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Phase stability and magnetic properties in fcc Fe-Cr-Mn-Ni alloys from first-principles modeling
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Systematic investigation of phase stability of the magnetic fcc Fe-Cr-Mn-Ni system—promising candidate
structural materials to replace conventional austenitic steels—has been performed using a combination of spin-
polarized density-functional theory, cluster expansion, and Monte Carlo simulations. The developed model was
able to reproduce all known ground states (GSs) in the studied system and to predict new ones with strongly
negative formation enthalpy—ternary CrMnNi2 and quaternary FeCr2MnNi4. Investigation of phase stability was
done at 0 K and finite temperatures in the whole concentration range and allowed us to observe the important
role of Ni and Mn. Ni is the only element in the system that increases the order-disorder transition (ODT)
temperature, which means that the fcc alloys with decreased concentration of Ni will form solid solutions at
lower temperatures. Analysis of the effect of the addition of Mn to Fe-Cr-Ni alloy confirms a general trend of
statistical correlation between the averaged magnitude of magnetic moments and volume per atom found from
the predicted stable structures in the quaternary system and underlying subsystems. This linear magneto-volume
relationship trend is, however, weaker in Fe-Cr-Mn-Ni alloys in comparison with those in the Fe-Cr-Ni system.
Furthermore, Ni and Mn form the most stable GS—L10-MnNi, which has one of the strongest tendencies to
segregate in fcc Fe-Cr-Mn-Ni alloys evidenced by the strength of Mn-Ni short-range ordering (SRO). Mn-Ni
SRO significantly increases ODT temperature in the vicinity of L10-MnNi and to the equiatomic region. The
ODT of Cr18Fe27Mn27Ni28 alloy is found to be 1290 ± 150 K, which supports the experimental observation of
the disordered solid solution structure in Cr18Fe27Mn27Ni28 alloy at higher temperatures.

DOI: 10.1103/PhysRevB.101.174416

I. INTRODUCTION

High-entropy alloys (HEAs) are a relatively new group of
materials, first described by Cantor et al. in Ref. [1], who stud-
ied the equiatomic CoCrFeMnNi alloy and reported its as-cast
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disordered single-phase fcc solid solutions with outstanding
mechanical properties. Initially explained as being stabilized
by high configurational entropy of mixing, HEAs have drawn
attention to the central regions of the multicomponent phase
diagrams and their industrial production and application [2].
HEAs are roughly described as alloys with the composition
of 4 or more elements in equal or near-equal ratios of con-
centrations. However, the definition and the formation criteria
are still not formally defined [3]. Yeh et al. [4,5] in 2004
described the empirical “four core effects” characteristic to
HEAs, which include severe lattice distortion, slow diffusion
rate, cocktail effect, and high configurational entropy. Since
then, it has been shown that the aforementioned effects are not
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equally present in all HEAs [3], including the Cantor alloy [6],
and as such need to be revisited.

Currently, many groups of HEAs are being stud-
ied, showing better properties than conventional mate-
rials in their groups. Examples [7] include: refractory
HEAs (such as NbMoTaW), low-density HEAs (such as
Li20Mg10Al20Sc20Ti30), ceramic HEAs, and transition metal
HEAs (such as the Cantor alloy).

In particular, HEAs have been shown to exhibit better
resistance to irradiation damage compared to pure metals [8]
and conventional austenitic steels [9–11]. This is attributed to
their compositional complexity [10,11] and would make them
good candidates for irradiation-facing materials in fusion
and fission reactors. The main additional requirement is the
absence of Co because it forms radioactive isotopes under
irradiation. An alloy with the composition Cr18Fe27Mn27Ni28,
investigated in the Oak Ridge National Laboratory (ORNL)
both experimentally [9] and theoretically [12], has shown
good radiation-resistance properties. Thus, the Fe-Cr-Mn-Ni
system has been chosen for investigation in this paper. The
Cr18Fe27Mn27Ni28 alloy has been reported to have fcc struc-
ture. Rough estimation of relative phase stability based on
valence electron concentration (VEC), as it has been done in
Refs. [13,14], indicates that the region with VEC higher than
8 shows the increased stability of fcc phase compared to bcc
phase and accounts for ∼38% of the possible compositions in
Fe-Cr-Mn-Ni system. Moreover, for a total of ∼85% of the
structures VEC is higher than 7, in which fcc can coexist with
bcc. Therefore, this paper is focused on the investigation of
the fcc phase stability of the Fe-Cr-Mn-Ni system.

In order to explain the physical background of special
behavior and understand the mechanisms of HEA formation
in the Fe-Cr-Mn-Ni system, a vast range of concentrations
has to be studied. Nowadays, theoretical methods of materials
investigation on atomic scales are being intensively applied
to study HEAs [15] since they are cheaper and more time-
efficient than similar experimental investigations, and they
make it possible to pin down the important compositions for
further experimental studies. Usually, the theoretical methods
are narrowed down to either a special quasirandom structure
(SQS) approach or coherent potential approximation (CPA),
which allow investigating only the disordered phases. Both of
the methods have been used in a paper on defect properties
of the Cr18Fe27Mn27Ni28 alloy that was approximated as
the equiatomic FeCrMnNi alloy in a disordered state [12].
However, other experimental studies show that the single-
phase disordered solid solution in the as-cast state (e.g.,
FeNiMnCr18 [16] and Cr18Fe27Mn27Ni28 [9]) does not always
remain in this phase composition after annealing at temper-
atures below 973 K, which is within the working tempera-
ture range for irradiation-facing materials. Decomposition of
single-phase disordered solid solution has been observed in
Fe40Mn28Ni8Cr24 [17], CrMnFeCoNi [18–21] (Cr-rich bcc or
σ phases), and CrMnFeCoNi [20] (B2-FeCo and L10-MnNi
phases). Therefore, attention should be paid to the phase
stability of HEAs at a broad range of temperatures, preferably
from 0 K to the melting point.

A combination of methods that allows investigating the
phase stability at such temperature range for the large amount
of compositions, namely density-functional theory (DFT),

cluster expansion (CE), and Monte Carlo (MC), has been
applied in Ref. [22] to study the finite-temperature phase
stability of ternary Fe-Cr-Ni system in both bcc and fcc
lattices and was successful at reproducing the experimental
short-range order (SRO) parameters and ODT temperatures.
DFT is one of the most commonly used methods in solid-
state physics, which utilizes the dependency of total energy
of quantum-mechanical ground state on electronic density
[23–26]. DFT can be used to find the quantum-mechanical
ground state and from there to study various properties on
atomic scale [15,27], particularly the phase stability and mag-
netic properties at 0 K. The properties and phenomena at
finite temperatures can be investigated by means of statistical
mechanics simulations, and in order to that, it is first required
to have knowledge of interactions in the system, the so-
called effective cluster interactions (ECIs) [28]. These can
be obtained via a generalized Ising Hamiltonian approach,
which is usually implemented as structure inversion method
(SIM) [29] within CE [30]. Another method that allows for
statistical mechanics simulations is CPA-based general pertur-
bation method (CPA-GPM) [31]. However, the perturbations
are made in the vicinity of the fully disordered alloy. Since
CPA-GPM utilizes a single-site approximation, it operates on
the simple lattice of identical atoms with information only
about the average occupancies on these lattice sites. Both
CE-SIM and the extended CPA [32,33] make it possible to
obtain temperature-dependent SRO parameters and from these
to find the ODT temperatures, but, as it has been noted, the
SRO fluctuations in CPA are restricted to disordered alloys
representing a high-temperature state. On the other hand, the
CE-based Monte Carlo simulations, which utilize many-body
interactions, produce representative structures with distinct
atomic positions at each chosen temperature and allow for
observation of the decomposition of a fully disordered alloy
into more stable phases from high to low temperatures. This
fact is important for the investigation of alloys working in a
broad temperature range. Hence, the cluster expansion method
and Monte Carlo simulations will be used in this work.

To summarize, the combination of DFT, CE, and MC
methods is used in this paper, serving both as a cross-check of
Ref. [22] and an extension of the Fe-Cr-Ni into Fe-Cr-Mn-Ni.
This was used to investigate the phase stability as a function
of temperature and composition in the whole concentration
range of fcc Fe-Cr-Mn-Ni, which is useful in designing alloys
with the required atomic structure and properties for the
applicable temperature range. This allowed for the study of
temperature-dependent short-range order parameters and the
generation of representative structures of alloys in the whole
concentration range. In particular, it helped to understand
the differences between the Cr18Fe27Mn27Ni28 alloy from
Oak Ridge National Laboratory [9,12] and the equiatomic
FeCrMnNi alloy. The representative structures will be used in
the future for the investigation of defect properties of Fe-Cr-
Mn-Ni alloys with realistic short-range order to explain their
good irradiation resistance.

This paper is structured as follows. Computational method-
ology section (Sec. II) consists of cluster expansion formalism
for multicomponent system (Sec. IIA), formalism for the cal-
culation of chemical short-range order parameters (Sec. IIB),
short discussion of the configurational entropy contribution
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FIG. 1. Undecorated two-, three-, and four-body clusters with
size ω and label n, which are used in this work.

(Sec. IIC), and the computational details for different methods
used in the current work (Sec. IID). Phase stability at T = 0 K
based on DFT calculations results is presented in Sec. III
for Fe-Cr-Mn-Ni quaternary and its subsystems containing
Mn (Secs. IIIA–IIID). The summary of cluster expansion
application is described in Sec. IIIE. Finite temperature phase
stability analysis is presented in Sec. IV which includes the
results for a configurational entropy from a combined Monte
Carlo and cluster expansion methods (Sec. IVA) and its con-
tribution to the free energy of mixing (Sec. IVB), the order-
disorder transition temperatures (Sec. IVC) and short-range
order parameters (Sec. IVD) which have been studied in the
whole concentration range. The main results of the current
work are summarized in the Conclusions section.

II. COMPUTATIONAL METHODOLOGY

A. Cluster expansion formalism for multicomponent system

The enthalpy of mixing of an alloy with chosen configura-
tion represented by a vector of configurational variables �σ can
be calculated from DFT using the value of total energy per
atom of simulated alloy structure E lat

tot (�σ ) and the correspond-
ing pure elements E lat

tot (p) underlying the same lattice as the
alloy structure as follows:

Hmix(�σ ) = E lat
tot (�σ ) −

K∑
p=1

cpE lat
tot (p), (1)

where K is the number of alloy components and cp are the
average concentrations of each alloy component. Enthalpy of
formation (Hform) is calculated as the energy of the structure
with respect to the energies of pure element ground states
(GSs).

In the cluster expansion formalism, the enthalpy of mixing
can be parametrized as a polynomial in the occupational
variables [34]:

Hmix(�σ ) =
∑
ω,n,s

J (s)
ω,nm(s)

ω,n

〈
�

(s′ )
ω′,n′ (�σ )

〉
ω,n,s, (2)

where the summation is performed over all the clusters,
distinct under symmetry operations in the studied lattice,
represented by the following parameters: ω and n are the
cluster size (the number of lattice points in the cluster) and its
label (the maximal distance between two atoms in the cluster
in terms of coordination shells), respectively, see Fig. 1; (s)
is the decoration of a cluster by point functions γ j,K (σi );

m(s)
ω,n denotes the site multiplicity of the decorated clusters

(in per-lattice-site units); and J (s)
ω,n represents the ECI energy

corresponding to the same (s) decorated cluster.
〈�(s′ )

ω′,n′ (�σ )〉ω,n,s are the cluster functions, averaged over all
the clusters of size ω′ and label n′ decorated by the sequence
of point functions (s′) that are equivalent by symmetry to
the cluster ω, n and decorated by the same sequence of point
functions (s). Later in the text, 〈�(s′ )

ω′,n′ (�σ )〉ω,n,s is referred to
as 〈�(s)

ω,n(�σ )〉 for ease of notation. In Monte Carlo formalism,
cluster functions are also averaged over all MC steps at chosen
temperature, which has an effect on the accuracy and the
computational costs of the calculations.

The cluster function �(s)
ω,n(�σ ) is then defined as the product

of orthonormal point functions of occupation variables [35]
γ j,K (σi) for a specific cluster described by ω and n:

�(s)
ω,n(�σ ) = γ j1,K (σ1)γ j2,K (σ2) · · · γ jω,K (σω ), (3)

where the sequence (s) = ( j1, j2, . . . , jω ) is the decoration of
cluster by point functions, and the definition of point functions
is the same as in Ref. [36]:

γ j,K (σi ) =

⎧⎪⎪⎨
⎪⎪⎩

1 if j = 0 ,

− cos
(

2π� j
2� σi

K

)
if j > 0 and odd,

− sin
(

2π� j
2� σi

K

)
if j > 0 and even,

(4)

where σi = i = 0, 1, 2, . . . , (K − 1), where numbers repre-
sent the constituent components of an alloy; j is the index
of point functions j = 0, 1, 2, . . . , (K − 1); and � j

2� stands
for the ceiling function–rounding up a number to the closest
integer.

The matrix ¯̄τK , relating the point correlation functions
to the point probabilities, can be constructed using point
functions γ j,K (σi ) as its elements:

( ¯̄τK ) =

⎡
⎢⎣

γ j=0,K (σi = 0) · · · γ j=0,K (σi = K − 1)
...

. . .
...

γ j=K−1,K (σi = 0) · · · γ j=K−1,K (σi = K − 1)

⎤
⎥⎦.

(5)
The exact ¯̄τK matrices for two-, three-, and four-component

systems are presented in Eq. (A1), Appendix A.
The general expression for the cluster correlation function

is then may be determined using the ¯̄τK matrix [35]:

〈
�(s)

ω,n

〉 = ∑
A,B,···

(∏
ω

¯̄τK

)
(s),A,B,···

yAB···
ω,n , (6)

where (
∏

ω
¯̄τK )(s),A,B,··· denotes the matrix direct product, i.e.,

the Kronecker product; the summation is done over the atomic
species composing the alloy; yAB···

ω,n denotes the temperature-
dependent many-body probability of finding atomic species
A, B, · · · in the corresponding ω cluster with coordination
shell, denoted by n.

Using the form of Eq. (6), two-body cluster correlation
function is written in the following form [35]:〈

�
(s)
2,n

〉 =∑
A,B

( ¯̄τK ⊗ ¯̄τK )(s),A,ByAB
2,n, (7)

where ⊗ denotes the matrix direct product. Three- and four-
body correlation functions within the matrix formulation are
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defined in a similar manner as Eq. (7) and are presented in
Eq. (A2) and Eq. (A3).

The complete set of decorations (s) for a cluster of size
ω corresponding to the Kω list of indices is generated by
applying the permutation representation of the space group #
225 (O5

h) elements to the decorations belonging to the cluster
and its subclusters. With symmetry, all correlation functions
are generated from the given symmetrically unique set of
correlations for each cluster in the Hamiltonian expansion.

B. Chemical short-range order parameters

Chemical SRO in the alloys can be analyzed using the
Warren-Cowley SRO parameters. They can be obtained from
the relation of pair probabilities and point probabilities by
using the following expression:

αAB
n = 1 − yAB

2,n

cAcB
. (8)

The Warren-Cowley SRO parameters have been formulated in
Refs. [35,37] based on the principles, that, e.g., for clusters
of two sites, the decorations indices can be interchanged
because the space group O5

h contains twofold symmetry axes
and translations that transform one site into the other. For
clusters with more than two sites, the permutation operators
are more complex and depend on the specific sites occupied in
the clusters. For example, for the three-body cluster labeled by
ω = 3; n = 2 in Fig. 1, by using group theoretical arguments,
it can be found that the symmetrically unique decoration (131)
is equivalent to the (113), i.e., 〈�(131)

3,2 〉 ≡ 〈�(113)
3,2 〉.

The fact that the inverse of a Kronecker product of two
matrices is equivalent to the product of inverse matrices can
be used to express the pair probabilities in terms of pair
correlations. For this, the inverse of ¯̄τK matrix, ¯̄τ−1

K , can be
obtained with its elements defined as follows [35]:

( ¯̄τ−1
K )i j = 1

K

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if j = 0 ,

−2 sin
(

2π� j
2� σi

K

)
if j > 0 and even,

−2 cos
(

2π� j
2� σi

K

)
if j > 0

and j < K − 1
and j is odd,

− cos
(

2π� j
2� σi

K

)
if j = K − 1

and j is odd.

(9)

The exact forms of ¯̄τ−1
K matrices for the two-, three-, and

four-component systems in presented in Eq. (A4).
Using the ¯̄τ−1

K matrix, the point probability function is
given by:

yA
1,1 =

∑
s

(
¯̄τ−1
K

)
A,(s)

〈
�

(s)
1,1

〉
, (10)

and from Eq. (7), the pair probability function is written as:

yAB
2,n =

∑
s

(
¯̄τ−1
K ⊗ ¯̄τ−1

K

)
A,B,(s)

〈
�

(s)
2,n

〉
. (11)

The three- and four-body probability functions can be
determined by the inverse of the respective cluster correlation
functions and they are presented in Eqs. (A5) and (A6).

Since MC simulations with ECIs from CE give information
about 〈�(s)

2,n〉, the Warren-Cowley SRO parameters can be
easily calculated directly from the MC simulations. They
are determined in terms of correlation functions from MC
simulations using the matrix formulation from Eq. (9). The
explicit formula for the SRO Warren-Cowley parameter is
expressed as:

αAB
n = 1 −

∑
s( ¯̄τ−1

K ⊗ ¯̄τ−1
K )A,B,(s)〈�(s)

2,n〉[∑
s

(
¯̄τ−1
K

)
A,(s)

〈
�

(s)
1,1

〉][∑
s

(
¯̄τ−1
K

)
B,(s)

〈
�

(s)
1,1

〉] .
(12)

The exact formulas for the calculation of the Warren-
Cowley SRO parameters for each pair of atoms in the
four-component system, used in this work, are presented in
Eq. (A7), which were formulated in Ref. [37].

C. Entropy contribution

Free energy of mixing for the alloy is defined as follows:

Fmix(T ) = Hmix(T ) − T Smix(T ), (13)

where the mixing entropy term

Smix(T ) = Sconf
mix (T ) + Svib

mix(T ) + Sel
mix(T ) + Smag

mix (T ), (14)

consists of configurational, vibrational, electronic, and mag-
netic mixing entropy contributions.

In this work, each contribution from Eq. (14) to the mixing
entropy is defined as:

Smix(T ) = Sideal − Sreal(T ), (15)

where Sideal is the entropy of the chosen structure in a fully
disordered state, and Sreal(T ) is the entropy of a structure with
a configuration, obtained from the Monte Carlo simulations at
a temperature T .

The maximum value of configurational entropy of a chosen
alloy, meaning the value for the fully disordered structure, is
defined as:

Sconf
ideal(T ) = −kB

K∑
p=1

cp ln(cp), (16)

where cp is the concentration of the pth element in the alloy
with the total number of elements equal to K . The maximum
value for configurational entropy in a K-component system is
possessed by the equiatomic alloy and can be calculated as
Sconf

max (T ) = kB ln K .
The cluster contribution to the entropy is determined from

Monte Carlo calculations of correlation functions using the
approach established in Ref. [35]. The generalized formula for
the entropy, taking into account all many-body interactions, is
then expressed as:

Sconf
ω,n = kB

∑
q

wω,n
q

∑
s

y(s)
q ln

(
y(s)

q

)
, (17)

where index (s) of the inner sum runs for all possible deco-
rations of clusters of any given cluster indexed by q, which
are given by Kωq total decorations. The weights in the sum are
worked out following the iterative Barker formula [38] in the
formalism of the cluster variation method. Detailed derivation
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is formulated elsewhere [35], and the explicit values are listed
in the Supplemental Material [39], Table SIII.

Other entropy contributions have been defined [40–43] and
applied to HEAs in various works to calculate vibrational
[44,45], electronic [12,46,47], and magnetic [45,46,48] con-
tributions. It should be noted that the aforementioned papers
utilize a variety of methods, including CPA, magnetic CE, and
SQSs.

Relative magnitudes of the aforementioned contribu-
tions to the mixing entropy have been estimated in
Refs. [3,5,44,45,49,50] as follows: Sconf

mix > Svib
mix > Sel

mix ≈
Smag

mix . The maximal magnitude of Svib can reach up to 6–12
times larger than the maximal value of Sconf , which depends
on the number of alloy components [44,45,48]. Svib influences
the total stability of the composition, but in order to find the
relative stability of the ordered and disordered phases, the
vibrational entropy of mixing (also called the excess entropy),
Svib

mix, should be considered.
The ratio of vibrational and configurational entropies of

mixing also influences the order-disorder transition temper-
ature [50]. The values of Svib

mix for two-component alloys
have been shown in Ref. [50] to reach a maximum of 0.2kB

(compared to the maximum of Sconf
mix = 0.693kB), meaning the

∼30% correction to the order-disorder transition temperature.
In the four-component MoTaNbW HEA, the change of vi-
brational entropy between ordered and disordered phases is
negligible, especially compared to 50% change (∼0.7kB) in
the configurational entropy [44] between those two considered
phases, which depends purely on the level of ordering in
the system. Hence, even though the vibrational, electronic
and magnetic mixing entropies influence the stability of the
alloy, the main entropic contribution to Fmix comes from
configurational mixing entropy. As such, only the effect of
configurational mixing entropy will be investigated in the
current work.

D. Computational details

DFT calculations with collinear spin-polarization were per-
formed using the projector augmented wave (PAW) method
implemented in VASP [51–56]. Exchange and correlation
were treated in the generalized gradient approximation GGA-
PBE [57]. The core configurations of Fe, Cr, Mn, and Ni
in PAW potentials were [Ar]3d74s1, [Ar]3d54s1, [Ar]3d64s1,
and [Ar]3d94s1, respectively.

Total energies were calculated using �-centered
Monkhorst-Pack mesh [58] of k-points in the Brillouin zone,
with the k-mesh spacing of 0.02 Å−1. This corresponds to
12 × 12 × 12 k-point mesh for a four-atom fcc conventional
unit cell. The plane wave cutoff energy used in the
calculations was 400 eV. Cutoff energy and k-mesh spacing
have been chosen the same as in Ref. [22]. The total energy
convergence criterion was set to 10−6 eV/cell, and force
components were relaxed to 10−4 eV/Å.

The basic idea of SQSs is to generate a minimally sized
supercell that approximates a random (disordered) solid solu-
tion. Therefore both energies and structural properties calcu-
lated from SQSs can be used to compare with those predicted
for ordered or partially ordered alloy configurations obtained
within the CE method. SQSs have been generated using the

method based on a Monte Carlo–simulated annealing loop
with an objective function that seeks to perfectly match the
maximum number of correlation functions, implemented in
the mcsqs code of the ATAT package [59]. SQSs have been
produced for binary structures with the 12.5 at. % concentra-
tion step in 32-atom supercells, and later calculated with DFT
using the aforementioned parameters for all considered binary
systems.

Mapping of DFT energies to CE energies for ordered struc-
tures was performed using the ATAT package [34,36,60,61].
SQSs have not been included in the mapping. In order to
find ECIs for binary fcc alloys, the initial database of 28
structures from Ref. [62] was used. For ternary fcc alloys,
the initial database consisted of 98 structures adapted from
Ref. [63]. The quaternary database was constructed following
the approach from Ref. [22]: the ternary database was consid-
ered, the symmetry and the number of nonequivalent positions
(NEPs) in each structure was checked and the structures with
the number of NEPs greater than three were included in the
quaternary fcc structure database by populating the higher
NEPs with various combinations of elements.

Ordered Fe-Cr-Mn-Ni alloys show complex magnetic be-
havior even in collinear calculations with competing stability
of nonmagnetic (NM), ferromagnetic (FM), layered antifer-
romagnetic (AFM), and ferrimagnetic (FiM) configurations.
Thus, full relaxations starting from various initial magnetic
configurations were performed for ordered structures, used
in the construction of the CE model, in order to find the
most stable magnetic configuration characterizing a given
structure. Initial magnitudes of magnetic moments have been
set to 2.2μB for Fe, 1.5μB for Cr, 2.5μB for Mn, and 0.7μB

for Ni. Magnetic structure of binary SQSs without Cr has
been initialized as FM, and in SQSs with Cr, the magnetic
moment of Cr has been initialized as oriented anti-parallel to
the magnetic moments of other compounds.

Only the most stable magnetic configurations for each
composition have been taken into account during the construc-
tion of the data set, which later has been mapped to CE, which
was used to account for the magnetism in an implicit way.
The CE routine of the ATAT code has produced a number
of structures, absent in the initial data set. This helped to
construct a more precise concentration mesh of structures,
calculated with DFT. Fitting of the final DFT structures data
set to CE produced the ECIs, which were used in the following
MC simulations.

The predictive accuracy of the CE model is usually quanti-
tatively estimated via the cross-validation score (CVS):

CVS2 = 1

N

N∑
i=1

[
Ei

DFT − E (i)
CE′
]2

, (18)

where E (i)
CE′ is the energy of the ith structure, predicted by

fitting CE energies to DFT energies, excluding Ei
DFT of the

ith structure. As such, the errors from DFT calculations will
inevitably propagate into the CE model. Since CE predicts
the energy of the ith structure by fitting the existing DFT
data, the initial set of structures can yield a different E (i)

CE′
and, as a result, different ECIs. A particular case of the dif-
ferent sets of structures is the difference in the concentration
meshes. Both aforementioned problems, nevertheless, should
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be counteracted by the construction of a uniformly spaced and
sufficiently large data set.

Mapping of the mixing enthalpies of 835 structures was
conducted for the quaternary system and the cross-validation
score of 13 meV was achieved. Such value of CVS is con-
sidered to be reasonable taking into account the complex
magnetic structure of the investigated system. Various sets
of clusters have been tested, starting from 1 smallest two-
body cluster up to the cluster set with 8 two-body, 7 three-
body, and 3 four-body clusters, following the rules from
Ref. [64]. Although the cluster sets for all subsystems are not
required to be the same, the cluster set for the system with
more elements should adequately describe the underlying
subsystems with fewer elements. The clusters set for the
quaternary system should be applicable for all the underlying
ternary and binary subsystems. The set of clusters that have
minimized CVS for the quaternary system consists of 6 two-
body, 2 three-body, and 1 four-body undecorated clusters,
illustrated in Fig. 1. And since this set of clusters reasonably
describes the underlying systems with difference smaller than
1 meV between the chosen set and the best set for each
system, it has been chosen as uniform for all underlying
subsystems.

Therefore, the enthalpy of mixing for all considered sys-
tems in the CE formalism can be written as:

Hmix(�σ ) =
∑
ω,n,s

J (s)
ω,nm(s)

ω,n

〈
�(s)

ω,n(�σ )
〉

= J (0)
1,1

〈
�

(0)
1,1

〉+∑
s

J (s)
1,1

〈
�

(s)
1,1

〉+ 6∑
n=1

∑
s

m(s)
2,nJ (s)

2,n

〈
�

(s)
2,n

〉

+
2∑

n=1

∑
s

m(s)
3,nJ (s)

3,n

〈
�

(s)
3,n

〉+∑
s

m(s)
4,1J (s)

4,1

〈
�

(s)
4,1

〉
,

(19)

where J (s)
ω,n are different in each studied subsystem.

Size ω, label n, decoration (s), multiplicity m(s)
ω,n, coor-

dinates of points, and J (s)
ω,n (in meV) of the aforementioned

clusters for the fcc Fe-Cr-Mn-Ni system and all underlying
subsystems are listed in Table I.

ECIs, obtained using the structure inversion method [29],
for studied binary and ternary subsystems as well as for
the quaternary system are presented in the corresponding
sections.

Semicanonical MC simulations were performed also using
the ATAT package. Most of the simulations were performed
using a cell containing 2048 atoms in the form of 8 × 8 × 8
fcc unit cell. For each composition, simulations were per-
formed starting from a disordered high-temperature state at
T = 3000 K. The alloy was then cooled down with the
temperature step of 	T = 100 K, with 2000 equilibration and
accumulation Monte Carlo passes. TDI calculation for the
equiatomic quaternary composition was performed with the
temperature step of 	T = 5 K in order to obtain the accurate
values of the configurational entropy.

III. PHASE STABILITY AT 0 K

A. Pure elements

Extensive calculations of total energy as a function of
volume have been conducted for known and hypothetical
crystal structures and magnetic configurations of Fe, Cr, Mn,
and Ni in order to understand the stability of pure elements
and obtain the reference energies of the most stable magnetic
configurations for the CE method. A list of all considered
structures is presented in Supplemental Material [39], Table
SI.

The most stable fcc structures of pure elements from the
current studies at 0 K are as follows: antiferromagnetic double
layer (AFMDL) Fe, nonmagnetic (NM) Cr, ferromagnetic
(FM) Ni, and antiferromagnetic single layer (AFMSL) Mn.
True GSs of pure elements from the current studies at 0 K are
the following: FM bcc Fe, AFM bcc Cr, FM fcc Ni, and AFM
σ -phase α-Mn.

Experimental GSs of pure elements at 0 K are as fol-
lows: noncollinear FM bcc Fe [65], spin-density wave bcc
Cr [66], and FM fcc Ni [65]. Experimental results for Mn
indicate both collinear and noncollinear AFM σ -phase α-Mn
[67–72]. However, the total energies per atom of collinear
and noncollinear configurations obtained from DFT calcu-
lations [73] are almost indistinguishable. Analysis of the
stability and magnetic moments of Mn and comparison to
previous theoretical and experimental results are presented in
Appendix B.

Due to the high calculation costs, noncollinearity has not
been considered in the current work, and the enthalpies of
formation have been calculated with respect to the collinear
GSs.

Since the ground-state crystal lattices of Fe, Cr, Mn, and
Ni belong to different crystallographic groups, the analysis of
alloy stability in Secs. IIIB–IIID have been performed both
in terms of enthalpy of mixing and enthalpy of formation.
Since GS of Ni is fcc, it will act as a fcc phase stabilizer—the
increase of Ni content will more likely result in the stabiliza-
tion of fcc lattice structure. Contrary to Ni, Cr has the highest
difference of Efcc − EGS = 0.394 eV, and therefore can inhibit
a formation of fcc phase in favor of bcc phase. The values
of Efcc − EGS for Fe and Mn are 5 times smaller compared
to Cr. These results are consistent with the empirical VEC
estimation.

B. Binary subsystems

In this subsection, there are presented enthalpies of forma-
tion, enthalpies of mixing, volumes per atom and AMMMs
obtained using DFT at 0 K for the binary systems containing
Mn, namely Cr-Mn, Fe-Mn and Mn-Ni. Since the method-
ology and the results for Fe-Cr, Cr-Ni and Fe-Ni are similar
to ones used and obtained in Ref. [22], they are described in
Appendix C. For each binary system, the results obtained for
the ordered structures are compared to the results obtained for
the SQSs.

In the plots within this subsection, formation energies of
the most stable pure fcc structures are connected by a dashed
line that represents the “zero line” of mixing enthalpies of
the considered systems, so all structures with energies below
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TABLE I. Size ω, label n, decoration (s), coordinates of points in the relevant clusters on fcc lattice, multiplicity m(s)
ω,n, and J (s)

ω,n (in eV/atom)
for the fcc Fe-Cr-Mn-Ni system and all underlying binary and ternary subsystems. Index (s) is the same as the sequence of points in the relevant
cluster.

J (s)
ω,n

ω n (s) Coordinates m(s)
ω,n CrFe CrMn CrNi FeMn FeNi MnNi CrFeMn CrFeNi CrMnNi FeMnNi FeCrMnNi

1 1 (0) (1,1,1) 1 −0.063 −0.011 −0.114 0.014 −0.058 −0.011 −0.026 −0.085 −0.055 0.012 −0.041
(1) 1 −0.026 0.014 0.031 −0.011 −0.049 −0.083 0.061 0.036 0.070 −0.001 0.113
(2) 1 0.039 −0.042 0.113 0.098 −0.041
(3) 1 −0.009

2 1 (1,1) (1,1,1) 6 0.010 0.001 0.013 0.009 0.010 0.023 0.008 0.012 0.023 0.001 0.009
(2,1) (1,3/2,3/2)) 12 −0.007 0.001 0.001 0.001 0.000
(3,1) 12 0.003
(2,2) 6 0.010 0.007 0.007 0.004 0.000
(3,2) 12 0.001
(3,3) 6 0.006

2 2 (1,1) ((1,1,1), 3 −0.006 −0.001 −0.011 −0.019 −0.003 −0.032 −0.009 −0.028 −0.027 −0.021 −0.009
(2,1) (1,1,0)) 6 0.004 −0.003 0.005 0.004 0.000
(3,1) 6 −0.004
(2,2) 3 −0.008 −0.005 −0.008 −0.033 −0.012
(3,2) 6 −0.004
(3,3) 3 −0.009

2 3 (1,1) ((1,1,1), 12 0.003 0.002 0.007 −0.002 0.002 −0.007 0.005 0.007 0.001 0.003 0.001
(2,1) (2,3/2,3/2)) 24 −0.001 0.002 −0.008 −0.002 0.003
(3,1) 24 0.004
(2,2) 12 −0.001 0.002 0.002 −0.009 0.002
(3,2) 24 0.000
(3,3) 12 0.000

2 4 (1,1) ((1,1,1), 6 0.000 0.002 0.001 −0.001 0.001 −0.002 0.001 0.001 −0.002 0.000 0.000
(2,1) (2,1,2)) 12 0.001 0.002 −0.004 −0.002 0.002
(3,1) 12 0.001
(2,2) 6 −0.003 0.001 0.000 −0.002 0.001
(3,2) 12 0.001
(3,3) 6 −0.001

2 5 (1,1) ((1,1,1), 12 −0.001 −0.001 −0.003 −0.001 0.000 0.006 −0.002 −0.003 0.002 −0.003 −0.001
(2,1) (1,3/2,−1/2)) 24 0.000 −0.001 0.006 0.000 −0.003
(3,1) 24 −0.002
(2,2) 12 −0.001 0.000 −0.001 0.008 0.000
(3,2) 24 0.001
(3,3) 12 0.000

2 6 (1,1) ((1,1,1), 4 0.000 0.000 −0.001 0.004 −0.002 −0.002 0.001 0.001 −0.004 0.002 0.001
(2,1) (2,2,0)) 8 −0.001 0.000 −0.003 0.005 0.002
(3,1) 8 0.001
(2,2) 4 0.002 −0.003 0.000 −0.002 −0.003
(3,2) 8 −0.001
(3,3) 4 0.000

3 1 (1,1,1) ((1,1,1), 8 −0.001 −0.001 0.002 −0.003 0.005 0.007 0.000 0.007 −0.008 −0.007 0.000
(2,1,1) (3/2,1,1/2), 24 −0.001 −0.003 −0.003 −0.003 0.001
(3,1,1) (1,3/2,1/2)) 24 0.002
(2,2,1) 24 0.001 0.002 −0.002 0.006 −0.003
(3,2,1) 48 0.000
(3,3,1) 24 0.001
(2,2,2) 8 −0.004 0.003 0.000 −0.003 0.000
(3,2,2) 24 0.002
(3,3,2) 24 −0.001
(3,3,3) 8 0.000
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TABLE I. (Continued.)

J (s)
ω,n

ω n (s) Coordinates m(s)
ω,n CrFe CrMn CrNi FeMn FeNi MnNi CrFeMn CrFeNi CrMnNi FeMnNi FeCrMnNi

3 2 (1,1,1) ((1,1,1), 12 0.002 −0.001 −0.004 0.002 0.000 0.003 −0.003 −0.008 0.001 −0.001 −0.001
(2,1,1) (1,3/2,1/2), 24 0.001 0.000 0.000 0.005 0.001
(3,1,1) (1,1,0)) 24 0.001
(1,2,1) 12 0.000 −0.001 −0.012 −0.006 −0.002
(2,2,1) 24 0.000 0.002 −0.001 0.005 0.002
(3,2,1) 24 −0.001
(1,3,1) 12 −0.002
(2,3,1) 24 0.000
(3,3,1) 24 −0.001
(2,1,2) 12 −0.006 0.000 0.004 −0.005 −0.006
(3,1,2) 24 −0.001
(2,2,2) 12 0.002 −0.001 −0.001 −0.006 −0.001
(3,2,2) 24 0.000
(2,3,2) 12 0.002
(3,3,2) 24 0.001
(3,1,3) 12 −0.002
(3,2,3) 12 0.000
(3,3,3) 12 −0.001

4 1 (1,1,1,1) ((1,1,1), 2 −0.003 −0.002 0.008 0.003 −0.001 −0.008 −0.005 0.015 −0.003 −0.008 −0.003
(2,1,1,1) (3/2,3/2,1), 8 −0.001 0.003 −0.010 0.006 0.002
(3,1,1,1) (3/2,1,1/2), 8 0.001
(2,2,1,1) (1,3/2,1/2)) 12 −0.001 −0.003 0.001 0.005 −0.003
(3,2,1,1) 24 0.001
(3,3,1,1) 12 0.001
(2,2,2,1) 8 0.000 0.010 −0.003 −0.012 −0.001
(3,2,2,1) 24 −0.001
(3,3,2,1) 24 0.001
(3,3,3,1) 8 0.003
(2,2,2,2) 2 0.002 −0.001 −0.007 −0.013 −0.001
(3,2,2,2) 8 0.005
(3,3,2,2) 12 0.001
(3,3,3,2) 8 −0.002
(3,3,3,3) 2 −0.002

and above this line possess negative and positive enthalpies
of mixing, respectively. For the systems with compositions
that have negative formation enthalpy (Hform), the “zero line”
of formation enthalpy connecting the true GSs of considered
systems is represented by a dash-dotted line. Convex hulls are
indicated with respect to the most stable pure fcc structures,
since the majority of the calculated compositions have posi-
tive Hform and the structures from fcc convex hull are treated
as GSs in the cluster expansion model.

The effect of magnetism on the volume of structures is
analyzed by comparing the calculated values of volume to
the linear heuristic estimate, called the Vegard’s law, in which
the value of volume per atom for the alloy is equal to the
sum of volumes per atom of it’s constituents factoring their
concentration.

1. Cr-Mn binary

Ground states of Cr-Mn system in terms of mixing en-
thalpy are Cr3Mn [Z1(100)] and CrMn [Z2(100)], but all fcc
Cr-Mn structures exhibit positive enthalpy of formation [see
Fig. 2(a)], which is consistent with a fact that no stable fcc

phases are observed experimentally for this system. Enthalpy
of mixing shows a tendency to decrease in the near-equiatomic
concentration region, whereas enthalpy of formation shows
a strong linear drop with the increase of Mn concentration.
Formation enthalpies of SQSs are higher than the ones of
ordered structures and their values converge to the values
of NM Cr and NM Mn at the corresponding ends of the
concentration scale.

Chromium suppresses high magnetic moment of Mn re-
sulting in NM region with the Cr concentration larger than
50 at. %, where the volumes per atom follow almost perfectly
Vegard’s law for NM reference structures [see Fig. 2(b)].
For Cr concentration smaller than 50 at. %, the structures
are FiM and the volumes per atom lie between magnetic
and NM Vegard’s law estimates, where Mn dominates the
magnetic structure. Volumes of SQSs repeat the Vegard’s law
estimate for NM reference structures, although the magnetic
ordering of SQSs with 25–50 at. % Cr is FiM. The value
of AMMM increases with the increase of Mn concentration
[see Fig. 2(c)]. The Cr-rich NM stability region and the
Mn-rich FiM stability region are divided with NM CrMn
structure.
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FIG. 2. (a) Enthalpy of formation, (b) volume per atom, and
(c) average magnitudes of magnetic moments per atom of fcc Cr-
Mn ordered and SQS structures calculated using DFT. Black solid
line marks the convex hull of fcc structures. Black dashed line
connects the most stable fcc structures of respective pure elements.
Vegard’s law estimate for magnetic and nonmagnetic fcc structures
is indicated by the orange dashed line and blue dash-dotted line,
respectively. The results obtained for the most stable structures
and magnetic configurations for each considered alloy composition
are indicated by filled markers, and the less stable structures are
indicated by open markers. Values for SQS structures are indicated
by filled markers with black edges.

2. Fe-Mn binary

The most stable GS of Fe-Mn binary in terms of enthalpy
of mixing is L12-Fe3Mn. The other GSs in terms of enthalpy
of mixing are FeMn31, FeMn15, and Fe3Mn4. Trends in en-
thalpy of mixing [see Fig. 3(a)] are consistent with previous
calculations [74]. The enthalpies of formation of all Fe-Mn
structures are positive, which means that at 0 K there are no
stable compositions from the point of view of enthalpy of
formation. However the values of enthalpies tend to decrease
in near-equiatomic concentration region, which is consistent
with previous calculations [75] and with previous assessments
of metastability of fcc alloys [76]. This can be related to
the fact that the most stable α-Mn structure has much more
complex lattice in GS compared to fcc, and GS of Fe is FM
bcc within collinear calculations, although it should be noted
that Fe has stable fcc lattice above 1190 K, and austenite
steels, which have fcc lattice, can be stablized to exist even
at room temperature. The study of Fe-Mn alloy powders
has shown a presence of martensite (bcc) and austenite (fcc)
[77,78]. The latter is observed as a single phase in Fe70Mn30

alloy [79], which is close in a concentration to the fcc Fe3Mn
GS.

FIG. 3. (a) Enthalpy of formation, (b) average magnitudes of
magnetic moments per atom, (c) volume per atom of fcc Fe-Mn
structures calculated using DFT. The notation is the same as in
Fig. 2. Experimental data (superscript a) are adapted from the work
of Kubitz and Hayes [83].

SQSs are less stable than the ordered structures and the
values of enthalpies of formation converge to the values of FM
Fe and NM Mn at the corresponding ends of the concentration
scale, but at 50 at. % Mn and 62.5 at. % Mn the values of Hform

are much lower compared to other SQSs. The composition
of these two structures is close to the AFM Fe3Mn4 ordered
structure, which can explain such stability by a higher level of
magnetic ordering.

In the Fe-Mn binary subsystem, the volumes of structures
lie between the Vegard’s law estimates for magnetic and
nonmagnetic reference structures [see Fig. 3(b)]. Fe-rich and
Mn-rich structures almost perfectly satisfy the estimate for
magnetic reference structures, but tend to decrease with the
proximity of Fe-Mn ratio to the equiatomic composition.

The antiferromagnetism in fcc Fe-Mn alloys was experi-
mentally observed in wide range of concentrations [80–82].
Current results show that the magnetic moments of Mn
atoms are antiferromagnetic to Fe for almost all structures.
AMMMs of both elements slowly decrease with increasing
Mn concentration [see Fig. 3(c)]. AMMM for fcc Fe50Mn50

structure is 1.5 μB, which is close to the experimental value
of 1.2 μB estimated for Fe50Mn50 disordered solid solution
in Ref. [81]. AMMMs of the system decrease slightly in the
near-equiatomic region, consistent with the similar behavior
of volume per atom. AMMMs are dominated by Fe atoms in
the Fe-rich region and by Mn atoms in the Mn-rich region.
AMMM of Mn atoms vary between the value for fcc AFMSL
Mn in Mn-rich region and site-I magnetic moment from α-Mn
in Fe-rich region (see Table V in Appendix B).
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FIG. 4. Atomic structure and magnetic moments of the binary
Mn-Ni GSs calculated in a conventional fcc 2 × 2 × 2 super cell
using collinear magnetism in DFT: (a) AFM L10-MnNi and (b) FM
L12-MnNi3. The color code of the arrows shows the magnitudes of
magnetic moments.

3. Mn-Ni binary

Accoding to the current studies, the fcc Mn-Ni binary
system has two GS in terms of both formation and mixing
enthalpies [see Fig. 5(a)]: AFM L10-MnNi [see Fig. 4(a)]
and FM L12-MnNi3 at 75 at. % Ni [see Fig. 4(b)]. Both GSs
have been observed experimentally [84–86]. The formation

FIG. 5. (a) Enthalpy of formation, (b) average magnitudes of
magnetic moments per atom, (c) volume per atom of fcc Mn-Ni
structures calculated using DFT. The notation is the same as in Fig. 2.
Black dash-dotted line connects the true GSs, which are FM fcc Ni
and AFM α-Mn. Experimental data are as follows: afrom Ref. [96],
bfrom Ref. [91], cfrom Ref. [95], dfrom Ref. [90], efrom Ref. [92],
f from Ref. [98], gfrom Ref. [94], hfrom Ref. [93], ifrom Ref. [87],
jfrom Ref. [88], kfrom Ref. [89].

enthalpy of L10-MnNi is the most negative among all studied
structures, including ternary and quaternary (see Table II).

SQSs are less stable than the ordered structures and their
formation enthalpies converge to the values of FM Ni and
NM Mn at the corresponding ends of the concentration scale,
but, similarly to FeMn binary, at 50 at. % Mn and 62.5 at. %
Mn the values of Hform are much lower compared to the other
SQSs. The composition of these two structures is close to the
AFM L10-MnNi ordered structure, which can explain such
stability by a higher level of magnetic ordering.

Volumes per atom for NM structures are in a good corre-
spondence with the Vegard’s law estimate for NM structures
[see Fig. 5(b)]. On the other hand, the values of volumes per
atom for both FM and FiM structures become highly overesti-
mated, when moving from pure elements to the equiatomic
concentration, compared to the Vegard’s law estimate for
magnetic structures. However, values of volumes per atom for
the structures with Mn concentration between 0 and 30 at. %,
which are mostly FM, are in an excellent correspondence
with the experimental data from Refs. [87,88]. For higher
Mn concentration the agreement gradually becomes worse,
compared to experimental data from Refs. [89,90]. Volumes
of FM SQSs in the Ni-rich end also closely correspond to the
experimental data from Refs. [87,88] and this correspondence
is observed in the wider range of concentrations, compared to
the ordered structures—to 37.5 at. % Mn. This can suggest
that the samples, studied in Ref. [87] had disordered FM
structure, stabilized during the sample preparation.

Regions of stability of different magnetic configurations
are divided by AFM L10-MnNi. Magnetic ordering of the
most stable sturctures with more than 50 at. % Mn concentra-
tion is AFM or FiM [see Fig. 5(c)], and at Mn concentrations
lower than 25 at. % the magnetic ordering of the most stable
structures is FM, which is consistent with the experimen-
tal observations [91–93]. The boundary of this division is
approximately 33 at. % Mn. The value of AMMM of Mn
grows with the increasing Ni concentration, being equal to
the value of magnetic moment for fcc AFMSL Mn (see
Table V) at concentrations close to 0 at. % Ni, and equal to the
value of magnetic moment of Type I atom in AFM α-Mn at
concentrations close to 100 at. % Ni (see Table V). The values
of AMMM are underestimated compared to the experimental
results from Ref. [94] up to 20 at. % Mn, but are close at
higher Mn concentration. The values of AMMM increase with
the increase of Mn concentration. AMMM of Ni is very close
to the experimental values from Ref. [94].

From current studies, Mn atoms in L10-MnNi form two
sublattices, which are antiferromagnetically ordered to each
other, with the Mn AMMM of 3.15 μB. Ni atoms do not
have magnetic moments, which closely corresponds to one
of the estimates in Ref. [95]. AMMM for Mn lies between
the estimates from Refs. [95], 4 μB, and Ref. [96], 2.4 μB.
Simulation and experimental results from Ref. [97] show that
both bulk and thin film Mn50Ni50 have Mn in high-spin state
with values of magnetic moment per atom of 2.8–3.9 μB

and Ni with strongly reduced values of magnetic moment per
atom. Total AMMM of 1.58μB is very close to the values from
Ref. [90], 1.9 μB and adapted from Ref. [95], 2 μB.

In the fcc L12-MnNi3 FM structure, Mn atoms have a
magnetic moment of 3.25 μB, and Ni atoms have on average
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TABLE II. Chemical composition, lattice symmetry with Wyckoff position (WP), magnetic symmetry with WP, magnetic moment on each
magnetic WP (in μB), AMMM (in μB), magnetic ordering, volume per atom (in Å3), and the formation enthalpy per atom of the most stable
intermetallic phases with negative Hform (in eV) in fcc quaternary Fe-Cr-Mn-Ni system. The results from the present work are compared with
the available experimental data.

Symmetry, Mag. symm., MMWP, AMMM, (μB) Magnetic Vol./at. (Å3) Hform

Composition WP WP (μB) Current Exp. ordering Current Exp. (eV)

CrNi2 Immm — 0 NM 10.92 11.36a −0.018
Cr1 2 a Cr1 2 a 0
Ni1 4 e Ni1 4 e 0

CrNi8 I4/mmm C2′/m′ 0.28 0.16b FiM 10.89 −0.007
Cr1 2 a Cr1 2 a −0.687
Ni1 8 h Ni1 4 g 0.199
Ni2 8 i Ni2 8 j 0.278

Ni3 4 i 0.178

Fe3Ni2 I4/mmm C2′/m′ 1.81 FM 11.42 11.56c −0.043
Fe1 4 e Fe1 4 i 2.591
Fe2 2 b Fe2 2 d 2.652
Ni1 4 e Ni1 4 i 0.607

FeNi P4/mmm Cmm′m′ 1.65 1.64d, 1.52e FM 11.33 11.53f −0.069
Fe1 1 d Fe1 2 c 2.661
Ni1 1 a Ni1 2 a 0.631

FeNi3 Pm-3m Pm′m′m 1.2 1.21d, 1.12e FM 11.14 11.21f,a11.23g −0.092
Fe1 1 a Fe1 1 a 2.914
Ni1 3 c Ni1 1 f 0.631

Ni2 1 d 0.588
Ni3 1 g 0.673

FeNi8 I4/mmm P-1 0.86 0.85e FM 10.99 10.98c −0.053
Fe1 2 a Fe1 1 a 2.814
Ni1 8 i Ni1 2 i 0.643
Ni2 8 h Ni2 2 i 0.599

Ni3 2 i 0.604
Ni4 2 i 0.604

MnNi P4/mmm P_Bmna 1.58 1.9h, 2.0i AFM 11.7 12.27j,k, 12.31h −0.154
Mn1 1 d Mn1 2 d 3.151
Ni1 1 a Ni1 2 b 0

MnNi3 Pm-3m Pm′m′m 1.21 1.1l, 1.02d FM 11.36 11.56g,a −0.137
Mn1 1 a Mn1 1 a 3.252
Ni1 3 c Ni1 1 f 0.5

Ni2 1 d 0.555
Ni3 1 g 0.537

CrFe2Ni P4/mmm Pm′m′m 1.69 FiM 11.37 −0.026
Cr1 1 c Cr1 1 d −2.436
Fe1 2 e Fe1 1 g 2.046
Ni1 1 a Fe2 1 f 2.123

Ni1 1 a 0.153
CrMnNi2 P4/mmm Pm′m′m 1.47 FiM 11.6 −0.098

Cr1 1 c Cr1 1 d −2.543
Mn1 1 a Mn1 1 a 2.872
Ni1 2 e Ni1 1 g 0.133

Ni2 1 f 0.338

Cr2FeMnNi4 I4/mmm P-1 1.36 FiM 11.49 −0.068
Cr1 4 c Cr1 1 g −2.529
Fe1 2 a Cr2 1 f −2.539
Mn1 2 b Fe1 1 b 2.432
Ni1 8 f Mn1 1 h 2.856

Ni1 1 a 0.147
Ni2 1 d 0.109
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TABLE II. (Continued.)

Symmetry, Mag. symm., MMWP, AMMM, (μB) Magnetic Vol./at. (Å3) Hform

Composition WP WP (μB) Current Exp. ordering Current Exp. (eV)

Ni3 1 e 0.146
Ni4 1 c 0.113

aJung [118].
bTakano and Chikazumi[119].
cOwen et. al [120].
dShull and Wilkinson [93].
eReck and Fry [121].
fWakelin and Yates [122].
gBhatia et. al [123].
hKren et. al [90].
iKasper and Kouvel [95].
jPearson et. al [89].
kGokcen [87].
lPaoletti and Ricci [92].

a magnetic moment of 0.53 μB, which closely corresponds to
the experimental measurements from Ref. [93] with μMn =
3.18 μB and μNi = 0.3 μB, Ref. [91] with μMn = 3.7 μB and
μNi = 0.6 μB, and Ref. [92] with μMn = 3.6 μB and μNi =
0.31 μB. Total AMMM of 1.21 μB is also very close to the
experimental value of 1.1 μB from Ref. [92].

C. Ternary subsystems

In this subsection, the results of DFT calculations at 0 K
for Fe-Cr-Mn, Fe-Mn-Ni and Cr-Mn-Ni ternary systems and
the underlying binaries are presented and analyzed. Since the
methodology and the results for the Fe-Cr-Ni ternary system
are similar to the one used in Ref. [22], it is presented in the
Supplemental Material [39], Sec. SIA.

Enthalpies of formation, enthalpies of mixing, volumes per
atom and AMMMs for all ternary alloys are presented as
color-coded ternary diagrams, where color represents values
of a property of choice and three axes correspond to the
concentrations of respective chemical elements. In such a
representation, only one value for each composition can be
presented, which is chosen to be the value of the most stable
structure for each composition on all ternary plots. Values in
between are interpolated to give a more readable picture.

In Refs. [13,14] it has been shown that the relative stability
of lattice structures can be roughly estimated using VEC. With
the change of VEC in the alloy, different phases show the
dominant stability: bcc and other complex phases (e.g., Laves
or σ phase) for VEC < 7; coexistence of bcc and fcc phases
at 7 < VEC < 8; fcc phase for VEC > 8. Therefore, these
critical values will be evaluated from the point of view of the
phase stability obtained from the current DFT calculations.

1. Fe-Cr-Mn ternary

There are three ternary GSs in terms of enthalpy of mixing:
FeCr4Mn, which has a similar structure to the one of alloys of
Fe with various elements from Ref. [99]; Fe5Cr2Mn, which is
a derivative of L12 [99]; and Fe6CrMn, which is the ABC6-
type structure, observed previously in CuMnPt6 [100,101]
that evolved through Cu3Au-type alloy, in Cu[Mn,Fe]Pd6

[102] and in Ni6SiTi [103]. In terms of enthalpy of formation,

there are no GSs, and in general, the structures are less stable
in the Cr-rich region [see Fig. 6(b)]. It should be noted that
the structures with the highest Hform are observed for the
compositions with VEC smaller than 7 [see a gray dash-dotted
line in Fig. 6(b)], which confirms the RBA prediction of the
instability of fcc structures with VEC smaller than 7.

No stable ternary Fe-Cr-Mn fcc intermetallic phases are
found in literature [104]. Metallographic analysis, x-ray
diffraction and electron probe micro analysis results show that
the single-phase region of the fcc phase is only extended up
to 5 at. % Cr and up to 38 at. % Mn in the ternary phase
diagram at 923 K, whereas for Mn content less than 25 at. %
the coexistence of fcc and fcc+σ phases is observed [105].

The Cr-rich region, limited at 70 at. % Cr on Cr-Mn edge
and 30 at. % Cr on the Fe-Cr edge shows NM ordering, and
the rest of the alloys show FiM ordering [see Fig. 6(c)]—the
separation lines are shown by green dashed lines, which are
constrained on ends (binary edges) by the compositions of
DFT calculated structures.

Volume-concentration dependency for the Cr-rich NM re-
gion strongly corresponds to the Vegard’s law estimate for
NM references, whereas for FiM region the volume per atom
increases with AMMM of the alloy and it has the highest
values in the Fe-rich region [see Fig. 6(d)]. The concentration
dependency behavior of studied parameters resembles the
interpolation of binary subsystems plots.

2. Cr-Mn-Ni ternary

Trends in the stability of structures from the point of view
of Hform are in accordance with the estimates from VEC
[13,14]: the least stable structures are the ones having VEC
lower than 7 [see a gray dash-dotted line in Fig. 7(b)], and the
structures that have negative formation enthalpy are observed
in the region of structures with VEC higher than 8 [see a gray
dashed line in Fig. 7(b)]. Structures in between have positive
formation enthalpy with the values close to 0.

The ternary GS in terms of enthalpy of mixing and enthalpy
of formation [see Figs. 7(a) and 7(b)] is CrNi2Mn, which
was not found in literature, and has the same space group
(P4/mma). Its magnetic space group (Pm′m′m) is the same
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FIG. 6. Interpolated DFT results for the most stable structures and magnetic configurations for Fe-Cr-Mn alloys on fcc lattice: (a) enthalpy
of mixing; (b) enthalpy of formation; (c) average magnitudes of magnetic moments; and (d) volume per atom. Green dashed lines separate
the regions with different predominant magnetic configuration, which are indicated in (c). Gray dash-dotted line indicates the concentrations
where VEC = 7; the region below the line has lower VEC and the region above it has higher VEC; VEC for pure Fe is 8.

FIG. 7. Interpolated DFT results for the most stable structures and magnetic configurations for Cr-Mn-Ni alloys on fcc lattice: (a) enthalpy
of mixing; (b) enthalpy of formation; (c) average magnitudes of magnetic moments; and (d) volume per atom. Green dashed lines separate the
regions with different predominant magnetic configuration, which are indicated in (c). Filled circles represent GSs. Gray dashed line indicates
the concentrations where VEC = 8 and gray dash-dotted line, where VEC = 7. The region on the right side has lower VEC and the region on
the left side has higher VEC. VEC for pure Cr is 6 and for pure Ni is 10.
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FIG. 8. Interpolated DFT results for the most stable structures and magnetic configurations for Fe-Mn-Ni alloys on fcc lattice: (a) enthalpy
of mixing, (b) enthalpy of formation, (c) average magnitudes of magnetic moments, and (d) volume per atom. Green dashed lines separate
the regions with different predominant magnetic configuration, which are indicated in (c). Filled circles represent GSs. Experimental data are
adapted from the following: aMenshikov et al. [110] (the line that separate the regions of FM and AFM stability) and bEttwig and Pepperhoff
[112] (line of FM-AFM magnetic phase transition with the change of Ni concentration). Gray dashed line indicates the concentrations where
VEC = 8; the region above the line has lower VEC and the region below it has higher VEC. VEC for pure Mn is 7 and for pure Ni is 10.

as in the previously predicted Fe2CrNi phase from Ref. [22]
(see Table II), although the relative magnitudes of magnetic
moments are different: In Fe2CrNi, the AMMM of Cr (1d) is
the highest, 2.44 μB, followed by Fe (1g and 1f) with values
2.05 μB and 2.12 μB, and Ni (1a) having the lowest AMMM
of 0.15 μB; and in CrMnNi2 the highest value of magnetic
moments is held by Mn (1a), equal to 2.87 μB; 1d is similarly
occupied by Cr with AMMM of 2.54 μB; 1g and 1f are
occupied by Ni atoms with the values of magnetic moments
equal to 0.13 μB and 0.34 μB, respectively. Since ordered
ternary structures with negative formation enthalpy were not
found in Fe-Cr-Mn and Fe-Mn-Ni systems,and the previously
predicted FeCrNi2 has higher Hform than CrNi2Mn, this makes
CrNi2Mn is the most stable ordered ternary phase in the
Fe-Cr-Mn-Ni. Ternary GS CrNi2Mn and GSs of underlying
binary subsystems are marked on Fig. 7 as filled circles.

The Cr-Mn-Ni system has three regions of magnetic order-
ing [see Fig. 7(c)]—NM in Cr-rich region, limited at 70 at. %
Cr in ternary (Cr70Mn15Ni15), 30 at. % Cr at Cr-Mn binary and
50 at. % at Cr-Ni binary; FM in Ni-rich region, limited at 50
at. % Ni in Cr-Ni binary and 30 at. % Ni at Mn-Ni binary; and
the rest of alloys are ordered as FiM—all indicated by green
dashed lines. Values of volumes per atom in the NM region
correspond to the Vegard’s law estimate for NM references in
the Cr-Mn region and are underestimated for Ni-rich region
[see Fig. 7(d)]. Volume per atom in FM and FiM regions
increases with the increasing average magnitude of magnetic

moment per atom in the alloy. The concentration dependency
behavior of studied parameters resembles the interpolation of
binary subsystems plots.

3. Fe-Mn-Ni ternary

In terms of enthalpy of mixing there is one ternary GS,
fcc FeMnNi6 (Fm-3m) [see Fig. 8(a)]. However, none of
the structures is GS in terms of formation enthalpy. Ground
states of underlying binary subsystems are indicated by filled
circles on all subplots of Fig. 8. In general, structures with
a negative enthalpy of formation are located in the Ni-rich
region, due to the presence of fcc stabilizing Ni in sufficient
concentrations [see Fig. 8(b)]. In this ternary system, the
structures with negative formation enthalpy are also located
only in the region with VEC more than 8, but the structures
with very positive values of formation enthalpies can also be
found in this region. This can be related to the: (i) incomplete-
ness of the database (the structures with negative formation
enthalpies for the chosen compositions may have not been
predicted within the current model) or (ii) the fact that the
VEC estimate is the empirical criteria, related to the stability
of the experimentally observed HEAs at finite temperature,
which means that the ordered structures with VEC more than
8 and positive formation enthalpy can decompose into more
stable fcc phases observable at finite temperatures.
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FIG. 9. The most stable structures for each considered composition calculated using DFT for Fe-Cr-Mn-Ni quaternary alloys and the
underlying ternary and binary alloys on fcc lattice: (a) enthalpy of mixing from CE; (b) enthalpy of mixing from DFT; (c) enthalpy of
formation from DFT; (d) average magnitudes of magnetic moments; and, (e) volume per atom.

Average magnitudes of magnetic moments from current
calculations are compared to the neutron diffraction data from
Refs. [106,107] for alloys with composition Fe75−xNixMn25,
x = 0–25 at. %. AMMM for FM and FiM structures, obtained
in current work, lie between AMMM for AFM structures at
77 K and paramagnetic structures.

Aging experiments for Fe75Ni20Mn5 [108] and
Fe7.8Mn8.2Ni84 [109] have indicated the low-temperature
precipitation of the L10 MnNi and L12 MnNi3 phases, which
are the most stable ordered binaries in the Fe-Mn-Ni system.

Magnetic stability is divided into two regions [see
Fig. 8(c)]: FM-ordered Ni-rich region, limited at 50 at. % Ni
in ternary (Fe25Mn25Ni50) and 40 at. % Ni at Fe-Ni binary,
and the FiM-ordered region for the rest of the alloys (all
regions are indicated by green dashed lines). Theoretical
results are in a good correspondence with the experimental
magnetic phase diagram for ternary [110,111] and pseudobi-
nary Fe50NixMn50−x, x = 9.88–39.74 at. % [112]. The lines
separating the regions of stability of FM and AFM, presented
in Fig. 8(c), are in good agreement with the separation line
obtained experimentally at 4 K in Ref. [110] [indicated as
a green dotted line in Fig. 8(c)] and the experimental line
of phase transition with changing Ni concentration from
Ref. [112] [indicated as a solid green line in Fig. 8(c)]. The
AFM L10 MnNi structure has a very negative enthalpy of
formation, which also corresponds to the ordered MnNi region
in Ref. [113].

Since Fe-Mn-Ni ternary is fully magnetic, the volume per
atom values are overestimated compared to the Vegard’s law
estimate and tend to increase with the increasing AMMM [see
Fig. 8(d)]. The x-ray diffraction results for induction-melted
specimens with varying composition Fe75−xNixMn25, x = 0–
25 at. %, annealed for 15 h at 900◦C and water quenched
[107], indicate that all three-component specimens have the

disordered fcc lattice with the average volume per atom of
11.69 Å3, which is close to the results of current calculations,
11.33 Å3.

D. Fe-Cr-Mn-Ni quaternary system

Since DFT calculations in current studies give the results
for 0 K and do not take the pressure into account, the concen-
tration dependence of any chosen property can be represented
analogously to how it has been done for ternary systems—
as a color-coded diagram showing dependency on the con-
centration of four components. In the authors’ opinion, the
most representative way to illustrate the varying concentration
of four components is the tetrahedron representation, where
each vertex corresponds to the concentration of a considered
element. The transformation of tetrahedral four-component
coordinates into 3D Cartesian coordinates have been worked
out in Refs. [114,115]. In such a representation, similarly
to a ternary case, only one value per composition can be
represented, and therefore, in the following plots only values
for the most stable structures for each composition are shown.

Quaternary GS in terms of both mixing and formation
enthalpies [see Figs. 9(a) and 9(c)] is FeCr2MnNi4 (I4/mmm),
which was not found in literature, with the structure being
the derivative of previously described ABC6 type. Its atomic
and magnetic configuration is illustrated in Fig. 10. Cr atoms
are ordered as simple cubic structure, Fe and Mn atoms are
ordered as fcc and Ni atoms show the layered structure with
fcc[100] ordering within the layer.

Transmission electron microscopy of Fe10Ni7Mn6Cr77

(wt.%) alloy shows the pronounced precipitation within
martensite and degenerate precipitation within the re-
tained austenite [116]. Single-phase fcc near-equiatomic
[FeNiMn]82Cr18 alloy was obtained with the arc-melting and
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FIG. 10. Atomic structure of the predicted quaternary GS
FeCr2MnNi4 in a conventional fcc unit cell.

homogenization, and remained stable under deformation [16].
AFM austenitic state is observed for Fe61.5Mn23Ni7Cr8.5 alloy
[117].

Region of fcc stability from the points of view of the
negative formation enthalpy is close to the estimate of a higher
limit of fcc stability from the point of view of VEC (8 valence
electrons per atom). This region is localized near the Ni cor-
ner, and for the quaternary and most underlying subsystems
the Ni concentration should be 25 at. % at minimum, with
the exception of the following: 40 at. % Ni for Fe-Ni binary;
50 at. % Ni for Cr-Mn-Ni ternary; and 67 at. % Ni for Cr-Ni
binary.

Quaternary alloys in the middle of the phase diagram,
where the concentration of every constituting element is larger
than 12.5 at. %, show FiM ordering, and the alloys near
the faces of the phase diagram show the ordering of neigh-
boring lower-compound structures, with small NM region
in Cr-rich part, limited at 62.5 at. % Cr in the quaternary
(Cr62.5[FeMnNi]37.5) [see Fig. 9(d)]. The magnetic ordering of
the most stable structures at each concentration was analyzed.
The resulting 264 data points in the whole concentration range
were interpolated to produce a theoretical magnetic phase
diagram of the fcc Fe-Cr-Mn-Ni system, which is presented

FIG. 11. Theoretical magnetic phase diagram of quaternary fcc
Fe-Cr-Mn-Ni alloys based on the results of DFT calculations.

TABLE III. Number of structures used in CE for each subsystem
and the respective CVSs. For K-component systems with K > 2,
the number of structures with respective K elements is indicated in
brackets.

System No. of structures CVS (meV)

CrFe 58 11
CrMn 55 8
CrNi 77 12
FeMn 58 12
FeNi 54 10
MnNi 52 12
CrFeMn 260 (89) 12
CrFeNi 274 (85) 12
CrMnNi 249 (66) 13
FeMnNi 219 (46) 12
FeCrMnNi 831 (191) 13

in Fig. 11. It should be noted that all the studied structures are
ordered atomic structures with relatively high symmetry.

Values of volumes per atom [see Fig. 9(e)] have a positive
correlation with the values of AMMM for the FiM region,
observed in the major part of the quaternary system. AMMM
and volume per atom from all studied binary, ternary and
quaternary structures with VEC larger than the critical value
of ∼7 from Refs. [13,14] have been collected to illustrate the
magneto-volume relation. This is represented in Fig. 12 and it
is clearly seen that the volume per atom is increasing with the
increase of the average magnitude of magnetic moments for
all subsystems and quaternary system. However, for the Fe-
Cr-Ni ternary subsystem, the rate of this change is the biggest.
This means that AMMMs are strongly affected by the change
of volume, compared to other subsystems. This fact may be
responsible for the high swelling effect of Fe-Cr-Ni alloys.
Also, since this linear magneto-volume relationship trend is
weaker in Fe-Cr-Ni-Mn alloys in a comparison with those
in the ternary Fe-Cr-Ni system, it supports the results of
reduced swelling in Fe-Cr-Mn-Ni HEA compared to Fe-Cr-Ni
in Ref. [9].

The enthalpy of formation, volume per atom, average
magnitudes of magnetic moments, type of magnetic ordering,
as well as crystallographic symmetry and magnetic symmetry
for the most stable intermetallic structures of Fe-Cr-Mn-Ni
alloys with negative formation enthalpy are given in Table II.
The structures with positive formation enthalpy, which form
the rest of the convex hulls with fcc references, are presented
in Supplemental Material [39], Table SII.

E. Cluster expansion summary

CE has been constantly updated and the DFT results for
the final databases have been discussed above. The number of
structures used in the Fe-Cr-Mn-Ni system and each subsys-
tem involved in the final mappings of Hmix from DFT to CE as
well as the cross-validation scores are presented in Table III.

The differences between DFT and CE enthalpies of mixing
for the most stable structures of all studied compositions
can be compared in Figs. 9(a) and 9(b). These differences
for all structures in binary subsystems are shown in the
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FIG. 12. Magneto-volume relation for (a) binary; (b) ternary and (c) quaternary alloys based on DFT calculations for structures with VEC
> 7. Filled circles represent the most stable structures for each composition; solid lines represent the line fitting for the most stable structures.

Supplemental Material [39], Fig. S1 and for the most stable
structures in ternary subsystems in Figs. S2–S5.

A chosen set of undecorated clusters (6 two-body, 2 three-
body, and 1 four-body), uniform for each studied system,
gives for binaries the same numbers of the decorated clus-
ters. For ternaries, it gives 18 two-body, 10 three-body, and
5 four-body decorated clusters. Finally, for the quaternary
system, it gives 36 two-body, 28 three-body, and 15 four-
body decorated clusters. Exact values of ECIs for all binary,
ternary and quaternary systems are given in Table I and are
illustrated in Supplemental Material [39], Figs. S7, S8, and
S9, respectively.

All theoretical and experimental fcc GSs and metastable
phases within the Fe-Cr-Mn-Ni system have been reproduced
in the final CE database. Moreover, two GSs have been pre-
dicted that are not found in literature—ternary CrMnNi2 and
quaternary FeCr2MnNi4—both with strongly negative Hform

(see Table II). Magnetic properties show the same qualitative
behavior as the experimental data and very close quantitative
values of AMMMs. Finally, the CVS of 13 meV, achieved
with the chosen set of clusters, is much smaller than the
mixing enthalpies of GS and is considered to be reasonable.

The aforementioned facts support the validity of this clus-
ter expansion model. Thus, the final ECIs for the quater-
nary fcc Fe-Cr-Mn-Ni (see Fig. S9 and Table I) are used
in Monte Carlo simulations to predict the phase stability,
configurational entropy, short-range order, and order-disorder
transitions in Fe-Cr-Mn-Ni at finite temperatures, as described
in the following section.

IV. FINITE-TEMPERATURE PHASE STABILITY OF
FE-CR-MN-NI ALLOYS

The finite-temperature phase stability of Fe-Cr-Mn-Ni al-
loys was investigated with the semicanonical Monte Carlo
simulations using ECIs obtained from the combination of CE
and DFT calculations. MC simulations were performed for the
264 different compositions in the whole concentration range
in the 10 at. % concentration mesh.

As a result of MC simulations, the mixing enthalpies and
the many-body probability functions have been obtained. The
latter have been subsequently used in order to calculate the
configurational entropy and the Warren-Cowley SRO param-
eters.

Order-disorder transition temperature (TODT) in the current
work was identified as the temperature above which the sys-
tem is disordered and below which the system shows partial

ordering. The chemical ordering strongly affects both the
enthalpy of mixing and the configurational entropy of mixing
of the studied system. Therefore, the thermodynamic potential
which includes both these values, such as free energy of mix-
ing, would accurately represent the order-disorder transition.
Hence, TODT in this work was identified via the inflection
point on the curve of a free energy of mixing as a function
of temperature, which refers to the change of sign of the
second derivative of the free energy of mixing as a function
of temperature. Taking into account the cross-validation error
between the CE and DFT, 13 meV, the error margins of the
predicted TODT can be estimated to be equal to 150 K.

Since MC simulations used in this work are based on the
lattice gas model, they take into account neither the change
of the state of matter nor the change of lattice. Therefore, all
phase transitions are treated as ordering-related transitions,
and the transition at the highest temperature for a chosen
composition is interpreted as the order-disorder transition.

A. Configurational entropy calculation from a combined Monte
Carlo and cluster expansion

Combining Monte Carlo simulations with the cluster ex-
pansion method is the common approach for calculating ther-
modynamic properties once ECIs, J (s)

ω,n, are known. Within
the Monte Carlo technique, the free energies and mixing
enthalpies are calculated for atomic configurations in the su-
percells at specific temperature ranges and chemical potentials
using known energies from the cluster expansion model asso-
ciated with clusters, and the other thermodynamic properties
are calculated from these quantities.

Within the thermodynamic integration method, the config-
urational entropy is calculated as:

Sconf (T ) =
∫ T

0

Cconf (T ′)
T ′ dT ′, (20)

where the configurational contribution to the specific heat,
Cconf , is related to the fluctuations of the enthalpy of mix-
ing, calculated within Monte Carlo at a given temperature
[124,125] as:

Cconf (T ) = 〈H2
mix(T )〉 − 〈Hmix(T )〉2

T 2
, (21)

where 〈Hmix(T )〉 and 〈Hmix(T )〉2 are the mean and mean
squared enthalpies of mixing, respectively, i.e., the numerator
describes the variance of Hmix(T ).
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FIG. 13. Enthalpy of mixing and free energy of mixing from
Monte Carlo simulations, as well as −T Sconf

mix and free energies of
mixing calculated using Thermodynamic Integration method and
cluster expansion methods for the equiatomic Fe-Cr-Mn-Ni alloys.

However, in order to accurately perform the integration
of a region around the transition temperature, which looks

like a narrow peak on the function of Cconf (T ), the simu-
lations should be performed with a small temperature step,
which increases the simulation time significantly. Therefore,
the practical limitations for the Monte Carlo technique are
time consuming simulations required for the Thermodynamic
Integration method.

The cluster variation method (CVM) is a variational
method where quantities such as entropy are formulated in
terms of correlation functions, which are calculated from the
function minimization. Since CVM uses analytical formulas,
its limitation is the need to consider the clusters with many
points. The configurational entropy corresponding to each of
the 10 basic cluster obtained by the cluster expansion method,
as well as the configurational entropy obtained from the
Monte Carlo thermodynamic integration method, is presented
and discussed in the paper of Fernández-Caballero et al. [35].

The entropy contribution from the most influential cluster
obtained in Ref. [35], which happens to be the first nearest
neighbor cluster, will be used in this paper including Fig. 13

FIG. 14. Contribution of [(a)–(c)] −T Sconf
mix and [(d)–(f)] Hmix to [(g)–(i)] Fmix in the whole concentration range at 300 K, 1000 K and

2000 K. Sconf is taken from the cluster ω = 2, n = 1. Two-dimensional slice of Fmix [(j)–(l)], where Cr and Fe concentrations are equal.
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and Fig. 14. It is expressed as follows:

Sconf
2,1 (�σ ) =11

∑
s

y(s)
1,1(�σ ) ln

[
y(s)

1,1(�σ )
]

− 6
∑

s

y(s)
2,1(�σ ) ln

[
y(s)

2,1(�σ )
]
,

(22)

where �σ dependence on the y(s)
ω,n(�σ ) is introduced to indicate

that the equilibrium configuration of the Monte Carlo super-
cell, �σ , is associated to the temperature, T .

In order to compare the results of the two methods of
entropy calculations, Monte Carlo simulation with the ther-
modynamic integration routine has been performed for the
equiatomic composition in a supercell of 8000 atoms starting
from 3000 K down to 0 K considering 1000 equilibration steps
and 2000 accumulation Monte Carlo steps per site at each
temperature in steps of 	T = 5 K.

The configurational entropy obtained from the analytic
formulation at temperatures in the range 0–1000 K is found
to be sensitive to ECIs and the Monte Carlo calculation
temperature step, resulting in nonphysical values of negative
entropies for certain clusters.

In the high temperature limit, the expression of configu-
rational entropy corresponding to each of the basic clusters
and the one obtained from TDI are found to converge to-
ward the perfect random solid solution (also known as the
temperature independent Bragg-Williams approximation) for
the average system composition, cp, given by Sconf

ideal(T ) =
−kB

∑
p cp ln(cp), which, in the case of equiatomic compo-

sition is equal to 1.386 kB.

B. Free energy of mixing

Knowing the enthalpy of mixing and the configurational
entropy, the free energy of mixing can be evaluated as
Fmix(T ) = Hmix(T ) − T Sconf

mix (T ), where Sconf
mix (T ) is defined as

Sconf
ideal − Sconf

real (T ). Example calculation for equiatomic com-
position is illustrated in Fig. 13, where the free energies of
mixing obtained from the basic cluster approximation corre-
sponding to the 1st nearest neighbor two-body cluster (ω = 2,
n = 1) and TDI calculations are presented.

It can be seen for the −T Sconf
mix obtained from both CE

and TDI methods (see Fig. 13), that its contribution to the
free energy of mixing is very small in the high-temperature
limit, which is related to the convergence toward the perfect
random solid solution discussed above. On the other hand,
for the temperatures below TODT, the contribution of −T Sconf

mix
becomes prominent and decreases the values of Fmix notably.

In order to demonstrate the contribution of −T Sconf
mix to Fmix

values in the whole range of compositions of Fe-Cr-Mn-Ni
alloys, the tetrahedron representations of Hmix, −T Sconf

mix and
Fmix at 300 K, 1000 K, and 2000 K are shown in Fig. 14.
It should be noted, that for a few compositions at 300 K the
values of entropy obtained from CE were negative, and hence
they are not represented on the corresponding subfigures of
Fig. 14.

The values of −T Sconf
mix at 2000 K are substantial mainly for

the compositions with the high concentration of MnNi [see
Fig. 14(c)]. At 1000 K, which is below TODT for the major part
of the compositions in the middle of the phase diagram, the

FIG. 15. Order-disorder transition temperatures as a function of
each element concentration. Each data point represents different
pseudobinary alloy, in which the concentration of a chosen element is
equal to that on x axis and the relative concentration of other elements
is equiatomic.

values of −T Sconf
mix are substantial for these compositions [see

Fig. 14(b)]. At 300 K, where ODT has occurred for almost all
compositions, the values of Sconf

mix are nonzero [see Fig. 14(a)].
However, since the temperature is comparatively small the
−T Sconf

mix is also smaller than at 1000 K.
Since Hmix has been obtained from the MC simulations,

it shows a clear temperature dependence. At low tempera-
ture [see Fig. 14(d)], the majority of the compositions have
negative Hmix with its values being strongly negative. When
the temperature is increased [see Fig. 14(e) and 14(f)], the
values of Hmix gradually become less negative, and for some
compositions the Hmix becomes positive.

Due to the effect of both contributions, Fmix has a differ-
ent dependence on temperature in different regions. For the
compositions which are close to the vertices of the phase
diagram, the trend in temperature dependence is similar to
the trend in Hmix. On the other hand, the values of Fmix in
the middle of the phase diagram are most negative at 1000 K
[see Fig. 14(h)], being even more negative than at 300 K [see
Fig. 14(g)], whereas at 2000 K, Fmix is strongly negative only
for structures close in composition to MnNi [see Fig. 14(i)]. It
should be noted that the effect of some structures being more
stable at elevated temperatures than at lower temperatures can
be caused by the constraints of the current work, where only
the fcc lattice is considered, and the vibrational and magnetic
contributions are not taken into account.

C. Order-disorder transition temperatures

Order-disorder transition temperature has been calculated
for each MC simulated structure in the whole concentration
range as the inflection point on the curve of the free energy of
mixing versus the temperature for the given structure.

The effect of each element concentration on TODT has
been studied on the pseudobinary compositions of type
Ax[BCD](1−x). The order-disorder transition temperatures as
functions of concentration in pseudobinaries are shown in
Fig. 15. TODT dependency on concentration for manganese
has a minimum at 30 at. % Mn, which is 1100 K. TODT

dependency on concentration for Fe has a minimum range
of 22.5–40 at. % Fe with TODT in this range being equal to
1100 K. TODT as a function of Cr concentration decreases with
increasing Cr concentration similar to Fe up to 30 at. % Cr and

174416-19



MARK FEDOROV et al. PHYSICAL REVIEW B 101, 174416 (2020)

FIG. 16. (a) Order-disorder transition temperatures for the whole concentration range of Fe-Cr-Mn-Ni alloys; (b) a percentage of AFM
L10-MnNi precipitate at 300 K in the whole concentration range, as well as [(c) and (d)] respective 2D slices where Cr and Fe concentrations
are equal.

then continues to decrease. One of the possible explanations
of such behavior is that Cr at large concentrations suppresses
the magnetic moments of other elements, decreasing the influ-
ence of magnetic interactions on the ordering. Also, there are
no GSs with negative formation enthalpy and Cr content more
than 33.3 at. %, which would require more time for atoms to
reallocate themselves to the positions of preferable precipi-
tates. Nickel pseudobinary is the most interesting because Ni
is fcc-stabilizer, and TODT as a function of its concentration,
as opposed to other elements, increases monotonically with
increasing Ni concentration. Hence, the smallest TODT equal
to 400 K is observed for equiatomic fcc FeCrMn alloy without
Ni and VEC = 7, and its stable lattice is most likely not
fcc.

The order-disorder transition temperature as a function of
concentration of each element in Fe-Cr-Mn-Ni alloys for the
structures from a concentration mesh and pseudobinaries is
presented in Fig. 16(a). It can be seen from this plot that the
lowest temperatures of order-disorder transitions are observed
in the structures with the lowest Ni concentration, exactly
what is observed in the pseudobinaries. It should be noted that
Ni is the fcc stabilizer and that alloys with small Ni concen-
tration, which in this system corresponds to small VEC, may
transform into the non-fcc phase. Therefore the Ni content
should be balanced accurately to achieve the disordered fcc
single-phase composition.

In current calculations, the ORNL alloy [9] with com-
position Cr18Fe27Mn27Ni28 during the cooling is disor-
dered above 1290 K. Below that temperature, the L10

MnNi phase starts to form [see representative structures in
Fig. 17(c)].

The value of TODT = 1290 K is lower than the temperature
of the samples homogenization of 1473 K from Ref. [9],
but it is higher than the temperature of recrystallization of
1173 K from the same Ref. [9], after which its authors report
the single-phase fcc structure. Taking into account the error
of 150K, which propagated from CE, the TODT values are
similar. It should be noted again that the current simulations
do not take into account the effect of lattice vibrations on
the evolution of the structure, which, if accounted for, may
contribute to the lowering of TODT.

It should be noted that the authors of experimental Ref. [9]
state that according to the exploratory studies, the equiatomic
alloy does not form fcc single-phase structure and the com-
position which does form it is Cr18Fe27Mn27Ni28 (ORNL)—
the alloy with near-equiatomic composition and depleted Cr
concentration. This result is supported by the estimation of
VEC, where fewer valence electrons per atom corresponds
to the lower stability of the fcc lattice, and the value for
equiatomic composition (7.75) is lower than for ORNL com-
position (7.93). In the current work, the formation enthalpy
of the ORNL composition is more negative than that of
equiatomic alloy in the whole studied temperature range
[compare Figs. 17(c) and 17(e)]. The free energy of mixing
at 1173 K is equal to −0.044 eV for equiatomic alloy and
−0.150 eV for ORNL alloy.

Moreover, current MC simulations show that for lower
temperatures, which are still located in the range of working
temperatures for fusion reactors [126], the phase composition
of the ORNL alloy is divided into distinct regions: one is the
L10 MnNi precipitate and the other is a combination of the
quaternary and Mn-/Ni-poor ternary phases. The precipitation
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FIG. 17. Formation enthalpy obtained from the MC simulations and the SRO parameters in the first coordination shell for the FeCr2MnNi4

intermetallic phase [(a) and (b)], Cr18Fe27Mn27Ni28 [9] [(c) and (d)] and the equiatomic composition [(e) and (f)]. The representative structures
of each alloy generated in MC simulations at 300 K and 1100 K are shown inside the figures.

of the L10 MnNi phase is in line with the Cantor alloy
studies from Ref. [20], where it was one of the three major
precipitates that formed after annealing for 500 days at 773 K.

L10-MnNi is the most stable structure, which has very
strong short-range ordering (as discussed later), and Mn-Mn-
Ni-Ni cluster has been shown to have the highest value of
the cluster correlation function in Ref. [35]. Based on these
facts, the analysis was made to find out the compositions,
where L10-MnNi precipitates in the Fe-Cr-Mn-Ni quaternary
system. Positions and types of atoms were taken from the MC
simulations at temperature 100 K. The first nearest neighbors
of each atom were analyzed and if at least one unit cell had

the structure of L10 (2 Mn atoms and 2 Ni atoms), the atom
was indicated as belonging to L10 phase. Indication via the
unit cell makes the analysis very computationally efficient
and does not yield false positive errors, meaning that it does
not indicate 1-layer Mn-Ni precipitates or Mn-Ni clusters
which are part of more complex intermetallic compounds as
Mn-Ni L10 phase. The percentage of L10-MnNi phase in
the full concentration range of Fe-Cr-Mn-Ni is presented in
Fig. 16(b).

When the region with precipitated L10-MnNi is compared
to the order-disorder transition temperatures, a strong corre-
lation is observed between the percentage of L10-MnNi in
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low-temperature phase composition and TODT of the alloy
[see Fig. 16(a)]: with an increasing percentage of L10-MnNi
the values of TODT also increase. This can be interpreted as
follows: If the concentration of Mn-Ni is more than 50 at. %,
it allows the Mn and Ni atoms to be involved in the formation
of L10-MnNi phase, which is a very stable ordered structure.
Therefore, even at high temperature, when the other parts of
an alloy may become disordered, L10-MnNi keeps its order,
hence increasing TODT value of the alloy.

D. Short-range order parameters

The chemical SRO in the system was investigated in detail
by analyzing the Warren-Cowley SRO parameters, calculated
from Eq. (A7), derived from Eq. (8), using pair-correlation
functions obtained from MC simulations. Inflection points on
the Warren-Cowley SRO parameters as functions of tempera-
ture indicate the order-disorder transition temperatures, which
are the same as the ones obtained from the analysis of mixing
enthalpies (see Fig. 17 for exemplary comparisons).

As can be seen from Figs. 17(a) and 17(b), the quater-
nary GS shows simple behavior—it has one order-disorder
transition temperature at 1300 K and all SRO pairs represent
the chemical interactions in the quaternary GS below TODT.
In the intermetallic phase at 0 K, the Cr atoms do not have
Cr neighbors and are surrounded by two Fe atoms, two Mn
atoms, and eight Ni atoms. Fe and Mn atoms do not have Fe
and Mn neighbors and are surrounded by four Cr atoms and
eight Ni atoms. Ni atoms are surrounded by four Cr, two Mn,
two Fe, and four Ni atoms.

Composition of the ORNL sample undergoes two subse-
quent order-disorder transitions: first at 1320 K, when L10-
MnNi starts forming, and second at 1180 K when L12-Fe3Cr
starts forming. Those order-disorder transitions are visible
both on formation enthalpy as a function of temperature
[see Fig. 17(c)] and SRO as a function of temperature [see
Fig. 17(d)]. In the latter, it is also clearly seen that the Mn-Ni
and Fe-Cr pairs drive the ordering.

The equiatomic composition also undergoes two subse-
quent order-disorder transitions—first at 1140 K, when L10-
MnNi starts to form, similarly to the ORNL composition.
During the second transition at 900 K, the already formed
L10-MnNi phase rapidly dissipates and the environment be-
comes more uniform, which leads to the gradual formation
of the ordered single phase [see Fig. 17(e)]. This rapid trans-
formation is also represented by the rapid change of all SRO
parameters [see Fig. 17(f)].

Comparing the results for ORNL and equiatomic com-
positions, it can be seen that the order-disorder transition
is driven by the formation of L10-MnNi in both alloys and
moreover, the behavior of SRO in the equiatomic alloy in the
intermediate temperature range below TODT is similar to that
in the ORNL alloy. However, below 900 K the behavior of
SRO in the two alloys stops being similar. According to the
analysis of the nearest neighbors, when the Mn and Ni atoms
start to precipitate in the form of L10-MnNi, the rest of the
composition space in ORNL alloy is close to that of L12-
Fe3Cr, the ordered metastable phase (see Fig. 20, Appendix
C). This is represented in SRO for ORNL: Mn-Ni and Fe-Cr
pairs show attraction, and others show repulsion. The situation

in the equiatomic alloy is different: The concentration of the
Cr and Fe atoms in the alloy part, which is not involved in
the formation of L10-MnNi, are similar. This means that in
contrast to the ORNL alloy, there are more Cr atoms in the
equiatomic alloy that can be attracted by Ni and Mn atoms.
As can be seen in Fig. 17(f), the SRO parameters for Cr-Ni
and Cr-Mn pairs are negative for the equiatomic composition,
as opposed to the ORNL alloy.

The difference in SRO for ORNL and equiatomic alloys
is most significant at low temperatures, but it is noticeable
even above TODT. It means that most likely, the experimentally
obtained alloys will have different properties to some extent.
Hence, the extrapolation of the properties of the equiatomic
alloy, as has been done in Ref. [12], might need a revision.
Also, the influence of SRO on the defect properties, as the
extension of the current work, may be of interest.

SRO obtained from MC simulations have been com-
pared to experimental data for four alloy compositions:
Fe56Cr21Ni23, Fe42.5Cr7.5Ni50, Fe38Cr14Ni48, Fe34Cr20Ni36

(see Supplemental Material [39], Fig. S11). Current results
reproduce the previous simulations results [22] and are close
to experimental values above 1000 K [127,128].

Analysis of the SRO parameters has been conducted for
the Nix[CrFeMn](1−x) pseudobinaries, studied with MC, and
the results are presented in the Supplemental Material [39],
Sec. SIID.

V. CONCLUSIONS

Stability of the quaternary Fe-Cr-Mn-Ni system and all
underlying subsystems have been investigated in terms of
enthalpies of mixing and enthalpies of formation using the
fensity-functional theory. True fcc GSs have been found
for binary and ternary subsystems containing Ni, and their
existence is supported by the results of experiments and
simulations reported in the literature. New fcc GSs, namely
quaternary FeCr2MnNi4 and ternary CrMnNi2, which were
not previously described in the literature, are predicted to have
negative formation enthalpy at 0 K. Ordered structures with
negative formation enthalpies have been found only in the
regions with the valence electron concentration higher than
8, which is consistent with the previous studies.

The theoretical magnetic phase diagram for the fcc Fe-Cr-
Mn-Ni system, constructed based on the results of the current
DFT calculations at 0 K, is shown to be consistent with the
existing experimental data. The values of volumes per atom
for structures with the valence electron concentration larger
than 7 correlate with the values of AMMM—the higher values
of AMMM correspond to the bigger volumes per atom. The
effect of Mn is prominent in the magneto-volume relation,
which supports the results of reduced swelling in Fe-Cr-Mn-
Ni high-entropy alloys compared to Fe-Cr-Ni.

The calculation of configurational entropy using the TDI
method and the analytical cluster variation method has shown
that the latter nicely describes configurational entropy at
high temperature and a little below order-disorder transition
temperature, while not requiring additional computationally
demanding calculations like TDI. Both methods show that
the influence of configurational entropy is most prominent in
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the intermediate temperature range, where the order-disorder
transition occurs.

The analysis of the SRO parameters has indicated that the
interaction between every two elements in the multicompo-
nent system is a local property and depends on the atomic
configuration around an atom at a given temperature. The dif-
ference in SRO between near-equiatomic Cr18Fe27Mn27Ni28

and equiatomic FeCrMnNi alloys at high temperatures results
in a completely different atomic structure at low temperatures
– phase separation with the pronounced precipitation of L10-
MnNi in the former and the metastable ordered structure in
the latter.

It has been found that the order-disorder transition tem-
perature (TODT) of the system decreases with decreasing Ni
concentration and increasing concentration of other elements.
Stable intermetallics also increase TODT. The correlation has
been indicated between TODT and the percentage of AFM L10-
MnNi—the most stable ordered structure in the multicompo-
nent Fe-Cr-Mn-Ni system—precipitated at low temperature.

As the continuation of the current work, the behavior under
irradiation and the defect properties of equiatomic and near-
equiatomic Fe-Cr-Mn-Ni alloys will be studied with a special
interest in the magneto-volume effect and SRO influence on
the defect migration.
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APPENDIX A: DERIVATION OF SRO FROM MATRIX
FORMULATION

In this work, τK matrices for K = 2, 3, 4 are defined as
follows:

τ2 =
(

1 1

−1 1

)
, τ3 =

⎛
⎜⎝

1 1 1

−1 1
2

1
2

0 −
√

3
2

√
3

2

⎞
⎟⎠,

τ4 =

⎛
⎜⎜⎜⎝

1 1 1 1

−1 0 1 0

0 −1 0 1

−1 1 −1 1

⎞
⎟⎟⎟⎠. (A1)

Three- and four-body correlation functions within the ma-
trix formulation are defined as:〈

�
(s)
3,n

〉 = ∑
A,B,C

( ¯̄τK ⊗ ¯̄τK ⊗ ¯̄τK )(s),A,B,CyABC
3,n (A2)

and〈
�

(s)
4,n

〉 = ∑
A,B,C,D

( ¯̄τK ⊗ ¯̄τK ⊗ ¯̄τK ⊗ ¯̄τK )(s),A,B,C,DyABCD
4,n , (A3)

respectively.
The inverse τK matrices, τ−1

K , for K = 2, 3, 4, which are
used in this work, are given explicitly below:

τ−1
2 = 1

2

(
1 −1

1 1

)
, τ−1

3 = 1

3

⎛
⎜⎝

1 −2 0

1 1 −√
3

1 1
√

3

⎞
⎟⎠,

τ−1
4 = 1

4

⎛
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1 −2 0 −1

1 0 −2 1

1 2 0 −1

1 0 2 1

⎞
⎟⎟⎟⎠. (A4)

For triplet or three-body, the probability function is ex-
pressed in a manner similar to Eq. (11).

yABC
3,n =

∑
s

(
τ−1

K ⊗ τ−1
K ⊗ τ−1

K

)
ABC,(s)

〈
�

(s)
3,n

〉
. (A5)

For four-body, the probability expression reads:

yABCD
4,n =

∑
s

(
τ−1

K ⊗ τ−1
K ⊗ τ−1

K ⊗ τ−1
K

)
ABCD,(s)

〈
�

(s)
4,n

〉
. (A6)

Warren-Cowley SRO parameters are computed via the
point and pair correlation functions. For a quaternary system,
the analytical formulas for SRO parameters are as follows:

αAB
n = αCr-Fe

n = 1 − 1 − 2
(〈
�1

1,1

〉+ 〈�2
1,1

〉− 2
〈
�12

2,n

〉+ 〈�13
2,n

〉− 〈�23
2,n〉) − 〈�33

2,n

〉
(
1 − 2

〈
�1

1,1

〉− 〈�3
1,1

〉)(
1 − 2

〈
�2

1,1

〉+ 〈�3
1,1

〉)

αAC
n = αCr-Mn

n = 1 − 1 − 2
〈
�3

1,1

〉− 4
〈
�11

2,n

〉+ 〈�33
2,n

〉
−4
〈
�1

1,1

〉2 + (1 − 〈�3
1,1

〉)2
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αAD
n = αCr-Ni

n = 1 − 1 − 2
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αBC
n = αFe-Mn
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APPENDIX B: DFT CALCULATIONS OF PURE MN

Binding energy curves for different Mn structures are
shown in Fig. 18 with a reference to the binding energy of α-
Mn GS (E − EAFM

α-Mn). It can be seen from Fig. 18, that lowering
the volume per atoms significantly below the equilibrium
volume for each structure leads the magnetic ordering to
change to the nonmagnetic, indicating the high-pressure mag-
netic phase transition. The comparison of magnetic ordering,
volume per atom and the E − EAFM

α-Mn values with experimental
and theoretical results are presented in Table IV. Magneto-
volume relation for studied structural and magnetic phases
of Mn with nonzero AMMM is presented in Fig. 19(a) and

FIG. 18. Calculated equations of state for known and hypotheti-
cal crystal structures and magnetic configurations of Mn.

it shows that the volume per atom increases with increasing
AMMM in all structures.

The GS of Mn, α-Mn, has a very complex atomic structure.
The lattice is identified as σ -phase with 58 atoms in the unit
cell and four crystallographically and magnetically inequiva-
lent sites, where the half of the atoms in each site is ordered
antiferromagnetically to the other half. Table V presents the
comparison of the magnitudes of magnetic moments for these
sites with the previous experimental and theoretical results. It
can be seen that the values obtained in this work lie within
the range of previous experimental and theoretical results.
Magneto-volume relation for each site is shown in Fig. 19(b).

APPENDIX C: BINARY SUBSYSTEMS WITHOUT MN

In addition to the results of Wróbel et al. [22] for Fe-Cr, Cr-
Ni, and Fe-Ni binaries, SQSs in these subsystems have been
included into consideration. Formation enthalpies, volumes
per atom and average magnitudes of magnetic moments of
SQSs have been calculated and compared to those of the
ordered structures.

1. Fe-Cr binary

Ground states in terms of mixing enthalpy are FeCr5,
FeCr2 [β2(100)], Fe3Cr5, FeCr (L10), Fe3Cr (L12). Previously
predicted GS FeCr8 [22] lies within the convex hull with the
addition of predicted FeCr5 alloy. Fe3Cr5 intermetallic lies
almost exactly on the convex hull line and may not be GS
in terms of Hmix [see Fig. 20(a)].

All of the structures show positie values of the forma-
tion enthalpy which can be interpreted as metastability and
hence the transformation to α and σ phases [22,136] may
be more preferable. Stability regions of magnetic structures
[see Fig. 20(c)] are divided with FM FeCr2 structure with
66.(6) at. % Cr—smaller Cr concentration results in domina-
tion of magnetic moments of Fe with FiM ordering, which
is consistent with previous calculations [137], and larger Cr
concentration suppresses the magnetism of Fe and yields NM
ordering. Total magnetic moment of the system grows with
the increasing Fe concentration in the FiM region. Atomic
volumes of Fe-Cr alloys in NM region are underestimated
compared to Vegard’s law for NM reference structures within
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TABLE IV. Magnetic ordering, AMMM (in μB), volume per atom (in Å3) and E − EAFM
α-Mn (in meV) for different phases of pure Mn

compared to previous experimental and theoretical data.

Magnetic ordering AMMM (μB) V/at (Å3) E − EAFM
α-Mn (meV)

Phase Prev. Present Theor. Exp. Present Theor. Exp. Present Prev. Present

α-Mn AFM NM 0 10.75a 10.74 21
AFM 0.5b 0.57 11.08c 12.05d 11.13 0c 0

β-Mn FiM NM 0 12.17e 10.81 72
AFM 0.5e 0.24 12.40e, 10.84c 12.44e,f,g 10.82 63c 71

γ -Mn (fcc) AFM NM 0 10.67 102
AFMSL 2.13h 1.84 11.16c 12.95i 11.37 67c 52
AFMDL 1.28 11.02 94
AFMQL 1.14 10.98 93

δ-Mn (bcc) AFM NM 0 10.70 185
FM 0.99h 0.85 11.12c 10.86 146c 167

AFMDL 0.54 10.77 181
AFMTL 0.98 10.97 157
AFMQL 0.78 10.95 158

ε-Mn (hcp) AFM NM 0 10.63 72
AFM 0.20h 0.53 10.72c 10.69 61c 70

aHobbs et al. [73].
bShull and Wilkinson [129].
cHafner and Hobbs [130].
dLawson et al. [70].
eAsada [131].
fPreston [132].
gSliwko et al. [133].
hAsada and Terakura [134].
iWyckoff [135].

0.1 Å3 per atom [see Fig. 20(b)]. Volumes derived from
Vegard’s law for magnetic structures are higher than those for
NM structures, and the structures in FiM region lie between
the two. Evaluated average magnitudes of magnetic moments
are underestimated compared to experimental results [138] by
0.2 μB at least up to 16 at. % Cr. Values of Hform, volumes
per atom and AMMM of SQSs have continuous behavior
and converge to the values of NM Cr and FM Fe in the
corresponding ends of the concentration scale. Magnetic order
of SQSs is FiM up to 75 at. % Cr, even for the concentrations
close to NM Cr2Fe.

2. Fe-Ni binary

Ground states in terms of enthalpy of mixing are FeNi3

(L12), FeNi8 (Pt8Ti-like), FeNi (L10), Fe3Ni2 (I4/mmm-
symmetry), and FeNi5. All GSs except FeNi5 are consistent
with previous calculations [22] and the latter lies almost
on convex hull line [see Fig. 21(a)]. In terms of formation
enthalpy GSs are located only in Ni-rich region, which are
FeNi and FeNi3, observed experimentally in Ref. [139] and
FeNi8, previously preicted in Ref. [140]. This can be due to
the fact that Ni is the fcc stabilizer and VEC for FeNi already

FIG. 19. Magneto-volume relation (a) for all calculated Mn structures at equilibrium volume and (b) for four sites in AFM α-Mn.
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TABLE V. AMMM (in μB) of atoms on different sites in AFM α-Mn structure compared to previous experimental and theoretical data.

AMMM (μB)

Site No. of atoms Expt.a Expt.b Expt.c Expt.c Expt.d Expt.e Expt.f Expt.f Theor.g Theor.g Present
Col. Col. Col.1 Col.2 N.Col. N.Col. N.Col.1 N.Col.2 Col.1 Col.2 work

I 2 1.35 1.8 1.54 2.5 2.83 2.05 2.05 1.9 2.79 3.19 2.94
II 8 1.35 1.4 1.54 2.5 1.83 1.80 1.79 1.7 2.22 2.79 2.39
III 24 0.99 1.2 3.08 1.7 0.61 0.60 0.59 0.6 1.11 1.81 1.38
IV 24 0.22 0.1 0 0 0.47 0.27 0.27 0.2 0.07 0 0.02

aKunitomi et al. [67].
bOberteuffer et al. [68].
cKasper and Roberts [69]; models 1 and 2 represent different fits to the same set of diffraction data.
dLawson et al. [70].
eYamagata and Tazawa [71].
fYamada et al. [72]; models 1 and 2 are based on different choices of the magnetic form factor.
gHobbs et al. [73]; calculations 1 and 2 have been done for different volumes per atom: 11.23 Å3 and 12.05 Å3, respectively.

exceeds the required fcc stability threshold. Values of Hform of
SQSs have continuous behavior between FM Fe and FM Ni.

Regions of stability for different magnetic configurations
[see Fig. 21(c)] are divided by the FM Fe3Ni2 structure at 40%
of Ni concentration—the most stable structures with higher Ni
concentration have FM ordering and the most stable structures
with lower Ni concentration have FiM ordering. The Vegard’s
law estimate of the volume per atom for magnetic reference
structures drops with Ni concentration and yields higher val-
ues than the estimate for nonmagnetic reference structures,
which moreover increases with increasing Ni concentration
[see Fig. 21(b)]. The values of the volumes per atom from
the current calculations are overestimated compared to the

FIG. 20. (a) Enthalpy of formation, (b) average magnitudes of
magnetic moments per atom, (c) volume per atom of fcc Cr-Fe
structures calculated using DFT. The notation is the same as in Fig. 2.

magnetic estimate with maximum difference of 0.4 Å3 per
atom, and linear behavior of volume per atom as a function
of Ni concentration holds only in the FM region. Values
of magnetic moments for individual elements grow with the
increasing Ni concentration, and the values of total mag-
netic moments decrease with the increasing Ni concentration,
showing almost linear dependency. The values of magnetic
moments, volumes per atom and enthalpies of mixing are

FIG. 21. Enthalpy of formation, volume per atom and magnetic
moments per atom for stable states calculated using DFT for Fe-Ni
alloys on fcc lattice. The notation is the same as in Fig. 2. Black
dash-dotted line connects the true GSs, which are FM bcc Fe and
FM fcc Ni. Experimental data: aReck et al. [121], bShull et al. [93],
cCochrane et al. [142], dNakai et al. [143], eMenshikov et al. [144],
f Wakelin et al. [122], gOwen et al. [120], hBhatia et al. [123], iShiga
[145], jChamberod et al. [146].
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FIG. 22. Enthalpy of formation, volume per atom and magnetic
moments per atom for stable states calculated using DFT for Cr-Ni
alloys on fcc lattice. The notation is the same as in Fig. 2. Black
dash-dotted line connects the true GSs, which are FM fcc Ni and
AFM bcc Cr. Experimental data are taken from: aTakano et al. [119],
bBesnus et al. [147], cLenkkeri [148], dJung [118].

in agreement with experimental data [139]. Our results for
the average magnetic moment values correspond to the data
from Ref. [141] observed for coexisting fcc and bcc phases.
Magnetic stability of SQSs corresponds to the stability of
ordered structures—SQS with 12.5 at. % Ni is FiM and all
SQS with higher Ni concentration are FM.

Values of volumes per atom and AMMM of FM SQS
structures (25–87.5 at. % Ni) closely correspond to the values

for calculated ordered structures and at the 37.5–87.5 at. % Ni
concentrations have a good correspondence with the exper-
miental data from Refs. [139,141].

3. Cr-Ni binary

Ground states in terms of mixing enthalpy are Cr8Ni
(NbNi8-like), Cr3Ni (Z1(100)), Cr2Ni (β1(100)), CrNi (L11),
CrNi2, CrNi3 [Y3(110)]. Contrary to the previous predictions
[22], the current study shows that Cr7Ni and Cr5Ni lie inside
the convex hull due to the presence of Cr8Ni [see Fig. 22(a)].
In terms of formation enthalpy, only CrNi2 which is located in
the Ni-rich region is considered to be a stable state. Values of
Hform of SQSs have continuous behavior between FM Ni and
NM Cr.

The Stability regions of different magnetic configuration
[see Fig. 22(c)] are divided with FiM CrNi and the structures
with higher Cr content are NM. Magnetic ordering in the
region of Cr concentrations below 50% is not clear, because
the magnetic ordering of pure Ni is FM, but the most stable
structures (which are most close to the convex hull) in this
region have different magnetic ordering. Stable FiM structures
in this region show peculiar behavior compared to other
binaries—values of Cr magnetic moments grow with the
increasing Cr concentration up to 50% Cr and reach the value
of 2 μB, having a higher impact on the total magnetic moment,
though GS and the most stable fcc state of the pure Cr is NM.
Magnetic ordering of SQSs in the region of NM stability of
ordered structures is also NM, but in the region of concentra-
tions below 50 at. % Cr, where ordered FiM and FM structures
are the most stable, SQSs possess only FiM ordering.

The maximum difference between the Vegard’s law esti-
mate for the magnetic and the NM reference structures is
0.1 Å3 and the values of volumes per atom are underestimated
up to 0.3 Å3 [see Fig. 22(b)]. Values of volumes per atom for
SQSs are lower compared to the NM Vegard’s law estimate
with a maximum difference of 0.1 Å3, similarly to ordered
structures.
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