale k−1

⊥ . Barnes et al. (2011) justified this by the standard causality
argument borrowed from MHD turbulence (Goldreich & Sridhar 1995, 1997; Boldyrev
2005; Nazarenko & Schekochihin 2011): two points along the field line can only remain
correlated with one another if information can propagate between them faster than they are
decorrelated by the nonlinearity. We have taken the rate of information propagation along
the field lines to be k‖vthe; a somewhat involved reasoning is needed to explain why this
should work even though k‖vthe is the rate of phase-mixing (which, in the linear theory,
is expected to give rise to Landau damping) rather than of wave propagation, and why
Landau damping is ineffective in the nonlinear state (see Schekochihin et al. 2016; Adkins
& Schekochihin 2018).

Combining (6.6), (6.8) and (6.11), we find

k‖vthe ∼ t−1
nl ∼ Ωe

(
ε

Ωe

)1/3

(k⊥ρe)
4/3. (6.12)

By comparison, for the most unstable sETG modes, (3.6) gives us

k‖vthe ∼ ω∗e ∼ kyρe
vthe

LT
. (6.13)

These modes grow at a rate ω∗e ∝ ky. This means that the nonlinear interactions must
overwhelm the linear instability in the inertial range.6 The outer scale, i.e. the scale that
limits the inertial range on the infrared side and at which the free energy is effectively
injected, is then the scale at which the nonlinear cascade rate and the rate of maximum
growth of the instability are comparable: balancing (6.12) and (6.13), we get

Ωe(ko
⊥ρe)

2ϕ̄o ∼ ko
‖vthe ∼ ωo

∗e ⇒ ϕ̄o ∼ (ko
⊥LT)

−1, ko
yρe ∼ ko

‖LT, (6.14)

where the superscript ‘o’ refers to quantities at the outer scale.
Now, in order to determine ko

⊥, we need a further constraint. Barnes et al. (2011)
found it by conjecturing that ko

‖ in (6.14) would be set by the parallel system size L‖

5The linear part of the third equation in (3.4) tells us that δT̄‖e/T0e ∼ (ω∗e/ω)ϕ̄ but, as we are about to discover, this
is only true at the outer scale, while in the inertial range, the ETG injection term is subdominant.

6Here is another way to see this. Imagine that the sETG instability dominates energy injection at each scale and that
the energy thus injected is removed to the next smaller scale by the nonlinearity, at a rate t−1

nl . Such a scheme would be
consistent if the energy flux injected at each scale by the instability were larger than the flux arriving to this scale from
larger scales. Let us see if this is possible. Balancing the nonlinear energy-removal rate (6.12) with the injection rate
ω∗e, we learn that ϕ̄ ∼ (k⊥LT )

−1 (corresponding to a one-dimensional spectrum ∝ k−3
⊥ ). The injected energy flux is then

ε ∼ ω∗eϕ̄
2 ∼ Ωe(ρe/LT )

3(k⊥ρe)
−1. So it declines at smaller scales, and is easily overwhelmed by the nonlinear transfer

from larger scales.
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(the connection length ∼ πqLB, in the case of tokamaks). This was the only reasonable
choice because there was no lower cutoff in k⊥ of the (electrostatic) ITG-unstable modes.
This is not, however, the case in our model of the sETG instability, which is stabilised at
the flux-freezing scale (2.28), i.e. at k⊥de ∼ 1. It appears to be a general rule, confirmed
by numerical simulations (F.I. Parra & M.A. Barnes, personal communication 2012), that
the outer scale is, in fact, determined by the smallest possible kyρe or the smallest possible
k‖LT , whichever is larger. Putting this within the visual context of figure 7, the outer scale
is set either by ko

‖ ∼ L−1
‖ or by ko

⊥ ∼ d−1
e , whichever is encountered first when moving

along the solid black line from the ultraviolet cutoff towards larger scales. The former
possibility, ko

‖ ∼ L−1
‖ , is realised when L‖ � LT/

√
βe, and the latter, ko

⊥ ∼ d−1
e , otherwise.

Thus,

ko
⊥de ∼ ko

‖LT√
βe

∼

⎧⎪⎪⎨
⎪⎪⎩

LT

L‖
√
βe
,

LB

LT
� LB

L‖
√
βe
,

1,
LB

LT
� LB

L‖
√
βe
.

(6.15)

We have inserted the normalisation of the temperature gradient to LB for future
convenience.

Let us now estimate the energy flux that is injected by sETG at the outer scale (6.15):
considering the first term in the expression for the energy flux (6.4) (the second, involving
finite perturbations to the magnetic field, is negligible in the electrostatic regime) and
ignoring any possibility of a non-order-unity contribution from phase factors, we have

ε ∼ ωo
∗eϕ̄

o
δT̄o

‖e

T0e
∼ vtheρ

2
e

L3
T

√
βe
(ko

⊥de)
−1, (6.16)

where we have used δT̄o
‖e/T0e ∼ ϕ̄o and (6.14). This quantity is directly related to the

turbulent heat flux: combining (6.16) with (6.15), we get

QsETG ∼ n0eT0eεLT ∼ QgB

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
L‖
LB

)(
LB

LT

)3

,
LB

LT
� LB

L‖
√
βe
,

1√
βe

(
LB

LT

)2

,
LB

LT
� LB

L‖
√
βe
,

(6.17)

where the ‘gyro-Bohm’ flux is QgB = n0eT0evthe(ρe/LB)
2. Note that the LB/LT scaling in

(6.17) is only valid for sufficiently large LB/LT as our analysis ignores any finite critical
temperature gradients associated with the sETG instability (see Appendix E.1.2). The first
expression in (6.17) is the same scaling as that obtained by Barnes et al. (2011), but this
time for electrostatic turbulence driven by an ETG.7 In the formal limit of βe → 0, this is
the only possible outcome because the second inequality in (6.17) can never be satisfied.
At finite βe, however, in the sense in which it is allowed by our ordering and for sufficiently
large temperature gradients, we obtain a different, less steep scaling of the turbulent heat
flux, given by the second expression in (6.17).

Whether the scaling (6.17) is relevant in our system depends on the dominant energy
injection therein being from the electrostatic sETG drive at k⊥de � 1. That is, in fact,
far from guaranteed if L‖ > LT/

√
βe, i.e. if sufficiently small k‖ are allowed for the

7Chapman-Oplopoiou et al. (2022) found such a scaling of the heat flux with LB/LT in their investigations of
nonlinear pedestal turbulence driven by ETG modes [see their equation (1), and the following discussion] suggesting,
perhaps, that this scaling may hold in more realistic – and complex – plasma systems than that considered here.
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electromagnetic instabilities to matter – and so for the outer scale to be located at even
larger scales along the thick black line in figure 7. Another reason why we must consider
the electromagnetic part of the wavenumber space is to do with the cETG instability. At
k⊥de � 1, its growth rate is always small in comparison with the with sETG [for the large
LB/LT that we are considering here; see (3.14)], but it is a two-dimensional mode, so it
is not stabilised at k⊥de ∼ 1 (it does not bend magnetic fields) and there is no reason to
assume that it cannot provide the dominant energy injection at some large scale k⊥de � 1.
There, it competes with TAI (§ 4), so we have to examine the TAI turbulence alongside
the cETG one.

These topics are, of course, the raison d’être of this work and we shall tackle them in
§ 6.3, but first we wish, for the sake of completeness, to work out the collisional version of
sETG turbulence – an impatient reader can skip this.

6.2.2. Collisional slab ETG turbulence
For collisional sETG turbulence, the argument proceeds similarly to that of § 6.2.1.

Instead of (6.10), we now have, in view of (3.8),

τ̄−1ϕ̄ ∼ k‖vthe

ω

ū‖e

vthe
∼ (k‖vthe)

2

ωνei

δT̄e

T0e
∼ δT̄e

T0e
, (6.18)

where we assume that all frequencies, including the nonlinear rate (6.6), are now
comparable to the rate of parallel thermal conduction [instead of the parallel-streaming
rate; see (3.10)]:

t−1
nl ∼ ω ∼ (k‖vthe)

2

νei
. (6.19)

This condition now replaces (6.11) as the ‘critical-balance’ conjecture, whereby the
parallel scale of the perturbations is determined in terms of their perpendicular scale.
Note that, since now ū‖e/vthe � ϕ̄, it is still reasonable to estimate the free-energy density
by ∼ τ̄−1ϕ̄2.

At the outer scale, using (3.10) and (6.19), we find, analogously to (6.14),

Ωe(ko
⊥ρe)

2ϕ̄o ∼ (ko
‖vthe)

2

νei
∼ ωo

∗e ⇒ ϕ̄o ∼ (ko
⊥LT)

−1, ko
yρe ∼ (ko

‖)
2LTλe. (6.20)

Note that the relationship between the parallel and perpendicular outer scales can be recast
as

ko
‖LT√
βe

∼ (
ko

ydeχ
)1/2

, χ ≡ LT

λe
√
βe
, (6.21)

where χ is defined as in (2.30).
By analogous logic to the collisionless sETG case, the outer scale can be set either

by the parallel system size or by the flux-freezing scale (2.30), k⊥deχ ∼ 1, depending on
which is encountered first by the thick black line in figure 8 when descending towards
larger scales. The result is

ko
⊥deχ ∼

⎧⎪⎪⎨
⎪⎪⎩

(
LT

L‖
√
βe

)2

,
LB

LT
� LB

L‖
√
βe
,

1,
LB

LT
� LB

L‖
√
βe
.

(6.22)
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In view of (6.20), the energy flux is again given by (6.16), which, with the substitution of
(6.22), becomes

ε ∼ vtheρ
2
e

L3
T

√
βe
χ

⎧⎪⎪⎨
⎪⎪⎩
(

L‖
√
βe

LT

)2

,
LB

LT
� LB

L‖
√
βe
,

1,
LB

LT
� LB

L‖
√
βe
.

(6.23)

Therefore, finally, the turbulent heat flux is

QsETG
ν ∼ QgB

⎧⎪⎪⎨
⎪⎪⎩

(
L‖
LB

)2 (LB

λe

)(
LB

LT

)3

,
LB

LT
� LB

L‖
√
βe
,

1
βe

(
LB

λe

)(
LB

LT

)
,

LB

LT
� LB

L‖
√
βe
.

(6.24)

These are the collisional analogues of the scalings (6.17), and are both proportional
to the electron collision frequency (∝ λ−1

e ). Such a scaling of turbulent heat flux with
collisionality was identified by Colyer et al. (2017) from their simulations of electrostatic
ETG turbulence, though their argument relied on consideration of the dynamics of zonal
flows within their electron-scale system, and so the comparison is superficial.

6.3. Electromagnetic turbulence
6.3.1. Kinetic-Alfvén-wave-dominated, slab TAI turbulence

On the large-scale side of the flux-freezing scales (2.28) and (2.30), for k⊥∗ � k⊥ �
d−1

e (or d−1
e χ

−1 in the collisional limit), the dominant instability is the isobaric sTAI (see
§ 4.4), an instability of KAWs. KAW turbulence has been studied quite extensively, both
numerically (Cho & Lazarian 2004, 2009; Howes et al. 2011; Boldyrev & Perez 2012;
Meyrand & Galtier 2013; Told et al. 2015; Franci et al. 2018; Grošelj et al. 2018, 2019)
and observationally (Alexandrova et al. 2009; Sahraoui et al. 2010; Chen et al. 2013),
in the context of the ‘kinetic-range’ free-energy cascade in the solar wind (Schekochihin
et al. 2009; Boldyrev et al. 2013; Passot et al. 2017). The theory of this cascade proceeds
along the same lines as the theory of any critically balanced cascade in a wave-supporting
anisotropic medium (Nazarenko & Schekochihin 2011) and leads again to a k−7/3

⊥ energy
spectrum (Cho & Lazarian 2004; Schekochihin et al. 2009) or, with some modifications,
to a k−8/3

⊥ one (Boldyrev & Perez 2012; Meyrand & Galtier 2013), which appears to be
closer to what is observed.

Ignoring the latter nuance, it is easy to see that the re-emergence of the k−7/3
⊥ spectrum

is unsurprising, as the arguments of § 6.2 that led to (6.8) and (6.9) are unchanged for
KAWs. What is changed, however, is the linear propagation rate that must be used in the
critical-balance conjecture: the parallel scale k−1

‖ of a perturbation is now the distance that
an (isobaric) KAW can travel in one nonlinear time, so, from (4.49), we have, instead of
(6.11) or (6.19),

ωKAW ∼ k‖vthek⊥de ∼ t−1
nl , (6.25)

where tnl is still given by (6.6).8

8This tnl is the nonlinear time associated with the fluctuating E × B flows, coming from the convective time
derivative (2.7). In the electromagnetic regime, there is, in addition to this, the nonlinearity associated with the parallel
gradients being taken along perturbed magnetic field lines, including finite δB⊥, as in (2.8). However, it is straightforward
to show [by, for example, estimating the sizes of the nonlinear terms appearing in (4.14), (4.32) or (4.52)] that the E × B
nonlinearity is either comparable to or larger than the δB⊥ nonlinearity in all of the regimes of interest, meaning that we
may continue to use (6.6) as our estimate for the nonlinear time.
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This is the standard argument of KAW turbulence theory (see references cited above),
which, however, was developed for situations in which energy arrived to sub-Lamor scales
from larger scales (i.e. from k⊥ρi < 1) and cascaded down to smaller scales – as indeed it
typically does in space-physical and astrophysical contexts. In contrast, here we are dealing
with an energy source in the form of an ETG-driven instability, the isobaric sTAI, which
operates most vigorously at the smallest electromagnetic scales. Indeed, as we saw at the
end of § 4.4.1, for a given k⊥de, the sTAI growth rate peaks at ξ∗ ∼ 1, and is of the order
of the KAW frequency ωKAW at that scale. This gives

γ ∼ ωKAW ∼

⎧⎪⎨
⎪⎩
ω∗ek⊥de ∼ vthe

LT
√
βe
(k⊥ρe)

2, collisionless,
√
ω∗eνek⊥de ∼ vthe√

LTλeβe
(k⊥ρe)

3/2 , collisional,
(6.26)

where we used k‖ ∼ ω∗e/vthe and k‖ ∼ (ω∗e/κ)
1/2 ∼ (ω∗eνe)

1/2/vthe for the collisionless
and collisional estimates, respectively. Comparing (6.26) with (6.12), we see that, in both
cases, the instability growth rate increases faster with k⊥ than the nonlinear cascade rate
t−1
nl ∝ k4/3

⊥ . It is intuitively obvious that these two rates reach parity at the flux-freezing
scale, k⊥de ∼ 1 or k⊥deχ ∼ 1, in the collisionless and collisional limits, respectively.
This can be formally confirmed by a calculation analogous to the one in § 6.2. Thus, the
dominant injection occurs at the small-scale end of the putative ‘inertial range’. In the
absence of any inverse cascade, there is nothing to push the energy towards larger scales.
This means that the balances (6.8), (6.12) and (6.25) are not, in fact, realised for KAW
turbulence driven by the isobaric sTAI.

In order to predict the power injected by sTAI, and the associated contribution to
the turbulent heat flux, we resurrect the argument that, for sETG, we tossed aside in
footnote 6. We conjecture that the sTAI instability dominates the energy injection at each
scale, and the energy thus injected is removed to the next smaller scale by the nonlinearity,
at a rate t−1

nl ; we confirm a posteriori that this is a consistent scheme. The resulting balance
gives us, using (6.6) and (6.26),

t−1
nl ∼ Ωe(k⊥ρe)

2ϕ̄ ∼ γ ⇒ ϕ̄ ∼

⎧⎪⎨
⎪⎩

de

LT
, collisionless,

de√
LTλe

(k⊥ρe)
−1/2, collisional,

(6.27)

and δB̄⊥/B0 ∼ k⊥ρeĀ ∼ (ρe/de)ϕ̄ [where we have used k⊥deĀ ∼ ϕ̄, which follows from
the first equation in (4.48) with ω ∼ ωKAW]. The corresponding energy spectra (6.7) are
∝ k−1

⊥ and ∝ k−2
⊥ in the collisionless and collisional regimes, respectively. The injected

power is

γ ϕ̄2 ∼ vtheρ
2
e

L3
T

√
βe

{
(k⊥de)

2, collisionless,
(k⊥de)

1/2χ 3/2, collisional,
(6.28)

where χ is defined in (2.30) or (6.21). This means that, at each scale, the energy that
arrives from larger scales can be ignored in comparison with the energy injected locally
by sTAI – unlike for the sETG cascade, this scale-by-scale injection scheme is consistent
for ‘sTAI turbulence’.

It is clear from (6.28) that the injected power is dominated by the flux-freezing
scale (2.28) or (2.30), where it reaches parity with the power injected by sETG, (6.16)
or (6.23), and where also the sTAI approximation breaks down and sETG takes over.
Thus, the turbulent heat flux due to the sTAI turbulence is given by the same expression
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as that for the sETG turbulence at sufficiently large temperature gradients – the second
expressions in (6.17) and (6.24). The only effect of sTAI is to equip the sETG turbulence
spectrum (6.9) with an electromagnetic tail at long wavelengths – scaling as k−1

⊥ and k−2
⊥ in

the collisionless and collisional cases, respectively – but without changing by more than
an order-unity amount its ability to transport energy.9

6.3.2. Curvature-mediated TAI turbulence
At k⊥ � k⊥∗, the isothermal cTAI replaces the isobaric sTAI as the dominant instability.

Since the nonlinear cascading is still done by the E × B flows, the nonlinear time is still
given by (6.6). However, how to work out the ‘inertial-range’ scalings for this cascade is
not obvious: since the real frequency is vanishingly small in comparison to the growth rate
at the cTAI maximum [see (4.27)], there is no obvious analogue of the ‘critical balance’
conjectures (6.11) or (6.25); indeed, it is not even a given that the cascade will be local in
wavenumber space. We shall not be deterred by this uncertainty, as we can, in fact, still
calculate the injected free-energy flux (6.4) by considering solely the fluctuations at the
injection scale; we shall then propose a way of determining what that scale is, and hence
calculate the turbulent heat flux.

First, let us assume that the dominant free-energy injection will occur at the
wavenumbers (4.24), where the cTAI growth rate is largest, and given by (4.15):

γ ∼ ko
yρevthe√
LBLT

. (6.29)

Unlike for the electrostatic modes, the second, ‘electromagnetic’ term in (6.4) – involving
energy transport due to heat flux along perturbed field lines – must contribute to the energy
injection by cTAI. Let us estimate its size at the outer scale. The third equation in (4.14)
gives us

δB̄o
x

B0
∼ ko

yρeĀ ∼ ko
‖LT

δT̄o
e

T0e
. (6.30)

Recalling (2.17), we estimate the size of the perturbed heat flux in the collisional limit
from (4.31):

δq̄o
e

n0eT0e
∼ κ∇‖ log T̄o

e ∼ κξ o
∗ ko

‖
δn̄o

e

n0e
∼ ωo

∗e

ko
‖
ϕ̄o. (6.31)

Analogously, in the collisionless limit, we find that [see (D71) and what follows it]

δq̄o
‖e

n0eT0e
∼ δq̄o

⊥e

n0eT0e
∼ ξ o

∗
δn̄o

e

n0e
∼ ωo

∗e

ko
‖
ϕ̄o. (6.32)

Thus, in both limits, the electromagnetic contribution to the free-energy injection can be
written, at the outer scale, as

ε ∼ 1
LT

δq̄o
e

n0eT0e

δB̄o
x

B0
∼ ωo

∗eϕ̄
o δT̄

o
e

T0e
, (6.33)

9This conclusion is based on the (asymptotic) assumption that both sTAI and sETG inject energy around the same
outer scale ko

‖LT/
√
βe ∼ 1, ko

⊥de ∼ 1 (or ∼ χ−1 in the collisional limit). However, a more quantitative analysis of the
stability properties of the collisionless and collisional systems shows that sTAI is stabilised slightly towards the large-scale
side of this assumed outer scale, while sETG is stabilised slightly towards the small-scale side of it (see § 4.4.2 and
Appendices D.6 and E.4). Thus, in principle, it is possible to assess the comparative roles of these two instabilities in
a quantitative way (e.g. numerically). Whether such an analysis is interesting qualitatively depends on whether the two
modes behave very differently in a nonlinear setting.
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meaning that it is comparable to the first term in (6.4), the electrostatic contribution due
to energy transport by the E × B flow.

The potential at the outer scale can once again be estimated from the balance of the
nonlinear time (6.6) with the growth rate (6.29):

ρevthe(ko
⊥)

2ϕ̄ ∼ γ ⇒ ϕ̄o ∼ 1
ko

⊥
√

LBLT
, (6.34)

while the temperature perturbations can be related to ϕo via the first equation in (4.14):

δT̄o
e

T0e
∼ γ

ωo
de

δn̄o
e

n0e
∼
(

LB

LT

)1/2

ϕ̄o ∼ (ko
⊥LT)

−1. (6.35)

Therefore, the injected energy flux (6.33) is

ε ∼ vtheρ
2
e

L3
T

√
βe

(
LT

LB

)1/2

(ko
⊥de)

−1. (6.36)

We must now determine ko
⊥. We conjecture that, like in sETG turbulence, the nonlinear

interaction rate in cTAI turbulence will increase faster with k⊥ than the growth rate (6.29),
γ ∝ ky. This would certainly be the case if the cascade were local, wherein the
Kolmogorov-style argument leading to (6.8) applied (in which case t−1

nl ∝ k4/3
⊥ again). Then

ko
⊥ will be the smallest that it can be. Since it is related to ko

‖ via (4.24) (corresponding to
the maximum growth rate), viz.,

ko
‖LT√
βe

∼

⎧⎪⎪⎨
⎪⎪⎩

(
LT

LB

)1/4

(ko
⊥de)

1/2, collisionless,(
LT

LB

)1/6

(ko
⊥deχ)

1/3, collisional,
(6.37)

we can treat this expression as the analogue of the last expression in (6.14) or (6.20). As
we did in our treatment of sETG turbulence in §§ 6.2.1 and 6.2.2, we now posit that the
parallel outer scale of cTAI turbulence will be set by the system’s parallel size, ko

‖ ∼ L−1
‖ .

Then, from (6.37),

ko
⊥de ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L3/2
T L1/2

B

βeL2
‖
, collisionless,

L3/2
T L1/2

B λe

βeL3
‖

, collisional.
(6.38)

This, of course, assumes that there is no dynamics at larger scales that can set the
perpendicular outer scale. We discuss the constraints set by this assumption in § 7.2.1.
Using (6.38) in (6.36), we can estimate the heat flux due to cTAI turbulence:

QcTAI ∼ n0eT0eεLT ∼ QgB

⎧⎪⎪⎨
⎪⎪⎩
√
βe

(
L‖
LB

)2 (LB

LT

)3

, collisionless,

√
βe

(
L‖
LB

)3 (LB

λe

)(
LB

LT

)3

, collisional.
(6.39)

In order for this construction to be valid, L‖ must be large enough for ko
‖ ∼ L−1

‖ � k‖c,
the latter given by (4.21) – otherwise the system cannot access the cTAI regime in the first
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place. The condition for this is

ko
‖LT√
βe

�
(

LT

LB

)1/2

⇔ LB

LT
�
(

LB

L‖
√
βe

)2

. (6.40)

Thus, cTAI turbulence is relevant for temperature gradients that are even larger than those
needed to access the sETG and sTAI regimes described by (6.17) and (6.24). By comparing
the heat fluxes (6.39) with the second expressions in (6.17) and (6.24), it is not hard to
ascertain that the cTAI fluxes are larger than the sETG–sTAI ones as long as (6.40) is
satisfied.

6.4. Summary of turbulent regimes
In §§ 6.2 and 6.3, we found scaling estimates for the turbulent heat fluxes arising
from sETG, sTAI and cTAI in both the collisionless and collisional limits. Which of these
scalings is realised is determined by the size of the ETG, LT , for given values of L‖, LB
and βe. There are three distinct regimes. For

ko
⊥de ∼ LT

L‖
√
βe

� 1 ⇔ LB

LT
� LB

L‖
√
βe
, (6.41)

the system contains only electrostatic (perpendicular) scales, and the heat flux will simply
be that arising from sETG turbulence, given by the first expressions in (6.17) and (6.24) in
the collisionless and collisional limits, respectively. For

k‖c � 1
L‖

�
√
βe

LT
⇔ LB

L‖
√
βe

� LB

LT
�
(

LB

L‖
√
βe

)2

, (6.42)

the system can access electromagnetic (perpendicular) scales, with the (isobaric) sTAI
and stable KAW being added to the collection of possible modes. However, we showed
in § 6.3.1 that the only effect of the sTAI was to equip the sETG turbulent spectrum with
an electromagnetic tail at longer wavelengths, with at most an order-unity enhancement
of the turbulent heat flux. This heat flux is still the same as that arising from the sETG
turbulence, but with the outer scaled fixed at the flux-freezing scale – it is given by the
second expressions in (6.17) and (6.24). Finally, for

1
L‖

� k‖c ⇔ LB

LT
�
(

LB

L‖
√
βe

)2

, (6.43)

the system has a large enough parallel size to activate cTAI. The resultant turbulent heat
flux, given by (6.39), dominates over that due to the sETG and sTAI.

To summarise, we can write the turbulent heat flux in the collisionless limit as

Q ∼ QgB

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
L‖
LB

)(
LB

LT

)3

,
LB

LT
� LB

L‖
√
βe
,

1√
βe

(
LB

LT

)2

,
LB

L‖
√
βe

� LB

LT
�
(

LB

L‖
√
βe

)2

,

√
βe

(
L‖
LB

)2 (LB

LT

)3

,
LB

LT
�
(

LB

L‖
√
βe

)2

,

(6.44)
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(a)

(b)

FIGURE 9. The scaling of the turbulent heat flux with LB/LT in the (a) collisionless and (b)
collisional limits. As LB/LT is increased, the electron transport initially becomes less stiff, as
flux freezing pins down the ETG injection scale, after which it stiffens again as cTAI takes over.

or, in the collisional limit, as

Qν ∼ QgB

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
L‖
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)2 (LB

λe

)(
LB

LT

)3

,
LB

LT
� LB

L‖
√
βe
,

1
βe

(
LB

λe

)(
LB

LT

)
,
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L‖
√
βe
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LT
�
(

LB

L‖
√
βe

)2

,

√
βe

(
L‖
LB

)3 (LB

λe

)(
LB

LT

)3

,
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LT
�
(

LB

L‖
√
βe

)2

.

(6.45)
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Notably, this implies that the effect of increasing βe (or increasing L‖/LB ∼ πq, as in a
tokamak edge) is first to make the electron heat transport less stiff, as flux freezing pins
down the ETG injection scale, and then to stiffen it back again, as cTAI takes over. This
is sketched in figure 9. A striking (and perhaps disturbing) feature of these results is the
discontinuity in the collisional turbulent heat flux around the transition between the sTAI-
and cTAI-dominated regimes, described by the last two expressions in (6.45). Comparing
these, it is easy to see that the latter is larger than the former for

LB

LT
�
(

LB

L‖
√
βe

)3/2

. (6.46)

This condition is obviously met before the parallel system size is large enough in order
to activate the cTAI, meaning that the sTAI regime must persist – despite it supporting a
notionally lower flux than that predicted by the cTAI scaling – until the inequality in (6.43)
is satisfied, at which point the cTAI takes over, leading to the discontinuity. Whether
this and the other simple ‘twiddle-algebra’ considerations that led to (6.44) and (6.45)
survive the encounter with quantitative reality is left for future numerical investigations to
determine.

7. Discussion
7.1. Summary

We have considered electromagnetic instabilities and turbulence driven by the ETG in a
local slab model of a tokamak-like plasma with constant equilibrium gradients (including
magnetic drifts but not magnetic shear; see § 2.1), with the governing equations (§ 2.6)
derived in a low-beta asymptotic limit of gyrokinetics. Central to these considerations was
the electron inertial scale de, which divided our system into two distinct physical regimes:
electrostatic (perpendicular scales below de, k⊥ � d−1

e , or d−1
e χ

−1 in the collisional
limit, where χ = LT/λe

√
βe) and electromagnetic (perpendicular scales above de, but still

smaller than the ion gyroradius, ρ−1
i � k⊥ � d−1

e , or d−1
e χ

−1 in the collisional limit),
distinguished by whether or not the magnetic field lines were frozen into the electron flow
(2.31).

In the electrostatic regime, magnetic field lines are decoupled from the electron flow, and
so electrons are free to flow across field lines without perturbing them. In this regime, we
recovered both the familiar sETG (§§ 3.1 and 3.2) and cETG (§ 3.3) instabilities, noting in
particular that the mechanism responsible for the extraction of free energy from the (radial)
equilibrium temperature gradient was the fluctuating E × B flow – the usual electrostatic
linear drive – in that it converted the equilibrium temperature variation into perturbations
of the electron temperature [see, e.g., the third equation in (3.4)].

In the electromagnetic regime, the magnetic field lines are frozen into the electron
flow (2.31), meaning that perpendicular magnetic-field perturbations δB⊥ are created
as electrons move across field lines and drag the latter along. Crucially, this means
that the equilibrium temperature gradient has a component along the perturbed field
line, viz., its projection onto the radial component of the perturbed magnetic field [see,
e.g., the second term in (2.18)], which proved to be responsible for the electromagnetic
destabilisation associated with the novel thermo-Alfvénic instability (TAI) (§ 4). We
showed that the TAI exists in both a slab version (sTAI, destabilising kinetic Alfvén
waves; §§ 4.3.1 and 4.4.1) and a curvature-mediated version (cTAI; §§ 4.1 and 4.4).
The transition between these two occurs at the critical parallel wavenumber k‖c (4.21):
from sTAI at k‖ � k‖c to cTAI at k‖ � k‖c. Another important scale for the TAI is
the perpendicular wavenumber k⊥∗ (4.26), which controls the transition between the
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isobaric (k⊥∗ � k⊥ � d−1
e , or d−1

e χ
−1 in the collisional limit) and isothermal (ρ−1

i �
k⊥ � k⊥∗) limits. In the isobaric limit (§ 4.4), we demonstrated that cTAI is subdominant
to sTAI, and can be regarded as an electron-scale extension of MHD-like modes, such
as kinetic-ballooning modes (KBMs). In contrast, in the isothermal limit (§ 4.1), we
found, most importantly for transport, that the cTAI is the dominant instability, with a
peak growth rate (4.15) greater than that of the cETG (3.13), exciting electromagnetic
perturbations with a specific parallel wavenumber (4.24) (unlike the cETG, which is
two-dimensional). This isothermal cTAI’s physical mechanism hinges on the fact that –
in the presence of either dominant parallel streaming k‖vthe (in the collisionless limit) or
thermal conduction κk2

‖ ∝ k2
‖v

2
the/νe (in the collisional one) – perturbations of the magnetic

field are coupled to those of the electron temperature as the latter must always adjust to
cancel the variation of the equilibrium temperature along the perturbed field line [see,
e.g., the isothermal condition (4.12)]. Such an instability mechanism can only be present
in the electromagnetic regime, when perturbations of the magnetic field’s direction are
significant.

Given that the dominant source of turbulent energy injection is often associated
with the largest scales of a given system, the presence of such a large-scale,
electromagnetic instability suggested that the picture of electromagnetic turbulence
would depart significantly from the electrostatic one. This is indeed what we found:
using a critical-balance phenomenology analogous to Barnes et al. (2011) to construct
a turbulent-cascade theory for the free energy injected by both the electrostatic and
electromagnetic instabilities (§ 6), we demonstrated that the cTAI dominated the turbulent
transport for temperature gradients LB/LT larger than β−1

e (LB/L‖)2 (§ 6.4). Moreover, the
turbulent electron heat flux carried by the fluctuations at the cTAI injection scale (6.38)
turned out to scale more steeply with the temperature gradient than the heat flux due to
the electrostatic sETG turbulence in this regime, thus giving rise to stiffer transport [see
(6.44) in the collisionless limit and (6.45) in the collisional one]. These results would
appear to be particularly relevant in the context of the edge regions of a tokamak, where
both the safety factor and the temperature gradients are large (see, e.g., Ham et al. 2021
and references therein).

These results demonstrate that if finite perturbations of the magnetic-field direction
are allowed in the presence of a radial equilibrium ETG, then the system is able to
extract free energy from the equilibrium temperature gradient via a route that is distinct
from the usual E × B feedback, and that this extraction channel can be dominant.
Given that all realistic plasmas are at least somewhat electromagnetic, no matter how
small the plasma beta, this physics should be of some concern, or at least interest, to
those attempting to model the effect of electromagnetic turbulence in tokamak-relevant
configurations.

7.2. Open issues
The results and conclusions of this paper were derived within the context of a reduced
model, as doing so allowed us to focus directly on the fundamental physical processes
behind electromagnetic destabilisation on electron scales in the presence of an ETG. Such
simplifications, however, always come at a cost to general practical applicability, and so
we will here devote some space to a discussion of the most pressing questions and lines of
investigation left open, or opened up, by this work.

7.2.1. Ion dynamics
All of the results of this paper have been derived in the limit where the ion density

response is Boltzmann, as in (2.19). In terms of perpendicular scales, this is equivalent to
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the assumption that k⊥ � ρ−1
i . Simultaneously, the electromagnetic physics – our main

subject – occurs on the scales at which magnetic-field perturbations can be created by
electron motions, viz., below the flux-freezing scale, k⊥ � d−1

e . Therefore, in order for the
adiabatic-ion assumption to remain valid, we need a sufficient separation between ρi and
the largest perpendicular scale within our system. For the outer scale (6.38) of our cTAI
turbulence, this implies a restriction on the electron beta of

Z2me

τmi
� βe � τmi

Z2me

(
LT

LB

)3

⎧⎪⎪⎨
⎪⎪⎩

(
LB

L‖

)4

, collisionless,(
LB

L‖

)6 (
λe

LB

)2

, collisional,
(7.1)

with the lower bound following from demanding that ρi � de. This scale separation is
never going to be very large in a realistic plasma, and thus an important question is whether
the TAI mechanism – that provides an electromagnetic source of free energy on the largest
electron scales – survives at, or indeed across, the ion Larmor transition, for k⊥ρi � 1.
Answering this will require both a careful handling of finite-ion-Larmor-radius effects
and the introduction of an ITG, in addition to the ETG. These extensions have been left
for future investigation. We note that, in what is perhaps a preview of the result of such
an investigation, Maeyama, Kusaka & Watanabe (2021) found that there was very little
difference in the electrostatic potential ϕ between the cases of adiabatic and kinetic ions
when electromagnetic effects were taken into account (see their figure 4), which suggests
that at least qualitatively, the nonlinear results of § 6 may not be significantly modified by
the presence of non-adiabatic ions for the plasma parameters considered here.

7.2.2. Micro-tearing modes and magnetic shear
As mentioned in § 1, much of the research into electromagnetic microinstabilities and

turbulence in fusion contexts has focused on two microinstability classes: MTMs and
KBMs. While we have already discussed the latter within the context of this work (§ 4.4),
we have little to say about MTMs. This is because we did not include in our model any
shear of the equilibrium magnetic field – often thought to be a crucial ingredient in MTM
dynamics, which encourages the associated tearing of magnetic field lines (see, e.g., Zocco
et al. 2015 and references therein). Note that the effect sometimes viewed as responsible
for driving slab MTMs in the absence of magnetic shear, the so-called ‘time-dependent
thermal force’ (Hassam 1980a), is negligible within our analysis (see Appendix G.2). As a
result, we conclude that the TAI cannot be classed as a particular branch of the MTM
zoo. It is, naturally, an interesting question as to how the results of this paper would
be modified in the presence of magnetic shear; given that the TAI mechanism leads to
a growth of perturbations of the magnetic field’s direction, it is possible that the TAI
could drive tearing in a sheared setting. In any case, introducing magnetic shear into our
reduced system should provide an appropriately simple model for an investigation of MTM
dynamics. An analogue of such a system in full tokamak geometry is the electromagnetic
extension of Hardman et al. (2022).

7.2.3. Nonlinear saturation of electromagnetic simulations
An aspect of turbulent transport that has baffled tokamak modellers in recent years

is the failure to find a saturated state in local nonlinear electromagnetic simulations (see,
e.g., Pueschel et al. 2013a,b and Pueschel, Terry & Hatch 2014 and references therein). It is
believed that this failure is due to the presence of MTMs or KBMs, and to their interactions
with zonal flows, though relatively little is understood about whether this issue is a truly
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physical one – related to the mechanisms of saturation of electromagnetic turbulence – or
is due to numerical subtleties and difficulties. Given that the model equations considered
in this paper are clearly electromagnetic, their nonlinear numerical investigation should be
able to provide some insight into this issue. Should these equations experience a blow-up
similar to gyrokinetics, then they are sufficiently simple – in comparison with the full
gyrokinetic system employed by the simulations cited above – that making theoretical
sense of this saturation failure should be more amenable.

The issue of the blow-up aside, there is of course the broader question of the structure
of the saturated state of electromagnetic turbulence in tokamak plasmas – or even the
much simpler tokamak-inspired ones, like ours. The a priori analysis provided in § 6 is
but a preliminary step towards a more thorough numerical investigation, based on the
model derived here, of cTAI turbulence, its saturation, its transport properties, its ability
to support reduced transport states (cf. Ivanov et al. 2020; Ivanov, Schekochihin & Dorland
2022), etc. These questions will be addressed in a future publication, for which the present
article provides the necessary theoretical background.
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Appendix A. Derivation of low-beta equations

We would like to work with a set of equations that, while representing a correct
approximation to plasma dynamics in some physically realisable limit and containing all
the physics that is of interest to us, have a minimum of features that increase technical
complexity without being qualitatively essential. This attitude was taken in Zocco &
Schekochihin (2011), who were interested in electron kinetics in the context of magnetic
reconnection; the optimal regime to consider turned out to be the low-beta limit of ion
gyrokinetics and electron drift kinetics. A similar regime will serve our purposes here,
but, as we now wish to include also energy injection due to an equilibrium temperature
gradient and the magnetic drifts associated with a magnetic geometry of locally constant
curvature, we will present a self-contained derivation of the relevant equations.

In what follows, Appendix A.1 introduces the nature of the equilibrium and fluctuations
that we consider in our system, including the constraints on the equilibrium length scales
due to the magnetic geometry defined in § 2.1. Appendix A.2 describes and physically
motivates our asymptotic ordering. Appendix A.3 introduces the gyrokinetic system of
equations. Our low-beta ordering is then implemented to derive equations describing both
ion and electron dynamics in Appendices A.4 and A.5, respectively. The collisional limit
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of the resultant equations is then derived in Appendix A.6. Finally, Appendix A.7 details
the reduction of our equations – both collisionless and collisional – to those considered in
the main text. Readers merely interested in the latter equations can skip ahead to Appendix
A.7, working backwards where further clarification is required.

A.1. Equilibrium and fluctuations
We describe both species (s = e for electrons and s = i for ions) kinetically, with their
distribution functions sought in the form

fs = f0s + δfs. (A1)

Although we neglected gradients of both density and ion-temperature in the main text,
here, for the sake of generality, we allow our local equilibria f0s to support radial gradients,
which are assumed to be constant across our domain, in both density and temperature for
both species, i.e.

∇f0s = −
[

1
Lns

+ 1
LTs

(
v2

v2
ths

− 3
2

)]
x̂f0s, L−1

ns
= − 1

n0s

dn0s

dx
, L−1

Ts
= − 1

T0s

dT0s

dx
, (A2)

where n0s and T0s are the equilibrium density and temperature of species s, respectively,
vths = √

2T0s/ms is their thermal speed and ms their mass. It is assumed that all equilibrium
quantities, of typical lengthscale L, evolve on the (long) transport timescale τ−1

E ∼
(ρs/L)3Ωs, and so can be considered static. Here, ρs = vths/|Ωs| is the thermal Larmor
radius and Ωs = qsB0/msc the cyclotron frequency of species s with charge qs (qi = Ze,
qe = −e), with B0 the equilibrium magnetic field strength. Note that quasineutrality
(n0e = Zn0i) implies that Lne = Lni = Ln.

The perturbations δfs around these equilibria have characteristic frequency ω and
wavenumbers k‖ and k⊥ parallel and perpendicular, respectively, to the magnetic field B.
The magnetic field consists of an equilibrium part that is oriented in the b0 direction and
varies radially, plus a time- and space-dependent fluctuating part:

B(r, t) = B0(x)b0 + δB(r, t). (A3)

The equilibrium (mean) magnetic field has the scale length and radius of curvature

L−1
B = − 1

B0

dB0

dx
, R−1 = |b0 · ∇b0| , (A4)

respectively, both of which are assumed to be constant across our domain, while the
fluctuating part δB has the same characteristic frequency and wavenumbers as δfs. The
electric field E is assumed to have no mean part.

For a non-relativistic plasma, the equilibrium magnetic field is described by Ampère’s
law and force balance:

j0 = c
4π

∇ × B0,
1
c

j0 × B0 = ∇⊥
∑

s

n0sT0s. (A5)

Combining these two equations, we arrive at the usual expression of force balance between
the pressures of all plasma species, the equilibrium magnetic pressure and magnetic
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curvature force due to field-line bending:

∇⊥

(∑
s

n0sT0s + B2
0

8π

)
= B2

0

4π
(b0 · ∇)b0. (A6)

Adopting the geometry described in § 2.1, with the generalisation (A2), this gives us a
constraint by which the equilibrium lengthscales of our system are related:

βe

2

(
1
Ln

+ 1
LTe

)
+ τβe

2Z

(
1
Ln

+ 1
LTi

)
+ 1

LB
= 1

R
, (A7)

where τ = T0i/T0e is the temperature ratio and βe = 8πn0eT0e/B2
0 the electron beta.

Consideration of such constraints is important at finite beta: e.g. the so-called ‘gradient
drift coupling’ instability found by Pueschel et al. (2015) was demonstrated as spurious by
Rogers, Zhu & Francisquez (2018), with the growth rate of the instability disappearing
once the equilibrium constraint had been taken into account. At vanishingly small
beta, which will be assumed in (A12), however, (A7) simply becomes R = LB, and the
remaining equilibrium lengthscales may be chosen arbitrarily. In what follows, we no
longer distinguish between R and LB.

A.2. Low-beta gyrokinetic ordering
We want our equations to be as simple as possible, but sufficiently complete in order
to retain the parallel streaming of electrons (and their associated kinetic effects, such as
Landau damping; Landau 1946), kinetic Alfvén waves (KAWs), drift waves, perpendicular
advection by both magnetic drifts and E × B flows and electron collisions. Therefore, we
postulate an asymptotic ordering in which the characteristic frequency of the perturbations
ω and the characteristic frequencies of all of the above phenomena are formally
comparable:

ω ∼ k‖vthe ∼ ωKAW ∼ ω∗s ∼ ωds ∼ k⊥vE ∼ νee ∼ νei, (A8)

where

ωKAW = 1√
2

k‖vthek⊥de, ω∗s = kyρsvths

2LTs

, ωds = kyρsvths

2LB
(A9)

are the KAW frequency, the drift frequency and magnetic-drift frequency, respectively,
vE = cE × B/B2 is the E × B drift velocity (c is the speed of light) and

νei = 4
√

2π

3
e4n0e logΛ

m1/2
e T3/2

0e

, νee = νei

Z
(A10)

are the electron–ion and electron–electron collision frequencies, respectively, with logΛ
the usual Coulomb logarithm (Braginskii 1965; Helander & Sigmar 2005).

In (A9), we also used the electron skin depth (inertial length) de = ρe/
√
βe. This

lengthscale will be of key significance for us because it regulates the transition between
the electrostatic and electromagnetic regimes. Indeed, the ordering of parallel streaming
with respect to KAW implies that

k‖vthe ∼ ωKAW ⇒ k⊥de ∼ 1, (A11)

meaning that we will retain the effects of electron inertia. Our ordering of βe with respect
to other physical (dimensionless) parameters is determined by our choice of ordering of
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perpendicular wavenumbers k⊥ with respect to the electron and ion Larmor radii. We
choose to work in the drift-kinetic approximation for electrons, ordering our perpendicular
wavenumbers so that

k⊥ρi ∼ 1 ⇒ k⊥ρe ∼
√

me

mi
∼ k⊥de

√
βe ⇒ βe ∼ me

mi
, (A12)

the last relation following from (A11). We stress that this choice, while an analytically
convenient one, it is by no means the unique possible route to the minimalist equations
that we are going to derive here.

The ordering of the drift and collision frequencies with respect to the parallel-streaming
rate gives us the ordering of parallel wavenumbers:

k‖vthe ∼ ω∗s ∼ ωds ∼ k⊥ρe
vthe

L
⇒ k‖L ∼

√
βe, (A13)

k‖vthe ∼ νee ∼ νei ∼ vthe

λe
⇒ k‖λe ∼ 1, (A14)

where λe = vthe/νe is the electron mean free path and νe = νee + νei.
The ordering of the E × B drifts with respect to parallel streaming determines the size

of perpendicular flows within our system:

k‖vthe ∼ k⊥vE ⇒ vE

vthe
∼ k‖

k⊥
∼ de

L

√
βe ≡ ε

√
βe, (A15)

where ε = de/L ∼ ρi/L is the gyrokinetic small parameter (see, e.g., Abel et al. 2013),
which need not be ordered with respect to βe. It mandates small-amplitude, anisotropic
perturbations. The frequency of these perturbations is small compared with the Larmor
frequencies of both electrons and ions:

ω

Ωe
∼ k⊥vE

Ωe
∼ k⊥ρeε

√
βe ∼ εβe,

ω

Ωi
= mi

Zme

ω

Ωe
∼ ε. (A16)

The ordering of vE allows us to order the amplitude of the perturbed scalar potential φ:

vE

vthe
∼ c

B0

k⊥φ
vthe

∼ k⊥ρe
eφ
T0e

⇒ eφ
T0e

∼ ε. (A17)

The density perturbations δns are ordered anticipating a Boltzmann density response and
the temperature perturbations δTs are assumed comparable to them:

δTe

T0e
∼ δTi

T0i
∼ δni

n0i
= δne

n0e
∼ eφ

T0e
∼ ε. (A18)

Finally, the perpendicular magnetic-field perturbations are ordered so as to allow field
variation along the exact (perturbed) field lines to be order-unity different from the
variation along the direction of the equilibrium magnetic field, viz.,

∂

∂z
∼ δB⊥

B0
· ∇⊥ ⇒ δB⊥

B0
∼ k‖

k⊥
∼ k‖L

k⊥de

de

L
∼ ε

√
βe, (A19)

whereas the (compressive) parallel magnetic-field perturbations are ordered anticipating
pressure balance:

δB‖
B0

= 4π

B2
0
δ

(
B2

8π

)
∼ 4π

B2
0
δ(nsTs) ∼ βe

δTe

T0e
∼ εβe. (A20)

This will allow us to ignore δB‖ everywhere.
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By ordering the characteristic frequencies of the perturbations ω to timescales relevant
to the physics in which we are interested [see (A8)] and adopting a particular ordering
of perpendicular wavenumbers [see (A12)], we have found that all relevant quantities are
naturally ordered with respect to either βe or the gyrokinetic small parameter ε = de/L,
where L ∼ Lns ∼ LTs ∼ LB ∼ R. To summarise, we postulate the following ordering of
frequencies:

ω

Ωe
∼ εβe,

ω

Ωi
∼ ε; (A21)

lengthscales:

k⊥ρi ∼ k⊥de ∼ 1, k⊥ρe ∼
√
βe, k‖L ∼

√
βe, k‖λe ∼ 1,

k‖
k⊥

∼ ε
√
βe; (A22)

and fluctuation amplitudes:

eφ
T0e

∼ δne

n0e
∼ δni

n0i
∼ δTe

T0e
∼ δTi

T0i
∼ ε,

δB⊥
B0

∼ ε
√
βe,

δB‖
B0

∼ εβe. (A23)

The above ordering of frequencies, lengthscales and amplitudes with respect to the small
parameter ε is the standard gyrokinetic ordering (see, e.g., Abel et al. 2013). We choose to
treat the ordering in βe, and thus in the electron–ion mass ratio, as subsidiary to this, viz.,

ε �
√
βe ∼

√
me

mi
� 1, (A24)

with all other dimensionless parameters, such as the ratios between different equilibrium
scales, being treated as finite (i.e. independent of βe), although we introduce further
subsidiary expansions in these parameters later on. In Appendix A.3, we introduce the
gyrokinetic approximation, which will serve as the starting point for further reduction of
our equations by means of the low-beta ordering.

A.3. Gyrokinetics
Under the gyrokinetic ordering, the perturbed distribution function for species s consists
of Boltzmann and gyrokinetic parts:

δfs(r, v, t) = −qsφ(r, t)
T0s

f0s(x, v)+ hs(Rs, v‖, v⊥, t), (A25)

where Rs = r − b0 × v⊥/Ωs is the guiding-centre position and hs evolves according to the
gyrokinetic equation

∂

∂t

(
hs − qs 〈χ〉Rs

T0s
f0s

)
+ (
v‖b0 + vds

) · ∇hs + vχ · ∇⊥ (hs + f0s) =
(
∂hs

∂t

)
c

. (A26)

Here, χ = φ − v · A/c is the gyrokinetic potential (φ and A are the scalar and vector
potential, respectively). It gives rise to the nonlinear drift

vχ · ∇⊥hs = c
B0

b0 ·
(
∂ 〈χ〉Rs

∂Rs
× ∂hs

∂Rs

)
, (A27)

which includes the E × B drift, the parallel streaming along perturbed field lines and the
∇B drift associated with the perturbed magnetic field (see Howes et al. 2006). There
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are also important linear terms: energy injection due to gradients of the equilibrium
distribution [see (A2)]

vχ · ∇⊥f0s = − c
B0

∂ 〈χ〉Rs

∂Ys

∂f0s

∂x
= c

B0

∂ 〈χ〉Rs

∂Ys

[
1

Lns

+ 1
LTs

(
v2

v2
ths

− 3
2

)]
f0s, (A28)

and the magnetic drifts associated with the equilibrium field

vds = b0

Ωs
×
[
v2

‖b0 · ∇b0 + 1
2
v2

⊥∇ log B0

]
= −sgn(qs)

ρsvths

2

[
2
R

v2
‖
v2

ths

+ 1
LB

v2
⊥
v2

ths

]
ŷ,

(A29)
where R and LB are defined in (A4). The last term on the right-hand side of (A26) is the
(linearised) collision operator; we specify its explicit form in Appendix A.5.

The gyrokinetic equation (A26) is closed by the quasineutrality condition

0 =
∑

s

qsδns =
∑

s

qs

[
−qsφ

T0s
n0s +

∫
d3v 〈hs〉r

]
, (A30)

and by the parallel and perpendicular parts of Ampère’s law, which are, respectively,

∇2
⊥A‖ = −4π

c

∑
s

qs

∫
d3v v‖ 〈hs〉r , (A31)

∇2
⊥δB‖ = −4π

c
b0 ·

[
∇⊥ ×

∑
s

qs

∫
d3v 〈v⊥hs〉r

]
. (A32)

However, given the ordering (A20), we are able to neglect parallel magnetic-field
perturbations everywhere, meaning that the gyrokinetic potential reduces to

χ = φ − v‖A‖
c
. (A33)

We thus only need φ and A‖ to determine the other fields to lowest order, and so (A32) can
be dropped from our system of equations.

In the above and throughout this appendix, 〈· · · 〉 denotes averages with respect to the
gyroangle ϑ : for any function g,

〈g(Rs)〉r = 〈
g(r − ρs(ϑ))

〉 = ∫ 2π

0

dϑ
2π

g(r − ρs(ϑ)), (A34)

〈g(r)〉Rs
= 〈

g(Rs + ρs(ϑ))
〉 = ∫ 2π

0

dϑ
2π

g(Rs + ρs(ϑ)), (A35)

where ρs(ϑ) = b0 × v⊥/Ωs is the velocity-dependent gyroradius, v = v‖b0 + v⊥(cosϑ ŷ −
sinϑ x̂) and the unit vectors {x̂, ŷ, b0} form a right-handed orthonormal basis.

In Appendices A.4 and A.5, we systematically expand the gyrokinetic system of (A26),
(A30) and (A31) to obtain a closed system to leading order in the low-beta expansion
(A24).
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A.4. Ion kinetics and field equations
We can neglect the parallel-streaming term in (A26) for the ions, because

k‖vthi ∼
√

me

mi
k‖vthe. (A36)

The gyrokinetic potential reduces to the electrostatic potential in the case of the ions,
χ ≈ φ, because

vthiA‖
cφ

∼
√
βe ∼

√
me

mi
. (A37)

Finally, we can neglect any contributions arising from the collision operator, because ion
collision rates are small within our expansion:

νii ∼
√

me

mi
νei, νie ∼ me

mi
νei. (A38)

Introducing the decomposition

hi = gi + Z
τ

〈ϕ〉Ri
f0i, ϕ = eφ

T0e
, (A39)

we can, therefore, write our ion gyrokinetic equation as follows:(
∂

∂t
+ vdi · ∇⊥

)
gi + vdi · ∇⊥

(
Z
τ

〈ϕ〉Ri
f0i

)
+ ρevthe

2

{〈ϕ〉Ri
, gi + f0i

} = 0. (A40)

In general, we must solve (A40) for gi in order to determine hi, and thus the ion
contribution to the field equations (A30) and (A31). However, since all the parallel
dynamics have been neglected in (A40), its solution gi, and hence hi, will be an even
function of v‖. Therefore, the ion contribution in (A31) vanishes, and we obtain a field
equation for A‖ in terms of electron dynamics (the electron parallel current) only:

u‖e

vthe
= d2

e∇2
⊥A, A = A‖

ρeB0
, (A41)

where we have defined A as the dimensionless counterpart to A‖, as in (2.8). Thus, the
only place where ion dynamics enters into our equations is through the quasineutrality
condition (A30), which, with the decomposition (A39), becomes

δne

n0e
= −τ̄−1ϕ + 1

n0i

∫
d3v 〈gi〉r , (A42)

where τ̄−1 is an operator defined as follows:

− τ̄−1ϕ = −Z
τ
(1 − Γ̂0)ϕ ≈

⎧⎪⎨
⎪⎩

Z
2τ
ρ2

i ∇2
⊥ϕ, k⊥ρi � 1,

−Z
τ
ϕ, k⊥ρi � 1,

(A43)

and the operator Γ̂0 can be expressed, in Fourier space, in terms of the modified Bessel
function of the first kind: Γ0 = I0(αi)e−αi , where αi = (k⊥ρi)

2/2.
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Throughout this paper, we are concerned with two physical limits in which (A40) is
rendered solvable and the quasineutrality constraint (A42) simplified. The first of these
is the limit k⊥ρi � 1. Under this assumption, and with the ordering ω ∼ ωdi ∼ ω∗i [see
(A8)], the solution of (A40) has the size

gi ∼ 1√
k⊥ρi

ϕf0i, (A44)

because all the drive (inhomogeneous) terms in (A40) involve the gyroaveraged potential
〈ϕ〉Ri

∼ ϕ/
√

k⊥ρi. There is another gyroaveraging in (A42), so the contribution

1
n0i

∫
d3v 〈gi〉r ∼ ϕ

k⊥ρi
(A45)

can be safely neglected in this limit. The remaining equation relating δne to ϕ is, therefore,

δne

n0e
= −τ̄−1ϕ = −Z

τ
ϕ, (A46)

which is (2.19), an approximation of ‘adiabatic ions’.
The second useful limit is one of strong ETG drive. Let us introduce a subsidiary

ordering of equilibrium gradients

Ln ∼ LTi ∼ LB � LTe (A47)

and frequencies

ωdi ∼ ω∗i ∼ ωde � ω ∼ ω∗e. (A48)

If this is satisfied, then, still allowing k⊥ρi ∼ 1,

gi ∼ ω∗i

ω
〈ϕ〉Ri

f0i (A49)

and, consequently, in (A42),

1
n0i

∫
d3v 〈gi〉r ∼ ω∗i

ω
ϕ � ϕ. (A50)

Neglecting this term leaves us again with a simple linear relationship between δne and ϕ,
but τ̄−1 is still the Bessel operator defined in (A43), keeping the effects of finite ion Larmor
radius without the need to solve the ion gyrokinetic equation. Ion finite-Larmor-radius
modifications do not play a crucial physical role in the majority of this paper, but, for
completeness, we have retained τ̄ dependencies where they may be relevant for future
investigations.

A.5. Electron equations
A.5.1. Electron kinetic equation

Our ordering of perpendicular lengthscales (A22) means that the electrons are
drift-kinetic to leading order in our expansion (A24). It is convenient to revert to working
with the total perturbed distribution function δfe [(A25) for s = e], instead of he. In the
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limit k⊥ρe � 1, all gyroaverages in (A26) turn into unity operators, and, making use of
the simplification

∂

∂t
+ v‖

∂

∂z
+ vχ · ∇⊥ = d

dt
+ v‖∇‖, (A51)

where the operators d/dt (convective derivative with respect to the E × B flow) and ∇‖
(parallel derivative along the exact field line) are defined in (2.7) and (2.8), respectively,
we find(

d
dt

+ v‖∇‖+vde · ∇⊥

)
δfe = (vde · ∇⊥ϕ)f0e − vχ · ∇⊥f0e − v‖eE‖

T0e
f0e +

(
∂δfe

∂t

)
c

.

(A52)
In terms of our dimensionless field variables, the parallel electric field is

− eE‖
T0e

= 2
vthe

dA
dt

+ ∂ϕ

∂z
. (A53)

Following (A28), the linear drive term is

vχ · ∇⊥f0e = ρevthe

2
∂

∂y

(
ϕ − 2

v‖
vthe

A
)[

1
Ln

+ 1
LTe

(
v2

v2
the

− 3
2

)]
f0e. (A54)

A.5.2. Electron collision operator
We now wish to specify the form of the collision operator in (A52). Given that our

primary concern is not precise quantitative capture of collisional transport, we eschew
the most general Landau collision operator in favour of something more analytically
convenient, while still retaining the correct conservation properties, as well as capturing
the effects of friction between electrons and ions. Namely, we adopt a modified version of
the Dougherty (1964) operator:(

∂δfe

∂t

)
c

= νe

[
1
2
∂

∂v‖

(
v2

the
∂

∂v‖
+ 2v‖

)
+ 2

∂

∂v2
⊥
v2

⊥

(
v2

the
∂

∂v2
⊥

+ 1
)]
δfe

+νe

[(
2v2

‖
v2

the

− 1

)
+ 2

(
v2

⊥
v2

the

− 1
)]

δT‖e + 2δT⊥e

3Te
f0e + 2νee

v‖u‖e

v2
the

f0e, (A55)

where

δT‖e

T0e
= 1

n0e

∫
d3v

(
2v2

‖
v2

the

− 1

)
δfe,

δT⊥e

T0e
= 1

n0e

∫
d3v

(
v2

⊥
v2

the

− 1
)
δfe (A56)

are the parallel and perpendicular electron temperature perturbations, respectively. The
terms in (A55) involving δT‖e and δT⊥e are there to ensure that the operator conserves
particle number and energy. It does not conserve momentum:

1
n0e

∫
d3v v‖

(
∂δfe

∂t

)
c

= −νeiu‖e, (A57)

reflecting the effect of electrons experiencing friction against the motionless ion
background. This collision operator is identical to that adopted in Mandell, Dorland &
Landreman (2018) (up to velocity normalisations; see their Appendix A), except we have
neglected all electron finite-Larmor-radius contributions, consistent with the ordering
(A22) and the resultant drift-kinetic approximation.
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A.5.3. Hermite–Laguerre expansion
It will be useful to consider a ‘fluid’ description of the plasma, by expanding δfe in

an appropriate polynomial basis. It will prove convenient to use the Hermite–Laguerre
moments of δfe, defined by

g�,m(r, t) = 1
n0e

∫
d3v(−1)�

Hm(v‖/vthe)L�(v2
⊥/v

2
the)√

2mm!
δfe(r, v‖, v2

⊥, t), (A58)

δfe(r, v‖, v2
⊥, t) =

∞∑
�=0

∞∑
m=0

(−1)�
Hm(v‖/vthe)L�(v2

⊥/v
2
the)f0e√

2mm!
g�,m(r, t), (A59)

where Hm are the Hermite polynomials

Hm(v̂) = (−1)mev̂
2 dm

dv̂m
e−v̂2

,
1√
π

∫
dv̂Hm(v̂)Hm′(v̂)e−v̂2 = 2mm! δmm′, (A60)

and L� are the Laguerre polynomials

L�(μ) = eμ

�!
d�

dμ�
(e−μμ�),

∫
dμL�(μ)L�′(μ)e−μ = δ��′ . (A61)

The use of Hermite polynomials as a (parallel) velocity basis for gyrokinetics has seen
much application in the slab-type geometry that we are considering in this paper (Smith
1997; Watanabe & Sugama 2004; Zocco & Schekochihin 2011; Zocco et al. 2015; Hatch
et al. 2013; Loureiro et al. 2016), as they are orthogonal with respect to a (parallel)
Maxwellian weight function, as in (A60). The Laguerre polynomials are a convenient
extension of this basis to perpendicular velocities, given that they are also orthogonal
with respect to a (perpendicular) Maxwellian weight function, as in (A61). Our choice
of collision operator (A55) was motivated by the fact that the Hermite–Laguerre basis
functions are its eigenfunctions.

Applying the transformation (A58) to (A52) and making use of the recurrence relations

v̂Hm = 1
2

Hm+1 + mHm−1,
dHm

dv̂
= 2mHm−1, (A62)

μL� = (2�+ 1)L� − (�+ 1)L�+1 − �L�−1,
dL�
dμ

= dL�−1

dμ
− L�−1, (A63)

we arrive at the following equation for the Hermite–Laguerre moments of δfe:

dg�,m
dt

+ vthe√
2
∇‖(

√
m + 1 g�,m+1 + √

m g�,m−1)+ ωde[g�,m] − C[g�,m] = I�,m, (A64)
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where, introducing the short-hand δ�′,m′ = δ��′δmm′ , we define

C[g�,m] = −νe(m + 2�)g�,m + νeeg0,1δ0,1 + νe

3

(√
2g0,2 + 2g1,0

) (√
2δ0,2 + 2δ1,0

)
,

(A65)

ωde[g�,m] = ρevthe

2LB

∂

∂y

[√
(m + 1)(m + 2)g�,m+2 + (�+ 1)g�+1,m + 2(m + �+ 1)g�,m

+
√

m(m − 1)g�,m−2 + �g�−1,m

]
, (A66)

I�,m = −ρevthe

2
∂ϕ

∂y

[
δ0,0

Ln
+ 1

LTe

(
δ1,0 + 1√

2
δ0,2

)
− 1

LB

(√
2δ0,2 + δ1,0 + 2δ0,0

)]

+ ρevthe√
2

∂A
∂y

[
δ0,1

Ln
+ 1

LTe

(
δ0,1 + δ1,1 +

√
3
2
δ0,3

)]

+ vthe√
2

(
2
vthe

dA
dt

+ ∂ϕ

∂z

)
δ0,1. (A67)

The second term in (A64) is responsible for linear (parallel) phase-mixing in the Hermite
moments m at a rate k‖vthe (see Parker et al. 2016; Schekochihin et al. 2016; Adkins &
Schekochihin 2018), while the magnetic-drift term ωde[g�,m] is responsible for coupling
between both Hermite and Laguerre moments, adding another mechanism of parallel
phase-mixing as well as introducing perpendicular phase-mixing in �. Note that the
coupling to the perpendicular moment hierarchy only occurs in the presence of the
magnetic drifts. The collision operator C[g�,m] is responsible for regulating fine structure
in phase space by introducing a collisional cutoff for high values of m and �. Lastly, I�,m
represents the energy injection from equilibrium gradients and momentum injection from
the parallel electric field.

A.5.4. ‘Fluid’ equations
In general, (A64) represents an infinite hierarchy of coupled moments through which

the injected energy flows. However, it will be useful for our main discussion to separate a
particular set of ‘fluid’ moments: the perturbations of density δne/n0e = g0,0,

d
dt
δne

n0e
+ ∇‖u‖e + ρevthe

2LB

∂

∂y

(
2
δne

n0e
− 2ϕ + δT‖e

T0e
+ δT⊥e

T0e

)
= −ρevthe

2Ln

∂ϕ

∂y
, (A68)

parallel velocity u‖e/vthe = g0,1/
√

2,

d
dt

u‖e

vthe
+ vthe

2
∇‖

(
δne

n0e
+ δT‖e

T0e

)
+ ρevthe

2LB

∂

∂y

(
4

u‖e

vthe
+ δq‖e + δq⊥e

n0eT0evthe

)

+ νei
u‖e

vthe
= ρevthe

2

(
1
Ln

+ 1
LTe

)
∂A
∂y

+ dA
dt

+ vthe

2
∂ϕ

∂z
, (A69)
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parallel temperature δT‖e/T0e = √
2g0,2 [cf. the first equation in (A56)],

d
dt
δT‖e

T0e
+ vthe∇‖

(
δq‖e

n0eT0evthe
+ 2

u‖e

vthe

)
+ 4

3
νe
δT‖e − δT⊥e

T0e

+ ρevthe

2LB

∂

∂y

(
2
δne

n0e
− 2ϕ + 6

δT‖e

T0e
+ 2

√
6g04 +

√
2g12

)
= −ρevthe

2LTe

∂ϕ

∂y
, (A70)

perpendicular temperature δT⊥e/T0e = g1,0 [cf. the second equation in (A56)],

d
dt
δT⊥e

T0e
+ vthe∇‖

δq⊥e

n0eT0evthe
+ 2

3
νe
δT⊥e − δT‖e

T0e

+ ρevthe

2LB

∂

∂y

(
δne

n0e
− ϕ + 4

δT⊥e

T0e
+

√
2g12 + 2g20

)
= −ρevthe

2LTe

∂ϕ

∂y
, (A71)

parallel heat flux δq‖e/n0eT0evthe = √
3g0,3,

d
dt

δq‖e

n0eT0evthe
+ vthe∇‖

(√
2g04 + 3

2
δT‖e

T0e

)
+ 3νe

δq‖e

n0eT0evthe

+ ρevthe

2LB

∂

∂y

(
2
√

15g05 + 8
δq‖e

n0eT0evthe
+ 6

u‖e

vthe
+

√
3g13

)
= 3ρevthe

2LTe

∂A
∂y
,

(A72)

and perpendicular heat flux δq⊥e/n0eT0evthe = g1,1/
√

2,

d
dt

δq⊥e

n0eT0evthe
+ vthe∇‖

(
1√
2

g12 + 1
2
δT⊥e

T0e

)
+ 3νe

δq⊥e

n0eT0evthe

+ ρevthe

2LB

∂

∂y

(√
3g13 + 6

δq⊥e

n0eT0evthe
+

√
2g21 + u‖e

vthe

)
= ρevthe

2LTe

∂A
∂y
. (A73)

Equations (A68) and (A69) are the standard density and parallel momentum equations
for electrons, including the effects of electron inertia, equilibrium gradients of density,
temperature and magnetic field and the non-isothermality of electrons. But for this last
feature, they would have been closed equations, as without it, there is no coupling to the
perturbations of temperature and heat flux.

A hybrid fluid–kinetic system consisting of (A68), (A69) and (A52), with the kinetic
equation (A52) used to close the fluid ones by calculating the temperature and heat-flux
moments, would be ideologically similar to the ‘kinetic MHD’ description of plasma
dynamics (Kulsrud 1983).

A.6. Collisional limit
A.6.1. Subsidiary collisional ordering

We now consider the collisional limit of our system of (A68)–(A73), in which νee and
νei are the dominant frequencies: νei ∼ νee � ω. Given that we wish to retain KAWs, drift
waves, perpendicular advection by both magnetic drifts and E × B flows, as well as finite
heat conduction and resistivity, we postulate, analogously to (A8):

νee ∼ νei � ω ∼ ωKAW ∼ ω∗s ∼ ωds ∼ k⊥vE ∼ (k⊥de)
2νei ∼ κk2

‖, (A74)

where κ ∼ v2
the/νe is the electron thermal diffusivity. The parallel-streaming rate k‖vthe is

no longer the relevant parallel frequency; the new ordering can be worked out by following
the same logic as in Appendix A.2 but replacing k‖vthe with the parallel conduction rate.
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Namely, instead of (A11), we have

κk2
‖ ∼ ωKAW ⇒ k⊥de ∼ k‖λe, (A75)

where λe is once again the electron mean free path. The same relation guarantees κk2
‖ ∼

(k⊥de)
2νei. Ordering κk2

‖ with respect to the drift frequencies gives us, with the aid of
(A75),

κk2
‖ ∼ ω∗s ∼ ωds ∼ k⊥ρe

vthe

L
∼
√
βek‖λe

vthe

L
⇒ k‖L ∼

√
βe, (A76)

so (A13) survives unscathed. Combining (A76) with (A75) gives us

k⊥de ∼ k‖λe ∼
√
βe
λe

L
≡ χ−1, (A77)

i.e. the perpendicular wavelengths must be ordered comparable to the flux-freezing scale
anticipated in (2.30) – the collisional analogue of what was k⊥de ∼ 1 in the collisionless
case [see (A11)].

To obtain the ordering of the fluctuation amplitudes, we let, analogously to (A15), and
using (A75) and (A76),

κk2
‖ ∼ k⊥vE ⇒ vE

vthe
∼ k‖

k⊥
k‖λe ∼ ε

√
βe. (A78)

Knowing this and noting that (A77) implies

k⊥ρe ∼ χ−1
√
βe, (A79)

we find, by the same logic as (A16)–(A19), the ordering of the frequencies

ω

Ωe
∼ k⊥ρeε

√
βe ∼ χ−1εβe,

ω

Ωi
∼ χ−1ε, (A80)

and of the fluctuation amplitudes

δTe

T0e
∼ δTi

T0i
∼ δni

n0i
= δne

n0e
∼ eϕ

T0e
∼ χε,

δB⊥
B0

∼ χε
√
βe. (A81)

To summarise, (A77), (A80) and (A81) represent once again an ordering of lengthscales,
frequencies and amplitudes with respect to ε and βe, but now also to the subsidiary
expansion parameter χ−1 – that this parameter should be small follows straightforwardly
from, e.g. νei � (k⊥de)νei. Thus, the formal hierarchy of our expansions is now

ε �
√
βe � χ−1 � 1, (A82)

with all other dimensionless parameters being treated as finite.

A.6.2. Collisional limit of low-beta equations
We begin by considering the equations for the temperature perturbations (A70) and

(A71), in which the terms responsible for collisional temperature isotropisation are now
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dominant: to leading order in χ−1,

νe
δT‖e − δT⊥e

T0e
= 0 ⇒ δT‖e

T0e
= δT⊥e

T0e
≡ δTe

T0e
, (A83)

so we no longer need to distinguish between the parallel and perpendicular temperature
perturbations. We then obtain the equation for δTe by adding (1/2)(A70)+(A71):

3
2

d
dt
δTe

T0e
+ ∇‖

(
1
2δq‖e + δq⊥e

n0eT0e
+ u‖e

)
+ ρevthe

LB

∂

∂y

(
δne

n0e
− ϕ + 7

2
δTe

T0e

)
= −3

2
ρevthe

2LTe

∂ϕ

∂y
.

(A84)
We have neglected the higher-order moments (g0,4, g1,2, and g2,0) in (A70) and (A71)
because, from the balance of the collision and parallel-streaming (or magnetic-drift) terms
in (A64), they are small in χ−1:

g�,m+1 ∼ χ−1g�,m, g�+1,m ∼ χ−2g�,m. (A85)

The parallel and perpendicular heat fluxes can be calculated from (A72) and (A73), where
the collisional terms are again dominant and the higher-order moments (g05, g13, and g21)
are negligible by (A85), viz.,

δq‖e

n0eT0e
= 3

δq⊥e

n0eT0e
= −v

2
the

2νe

(
∇‖
δTe

T0e
− ρe

LTe

∂A
∂y

)
. (A86)

The combined heat flux that appears in (A84) is, therefore,

δqe

n0eT0e
=

1
2δq‖e + δq⊥e

n0eT0e
= −3

2
κ∇‖ log Te, (A87)

where we have introduced the parallel derivative of the total temperature ∇‖ log Te, as in
(2.18), and κ = 5v2

the/18νe.
The density equation (A68) keeps all of its terms under the collisional ordering, whereas

in the parallel velocity equation (A69), the electron-inertia and magnetic-drift terms are
all small by a factor of χ−2, and so can be neglected. Assembling all this together, we
obtain the following system of equations:

d
dt
δne

n0e
+ ∇‖u‖e + ρevthe

LB

∂

∂y

(
δne

n0e
− ϕ + δTe

T0e

)
= −ρevthe

2Ln

∂ϕ

∂y
, (A88)

dA
dt

+ vthe

2
∂ϕ

∂z
= vthe

2
∇‖

(
δne

n0e
+ δTe

T0e

)
− ρevthe

2

(
1
Ln

+ 1
LTe

)
∂A
∂y

+ νeid2
e∇2

⊥A, (A89)

d
dt
δTe

T0e
− κ∇2

‖ log Te + 2
3
∇‖u‖e + 2

3
ρevthe

LB

∂

∂y

(
δne

n0e
− ϕ + 7

2
δTe

T0e

)
= −ρevthe

2LTe

∂ϕ

∂y
,

(A90)

with ϕ and A still satisfying (A42) and (A41), respectively. The ion gyrokinetic
equation (A40) is unchanged by this ordering because ion–ion and ion–electron collisions
were already neglected in the low-beta ordering [see (A38)].

A consequence of the collisional ordering – evident from (A89) – is that electron inertia
has been neglected, as we are considering perpendicular scales smaller than the electron
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inertial scale de [cf. (A77)]. However, as we demonstrate in §§ 3 and 4, these equations
support ‘collisional’ analogues of the instabilities found in the full kinetic system, making
them a useful (more analytically tractable) model for illustrating the underlying physical
mechanisms of these instabilities without the (kinetic) technical detail. Some readers may
be concerned about the fact that we have used a model collision operator (A55) in the
derivation of (A88)–(A90), as the velocity dependence of the collision frequency when
using the Landau collision operator could lead to additional terms that have not been
captured in our analysis. In Appendix G, we show that these terms do not change our
results, as none of the (collisional) physics that we discuss in this paper relies on the exact
details of the collision operator.

A.7. Strongly driven limit
Finally, we would like to make a further step to simplify the equations derived in
Appendix A.5.4 and their collisional counterparts (A88)–(A90). This consists of adopting
the strongly driven limit introduced in (A47) and (A48). As already explained at the end
of Appendix A.4, all remaining ion physics in this limit is contained in the closure (A42)
without the gi contribution. In the equations for the fluid moments (A68)–(A71) and
(A88)–(A90), this limit allows one to drop some magnetic-drift terms that never contribute
in a qualitatively important way.

Namely, consider (A68). Since Ln ∼ LB, ωde � ω and ϕ ∼ δne/n0e, we can always
reduce it to

d
dt
δne

n0e
+ ∇‖u‖e + ρevthe

2LB

∂

∂y

(
δT‖e

T0e
+ δT⊥e

T0e

)
= 0. (A91)

This is (2.20), the first equation of our minimalist collisionless system, or (2.24) in
the collisional case. The surviving magnetic-drift term provides the feedback for the
curvature-mediated instabilities that are the focus of § 3.3 and much of § 4. Clearly, it
can only be non-negligible if the temperature perturbations

δT‖e

T0e
∼ δT⊥e

T0e
∼ δTe

T0e
∼ ω

ωde

δne

n0e
(A92)

are large compared with the density ones, which they will be, in some subsidiary limits
(when ω � ω∗e). If they are not, the magnetic-drift term in (A91) is as small as the terms
that we have already neglected and so must also be dropped, but the important point is that
the neglected terms are never large enough to need retaining.

By a similar argument, if Ln ∼ LB and ω � ωde, the terms containing LB and Ln can
all be dropped from (A89) and (A90), giving us (2.25) and (2.26), the two remaining
equations in our minimalist collisional system. In the collisionless case, (2.21)–(2.23) are
obtained from (A69)–(A71) in a similar way, but one must stipulate also ωde � k‖vthe and
assume that none of the Hermite–Laguerre moments involved can be much larger than
δT‖e/T0e or δT⊥e/T0e.

We reiterate that the strongly driven limit is not formally an ordering – in the sense that
some of the terms that are retained can, in certain meaningful limits, turn out to be as small
as those terms that have been neglected – but the latter are negligible always, and so the
remaining equations are always no worse off for not having them. Cautious readers may
be reassured by the fact that all of the instabilities considered in §§ 3 and 4 are derived in
a limit in which this is a valid approximation.

Given that throughout the majority of this paper we are concerned with the dynamics
arising from the ETG LTe , we henceforth adopt the notation LT = LTe , apart from where
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there is possible ambiguity about which temperature gradient is being referred to, such as
in Appendix B.

Appendix B. Conservation laws

In this appendix, we derive the free energy associated with our low-beta equations (A40)
and (A52) [or, equivalently, the hierarchy of moments (A64)].

B.1. Free energy
Plasma systems containing small perturbations around a Maxwellian equilibrium
nonlinearly conserve free energy, defined as

W = U −
∑

s

T0sδSs, U =
∫

d3r
V

|δB|2
8π

, −δSs =
∫

d3r
V

∫
d3v

δf 2
s

2f0s
, (B1)

where δSs is the entropy of the perturbed distribution function of species s (see
Schekochihin et al. 2008, 2009 and references therein) and V = LxLyL‖ is the volume
of the system. Given the ordering of the parallel magnetic-field perturbations (A20), the
internal energy consists only of the perpendicular magnetic-field perturbations:

U =
∫

d3r
V

|δB⊥|2
8π

= n0eT0e

∫
d3r
V

|de∇⊥A|2 . (B2)

We now consider the contributions of each of the kinetic species to the free energy. Noting
that the Hermite–Laguerre basis (A58)–(A59) has a Parseval theorem, we may write

−T0eδSe = n0eT0e

∫
d3r
V

1
2

∞∑
�=0

∞∑
m=0

g2
�,m. (B3)

Recalling, from (A25) and (A39), that

δfi = Z
τ

(〈ϕ〉Ri
− ϕ

)
f0i + gi, (B4)

we can express the ion contribution to the entropy as

−T0iδSi = T0i

∫
d3r
V

∫
d3v

〈
δf 2

i

〉
r

2f0i
= n0eT0e

∫
d3r
V

ϕτ̄−1ϕ

2
+ T0i

∫
d3r
V

∫
d3v

〈
g2

i

〉
r

2f0i
.

(B5)
Here the operator τ̄ , which contains only even powers of ∇⊥ [see (A43)], is understood to
act on both sides of itself, with the powers of ∇⊥ distributed evenly.

Putting (B3) and (B5) together, we can write the overall free energy of the system as

W
n0eT0e

= W0

n0eT0e
+ τ

Zn0i

∫
d3r
V

∫
d3v

〈
g2

i

〉
r

2f0i
, (B6)

where W0 is the free energy of the system for gi = 0:

W0

n0eT0e
=
∫

d3r
V

(
ϕτ̄−1ϕ

2
+ |de∇⊥A|2 + 1

2

∞∑
�=0

∞∑
m=0

g2
�,m

)
. (B7)

As expected, this free energy is a sum of the quadratic norms of the electromagnetic fields
and the Hermite–Laguerre moments g�,m of the electron distribution function δfe.
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In the collisional limit, we do not need to retain all of the latter contributions to (B7),
because, according to (A85), higher-order moments are small in the collisional expansion.
To leading order in χ−1, we find

W0

n0eT0e
=
∫

d3r
V

(
ϕτ̄−1ϕ

2
+ |de∇⊥A|2 + 1

2
δn2

e

n2
0e

+ 3
4
δT2

e

T2
0e

)
. (B8)

This is (6.2).

B.2. Free-energy budget
Let us now work out the time derivative of the free energy. To calculate the time derivative
of the last term in (B7), we multiply (A64) by g�,m and sum over � and m. Neither the
parallel-streaming nor the magnetic-drift terms in (A64) make any contribution, viz.,

∞∑
�=0

∞∑
m=0

∫
d3r
V

g�,m

[
vthe√

2
∇‖

(√
m + 1 g�,m+1 + √

m g�,m−1

)
+ ωde[g�,m]

]
= 0, (B9)

because pairwise terms of the form

g�,m∇‖g�,m′ + g�,m′∇‖g�,m, g�,m
∂

∂y
g�,m′ + g�,m′

∂

∂y
g�,m (B10)

vanish identically when integrated over all space. The contribution from the collision term
in (A64) is

De = −
∞∑
�=0

∞∑
m=0

∫
d3r
V

g�,mC[g�,m]

= 2νei

∫
d3r
V

∣∣d2
e∇2

⊥A
∣∣2 + νe

∫
d3r
V

[
2
3

(
δT‖e − δT⊥e

T0e

)2

+
∞∑

m=3

mg2
0,m +

∞∑
m=1

(m + 2)g2
1,m +

∞∑
�=2

∞∑
m=0

(m + 2�)g2
�,m

]
� 0, (B11)

where we have used the fact that

2g2
0,2 + 2g2

1,0 − 1
3

(√
2g0,2 + 2g1,0

)2
= 2

3

(
δT‖e − δT⊥e

T0e

)2

(B12)

to simplify the temperature terms in (A65). The contribution from the injection term on
the right-hand side of (A64) can be written as follows, after integrating by parts and using
(A68):

∞∑
�=0

∞∑
m=0

∫
d3r
V

g�,mI�,m = εe +
∫

d3r
V

(
ϕ

d
dt
δne

n0e
− d

dt
|de∇⊥A|2

)
, (B13)

where the energy injection due to the electron density and temperature gradients is

εe = 1
Ln

∫
d3r
V

δne

n0e
vEx + 1

LTe

∫
d3r
V

[(
1
2
δT‖e

T0e
+ δT⊥e

T0e

)
vEx +

1
2δq‖e + δq⊥e

n0eT0e

δBx

B0

]
.

(B14)
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This is the first expression in (6.4), with vEx and δBx/B0 defined in (6.5). We recognise the
terms proportional to vEx as the transport of density and temperature perturbations by the
E × B flow, while the terms proportional to δBx/B0 are the fluxes of temperature along the
perturbed field lines. Note that (B13) contains a contribution equal to the time derivative
of the second term in (B7) (the magnetic energy), which we transfer to the left-hand side
of our emerging free-energy budget.

We now turn to the first term in (B7). Using (A40) and (A42), its time derivative is

d
dt

∫
d3r
V

ϕτ̄−1ϕ

2
= −

∫
d3r
V
ϕ

d
dt
δne

n0e
+ Dx, (B15)

where a term has arisen that represents energy exchange between electrons and ions due
to equilibrium magnetic-field gradients:

Dx = − 1
n0i

∫
d3r
V

∫
d3v ϕ vdi · ∇⊥

〈
gi + Z

τ
〈ϕ〉Ri

f0i

〉
r

. (B16)

If we had retained ion collisions in (A40), a collisional energy-exchange term would also
have had to be included in (B15).

Assembling (B11), (B13) and (B15), we find

1
n0eT0e

dW0

dt
= εe − De + Dx. (B17)

In the collisional limit, the expressions for De and εe are significantly simplified. Since,
in this limit, δT‖e = δT⊥e = δTe, the first term in the square brackets in (B11) vanishes.
Then, recalling the definition of the collisional heat flux (2.17) and neglecting terms
of order χ−2(δqe/n0eT0evthe)

2 and higher, which are small by (A85), we find that (B11)
becomes

De = 2νei

∫
d3r
V

∣∣d2
e∇2

⊥A
∣∣2 + 12

5
νe

∫
d3r
V

(
δqe

n0eT0evthe

)2

. (B18)

The expression for the collisional energy injection follows similarly from (B14):

εe = 1
Ln

∫
d3r
V

δne

n0e
vEx + 1

LTe

∫
d3r
V

(
3
2
δTe

T0e
vEx + δqe

n0eT0e

δBx

B0

)
. (B19)

This is the second expression in (6.4). Naturally, both (B18) and (B19) can also be obtained
by direct calculation from (B8) using the collisional equations (A88)–(A90).

Finally, to calculate the gi contribution to (B6), we multiply the ion gyrokinetic equation
(A40) by gi/f0i and integrate over the entire phase space. After some manipulations, we
obtain

τ

Zn0i

∫
d3r
V

∫
d3v

d
dt

〈
g2

i

〉
r

2f0i
= εi − Dx, (B20)

where Dx is as defined in (B16), and the energy injection due to ion equilibrium gradients is

εi = −ρivthi

2n0i

∫
d3r
V

∫
d3v

[
1
Ln

+ 1
LTi

(
v2

v2
thi

− 3
2

)] 〈
∂ 〈ϕ〉Ri

∂Yi
gi

〉
r

. (B21)

Combining this result with (B17), we arrive at

1
n0eT0e

dW
dt

= εi + εe − De. (B22)
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In the absence of any ion equilibrium gradients, all of the energy injection is due to the
equilibrium electron gradients. Then (B22) becomes (6.3).

Appendix C. Magnetic-flux conservation

The conservation of magnetic flux is guaranteed if there exists some effective velocity
field ueff such that material loops moving with this velocity always enclose the same
amount of magnetic flux. Should such a ueff exist, then it also preserves magnetic field
lines and their topology (Newcomb 1958). Following Cowley (1985), we consider

ueff = c
B
(E − ∇Φ)× b, (C1)

where B is the total magnetic field, B = |B| and b = B/B are its magnitude and direction,
respectively, and Φ is some single-valued scalar function. Physically, (C1) can be
interpreted as the E × B flow resulting from an effective electric field E − ∇Φ. It can
then be shown by direct substitution that the electric field satisfies

E + ueff × B
c

= ∇Φ + (E‖−∇‖Φ)b, (C2)

where E‖ = b · E, ∇‖ = b · ∇. Faraday’s law can then be written as

∂B
∂t

= −c∇ × E = ∇ × (ueff × B)− c∇ × [
(E‖−∇‖Φ)b

]
. (C3)

If we recognise ueff as the flux- and field-line-preserving velocity, then, following the
standard proof of flux conservation (reproduced in numerous MHD textbooks), we find
(see, e.g., Eyink & Aluie 2006)

d
dt

∫
S(t)

B · dS = −c
∮
∂S(t)

(E‖−∇‖Φ)b · d�, (C4)

where S(t) is the surface advected by the velocity ueff and ∂S(t) its boundary. This implies
that the conservation of magnetic flux is broken only by the non-zero parallel projection
of the effective electric field that gives rise to ueff, i.e. E‖ − ∇‖Φ, meaning that we must
look to parallel force balance to determine whether or not the magnetic flux is conserved.

In our system of equations, this is given by (A69), which, recalling the definition
of E‖ (A53) and parallel Ampère’s law (A41), can be written as

E‖−∇‖Φ = −ρeB0

c

[
d
dt

u‖e

vthe
+ η∇2

⊥A + ρevthe

2LB

∂

∂y

(
4

u‖e

vthe
+ δq‖e + δq⊥e

n0eT0evthe

)]
, (C5)

where we have defined the Ohmic resistivity η = νeid2
e , and identified Φ to be the

‘potential’ associated with the total parallel pressure, viz.,

− e
T0e

∇‖Φ = 1
n0eT0e

∇‖p‖e = ∇‖

(
δne

n0e
+ δT‖e

T0e

)
−
(
ρe

Ln
+ ρe

LTe

)
∂A
∂y
, (C6)

where p‖e = neT‖e, ne = n0e + δne and T‖e = T0e + δT‖e are the total parallel pressure,
density and parallel temperature, respectively. It is clear that the conservation of magnetic
flux is broken by the terms on the right-hand side of (C5); namely, from left to right, finite
electron inertia, finite resistivity and magnetic drifts.
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In the collisionless limit, η → 0, allowing us to neglect the resistive term. Below
the flux-freezing scale (2.28), k⊥de � 1, the remaining terms on the right-hand side
are negligible in comparison with those on the left-hand side [the magnetic drifts also
vanishing in the strongly driven limit, cf. (2.21)], meaning that, on electromagnetic scales,
the magnetic field becomes frozen into the effective velocity

ueff = ρevthe

2
b0 × ∇

(
ϕ + eΦ

T0e

)
= vE − ρevthe

2
b0 × ∇p‖e

n0eT0e
, (C7)

where vE is defined in (2.7), and we have evaluated (C1) to leading order in the gyrokinetic
expansion and used (C6). This is (2.31).

In the collisional limit, we retain only finite resistivity on the right-hand side of (C5)
[cf. (A89)], while (C6) remains valid under the replacement δT‖e → δTe. Below the
flux-freezing scale (2.30), the resistive term can also be ignored, and the magnetic field
once again becomes frozen into (C7).

Appendix D. Collisionless linear theory

We begin with our field equations, namely quasineutrality (A42) [with gi = 0; see (A47)
and what follows it] and parallel Ampère’s law (A41):

δñe

n0e
= 1

n0e

∫
d3v δ̃fe = g̃0,0 = −τ̄−1ϕ̃, (D1)

ũ‖e

vthe
= 1

n0e

∫
d3v

v‖
vthe

δ̃fe = 1√
2

g̃0,1 = −(k⊥de)
2Ã, (D2)

where tildes indicate the Fourier components of the fields, and we have expressed
the perturbations of the electron density and parallel velocity in terms of the
Hermite–Laguerre moments g̃�,m of δ̃fe, defined in (A58). To calculate these moments, we
linearise and Fourier-transform the electron kinetic equation (A52). Neglecting collisions
and normalising all frequencies to the parallel-streaming rate, viz.,

ζ = ω

|k‖|vthe
, ζ∗ = ω∗e

|k‖|vthe
, ζd = ωde

|k‖|vthe
, (D3)

with ω∗e and ωde defined in (A9), (A52) can be written as[
−ζ + k‖

|k‖|
v‖
vthe

+ ζd

(
2v2

‖
v2

the

+ v2
⊥
v2

the

)]
δ̃fe

f0e

=
[
−ζ + k‖

|k‖|
v‖
vthe

+ ζd

(
2v2

‖
v2

the

+ v2
⊥
v2

the

)]
ϕ̃ +

[
ζ − ζ∗

(
1
ηe

+ v2

v2
the

− 3
2

)](
ϕ̃ − 2v‖

vthe
Ã
)
,

(D4)

where ηe = Ln/LT . Introducing the dimensionless velocity variables

v̂ = k‖
|k‖|

v‖
vthe

, μ = v2
⊥
v2

the

, (D5)

we can write the Hermite–Laguerre moments as follows:

g̃�,m =
(

k‖
|k‖|

)m (
M�,mϕ̃ − N�,m

k‖
|k‖|Ã

)
+ ϕ̃ δ0,0, (D6)
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where the coefficient-matrix elements are

M�,m = 1√
π

∫ ∞

−∞
dv̂ e−v̂2

∫ ∞

0
dμ e−μ(−1)�

Hm(v̂)L�(μ)√
2mm!

ζ − ζ∗
(
η−1

e + v̂2 + μ− 3
2

)
v̂ − ζ + ζd(2v̂2 + μ)

,

(D7)

N�,m = 1√
π

∫ ∞

−∞
dv̂ e−v̂2

∫ ∞

0
dμ e−μ(−1)�

Hm(v̂)L�(μ)√
2mm!

2v̂
ζ − ζ∗

(
η−1

e + v̂2 + μ− 3
2

)
v̂ − ζ + ζd(2v̂2 + μ)

.

(D8)

Using (D6) in (D1) and (D2), and combining the resultant expressions, we find, after some
algebra, the dispersion relation:(

1 + 1
τ̄

+ M0,0

)(
k2

⊥d2
e − 1√

2
N0,1

)
+ 1√

2
M0,1N0,0 = 0. (D9)

As we shall shortly demonstrate by recovering some familiar limits, this is the ETG
dispersion relation (Liu 1971; Lee et al. 1987) coupled to the KAW one, and including
the effects of magnetic drifts.

D.1. Evaluation of coefficient-matrix elements
In its form (D9), our dispersion relation is not particularly amenable to analytical solution,
owing to the complexity of the coefficient-matrix elements (D7) and (D8). We devote this
section to an approximate evaluation of these coefficients in order to express (D9) in terms
of known functions; readers interested in only the outcome of this procedure can skip
ahead to (D23)

Following Biglari, Diamond & Rosenbluth (1989), we write the coefficient-matrix
elements appearing in (D9) as follows:

M0,0 = lim
a,b→1

[
ζ − ζ∗

(
1
ηe

− ∂a − ∂b − 3
2

)]
Ia,b, (D10)

N0,0 =
√

2M0,1 = lim
a,b→1

2
[
ζ − ζ∗

(
1
ηe

− ∂a − ∂b − 3
2

)]
Ja,b, (D11)

N0,1 = lim
a,b→1

−2
√

2
[
ζ − ζ∗

(
1
ηe

− ∂a − ∂b − 3
2

)]
∂aIa,b, (D12)

where we have defined

Ia,b(ζ, ζd) = 1√
π

∫ ∞

−∞
dv̂

∫ ∞

0
dμ

e−av̂2 e−bμ

v̂ − ζ + ζd(2v̂2 + μ)
, (D13)

Ja,b(ζ, ζd) = 1√
π

∫ ∞

−∞
dv̂

∫ ∞

0
dμ

v̂e−av̂2 e−bμ

v̂ − ζ + ζd(2v̂2 + μ)
, (D14)

with positive, real constants a and b (ensuring integral convergence). By using a
partial-fraction expansion of its integrand, the latter of these can be written in terms of
derivatives of the former with respect to a and b:

Ja,b = 1
a1/2b

+ ζ Ia,b + ζd(2∂a + ∂b)Ia,b. (D15)

In writing the coefficient-matrix elements in this way, we have reduced our problem to
determining (D13) in terms of functions that can be either computed numerically or
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expanded analytically in sensible limits. In the absence of magnetic drifts, Ia,b reduces
trivially to the well-studied plasma dispersion function (Faddeeva & Terent’ev 1954; Fried
& Conte 1961):

I1,1(ζ, 0) = Z(ζ ) = 1√
π

∫
dv̂

e−v̂2

v̂ − ζ
(D16)

with the integral understood to be along the Landau contour – while for two-dimensional
modes with k‖ → 0, Ia,b can be also written in terms of products of plasma dispersion
functions (see, e.g., Similon et al. 1984; Biglari et al. 1989; Ricci et al. 2006; Zocco et
al. 2018; Mishchenko, Plunk & Helander 2018). How to calculate Ia,b analytically in the
presence of both parallel streaming and magnetic drifts without approximation remains
an open research question, despite some progress being made numerically (Gürcan 2014;
Gültekin & Gürcan 2018, 2020; Parisi et al. 2020).

Given that we are most interested in the strongly driven limit (see Appendix A.7), we
choose to expand the resonant denominator10 in (D13) as a series in ζd � 1 ∼ ζ :

1
v̂ − ζ + ζd(2v̂2 + μ)

= 1
v̂ − ζ

∞∑
n=0

(
2v̂2 + μ

v̂ − ζ

)n

(−ζd)
n ≈ 1

v̂ − ζ
− 2v̂2 + μ

(v̂ − ζ )2
ζd + · · · .

(D17)
We discuss the validity and consequences of this approximation in Appendix D.6.
Substituting (D17) into (D13) and retaining only terms linear in ζd, we find, after
integrating by parts in the second term and evaluating the integral over μ, that Ia,b can
be expressed entirely in terms of the plasma dispersion function (D16):

Ia,b(ζ, ζd) = 1
b
Z(√aζ )+ 4

b

[
1

2a1/2
+
(

aζ 2 + a
2b

− 1
)( 1

a1/2
+ ζZ(√aζ )

)]
ζd.

(D18)
Finally, substituting (D18) into (D10)–(D12), via (D15) where necessary, and making use
of the identities

Z ′ = −2(1 + ζZ), Z ′′ = 2
ζ

− 2
ζ

(
ζ 2 − 1

2

)
Z ′, (D19)

we find, neglecting density gradients (ηe → ∞):

M0,0 = −ζ ζ∗ +
[
ζ − ζ∗

(
ζ 2 − 1

2

)]
Z

+ {
4ζ 3 + (4ζ 4 − 2ζ 2)Z −ζ∗

[
4ζ 4 − 6ζ 2 + (4ζ 5 − 8ζ 3 + ζ )Z]}

ζd, (D20)

N0,0 = −ζ∗ + 2
[
ζ − ζ∗

(
ζ 2 − 1

2

)]
(1 + ζZ)

+ {
8ζ 4 − 4ζ 2 + (8ζ 5 − 8ζ 3 − 2ζ )Z

− ζ∗
[
8ζ 5 − 16ζ 3 − 2ζ + (8ζ 6 − 20ζ 4 + 2ζ 2 − 1)Z]}

ζd, (D21)

10A careful reader may be concerned about the potential breakdown of this expansion in the region of the resonance,
viz., for |v̂ − ζ | ∼ ζd � ζ . However, if one removes this potential resonance by changing variables to u = v̂ + ζd(2v̂2 +
μ), with dv̂ dμ = dudμ/

√
1 + 8uζd − 8μζ 2

d , and performs a similar expansion for ζd � 1, one finds the same result as
the ‘naive’ expansion (D17), to linear order.
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N0,1 = −
√

2ζ ζ∗ + 2
√

2
[
ζ − ζ∗

(
ζ 2 − 1

2

)]
ζ(1 + ζZ)

+ 2
√

2
{
4ζ 5 − 4ζ 3 − 2ζ + (2ζ 5 − 3ζ 3 − ζ )Z

−ζ∗
[
4ζ 6 − 10ζ 4 − 2ζ 2 − 2 + (4ζ 7 − 12ζ 5 + ζ 3 − ζ )Z]}

ζd. (D22)

Together with (D9), rewritten here using the first equality in (D11) as

(
1 + 1

τ̄
+ M0,0

)(
k2

⊥d2
e − 1√

2
N0,1

)
+ 1

2
N2

0,0 = 0, (D23)

these expressions for the coefficient-matrix elements give us the dispersion relation for
our kinetic system in the limit ζd � 1, written in terms of ζ , ζ∗, ζd and the plasma
dispersion function Z . As ever in linear plasma (kinetic) theory, physically transparent
cases arise when the plasma dispersion function is expanded in large or small argument –
as we shall see, these are the natural limits for recovering characteristic electrostatic and
electromagnetic phenomena, respectively.

D.2. Two-dimensional perturbations
Let us first consider purely two-dimensional perturbations – which amounts to setting
k‖ = 0 everywhere – without ordering k⊥de with respect to unity. In this limit, ζ ∝ k−1

‖ →
∞, so the plasma dispersion function can be expanded as

Z(ζ ) ≈ i
√

πe−ζ 2 − 1
ζ

(
1 + 1

2ζ 2
+ 3

4ζ 4
+ · · ·

)
. (D24)

Ignoring the exponentially small term – and thus working within the ‘fluid’ approximation
– (D20)–(D22) can be expanded as

M0,0 ≈ −1 + 1
2ζ 2

(
ζ∗
ζ

− 1
)

+ 2ζdζ∗
ζ 2

+ · · · , (D25)

N0,0 ≈ 1
ζ

(
ζ∗
ζ

− 1
)

+ 16ζdζ∗
ζ 3

+ · · · , (D26)

1√
2

N0,1 ≈ −1 + ζ∗
ζ

+ 8ζdζ∗
ζ 2

+ · · · , (D27)

where we have kept ζd only where it multiplies ζ∗, consistent with the strongly driven limit.
Then (D23) becomes

(
1
τ̄

+ 2ζdζ∗
ζ 2

)(
1 + k2

⊥d2
e − ζ∗

ζ

)
= 0, (D28)

where we have ignored all higher-order terms in ζ−1 ∝ k‖ → 0. This dispersion relation,
of course, could have been obtained without resorting to the kinetic formalism that we have
adopted in this appendix; setting k‖ = 0 in (2.20)–(2.23), and solving the resultant fluid
equations, one obtains exactly (D28). The dispersion relation (D28) admits two solutions.
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D.2.1. Magnetic drift wave
From the second bracket in (D28), we find a ‘magnetic drift wave’

ζ = ζ∗
1 + k2

⊥d2
e

⇒ ω = ω∗e

1 + k2
⊥d2

e

. (D29)

This is a purely linear magnetic oscillation involving the balance between the inductive
part of the parallel electric field, the electron inertia and the gradient of the equilibrium
pressure along the perturbed field line:

∂

∂t

(
A − u‖e

vthe

)
= ∂

∂t

(A − d2
e∇2

⊥A
) = −ρevthe

2LT

∂A
∂y
. (D30)

In setting k‖ = 0, we have decoupled perturbations of the magnetic field – or, in the
electrostatic regime, of the parallel velocity – from those of density and temperature.

D.2.2. Curvature-mediated ETG instability
From the first bracket in (D28), we find

ζ 2 = −2ζdζ∗eτ̄ ⇒ ω = ±i (2ωdeω∗eτ̄ )
1/2 . (D31)

This is the cETG growth rate (3.13). We note that there is no critical gradient for the
cETG instability, i.e. formally the k‖ = 0 mode is unstable at all values of the equilibrium
temperature gradient. This is because, in adopting the strongly driven limit (Appendix
A.7), we dropped the density gradient, leaving the critical gradient for any instability,
including the cETG, to be formally LB/LT = 0 (in other words, there are no finite critical
temperature gradients because there is nothing to compare LB/LT to). Finite critical
temperature gradients, and how they relate to the main body of this work, are discussed in
Appendix E.1.2.

Both modes (D29) and (D31) persist at all perpendicular wavenumbers because
there is no distinction between the electrostatic and electromagnetic regimes for purely
two-dimensional phenomena. Indeed, the dispersion relation (D28) is formally valid for
k⊥de ∼ 1, and thus in both the electrostatic (k⊥de � 1) and electromagnetic (k⊥de � 1)
limits. Restoring finite k‖, however, significantly alters this behaviour, as it allows coupling
between perturbations of the magnetic field and those of density and temperature, which
introduces new instabilities in both the electrostatic and electromagnetic regimes.

D.3. Electrostatic three-dimensional perturbations: collisionless sETG
Let us consider perturbations below the flux-freezing scale (2.28), viz., with

k⊥de → ∞, (D32)

for which (D23) reduces to the electrostatic ETG dispersion relation (cf. Liu 1971; Lee et
al. 1987):

1 + 1
τ̄

+ M0,0 = 0. (D33)

If, in addition to (D32), we adopt the limit of long parallel wavelengths and small magnetic
drifts, viz.,

ωde � k‖vthe � ω � ω∗e ⇔ ζd ∼ ζ−1/3
∗ � 1 � ζ ∼ ζ 1/3

∗ � ζ∗, (D34)
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and once again make use of the expansion (D25), we find, retaining only the leading-order
terms,

ζ 3 + 2ζdζ∗τ̄ ζ + τ̄ ζ∗
2

= 0. (D35)

This has three roots, whose behaviour is easy to deduce by balancing terms in various
limits. The balance of the first two terms in (D35) recovers the cETG instability (D31); the
balance of the first and third terms yields

ζ =
(

− τ̄ ζ∗
2

)1/3

⇒ ω = sgn(ky)

(
−1,

1
2

± i

√
3

2

)(
k2

‖v
2
the|ω∗e|τ̄

2

)1/3

. (D36)

This is the collisionless sETG growth rate (3.5) – the one unstable root of the three (of
the other two, one is damped and another is a pure drift wave) – which we would expect
to recover in the electrostatic regime (magnetic field lines and electron flows are liberated
from one another as flux is unfrozen by finite electron inertia).

Being a cubic equation with real coefficients and a negative-definite discriminant, (D35)
has at least one unstable solution at all parallel and perpendicular wavenumbers: there is
no region of stability between the cETG and sETG modes – with the former transitioning
into the latter as k‖ is increased – and the sETG is formally unstable for k‖ → ∞. This
is because we have thus far neglected the exponentially small resonant term in (D24)
that is responsible for the Landau damping of sETG at larger parallel wavenumbers. It is
relatively obvious that this will occur for ζ ∼ ζ∗ ∼ 1, where the rates of parallel streaming
and energy injection are comparable; this is confirmed in Appendix D.6.

D.4. Electromagnetic stabilisation of sETG
Formally, the dispersion relation (D35) is derived in the limit k⊥de → ∞, the electrostatic
limit. Restoring finite but large k⊥de, viz.,

ζd ∼ ζ−1/3
∗ � 1 � ζ ∼ k⊥de ∼ ζ 1/3

∗ � ζ∗, (D37)

and using (D25)–(D27) in (D23), we have, instead of (D35),

(
ζ 2 + 2ζdζ∗τ̄

) (
ζ − ζ∗

k2
⊥d2

e

)
+ τ̄

2
ζ∗ = 0. (D38)

In addition to the cETG (D31) and sETG (D36) instabilities, (D38) admits two further
solutions: from the second bracket, we obtain the electrostatic (i.e. k⊥de � 1) limit of the
magnetic drift wave (D29),

ζ = ζ∗
k2

⊥d2
e

⇒ ω = ω∗e

k2
⊥d2

e

, (D39)

while the balance of the first term in the first bracket and second term in the second bracket
with the last term gives rise to two isobaric KAW modes:

ζ 2 = 1
2

k2
⊥d2

e τ̄ ⇒ ω = ±ωKAW

√
τ̄ . (D40)

These are a ζ � 1 continuation of the isobaric KAWs that arise at lower frequencies, in
the electromagnetic regime (see § 4.4.1). These solutions of (D38) are plotted in figure 10.
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(a) (b)

FIGURE 10. The (a) growth rates and (b) frequencies of the collisionless electrostatic
instabilities, normalised to ω∗e, for k‖LT/

√
βe = 0.2 and τ̄ = 1. In both plots, the red, blue

and black solid lines are the three solutions to the cubic dispersion relation (D38), while the
vertical grey dashed line is the ‘fluid’ stability boundary (D43). At perpendicular wavenumbers
smaller than (D43), there are only stable modes, as expected, corresponding to the electrostatic
limit of the magnetic drift wave [(D39), red dot-dashed line] and two isobaric KAW modes
[(D40), blue and black dot-dashed lines]. At perpendicular wavenumbers greater than (D43), the
positive-frequency KAW and the magnetic drift wave transition into the two positive-frequency
ETG modes [(D36), red and blue dashed lines] – one growing, one damped – while the
negative-frequency KAW transitions into the negative-frequency ETG drift wave [(D36), black
dashed line]. We chose a very large value of LB/LT in order to show the asymptotic regimes
clearly.

Together, (D39) and (D40) conspire to stabilise the sETG mode (D36) at longer
perpendicular wavelengths, around the flux-freezing scale (2.28). To show this, we
consider the stability boundary associated with (D38): assuming ζ to be purely real, with
Im(ζ ) → +0, and demanding that the real and imaginary parts of the resultant expression
must vanish individually, we find that the real part is given by (D38), while the imaginary
part is

3ζ 2 − 2ζ∗
k2

⊥d2
e

ζ + 2ζdζ∗τ̄ = 0. (D41)

At the stability boundary, ζ is purely real, meaning that the discriminant of (D41) must
be positive. This places a restriction on the perpendicular wavenumbers at which sETG is
stabilised: (

2ζ∗
k2

⊥d2
e

)2

− 24ζdζ∗τ̄ � 0 ⇒ k⊥de �
(

1
6τ̄

LB

LT

)1/4

. (D42)

Now considering perpendicular wavenumbers much smaller than (D42) – which
amounts to ignoring the effects of the magnetic drifts – we can solve (D38) and (D41)
simultaneously for the stability boundary:

(k⊥de)
2 = 2

3

(
ζ∗√
τ̄

)2/3

⇒ k‖LT√
βe

= 1

2
√
τ̄

(
2
3

)3/2 1
(k⊥de)2

ky

k⊥
. (D43)

This is the slanted black dashed line in figures 11 and 12. It is worth noting that this
‘fluid’ stability boundary is, in fact, only approximate: in our treatment of the ζ � 1
limit, we have neglected the exponentially small resonant term in (D24) that can lead
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to exponentially small growth rates below the line (D43).11 However, these exponentially
small growth rates would easily be erased by the effects of finite dissipation in any realistic
physical system (or, indeed, simulation), meaning that (D43) can be interpreted as a
criterion for the electromagnetic stabilisation of the sETG instability due to the effects
of finite βe. This was the conclusion of Maeyama et al. (2021), who also derived (D43)
[their equation (23)] via similar methods to those used here.

D.5. Electromagnetic three-dimensional perturbations: collisionless TAI
Moving towards larger scales, we now consider perturbations above the flux-freezing scale
(2.28), i.e.

k⊥de � 1. (D44)

As we see shortly, long perpendicular wavelengths correspond to low frequencies. Let us
consider the ordering

ωde � ω � ω∗e ∼ k‖vthe ⇔ ζd ∼ ζ 2 � ζ ∼ k⊥de � ζ∗ ∼ 1, (D45)

under which the plasma dispersion function can again be expanded, this time in small
argument:

Z(ζ ) ≈ i
√

πe−ζ 2 − 2ζ
(

1 − 2ζ 2

3
+ 4ζ 4

15
+ · · ·

)
. (D46)

Then, (D20)–(D22) can be expanded as

M0,0 ≈ i
√

π

2
ζ∗ + (

i
√

π − 2ζ∗
)
ζ + · · · , (D47)

N0,0 ≈ 2
(

1 + i
√

π

2
ζ∗

)
ζ + · · · , (D48)

1√
2

N0,1 ≈ 2
(

1 + i
√

π

2
ζ∗

)
ζ 2 + 4ζdζ∗ + · · · , (D49)

where we have once again only kept ζd where it multiplies ζ∗. Retaining only leading-order
terms, (D23) becomes(

1 + 1
τ̄

+ i
√

π

2
ζ∗

) (
k2

⊥d2
e − 4ζdζ∗

) − 2
τ̄

(
1 + i

√
π

2
ζ∗

)
ζ 2 = 0, (D50)

or, after straightforward manipulations,

ζ 2 +
(

2ζdζ∗ − 1
2

k2
⊥d2

e

)(
τ̄ + 1

1 + i ξ∗

)
= 0, ξ∗ =

√
π

2
ζ∗. (D51)

This is the dispersion relation of the collisionless thermo-Alfvénic instability (TAI), which
we treat in detail in § 4 and Appendix F. The TAI dispersion relation (D51) captures all
of the properties of the more general dispersion relation (D23) in the electromagnetic
regime, with the important exception of the stabilisation of isothermal and isobaric sTAI
– see (4.30) and (4.50), respectively – that we work out in the next section.

11These growth rate are only exponentially small as long as the limit ζ � 1 is satisfied. At ζ � 1, however, this is no
longer true, and the resonant term in (D24) can have a significantly destabilising effect, as in the electromagnetic regime.
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(a) (b)

(c) (d )

FIGURE 11. The growth rates of the collisionless instabilities normalised to ω∗e, in the absence
of magnetic drifts and with τ̄ = 1. (a) is a contour plot of the positive growth rates (γ > 0) in the
(ky, k‖) plane. The white dashed line is the exact stability boundary (D55), while the horizontal
grey dashed line is (D57), corresponding to the stabilisation of the isothermal sTAI at large
parallel wavenumbers. The vertical grey dashed line is (D58), around which the isobaric sTAI
is stabilised; the slanted grey dashed line on the right is the sETG stability boundary (D56);
the slanted black dashed line is the ‘fluid’ sETG stability boundary (D43). In (b)–(d), the solid
lines represent the exact growth rate obtained by solving the (collisionless) linear dispersion
relation (D23), while the dashed line in (c) is the growth rate predicted by the approximate TAI
dispersion relation (D51). (b) is a cut of the growth rate along k‖LT/

√
βe = 0.2 (plotted against a

logarithmic scale), in which the vertical grey dashed lines correspond to the two branches of the
exact stability boundary (D55), between which the growth rate is negative. (c) and (d) are cuts of
the growth rate for kyde = 0.1 and kyde = 3.5, respectively. In (c), the vertical grey dashed line
is (D57), while the same line in (d) is (D56). Lastly, the vertical black dashed line on the left of
(d) is (D43).

D.6. General stability boundary
Let us now consider the stability boundary associated with the dispersion relation (D23).
At the stability boundary, ζ is purely real, so the real and imaginary parts of (D23) must
vanish individually. For a purely real ζ , imaginary terms can only enter through the plasma
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(a) (b)

(c) (d )

FIGURE 12. The same as figure 11 but with magnetic drifts restored, and now normalised to
the cETG growth rate (D31). We chose a large value of LB/LT in order to show the asymptotic
regimes clearly. The lower horizontal grey dashed line in (a) is k‖ = k‖c, as defined in (4.21).
The inset in (c) shows the growth rate for k‖ > k‖c; the vertical grey dashed line is (D57). The
small discontinuity in the growth rate to the left of k‖ = k‖c in (c) is due to the difficulty of
resolving such a rapid change in the growth rate over a small range of k‖ on a finite grid. From
this figure, it is clear that the stability properties of the system at higher k‖ are not modified in
the presence of finite magnetic drifts. We draw the reader’s attention to the enhancement of the
cETG growth rate by the cTAI mechanism that can be seen from the red contours in the bottom
left-hand corner of (a).

dispersion functions Z(ζ ), implying that the coefficient in front of it must vanish, as
must, separately, the remainder of the dispersion relation. This yields two equations for
the frequency ζ and wavenumber at the stability boundary, which can then be solved
simultaneously to find the corresponding curve in the wavenumber (and parameter) space.

D.6.1. Stability boundary without magnetic drifts
It will prove instructive to consider first the simplified case of no magnetic drifts

(ζd = 0), in which, making use of (D20)–(D22), the dispersion relation (D23) can be
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simplified to (
2ζ 2

k2
⊥d2

e

− τ̄

)[
1 + ζZ − ζ ζ∗ − ζ∗

(
ζ 2 − 1

2

)
Z
]

= 1. (D52)

Following the steps laid out above, we find, at the stability boundary,(
ζ 2 − 1

2

)
ζ∗ = ζ,

(
2ζ 2

k2
⊥d2

e

− τ̄

)
(1 − ζ ζ∗) = 1. (D53)

Substituting ζ∗ from the first equation into the second, we find the real frequency at the
stability boundary:

ζ 2 = 1 + τ̄

2
k2

⊥d2
e

1 + k2
⊥d2

e

. (D54)

In view of (D54), ζ at the stability boundary can be either small or of order unity, but
never large, for any perpendicular wavenumber. This means that no mode with ζ � 1 is,
in fact, stable – as we discussed at the end of Appendix D.4, the curve (D43) was where
the ‘fluid’ stability was achieved, but exponentially small growth rates feeding off Landau
resonances were still allowed. This is also why we were unable to capture the Landau
damping of the sETG in our previous analysis.

Substituting (D54) into the first equation in (D53), we find the expression for the stability
boundary in the wavenumber space:

± ωKAW

√
1 + τ̄ = 1 − k2

⊥d2
e τ̄

2
√

1 + k2
⊥d2

e

ω∗e, (D55)

where ωKAW is defined in (A9). This is the white dashed curve in figures 11(a) and 12(a).
In the absence of magnetic drifts, (D55) is an exact result.

In the limit of large perpendicular wavenumbers, (D55) gives us the stabilisation of the
electrostatic sETG mode due to Landau damping (at large parallel wavenumbers), viz., for
k⊥de � 1 it becomes

∓ k‖vthe

√
1 + τ̄

2
= τ̄ω∗e

2
⇒ k‖LT√

βe
= ± τ̄

2
√

2(1 + τ̄ )
kyde. (D56)

This is the slanted grey dashed line in the top right-hand corner of figures 11(a) and 12(a).
Equation (D56) also confirms the assertion made in Appendix D.3 that this stabilisation
occurs when the rates of parallel streaming and energy injection are comparable,
k‖vthe ∼ ω∗e.

In the opposite limit of small perpendicular wavenumbers, (D55) asymptotes to a line
of constant k‖, viz., for k⊥de � 1 it becomes

± ωKAW

√
1 + τ̄ = ω∗e

2
⇒ k‖LT√

βe
= ± 1

2
√

2(1 + τ̄ )

ky

k⊥
. (D57)

This is the upper horizontal grey dashed line in figures 11(a) and 12(a). It corresponds to
the stabilisation of the isothermal sTAI mode (4.30) at large parallel wavenumbers due to
compressional heating, as explained in § 4.3.3 and Appendix D.7.2.

Similarly, the stabilisation of the isobaric sTAI mode (4.50) can be deduced from (D55)
in the limit k⊥de ∼ 1. To see this, we note that the left-hand side of (D55) is proportional
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to ωKAW ∝ k‖k⊥, whereas the right-hand side is proportional to ω∗e ∝ ky. This means that
as k‖ → 0, the left-hand side approaches zero faster than the right-hand side, unless the
numerator of the right-hand side similarly approaches zero. This means that both branches
of the stability boundary will asymptotically approach

1 − k2
⊥d2

e τ̄ = 0 ⇒ k⊥de = 1√
τ̄
. (D58)

Thus, there is a thin sliver of stability around the flux-freezing scale (2.28), where the
isobaric sTAI is quenched as k⊥ is increased. This is due to the effects of finite electron
inertia coming into play, and competing with parallel streaming, as explained in § 4.4.2
and Appendix D.7.3. Equation (D58) also describes the stabilisation of the exponentially
small sETG growth rates that occur below the line (D43) on the small-scale side of the
flux-freezing scale, as shown in figures 11(a) and 12(a). In Appendix D.7, we reproduce
the boundaries (D57) and (D58) via ‘fluid’ arguments similar to those used in § 4.3.3 and
§ 4.4.2 in the collisional limit.

D.6.2. Stability boundary with finite magnetic drifts
Let us now consider how this picture of stability is modified in the presence of magnetic

drifts. Though we could, in principle, apply the procedure that resulted in (D53) to the full
dispersion relation (D23), this will not actually yield the correct stability boundary for our
system: (D23) is only approximate, owing to the fact that we have expanded the resonant
denominators in (D7) and (D8) for ζd � 1, as in (D17), in order to obtain (D20)–(D22).
While this does not have any significant consequences for the instabilities derived in
Appendices D.2–D.5 – since they all sit in regimes where this approximation holds –
it does mean that the stability properties of (D23) are not the exact stability properties of
the kinetic system.

In particular, (D23) does not retain the (nonlinear) property of gyrokinetics – inherited
by the system of equations derived in Appendix A – that local gradients of the equilibrium
magnetic field cannot inject free energy (see, e.g., Abel et al. 2013). This is because
the argument that led to the expression of free-energy conservation (B22) relied on the
magnetic-drift terms vanishing at every order in the Hermite–Laguerre moment hierarchy
(A64) [see (B9) and (B10)]; in order to preserve this property in our dispersion relation,
we would have to retain the magnetic drifts, without approximation, everywhere, including
in the resonant denominators of (D7) and (D8). Instead, solving (D23) directly leads to
spurious growth rates at small parallel wavenumbers, whose magnitudes are inversely
proportional to LB/LT and vanish only at ωde = 0. However, given that LB/LT is large
in the strongly driven limit, we find contributions of these growth rates to be everywhere
negligible.

In figure 12, we plot the growth rates from the solutions of (D23). From figure 12(a),
it is clear that the stability properties at large parallel wavenumbers are not significantly
modified by the presence of magnetic drifts and both sETG and sTAI are still stabilised
along (D56) (slanted grey dashed line on the right) and (D57) (horizontal grey dashed
line), respectively. At lower parallel wavenumbers, sTAI and sETG are replaced by cTAI
and cETG, respectively, with their growth rate becoming equal to the cETG growth rate
(D31) at k‖ = 0, as evident from figure 12(c),(d). We draw the reader’s attention to the
similarity between figure 12(a) and the wavenumber-space portrait associated with our
collisionless equations (figure 7), in that figure 12(a) reproduces all the key features that
were predicted using the naive estimates of § 5.
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D.7. Fluid derivation of collisionless TAI results
In § 4, we illustrated the physical mechanisms that led to the instabilities associated
with the general TAI dispersion relation (4.18), namely cTAI and sTAI, by considering
a series of fluid equations in the collisional limit. While the physical mechanisms in the
collisionless limit are almost identical – with collisional conduction being replaced by
parallel particle streaming, κk2

‖ → (2/
√

π)|k‖|vthe – we seek here to demonstrate these
mechanisms explicitly by reproducing many of the key results of § 4 from a set of
equivalent fluid equations in the collisionless limit.

In particular, we will recover the stabilisation of isothermal and isobaric sTAI via
methods similar to those used in §§ 4.3.3 and 4.4.2. Given that we are interested in sTAI
physics – that occurs at k‖ � k‖c [see (4.21)] – in what follows, we neglect any incidence
of the magnetic drifts. With this simplification, (D7) and (D8) can be expressed exactly
in terms of derivatives of the plasma dispersion function (D16): neglecting the density
gradient (ηe → ∞), as in (D20)–(D22),

M�,m = −ζ∗
(
ζ δ0,0 + 1√

2
δ0,1

)
+
{[
ζ − ζ∗

(
ζ 2 − 1

2

)]
δ0,m − ζ∗δ1,m

}
(−1)m√

2mm!
Z (m)(ζ ),

(D59)

N�,m = 2ζ δ0,0 − ζ∗(2δ1,0 +
√

2δ0,2)+ 2ζM�,m, (D60)

where we have used the orthogonality properties (A60) and (A61) of the
Hermite–Laguerre basis and the associated recurrence relations (A62) and (A63), as well
as the identity

Z (m)(ζ ) = dmZ
dζm

= (−1)m√
π

∫
dv̂

e−v̂2

v̂ − ζ
Hm(v̂), (D61)

where the integral is once again taken along the Landau contour.

D.7.1. Parallel gradient of total parallel temperature
In § 4, the parallel gradient of the total temperature along the perturbed field line (2.18)

was a key quantity in understanding the physics associated with the TAI in the
collisional limit, and satisfied (4.8). The equivalent quantity in the collisionless limit is,
unsurprisingly, the parallel gradient of the total parallel temperature along the perturbed
field line:

∇‖ log T‖e = ∇‖
δT‖e

T0e
− ρe

LT

∂A
∂y
. (D62)

Subtracting ∇‖(2.22)−(ρe/LT)·(2.21) and using (4.1), we find the evolution equation
for (D62)

d
dt

∇‖ log T‖e + ρe

{
dA
dt

+ vthe

2
∂ϕ

∂z
,
δT‖e

T0e

}
+ 2∇2

‖u‖e + ρe

LT

∂

∂y
d
dt

u‖e

vthe

= −∇2
‖
δq‖e

n0eT0e
− ρevthe

2LT

∂

∂y
∇‖ log p‖e, (D63)

where we have recognised the parallel derivative of the total parallel pressure

∇‖ log p‖e = ∇‖
δne

n0e
+ ∇‖ log T‖e. (D64)

This is the same as (4.8), except for the replacements δTe → δT‖e,−κ∇‖ log Te →
δq‖e/n0eT0e, (2/3)∇2

‖u‖e → 2∇2
‖u‖e, νeiu‖e → du‖e/dt, as promised in § 4.2.
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The parallel heat flux in (D63) must be determined kinetically. In the spirit of
‘Landau-fluid’ closures (Hammett & Perkins 1990; Hammett, Dorland & Perkins 1992;
Hammett et al. 1993; Dorland & Hammett 1993; Beer & Hammett 1996; Snyder, Hammett
& Dorland 1997; Passot & Sulem 2004; Goswami, Passot & Sulem 2005; Passot et al.
2017), let us seek an expression for δq‖e in terms of ∇‖ log T‖e. Recalling that δT‖e/T0e =√

2g0,2, δq‖e/n0eT0evthe = √
3g0,3 and that, using (D19) in (D59) and (D60),

√
2M02 = 1 + 2

(
ζ 2 − 1

2

)[
1 + ζZ − ζ ζ∗ − ζ∗

(
ζ 2 − 1

2

)
Z
]
, (D65)

N02 = −
√

2ζ∗ + 2ζM02, (D66)
√

3M0,3 = ζ
√

2M0,2 − 2
[
ζ − ζ∗

(
ζ 2 − 1

2

)]
(1 + ζZ), (D67)

N0,3 = 2ζM0,3, (D68)

we can use (D6) to write

δq̃‖e

n0eT0evthe
=

√
3
(

k‖
|k‖|M0,3ϕ̃ − N0,3Ã

)
= k‖

|k‖|
(
ϕ̃ − k‖

|k‖|2ζ Ã
)√

3M0,3. (D69)

Similarly, ∇‖ log T‖e can, in Fourier space, be written as

(∇‖ log T‖e
)

k = i k‖
δT̃‖e

T0e
− i

kyρe

LT
Ã = i k‖

(
ϕ̃ − k‖

|k‖|2ζ Ã
)√

2M0,2. (D70)

Combining (D69) and (D70), we obtain the desired expression for the heat flux in terms
of the parallel gradient of the total parallel temperature:

δq̃‖e

n0eT0evthe
= − 1

|k‖|μ(ζ )
(∇‖ log T‖e

)
k , (D71)

where the collisionless heat-conduction coefficient is

μ(ζ ) = i

√
3M0,3√
2M0,2

= i

[
ζ − 1 + ζZ

ζ + (
ζ 2 − 1

2

)Z
]

≈

⎧⎪⎨
⎪⎩

2√
π
, ζ � 1,

− 3i
2ζ
, ζ � 1.

(D72)

This is identical to the Landau-fluid closure derived in Wang et al. (2019), and is formally
valid over the entire range of frequencies ζ .

Let us now return to (D63). Under the ordering (D45), its left-hand side is negligible in
its entirety, meaning that

−∇2
‖
δq‖e

n0eT0e
= ρevthe

2LT

∂

∂y
∇‖ log p‖e. (D73)

As in the collisional case, the competition between these two terms is controlled by ξ∗,
now defined by (D51). Using (D64), (D71) and (D72) (the latter for ζ � 1), (D73) can
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be recast as an expression for ∇‖ log T‖e in terms of the parallel gradient of the density
perturbation: (∇‖ log T‖e

)
k = − i ξ∗

1 + i ξ∗

(
∇‖
δne

n0e

)
k

, (D74)

where ξ∗ is defined in (D51). This is the collisionless equivalent of (4.17), which reduces
to (4.31) and (4.51) in the isothermal (ξ∗ � 1) and isobaric (ξ∗ � 1) limits, respectively.
We have thus demonstrated how both isothermal and isobaric sTAI, given by (4.30) and
(4.50), respectively, arise as corrections to isothermality and isobaricity not only in the
collisional limit, but in the collisionless one as well.

D.7.2. Stabilisation of isothermal sTAI
As discussed in § 4.3.3, the isothermal sTAI (4.30) is eventually quenched by the

compressional heating term in the temperature equation (2.22) that begins to compete
with the TAI drive.

To show this, let us adopt, instead of (D45), the ordering

ω ∼ ω∗e � k‖vthe ⇔ ζ ∼ ζ∗ � 1, (D75)

but still consider perturbations above the flux-freezing scale, k⊥de � 1. In this limit, the
system is still isothermal to leading order in ξ∗ � 1, but now we must also retain the
compressional heating term in (D63) to determine ∇‖ log T‖e at next order: instead of
(D73), we have, therefore,

−
(

∇2
‖
δq‖e

n0eT0e

)
k

= − 2√
π

|k‖|vthe
(∇‖ log T‖e

)
k =

(
ρevthe

2LT

∂

∂y
∇‖
δne

n0e
+ 2∇2

‖u‖e

)
k

,

(D76)
where we have used (D72) for ζ � 1. Combining (D76) with the equations for density and
parallel momentum, still the same as (4.32), we obtain the following dispersion relation:

ω2 − ω2
KAW(1 + τ̄ − i ξ∗) = −i

√
π

ω

|k‖|vthe
ω2

KAW. (D77)

This is the same as (4.33) apart from the right-hand side, previously neglected. At the
stability boundary, the frequency ω must be purely real, and both the real and imaginary
parts of (D77) must vanish individually, giving

ω2 = ω2
KAW(1 + τ̄ ), ω = −ω∗e

2
⇒ ∓ωKAW

√
1 + τ̄ = ω∗e

2
. (D78)

This is (D57). This stabilisation of isothermal sTAI was not captured by the TAI dispersion
relation (D51) because the ordering (D45) did not formally allow frequencies comparable
with ω∗e, required by (D78).

D.7.3. Stabilisation of isobaric sTAI
As discussed in § 4.4.2, the isobaric sTAI (4.50) is stabilised within a certain region of

wavenumber space, due to the effects of finite electron inertia in the parallel momentum
equation (2.21).

To work out this stabilisation, let us consider, instead of (D45), the ordering

ω ∼ k‖vthe � ω∗e ⇔ ζ ∼ 1 � ζ∗, (D79)

while allowing perpendicular wavenumbers to sample the flux-freezing scale, k⊥de ∼ 1.
A direct consequence of this ordering is that one has to retain the electron inertia in the
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leading-order parallel momentum equation, viz., the second equation in (4.52) is replaced
with

dA
dt

+ vthe

2
∂ϕ

∂z
= vthe

2
∇‖ log p‖e + d

dt
u‖e

vthe
. (D80)

This means that, instead of the system being isobaric to leading order in ξ∗ � 1, the
parallel pressure gradient now balances the electron-inertial force:

∇‖ log p‖e + 2
vthe

d
dt

u‖e

vthe
= 0. (D81)

This is obvious from (D63) in the limit (D79). To the next order in this limit, we must
retain both the time derivative of ∇‖ log T‖e and the compressional-heating term in (D63):[

ρevthe

2LT

∂

∂y

(
∇‖ log p‖e + 2

vthe

d
dt

u‖e

vthe

)]
k

=
(

d
dt

+ μ(ζ )|k‖|vthe

)(
∇‖
δne

n0e
+ 2
vthe

d
dt

u‖e

vthe

)
k

− (
2∇2

‖u‖e
)

k
. (D82)

Combining (D80), (D82) and the density equation from (4.52), we find the dispersion
relation

ω2 − ω2
KAW

(
τ̄ + 1

i ξ∗

)
= − 1

i ξ∗
k2

⊥d2
eω

2 − (
3ω2

KAW − k2
⊥d2

eω
) ω
ω∗e

, (D83)

where, since ζ ∼ 1, we have here defined ξ∗ = ω∗e/(μ|k‖|vthe). This is the same as (4.53),
apart from the right-hand side, previously neglected, and up to the definition of ξ∗. The
second term on the right-hand side simply leads to a small, in ξ∗ � 1, modification of the
(real) frequency, and so can be neglected.

As usual, at the stability boundary, the frequency ω must be purely real, and both the
real and imaginary parts of (D83) must vanish individually, giving

ω2 = ω2
KAWτ̄ , k2

⊥d2
eω

2 = ω2
KAW ⇒ k2

⊥d2
e = 1

τ̄
. (D84)

This is (D58). As with the case of the isothermal sTAI, this stabilisation was not captured
by the general TAI dispersion relation (D51) because the ordering (D45) did not formally
allow frequencies comparable to the parallel-streaming rate, required by (D84).

Appendix E. Collisional linear theory

We begin by linearising and Fourier-transforming our equations for the density (A88),
velocity (A89) and temperature (A90) in the collisional limit:[

ω

τ̄
− 2

(
1 + 1

τ̄

)
ωde + 1

ηe
ω∗e

]
ϕ̃ − k‖vthe(k⊥de)

2Ã + 2ωde
δT̃e

T0e
= 0, (E1)

[
ω −

(
1 + 1

ηe

)
ω∗e + i (k⊥de)

2νei

]
Ã + k‖vthe

2

[
−
(

1 + 1
τ̄

)
ϕ̃ + δT̃e

T0e

]
= 0, (E2)

(
ω − 14

3
ωde + i κk2

‖

)
δT̃e

T0e
+ 2

k‖vthe

[
1
3
(k‖vthek⊥de)

2 − κk2
‖iω∗e

]
Ã

−
[
ω∗e − 4

3

(
1 + 1

τ̄

)
ωde

]
ϕ̃ = 0, (E3)
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where tildes indicate the Fourier components of the fields, ηe = Ln/LT and we have used
(2.18) in order to express ∇‖ log Te in terms of δTe/T0e and A, as well as (A42) with gi = 0
in order to express δne/n0e in terms of ϕ. Note that (E1)–(E3) are formally only valid in
the adiabatic-ion limit (A46), i.e. at k⊥ρi � 1. The dispersion relation is

[
ω −

(
1 + 1

ηe

)
ω∗e + i(k⊥de)

2νei

] (
MϕϕMTT − MϕTMTϕ + i κk2

‖Mϕϕ

)

−
(

2
3
ω2

KAW − κk2
‖iω∗e

)[
Mϕϕ +

(
1 + 1

τ̄

)
MϕT

]

−
(

1 + 1
τ̄

)
ω2

KAW

(
MTT + i κk2

‖
) + ω2

KAWMTϕ = 0, (E4)

where we have defined the coefficients independent of k‖ by

Mϕϕ = ω

τ̄
− 2

(
1 + 1

τ̄

)
ωde + 1

ηe
ω∗e,

MTT = ω − 14
3
ωde,

MTϕ = −ω∗e + 4
3

(
1 + 1

τ̄

)
ωde,

MϕT = 2ωde,

(E5)

and ω∗e, ωde and ωKAW are as defined in (A9). Though an exact solution of the cubic
(E4) is, in principle, possible to write explicitly, it is not particularly useful or enlightening
in its full generality. Therefore, we consider various asymptotic limits of (E4) in order to
highlight the important aspects of the linear physics supported by our reduced system of
equations, as we did in Appendix D.

E.1. Two-dimensional perturbations
Let us first consider purely two-dimensional perturbations – which amounts to setting
k‖ = 0 everywhere – without ordering k⊥deχ with respect to unity. In this case, (E4)
reduces instantly to

[
ω −

(
1 + 1

ηe

)
ω∗e + i(k⊥de)

2νei

] (
MϕϕMTT − MϕTMTϕ

) = 0. (E6)

The dispersion relation (E6) admits two solutions.

E.1.1. Magnetic drift wave
From the first bracket in (E6), we have

ω =
(

1 + 1
ηe

)
ω∗e − i (k⊥de)

2νei, (E7)

which is a (damped) version of the ‘magnetic drift wave’ described in Appendix D.2.1, a
purely magnetic oscillation involving the balance between the inductive part of the parallel

https://doi.org/10.1017/S0022377822000654 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000654


84 T. Adkins, A.A. Schekochihin, P.G. Ivanov and C.M. Roach

electric field, the gradient of the equilibrium pressure along the perturbed field line and
the resistive force in (A89) [or indeed (2.25)]:

∂A
∂t

= −ρevthe

2

(
1
Ln

+ 1
LT

)
∂A
∂y

+ νeid2
e∇2

⊥A. (E8)

By setting k‖ = 0, we have decoupled perturbations of the magnetic field – or, in the
electrostatic regime, of the parallel velocity – from those of the density and temperature, as
in Appendix D.2.1. Note that this mode can potentially go unstable at lower collisionality,
where it is sometimes referred to as a slab micro-tearing mode (see, e.g., Drake et al. 1980;
Hassam 1980b; Larakers et al. 2020) – this is discussed in Appendix G.

E.1.2. Finite critical gradients
Focusing on the second bracket in (E6), and solving for the growth rate γ = Im(ω), we

find

γ = ±
√

2ωdeω∗eτ̄

√
1 + 1

2ηe

(
τ̄ − 4

3

)
− τ̄

8η2
e

LB

LT
− 1

2

(
τ̄ + 40

9
1
τ̄

)
LT

LB
. (E9)

Clearly, in order to have an instability, we need the expression under the square root to be
positive-definite, which gives us a condition on LB/LT :(

LB

LT

)
−
<

LB

LT
<

(
LB

LT

)
+
, (E10)

where the critical gradients are

(
LB

LT

)
±

= 2η2
e

[
2
τ̄

+ 1
ηe

(
1 − 4

3τ̄

)
± 2
τ̄

√
1 + 1

ηe

(
τ̄ − 4

3

)
− 2

3η2
e

(1 + τ̄ )

]
. (E11)

These solutions exist only if the temperature gradient is sufficiently steep compared with
the density gradient: demanding that the expression under the square root in (E11) be
positive semi-definite, we find that ηe must satisfy

ηe � 4(1 + τ̄ )

3τ̄ − 4 + √
40 + 9τ̄ 2

. (E12)

This result is consistent with the long-established understanding that the critical
temperature gradient for the ETG instability is proportional to the density gradient (Jenko,
Dorland & Hammett 2001).

In the limit of ηe → ∞, we find that (E10) becomes

LB

LT
>

1
2

(
τ̄ + 40

9
1
τ̄ 2

)
. (E13)

For τ̄ ∼ 1, this lower bound is a quantity of order unity. Therefore, the condition (E13) can
perhaps be readily satisfied in steep-temperature-gradient regions, such as the tokamak
edge/pedestal. It is not a forgone conclusion, however, that the limit of ηe → ∞ can
be achieved in experimentally relevant conditions. Though an emerging paradigm for
JET-ILW (ITER-like wall) pedestal transport appears to be that the ILW conditions modify
the pedestal density in ways that preferentially decrease its gradient (Hatch et al. 2019;
Ham et al. 2021) – thereby increasing both ηe and ηi = Ln/LTi – other recent studies have
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found that the average value of ηe in the pedestal appears to saturate at ηe ∼ 1–2 during
the inter-edge-localised-mode period (Field et al. 2020; Guttenfelder et al. 2021). Within
the latter context, the stiff heat-flux scalings derived in § 6 can be viewed as an argument
against ETGs much above the critical linear threshold being achievable. Whether these
considerations are relevant in the nonlinear context will be addressed in future work.

E.1.3. Curvature-mediated ETG instability
For the remainder of this appendix, we specialise to the strongly driven limit (see

Appendix A.7), wherein LB/LT is assumed to be sufficiently far above the lower bound
(E13). Then, (E9) reduces to the cETG growth rate (3.13), viz.,

γ = ±
√

2ωdeω∗eτ̄ ⇔ ω = ±i (2ωdeω∗eτ̄ )
1/2, (E14)

which is now a purely growing mode that is formally unstable at all values of the
equilibrium temperature gradient.

Furthermore, the dispersion relation (E4) becomes significantly simplified in this limit:
neglecting ωde and ω∗e/ηe where they are directly compared with larger terms (i.e. with ω
or ω∗e) in (E5), one finds[
ω − ω∗e + i (k⊥de)

2νei
] (
ω2 + i κk2

‖ω + 2ωdeω∗eτ̄
)

−
[

2
3
ω2

KAW − κk2
‖iω∗e

]
[ω + 2ωde(1 + τ̄ )] − ω2

KAW

[(
ω + i κk2

‖
)
(1 + τ̄ )− ω∗eτ̄

] = 0.

(E15)

This dispersion relation could also have been obtained directly from the linearisation
of the collisional, strongly-driven system of (2.24)–(2.26). Note that it is important to
retain the magnetic-drift term ωde in the fourth bracket: despite it being formally smaller
than the frequency ω with which it shares that bracket, it is required for some leading-order
cancellations in certain limits. In what follows, we neglect magnetic-drift terms where they
are not multiplied by ω∗e, consistently with the strongly driven limit.

Both two-dimensional modes (E7) and (E14) persist at all perpendicular wavenumbers
because there is no distinction between the electrostatic and electromagnetic regimes for
purely two-dimensional phenomena. Restoring finite k‖, however, significantly alters this
behaviour, as it allows coupling between perturbations of the magnetic field and those of
density and temperature, which introduces new instabilities in both the electrostatic and
electromagnetic regimes.

E.2. Electrostatic three-dimensional perturbations: collisional sETG
Let us consider perturbations below the flux-freezing scale (2.30), viz., with

k⊥deχ � 1 ⇔ (k⊥de)
2νei � ω∗e. (E16)

Then, given that we always have ω � ω∗e, the first two terms in the first bracket of (E15)
can be neglected in comparison with the third. Similarly, noting that, from (E16),

ω2
KAW = (k‖vthe)

2

2νei
(k⊥de)

2νei = 1
a
κk2

‖(k⊥de)
2νei � κk2

‖ω∗e, (E17)

where a = 2νeiκ/v
2
the = 5νei/9νe = 5/[9(1 + 1/Z)], the second term in the third bracket

can also be neglected. Dividing throughout by (k⊥de)
2νei, we can therefore write (E15) as
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a quadratic in ω:

ω2 +
(
τ̄ + a + 5

3

)
i
(k‖vthe)

2

2νei
ω + 2ωdeω∗eτ̄

−
[
(1 + τ̄ )a

(k‖vthe)
2

2νei
+ iω∗eτ̄

]
(k‖vthe)

2

2νei
= 0. (E18)

The originally cubic dispersion relation has reduced to a quadratic because our collisional
system of equations becomes a two-field system (ϕ and δTe) in the electrostatic limit,
with A no longer a dynamic field: neglecting ω in the first bracket of (E15) is equivalent
to neglecting the inductive part of the parallel electric field in (2.25), meaning that A is
determined instantaneously from the parallel pressure balance.

If, in addition to (E16), we consider the limit of short parallel wavelengths, which
amounts to ignoring the magnetic-drift terms everywhere, viz.,

ωde � (k‖vthe)
2

νei
� ω � ω∗e, (E19)

then the balance of the first and last terms in (E18) gives us

ω2 = iω∗e
(k‖vthe)

2

2νei
τ̄ ⇒ ω = ±1 − i sgn(ky)√

2

(
k2

‖v
2
the|ω∗e|τ̄
2νei

)1/2

. (E20)

We recognise this as the collisional sETG growth rate (3.9), which we would expect to
recover in the electrostatic regime (magnetic field lines and electron flows are liberated
from one another as flux is unfrozen by, in this case, resistivity).

At short enough parallel wavelengths, however, the sETG instability is quenched
by rapid thermal conduction that leads to the damping of the associated temperature
perturbation. To see this, we relax the assumption (E19) and consider the exact stability
boundary of (E18): assuming that ω is purely real, the real and imaginary parts of (E18)
are, respectively,

ω2 + 2ωdeω∗eτ̄ − (1 + τ̄ )a

(
k‖vthe

)4

(2νei)2
= 0,

(
τ̄ + a + 5

3

)
ω − ω∗eτ̄ = 0. (E21)

Given that the second equation in (E21) implies that the frequency at the stability
boundary is of order ∼ ω∗e, the second term in the first equation will always be negligible
in comparison with the first, and so can be dropped. The resultant equations can be
straightforwardly combined to yield

(
k‖LT√
βe

)4

= τ̄ 2

(1 + τ̄ )a (τ̄ + a + 5/3)2 (1 + 1/Z)2
(kydeχ)

2. (E22)

This is the stability boundary in the electrostatic limit, plotted as the grey dashed line in
figure 13(a). Above this line, corresponding to the limit (k‖vthe)

2/νei � ω∗e, all modes are
purely damped due to rapid thermal conduction, as in figure 13(b).

The maximum growth rate of the collisional sETG instability is, therefore, reached at
ω∗e ∼ (k‖vthe)

2/νei, as claimed in (3.10). Apart from factors of order unity, this is the same
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(a) (b)

FIGURE 13. Growth rate of the ETG instability in the collisional, electrostatic regime: these
are solutions of (E18) with τ̄ = 1. (a) is a contour plot of the positive growth rates (γ > 0)
in the (ky, k‖) plane, while (b) is the growth rate plotted as a function of k‖LT/

√
βe. We

have normalised to the cETG growth rate (E14) in both cases. The stability boundary (E22)
is indicated by the grey dashed line in (a). We chose a very large value of LB/LT in order to show
the asymptotic regimes clearly.

scaling as (E22). Indeed, ignoring the magnetic-drift term in (E18) and maximising the
resultant growth rate with respect to (k‖vthe)

2/νei, one finds

γmax = C(τ̄ )ω∗e, (E23)

where C(τ̄ ) is a constant formally of order unity, e.g. C(1) ≈ 0.096.
Given that (E22) is the only stability boundary in the electrostatic limit, there is

no intermediate region of stability between the cETG and sETG instabilities: as k‖ is
increased, the cETG mode gradually transitions into the sETG mode (see figure 13b).
Furthermore, (E23) implies that, for large temperature gradients, the sETG growth rate
will always be asymptotically larger than the cETG one:

γmax√
2ωdeω∗e

∼
(

LB

LT

)1/2

. (E24)

This is (3.14). Thus, maximum growth in the electrostatic limit occurs at a finite k‖, which
scales the same as the stability boundary (E22).

E.3. Electromagnetic three-dimensional perturbations: collisional TAI
Moving towards larger scales, we now consider perturbations above the flux-freezing scale
(2.30), viz.,

k⊥deχ � 1 ⇔ (k⊥de)
2νei � ω∗e, (E25)

meaning that the resistive term in the first bracket in (E15) can be neglected,
with all other terms retained. In order to demonstrate how the two-dimensional
perturbations of Appendix E.1 are modified in the presence of finite k‖, we consider

https://doi.org/10.1017/S0022377822000654 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000654


88 T. Adkins, A.A. Schekochihin, P.G. Ivanov and C.M. Roach

perturbations satisfying

(k⊥de)
2νei ∼ ωde � ω � ω∗e ∼ κk2

‖. (E26)

Under this ordering, we ignore the frequency in the first bracket in (E15), except for where
it multiples the (large) term proportional to κk2

‖ in the second bracket, and, as usual, drop
all incidences of ωde where it is not multiplied by ω∗e. The result is

(−ω∗e + i κk2
‖)ω

2 + (2ωdeω∗e − ω2
KAW)

[−ω∗eτ̄ + i κk2
‖(1 + τ̄ )

] = 0. (E27)

With some straightforward manipulations, this can be rearranged to give

ω2 + (2ωdeω∗e − ω2
KAW)

(
τ̄ + 1

1 + i ξ∗

)
= 0, ξ∗ = ω∗e

κk2
‖
. (E28)

This is the dispersion relation of the collisional TAI, which we treat in detail in § 4 and
Appendix F. The TAI dispersion relation (E28) captures all of the properties of the more
general dispersion relation (E15) in the electromagnetic regime,12 with the important
exception of the stabilisation of isothermal and isobaric sTAI – see (4.30) and (4.50),
respectively – that we shall discover in the next section.

E.4. Exact stability boundary
Let us now consider the exact stability boundary associated with our collisional dispersion
relation (E15). As in § E.2, we assume that ω is purely real, and demand that the real and
imaginary parts of (E15) must vanish individually. The real part gives

ω2 =
(
ω2

KAW − 2ωdeω∗e
)
(1 + τ̄ )− 2ωdeω∗eτ̄ ξη

1 + ξη
. (E29)

where we have defined

ξη = (k⊥de)
2νei

κk2
‖

= 2
a

(
k⊥deχ

1 + 1/Z

)2 (k‖LT√
βe

)−2

, (E30)

which is the resistive dissipation rate normalised to the thermal-conduction rate. Given
that, according to (E22), we expect unstable modes in the electrostatic regime to exist only
for (k‖LT/

√
βe)

2 � k⊥deχ , it follows that ξη � 1 corresponds to the electrostatic limit
(E16), while ξη � 1, in general, corresponds to the electromagnetic limit (E25).

Extracting the imaginary part of (E15), and using the solution (E29) for the frequency
ω at the stability boundary, we find

±
√(
ω2

KAW − 2ωdeω∗e
)
(1 + τ̄ )− 2ωdeω∗eτ̄ ξη

1 + ξη

= ω∗e
ω2

KAW(1 − τ̄ ξη)− 2ωdeω∗e

ω2
KAW(1 + τ̄ )− ω2

KAW (τ̄ + a + 5/3) (1 + ξη)− 2ωdeω∗e
. (E31)

This is the white dashed curve in figures 14(a) and 15(a).

12Quantitatively well at low k‖ (especially in the case of ωde �= 0), but only qualitatively at higher k‖ – as is evident
from figures 14 and 15.
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(a) (b)

(c) (d )

FIGURE 14. The growth rates of the collisional instabilities in the absence of magnetic drifts
and with τ̄ = 1, normalised to ω∗e. (a) is a contour plot of the positive growth rates (γ > 0)
in the (ky, k‖) plane. The white dashed line is the exact stability boundary (E31), while the
horizontal grey dashed line is (E36), corresponding to the stabilisation of the isothermal sTAI at
large parallel wavenumbers. The slanted grey dashed line on the left is (E38), around which the
isobaric sTAI is briefly stabilised; the slanted grey dashed line on the right is the electrostatic
stability boundary (E22). (b) is a cut of the growth rate along k‖LT/

√
βe = 0.4 (plotted against a

logarithmic scale). (c) and (d) are cuts of the growth rate for kydeχ = 0.001 and kydeχ = 0.04,
respectively. The solid lines represent the exact growth rate obtained by solving the (collisional)
linear dispersion relation (E15), while the dashed lines are the growth rates predicted by the
approximate TAI dispersion relation (E28). In (b), (d), the vertical grey dashed line is (E38),
while the same line in (c) is (E36).

In the limit of large perpendicular wavenumbers, (E31) asymptotes to the electrostatic
stability boundary (E22), which is the slanted grey dashed line in the top right-hand corner
of figures 14(a) and 15(a). To show this, anticipating the balance ω∗e ∼ (k‖vthe)

2/νei �
2ωdeω∗e, we neglect all incidences of the magnetic-drift frequency ωde. Then, assuming
the resistive rate to be the dominant frequency (ξη � 1), and making use of (E17), we find
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(a) (b)

(c) (d )

FIGURE 15. The same as figure 14 but with magnetic drifts restored, and now normalised to
the cETG growth rate (E14). We chose a large value of LB/LT in order to show the asymptotic
regimes clearly. The grey dashed curved line in (a) is now (E39), while the lower horizontal
grey dashed line is k‖ = k‖c, as defined in (4.21). The inset in (c) shows the growth rate for
k‖ � k‖c, within which the vertical grey dashed line is (E36). We draw the reader’s attention to
the enhancement of the cETG growth rate by the cTAI mechanism that can be seen from the red
contours in the bottom left-hand corner of (a).

that (E31) reduces to
(k‖vthe)

4

(2νei)2
= τ̄ 2ω2

∗e

(1 + τ̄ )a (τ̄ + a + 5/3)2
. (E32)

This is (E22) up to normalisations.
In the limit of small perpendicular wavenumbers, (E31) asymptotes to lines of

constant k‖. To show this, we consider the limit of vanishing resistivity (ξη � 1), in which
(E31) becomes

∓
√(
ω2

KAW − 2ωdeω∗e
)
(1 + τ̄ ) = ω∗e

ω2
KAW − 2ωdeω∗e

ω2
KAW (a + 2/3)+ 2ωdeω∗e

. (E33)
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Clearly, the line

ω2
KAW = 2ωdeω∗e ⇒ k‖ = k‖c, (E34)

with k‖c defined in (4.21), is a solution to this equation, corresponding to the lower
horizontal grey dashed line in figure 15(a).

In fact, in order for the stability boundary to exist at all, we require that k‖ � k‖c; this
follows from the fact that the expression under the square root on the left-hand side of
(E33) must be positive semi-definite. Going back to (E29) (i.e. assuming nothing about
k⊥) and demanding that the numerator is positive semi-definite, we find a more general
condition for the stability boundary to exist:

k2
‖ � k2

‖c

(
1 + τ̄

1 + τ̄
ξη

)
. (E35)

Since ξη � 0, this implies that our system can never be stable for k‖ � k‖c. Returning
again to (E33) and considering the limit of k‖ � k‖c, we find that the stability boundary
asymptotically approaches

∓ωKAW

√
1 + τ̄ = ω∗e

a + 2/3
⇒ k‖LT√

βe
= ± 1

(a + 2/3)
√

2(1 + τ̄ )

ky

k⊥
. (E36)

This is the upper horizontal grey dashed line in figures 14(a) and 15(a). It corresponds
to the stabilisation of the isothermal sTAI (4.30) at large parallel wavenumbers due to
compressional heating, as explained in § 4.3.3.

Similarly, the stabilisation of the isobaric sTAI (4.50) can be extracted from (E31) in
the limit ξη ∼ 1. Let us initially consider the limit of k‖ � k‖c, in which we can neglect
magnetic drifts, so (E31) becomes

±ωKAW

√
1 + τ̄

1 + ξη
= ω∗e

1 − τ̄ ξη

1 + τ̄ − (τ̄ + a + 5/3) (1 + ξη)
. (E37)

The left-hand side of (E37) is proportional to ωKAW ∝ k‖k⊥, whereas the right-hand side
is proportional to ω∗e ∝ ky. This means that as k‖, ky → 0, while maintaining ξη ∼ 1, the
left-hand side approaches zero faster that the right-hand side, unless the numerator of the
right-hand side similarly approaches zero. This means that both branches of the stability
boundary will asymptotically approach

1 − τ̄ ξη = 0 ⇒
(

k‖LT√
βe

)2

= 2τ̄
a

(
k⊥deχ

1 + 1/Z

)2

. (E38)

This means that there is a thin sliver of stability within the otherwise unstable isobaric
sTAI region: the growth rate briefly dips below zero, before picking back up again and
reaching a maximum around ξ∗ ∼ 1 [cf. (F21) and the following discussion], as shown
in figures 14(d) and 15(d). This is due to finite-resistivity effects coming into play, and
competing with thermal conduction, as explained in § 4.4.2.

In the more general case including magnetic drifts, viz., for k‖ � k‖c, the curve that both
branches of the exact stability boundary asymptotically approach is well described by the
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vanishing of the numerator of the right-hand side of (E31):

ω2
KAW(1 − τ̄ ξη)− 2ωdeω∗e = 0 →

(
k‖LT√
βe

)2

= LT

LB

(
ky

k⊥

)2

+ 2τ̄
a

(
k⊥deχ

1 + 1/Z

)2

.

(E39)
This is indicated by the grey dashed curved line in figure 15(a). It reproduces (E34) and
(E38) in the appropriate limits.

We have thus used the expression for the exact stability boundary (E31) to derive the
boundaries that limit the unstable regions of wavenumber space. From figures 14 and 15,
it is clear that (E22) bounds the electrostatic instabilities at large parallel wavenumbers,
while the electromagnetic region of instability at k‖ > k‖c, corresponding to the sTAI, is
bounded by (E36) and (E38). We also draw the reader’s attention to the similarity between
figure 15(a) and the wavenumber-space portrait associated with our collisional equations
(figure 8), in that it reproduces all the key features that were predicted using the naive
estimates of § 5.

Appendix F. Analysis of TAI dispersion relation

In this appendix, we consider the mathematical details of the TAI dispersion
relation (4.18)

ω2 = − (
2ωdeω∗e − ω2

KAW

) (
τ̄ + 1

1 + i ξ∗

)
, (F1)

where ξ∗ is given by

ξ∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
π

2
ω∗e∣∣k‖
∣∣ vthe

, collisionless,

ω∗e

κk2
‖

= 18
5

ω∗e

(k‖vthe)2/νe
, collisional.

(F2)

Defining

σ = sgn
(
2ωdeω∗e − ω2

KAW

) = sgn(k‖c − k‖) ≡ ei nπ, (F3)

with k‖c defined in (4.21), we can write (F1) as

− iω = ∣∣2ωdeω∗e − ω2
KAW

∣∣1/2 A1/2ei (θ+nπ)/2, (F4)

where

A =
√(

τ̄ + 1
1 + ξ 2∗

)2

+ ξ 2∗
(1 + ξ∗)2

, θ = tan−1

[
ξ∗/(1 + ξ 2

∗ )
τ̄ + 1/(1 + ξ 2∗ )

]
. (F5)

Taking the real and imaginary parts of (F4), and using the fact that
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(a) (b)

FIGURE 16. Contour plots of the TAI growth rate (F7) in the (ky, k‖) plane, normalised to the
cETG growth rate (3.13). (a) The collisionless case and (b) the collisional one. The horizontal
white dashed line is k‖ = k‖c, as defined in (4.21), while the vertical black dashed line is k⊥ =
k⊥∗, as defined in (4.26). There is clear enhancement of the cETG growth rate due to the cTAI
(F16) at k⊥ < k⊥∗ (the isothermal regime; § 4.1), while there is no enhancement for k⊥ > k⊥∗
(the isobaric regime; § 4.4). We chose a large value of LB/LT in order to show a clear transition
between these two regimes.

cos2

(
θ + nπ

2

)
= 1

2
(1 + σ cos θ) , sin2

(
θ + nπ

2

)
= 1

2
(1 − σ cos θ) , (F6)

we find the real frequency ωr = Re(ω) and the growth rate γ = Im(ω) that satisfy (F1):

ω2
r = |2ωdeω∗e − ω2

KAW|τ̄ f−(ξ∗), γ 2 = |2ωdeω∗e − ω2
KAW|τ̄ f+(ξ∗), (F7)

where we have defined the functions

f±(ξ∗) = 1
2τ̄

⎡
⎣
√(

τ̄ + 1
1 + ξ 2∗

)2

+ ξ 2∗
(1 + ξ 2∗ )2

± σ

(
τ̄ + 1

1 + ξ 2∗

)⎤⎦ . (F8)

These are exactly the formulae (4.22) and (4.23). The growth rate is plotted in
figure 16a and 16b in the collisionless and collisional cases, respectively. Note that the
correspondence between the signs of γ and ωr was lost in (F7). Most of the time, this
information will not be important but, if needed, it can be recovered by going back to (F1)
and extracting its imaginary part:

2γωr = ∣∣2ωdeω∗e − ω2
KAW

∣∣ σξ∗
1 + ξ 2∗

. (F9)

Therefore, for an unstable mode (γ > 0),

sgn(ωr) = sgn(σξ∗). (F10)
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(a) (b)

FIGURE 17. The functions (F8): (a) f+ and (b) f− plotted as functions of k‖/k‖∗, for τ̄ = 1 and
σ = 1 (for σ = −1, f+ ↔ f−). It is clear that the region of maximum variation of f± occurs
around k‖ ∼ k‖∗ ⇔ ξ∗ ∼ 1.

In what follows, it will be useful to consider the asymptotic expansions of (F8) for small
and large argument:

f±(ξ∗) =

⎧⎪⎪⎨
⎪⎪⎩

1
2

(
1 + 1

τ̄

)
(1 ± σ)− 2τ̄ + 1 ± 2σ(1 + τ̄ )

4τ̄ (1 + τ̄ )
ξ 2
∗ + · · · , ξ∗ � 1,

1
2
(1 ± σ)+ 1 + 2τ̄ (1 ± σ)

4τ̄ 2

1
ξ 2∗

+ · · · , ξ∗ � 1.
(F11)

Given that we are interested in the behaviour of (F8) as functions of k‖ – at constant
perpendicular wavenumber – we define a parallel wavenumber k‖∗ such that

ξ∗ =
(

k‖∗∣∣k‖
∣∣
)α
, (F12)

where α = 1, 2 in the collisionless and collisional cases, respectively. The wavenumber
k‖∗ can be read off (F2) and depends on ky. Then, k‖ ∼ k‖∗ corresponds to the transition
between the isothermal range of wavenumbers (4.11) (k‖ � k‖∗) and the isobaric one (4.43)
(k‖ � k‖∗).

F.1. Isothermal limit
We first consider the isothermal limit k‖ � k‖∗. Examining the second expression in (F7)
in the region k‖ < k‖c, we notice that f+(ξ∗) is a monotonically increasing function of k‖
(figure 17), while the prefactor |2ωdeω∗e − ω2

KAW| is obviously a monotonically decreasing
function of it. Thus, the growth rate may have a maximum in the isothermal range, the
condition for which we will check a posteriori. Using (F11) with σ = 1, we expand the
growth rate in the isothermal limit ξ∗ � 1:

γ 2 = 2ωdeω∗eτ̄

[
1 −

(
k‖
k‖c

)2
][(

1 + 1
τ̄

)
− 3 + 4τ̄

4τ̄ (1 + τ̄ )
ξ 2
∗ + · · ·

]

= 2ωdeω∗e(1 + τ̄ )

[
1 −

(
k‖
k‖c

)2

− 3 + 4τ̄
4(1 + τ̄ )2

(
k‖∗
k‖c

)2α (k‖c

k‖

)2α

+ · · ·
]
, (F13)
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where we have used (F12) and assumed that k‖ � k‖c. Maximising (F13) with respect to
(k‖/k‖c)

2, we find

k‖max

k‖c
=
[

3 + 4τ̄
4(1 + τ̄ )2

α

(
k‖∗
k‖c

)2α
]1/2(1+α)

. (F14)

Using the definition of k‖∗ (F12), we obtain (4.24). This solution is valid provided k‖∗ �
k‖max � k‖c (i.e. provided it lies in the isothermal regime and σ = 1). This translates into
(4.25) by noticing that (F14) implies

ξ∗(k‖max) =
(

k‖∗
k‖max

)α
= 2(1 + τ̄ )√

α(3 + 4τ̄ )
k‖max

k‖c
. (F15)

This observation also allows us to write the peak growth rate, given by (F13) with k‖ =
k‖max, as follows:

γmax ≈
√

2ωdeω∗e (1 + τ̄ )

[
1 − 1

2

(
1 + 1

α

)(
k‖max

k‖c

)2
]
, (F16)

which reduces to (4.15) if we ignore the small correction due to k‖max.
For k‖ > k‖c and ξ∗ � 1 (the isothermal KAW regime), the expansion (F11) with

σ = −1 gives us

ω2
r ≈ ω2

KAW(1 + τ̄ )

[
1 −

(
k‖c

k‖

)2
]
, γ 2 ≈ ωdeω∗e

2(1 + τ̄ )

[(
k‖
k‖c

)2

− 1

]
ξ 2
∗ . (F17)

At k‖ � k‖c, these turn into (4.30). In the collisionless limit, ξ∗ ∝ k−1
‖ , so γ → const. as

k‖ → ∞; this constant value is (4.34). In the collisional limit, ξ∗ ∝ k−2
‖ , so γ → 0 as

k‖ → ∞, and peak growth is reached at a finite k‖: from (F17), we get

γ 2 ∝
[(

k‖
k‖c

)2

− 1

](
k‖c

k‖

)4

, (F18)

so the maximum is reached at k‖ = √
2k‖c. Putting this back into (F17), we find (4.35)

for γmax.

F.2. Isobaric limit
Now consider the limit ξ∗ � 1, which, in § 4.4, we showed to be isobaric. Consider first
k‖ < k‖c and again use (F11) with σ = 1 to expand the growth rate, now in ξ∗ � 1:

γ 2 = 2ωdeω∗eτ̄

[
1 −

(
k‖
k‖c

)2
][

1 + 1 + 4τ̄
4τ̄ 2

1
ξ 2∗

+ · · ·
]

= 2ωdeω∗eτ̄

[
1 −

(
k‖
k‖c

)2

+ 1 + 4τ̄
4τ̄ 2

(
k‖c

k‖∗

)2α ( k‖
k‖c

)2α

+ · · ·
]
, (F19)

where we have used (F12). When k‖∗ � k‖c, i.e. when all wavenumbers k‖ < k‖c are in
the isobaric limit, the last term in (F19) is negligible and the resultant expression simply
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describes the gradual petering out of the cETG growth rate due to the stabilising effect of
the KAW response – γ has no extrema. If k‖∗ � k‖c and α = 1 (collisionless limit), then
(F19) describes the increase of γ with k‖ – it will reach the maximum (F14) after is crosses
over from the isobaric regime into the isothermal one around k‖ ∼ k‖∗. In the collisional
limit (α = 2), (F19) does have an extremum in the isobaric regime, viz.,

k‖
k‖c

=
√

2τ̄ 2

1 + 4τ̄

(
k‖∗
k‖c

)α
, (F20)

but this extremum is a minimum, not a maximum: the growth rate dips slightly before
starting to increase again towards the isothermal maximum (F14) (this is visible in
figure 5c).

Returning to the case k‖∗ � k‖c, we must also examine the isobaric behaviour at
k‖ > k‖c, because the transition to the isothermal regime does not happen until well into
this range. Using (F11), we find, at ξ∗ � 1,

γ 2 ≈ ωdeω∗e

2τ̄

[(
k‖
k‖c

)2

− 1

]
1
ξ 2∗

= ωdeω∗e

2τ̄

[(
k‖∗
k‖c

)2 1

ξ
2/α
∗

− 1

]
1
ξ 2∗
. (F21)

This increases monotonically with 1/ξ∗ ∝ kα‖ until the isobaric regime transitions into the
isothermal one at ξ∗ ∼ 1. In the collisionless limit, γ asymptotes to the constant (4.34),
whereas in the collisional limit, it has a maximum at ξ∗ ∼ 1 before decaying at k‖ → ∞.
To find this maximum, one must extremise

γ 2 ≈ 2ωdeω∗eτ̄

(
k‖∗
k‖c

)2 1

ξ
2/α
∗

f+(ξ∗) (F22)

with respect to ξ 2
∗ without further approximations – a thankless exercise leading to a

quartic equation. The answer is

γ 2
max = ωdeω∗e

(
k‖∗
k‖c

)2

C(τ̄ ), (F23)

where C(τ̄ ) is a constant formally of order unity, e.g. C(1) ≈ 0.093 (for which ξ∗ ≈ 0.67).
This is the same as (4.55).

Appendix G. Consequences of the choice of collision operator

As discussed in Appendix A.6.2, a careful reader may have been concerned that
our choice of the simplified collision operator (A55) would have consequences for the
(collisional) physics phenomena described in this paper. In this appendix, however,
we demonstrate that the collisional equations (A88)–(A90) – and their strongly-driven
counterparts (2.24)–(2.26) – are almost unchanged if derived using the general Landau
collision operator, and discuss the status of slab micro-tearing modes (MTMs) driven by
higher-order collisional effects (Hassam 1980a,b) within the context of this work.

G.1. Collisional equations with Landau operator
Returning to the electron drift-kinetic equation (A52), let us, instead of (A55), adopt
the Landau collision operator (evaluated to leading order in the electron–ion mass ratio,
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consistently with the low-beta ordering introduced in Appendix A.2):(
∂δfe

∂t

)
c

= Cee
[
δfe
] + Lei

[
δfe
]
, (G1)

where Cee and Lei are, respectively, the linearised electron–electron and the pitch-angle
(Lorentz) collision operators (Helander & Sigmar 2005). With these collision operators,
it is no longer analytically convenient to derive the collisional equations (2.24)–(2.26) via
the Hermite–Laguerre moments (A64). Instead, we simply expand the perturbed electron
distribution function as

δfe = δf (0)e + δf (1)e + δf (2)e + · · · , (G2)

where the superscripts indicate the order in the small parameter χ−1 � 1 of our collisional
expansion (A82). Since collisions are dominant to leading order, δf (0)e is constrained to be
a perturbed Maxwellian with no mean flow,13 viz.,

Cee
[
δf (0)e

] + Lei
[
δf (0)e

] = 0 ⇒ δf (0)e =
[
δne

n0e
+ δTe

T0e

(
v2

v2
the

− 3
2

)]
f0e, (G3)

where we have imposed the solvability conditions∫
d3v δf (n)e =

∫
d3v v2δf (n)e = 0, n � 1, (G4)

in order to determine uniquely the density and temperature moments in (G3). Owing to the
ordering of parallel length-scales (A75) and perpendicular magnetic-field perturbations
(A81), δf (1)e is then determined at the next order by the balance

v‖

[
∇‖ log pe +

(
v2

v2
the

− 5
2

)
∇‖ log Te

]
f0e + v‖

eE‖
T0e

f0e = Cee
[
δf (1)e

] + Lei
[
δf (1)e

]
, (G5)

where we have made use of (G3), while ∇‖ log Te and ∇‖ log pe are defined in (2.18)
and (4.7), respectively. By exploiting the fact that spherical harmonics are eigenfunctions
of the Landau collision operator, (G5) can be readily inverted for δf (1)e using a variational
principle (see, e.g., Helander & Sigmar 2005), which allows us to determine the parallel
electron flow

u‖e = 1
n0e

∫
d3v v‖δfe = vthed2

e∇2
⊥A, (G6)

subject to the solvability condition∫
d3v v‖δf (n)e = 0, n � 2. (G7)

Finally, the evolution of δf (0)e is then determined by the next-order equation(
d
dt

+ vde · ∇⊥

)
δf (0)e + v‖∇‖δf (1)e

= (vde · ∇⊥ϕ)f0e − ρevthe

2
∂ϕ

∂y

[
1
Ln

+ 1
LTe

(
v2

v2
the

− 3
2

)]
f0e + Cee

[
δf (2)e

] + Lei
[
δf (2)e

]
.

(G8)

13In general, the Lorentz collision operator constrains the electron distribution function to be isotropic in the frame
moving with the parallel ion velocity. However, the parallel ion flow is negligible within our low-beta ordering [see (A40)
and the following discussion], meaning that the electron distribution function will have no parallel velocity moment to
leading order.
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Equations for the evolution of the density and temperature perturbations are extracted
from the relevant moments of (G8), while the electron parallel momentum equation can
be derived from (G5) [using (G6)], yielding

d
dt
δne

n0e
+ ∇‖u‖e + ρevthe

LB

∂

∂y

(
δne

n0e
− ϕ + δTe

T0e

)
= −ρevthe

2Ln

∂ϕ

∂y
, (G9)

dA
dt

+ vthe

2
∂ϕ

∂z
= vthe

2

(
∇‖
δne

n0e
− ρe

Ln

∂A
∂y

)
+
(

1 + c2

c1

)
vthe

2

(
∇‖
δTe

T0e
− ρe

LTe

∂A
∂y

)

+ νei

c1
d2

e∇2
⊥A, (G10)

d
dt
δTe

T0e
− κ∇2

‖ log Te + 2
3

(
1 + c2

c1

)
∇‖u‖e + 2

3
ρevthe

LB

∂

∂y

(
δne

n0e
− ϕ + 7

2
δTe

T0e

)

= −ρevthe

2LTe

∂ϕ

∂y
, (G11)

where νei is defined in (A10), κ = c3v
2
the/3νei and c1, c2 and c3 are ion-charge-dependent

coefficients:

c1 =
217
64

+ 151

8
√

2Z
+ 9

2Z2

1 + 61

8
√

2Z
+ 9

2Z2

, c2 =
5
2

(
33
16

+ 45

8
√

2Z

)

1 + 61

8
√

2Z
+ 9

2Z2

, c3 =
25
4

(
13
4

+ 45

8
√

2Z

)

1 + 61

8
√

2Z

− c2
2

c1
.

(G12)
Rescalling the collisionality and thermal conductivty as νei/c1 → νei, c1κ → κ
respectively, it becomes clear that the only difference between (G9)–(G11) and
(A88)–(A90) is the presence of the additive c2/c1 factors in (G10) and (G11). These
factors are due to the fact that, in the presence of a temperature gradient, the energy
of a particle is dependent on the direction of its motion, with particles coming from
the higher-temperature region having more energy than particles moving in the opposite
direction (coming from the lower-temperature region). This gives rise to a net frictional
force as the lower-temperature particles will undergo more frequent collisions than their
hotter counterparts, and will thus lose more momentum than those coming from the
hotter region. This effect clearly relies on the velocity dependence of the collision
frequency associated with the Landau collision operator, and hence was not captured by
the simplified collision operator (A55), whose collision frequency was a constant.

If one performs the same analysis with (G9)–(G11) as was performed with the
collisional equations (A88)–(A90) used throughout this paper, one will find only finite
modifications to constant factors entering into all expressions; e.g. the electromagnetic
results of § 4 remain valid but with the rescaling (1 + c2/c1)ξ∗ → ξ∗, with ξ∗ defined in
(4.10). Thus, the results of this paper derived in the collisional limit are unaffected by our
choice of the model collision operator (A55).

G.2. Time-dependent thermal force
A feature missing from our collisional model – represented by either (A88)–(A90) or
(G9)–(G11) – is the so-called ‘time-dependent thermal force’ (Hassam 1980a,b; Drake et
al. 1980), which is believed to be responsible for MTMs in slab geometry; in particular,
it is claimed to be important for destabilising two-dimensional modes involving only
perturbations of the parallel component of the vector potential A.
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In general, such a term enters as a higher-order correction to the parallel momentum
equation (G10). In a system where perturbations with a finite parallel wavenumber are
allowed, any destabilising effect that this term may have will occur at subleading order,
and so can be neglected in comparison with the more vigorous (leading-order) instabilities
supported by our collisional system, such as sTAI or cTAI (see § 4). However, in the case
of two-dimensional perturbations, the perturbations of A are damped drift waves (E7), on
which the time-dependent thermal force can, in theory, have a destabilising effect. In the
remainder of this appendix, we demonstrate, however, that its contribution always occurs at
subleading order in collisional systems with ω � νei ∼ νee, and so should not be included
in our analysis.

We begin by considering the ordering adopted by Hassam (1980a,b):

νee ∼ νei � ω ∼ ω∗s ∼ ωds ∼ k⊥vE ∼ (k⊥de)
2νei ∼ k‖vthe. (G13)

This is distinct from the collisional ordering (A74) in that all of the non-collisional terms
in the electron drift-kinetic equation (A52) are now of the same order, leading to different
dominant balances at each order [compare, e.g. (G8) and (G14)]. Imposing this ordering on
the electron drift-kinetic equation (A52) and expanding the perturbed electron distribution
function as (G2), we once again find that the leading-order piece is given by (G3), while
the next-order piece is determined by (G5) [after imposing the solvability conditions (G4)].
Then, at second order, we have, instead of (G8),

(
d
dt

+ v‖∇‖+vde · ∇⊥

)
δf (1)e = Cee

[
δf (2)e

] + Lei
[
δf (2)e

]
. (G14)

Solving this equation for δf (2)e yields the contribution of the time-dependent thermal force
to the electron parallel momentum equation.

Following Hassam (1980a), we assume that the right-hand sides of (G5) and (G14) can
be approximated solely by the pitch-angle scattering operator (see Helander & Sigmar
2005; Abel et al. 2008):

Lei
[
δfe
] = 1

2
νD
∂

∂ξ

[
(1 − ξ 2)

∂δfe

∂ξ

]
, νD(v) = 3

√
π

4
νei

(vthe

v

)3
, (G15)

where ξ = v‖/v is the pitch-angle coordinate and νei is as defined in (A10). Ignoring,
for brevity, the contributions from the magnetic drifts, both (G5) and (G14) can be
straightforwardly solved for the perturbed distribution functions:

δf (1)e = − v‖
νD

[
eE‖
T0e

+ ∇‖ log pe +
(
v2

v2
the

− 5
2

)
∇‖ log Te

]
f0e, (G16)

δf (2)e = − 1
νD

(
d
dt

+ 1
3
v‖∇‖

)
δf (1)e . (G17)
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Then, the electron parallel momentum equation can be derived from (G5) [using (G6)],
yielding

dA
dt

+ vthe

2
∂ϕ

∂z
= vthe

2

(
∇‖
δne

n0e
− ρe

Ln

∂A
∂y

)
+
(

1 + c2

c1

)
vthe

2

(
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T0e
− ρe

LTe

∂A
∂y

)

+ νei

c1
d2

e∇2
⊥A + c4

νei

d
dt

[
dA
dt

+ vthe

2
∂ϕ

∂z
− vthe

2

(
∇‖
δne

n0e
− ρe

Ln

∂A
∂y

)

−
(

1 + 2c2

c1

)
vthe

2

(
∇‖
δTe

T0e
− ρe

LTe

∂A
∂y

)]
, (G18)

where now c1 = 32/3π, c2 = 16/π and c4 = 105/16 [these coefficients are the same as
those in Hassam (1980a)]. We note that (G18) is the same as (G10), up to the terms known
as the time-dependent thermal force (proportional to ν−1

ei ) on the right-hand side.
Given that we argued above that these terms can only ever matter for two-dimensional

perturbations, we set k‖ = 0 in (G18). Linearising and Fourier-transforming the resultant
expression, we find the dispersion relation

ω −
(

1 + 1
ηe

+ c2

c1

)
ω∗e + i

(k⊥de)
2νei

c1
+ i c4

[
ω −

(
1 + 1

ηe
+ 2c2

c1

)
ω∗e

]
ω

νei
= 0.

(G19)
This has a perturbative solution [neglecting small modifications of the real frequency; cf.
equation (6) in Hassam (1980b)]:

ω =
(

1 + 1
ηe

+ c2

c1

)
ω∗e − i

(k⊥de)
2νei

c1
+ i

c2c4

c1

(
1 + 1

ηe
+ c2

c1

)
ω2

∗e

νei
. (G20)

The last, destabilising term only arises for collision operators with a velocity-dependent
collision frequency [being proportional to c2; see discussion following (G12)], and so is
not captured in our simplified collision operator (A55); in particular, if it were not for the
velocity dependence of νD [see (G15)] and the resultant factor of two multiplying c2/c1
in the last term on the right-hand side of (G18), this destabilising term would vanish.
However, this term can never actually cause (G20) to have a positive growth rate within
the ordering (G13), as it is a higher-order correction to the resistive damping manifest in
the second term. This statement remains true in the non-zero k‖ case; the last term on the
right-hand side of (G18) is clearly higher-order in ω/νei � 1 – arising from δf (2)e , rather
than δf (1)e – and so can be neglected in comparison with the remaining contributions. This
means that the time-dependent thermal force cannot be responsible for driving MTMs in
a collisional (ω � νei) system, and so we are justified in neglecting it in our analysis. The
effect is also absent in the collisionless limit (ω � νei). There is, of course, an intermediate
regime ω ∼ νei in which physics typified by such a term can be important (see, e.g.,
Larakers et al. 2020), but this regime is outside the scope of this paper (and indeed of
any perturbative collisional expansion).
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