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Abstract
In this work, we use reduced and perturbative models to examine the stability of toroidal
Alfvén eigenmodes (TAEs) during the internal transport barrier (ITB) afterglow in JET
experiments designed for the observation of alpha driven TAEs. We demonstrate that in
JET-like conditions, it is sufficient to use an incompressible cold plasma model for the TAE to
reproduce the experimental adiabatic features such as frequency and position. When ion
cyclotron resonant heating (ICRH) is used to destabilize TAEs, the core-localised modes that
are predicted to be most strongly driven by minority ICRH fast ions correspond to the modes
observed in the DD experiments, and conversely, modes that are predicted to not be driven are
not observed. Linear damping rates due to a variety of mechanisms acting during the afterglow
are calculated, with important contributions coming from the neutral beam and radiative
damping. For DT equivalent extrapolations of discharges without ICRH heating, we find that
for the majority of modes, alpha drive is not sufficient to overcome radiative damping.
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1. Introduction

A great deal of effort and interest has been devoted to demon-
strating the possible excitation of Alfvénic instabilities by
super-Alfvénic fusion products, particularly alpha particles,
a phenomenon that is important to understand and control in
future burning plasmas [1]. Recent work on JET [2] has been
focussed on creating the conditions for unambiguous obser-
vation of alpha driven toroidal Alfvén eigenmodes (TAEs)
by exploiting the long slowing down time of alpha particles
and the more rapid thermalisation of beam ions, supporting
some existing evidence from JET [3] and TFTR [4]. Afterglow
scenarios were designed to achieve a transient maximum per-
formance to generate a large driving fusion alpha population,
followed by rapid removal of neutral beam heating to minimize
damping effects. Deuterium experiments were conducted to
establish high performance internal transport barrier (ITB)
scenarios at elevated safety factor with a view that they could
be repeated in DT. Although generally omitting ICRH to avoid
creating another fast particle population, some of these exper-
iments deliberately employed ICRH during the afterglow to
probe the stability of TAEs, allowing the validation of stability
calculations.

In this work, we test the quantitative predictive capability
of reduced and perturbative models for TAE stability in a
particular JET ITB scenario when supplied by approximate
inputs from the available integrated modelling data.

Experimental features reproduced by this workflow
include:

• Location of rational surfaces
• Mode frequency
• Mode position
• Strongest driven modes
• Modes that are absent
• Time of onset during afterglow

After demonstrating capabilities in reproducing experi-
mental features in pure deuterium plasma, we present an
extrapolation to 50:50 deuterium–tritium plasmas to assess the
likelihood of alpha driven TAEs being excited.

2. Theory

Tokamak plasmas are known to support a broad range of wave
phenomena propagating at different characteristic speeds. The
local wave dispersion relation includes the Alfvén continuum
ω2 ≈ k2

‖V2
A and ion-sound continuum ω2 ≈ k2

‖c2
s , with VA and

cs denoting respectively the Alfvén and ion-sound speeds. The
squared ratio of cs and VA depends on β, the ratio of magnetic
to thermal pressure. In a conventional tokamak such as JET,

these speeds are well-separated and Alfvén waves can be iden-
tified that are dominated by the interplay between magnetic
field tension and plasma inertia, rather than plasma compres-
sion. For reactor-relevant conditions, these waves must be kept
as small oscillations around an equilibrium with δB

B � 1%.
The toroidally symmetric equilibrium magnetic field balances
the pressure of a mostly isotropic plasma as expressed in the
fluid picture with the Grad–Shafranov equation

R2∇ ·
(
∇ψ

R2

)
= −Rμ0Jφ(R,ψ)

Jφ(R,ψ) = Rp′(ψ) + f f ′(ψ)/μ0R
(1)

where the poloidal flux functions correspond to the pres-
sure force −∇p = −p′(ψ)∇ψ and the covariant toroidal mag-
netic field RBφ = f (ψ). In the kinetic picture on collisionless
timescales, a particle distribution function is in equilibrium if
and only if it can be written in terms of particle orbit constants
of motion

F = F(E,μ, Pφ;σ) (2)

for energy E, magnetic moment μ =
1
2 mv2

⊥
B + O

(
ρ
L

)
, toroidal

canonical momentum Pφ = mRvφ + Zeψ and σ ≡ sign
(
v‖
)
.

The above expressions correspond to sign conventions [5]
where poloidal flux relates to field by Bp ≡ ∇ψ ×∇φ and
toroidal direction obeys R̂ × φ̂ = Ẑ.

The two pictures, represented by equations (1) and (2), are
reconciled for the majority thermal plasma with zero orbit
width where F = F(E,ψ). The fast particle distributions asso-
ciated with NBI, ICRH or the fusion products cannot be said
to satisfy this assumption in JET-like conditions; NBI and
ICRH orbits can exhibit strong directionality favouring a given
on-axis pitchΛ ≡ μB0

E and all fast particles exhibit a finite orbit
width through Pφ. Although these quantities feature naturally
in the kinetic theory, integrated modelling focusing on flux-
surface average quantities tends to ignore these effects for
computational convenience with varying levels of justification
in current tokamaks. As an example: for large aspect ratio, a
fast pressure approximation [6] is justified to capture the fast
particle forces in the Grad–Shafranov equation.

The TAE was first identified [7] as a class of discrete
oscillatory solution to the linearized ideal MHD equations in
the limit of small β. These global eigenmodes exist within the
TAE gap of the Alfvén continuum at angular frequencies close
to

ωTAE =
VA

2qR
. (3)

These incompressible ideal solutions from the fluid theory
may also be found in the kinetic theory when solving for the
‘adiabatic’ terms in the linearized gyrokinetic equation, or by
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assuming a cold plasma dispersion relation for the given field
and density. Real and imaginary corrections to the TAE eigen-
frequency and mode structure come from non-ideal effects
such as resonant wave–particle interaction, collisions, finite
orbit width and finite Larmor radius [8, 9]. When these effects
are weak, they provide only drive, damping and frequency cor-
rections to what are in essence ideal MHD solutions, inviting
a perturbative approach.

Resonant wave–particle interaction is computed perturba-
tively with linear codes such as CASTOR-K [10] and NOVA-K
[11], and nonlinear codes such as HAGIS [12] and HALO
[13]. These perturbative calculations require inputs of the ideal
eigenmodes from linear MHD codes such as MISHKA-1 [14]
and CASTOR [15].

The further non-ideal contributions from finite Larmor
radius and parallel electric field lead to the coupling of shear
waves with kinetic Alfvén waves with a combined local dis-
persion relation

ω2 = k2
‖V2

A

[
1 + k2

⊥ρ
2
i

(
3
4
+

Te

Ti
(1 − iδ(νe))

)]
(4)

with ion Larmor radius ρi = (miTi)1/2/eB and collisional dis-
sipation δ(νe), and a corresponding modification to the global
TAE wave equation. The collisional dissipation captures the
passing electron resistive losses and can be computed from the
collision frequency νe with trapped electrons.

The modified kinetic TAE wave equation resembles the
resistive MHD equations but with a complex number substi-
tuting for conventional resistivity, allowing non-perturbative
computation of some nonideal effects in CASTOR [9]. The
coupling between kinetic Alfvén waves and TAEs leads to
radiative damping of TAEs when their frequencies lie below
the TAE gap frequency equation (3) [16]. Full non-perturbative
calculations can also be performed using gyrokinetic or hybrid
codes [17–19] which attempt to solve for all ideal and
non-ideal effects simultaneously, including the difficult to
resolve resonant wave–particle interaction. For slowly grow-
ing/decaying modes, power transfer between waves and par-
ticles occurs for a small fraction of particles satisfying the
resonance condition [20]

0 = n〈ωφ〉+ pωθ − ω (5)

where n is the wave toroidal mode number, 〈ωφ〉 and ωθ are
the bounce-averaged 〈·.〉 toroidal and poloidal frequencies
of the particles, and p is an integer that labels each Fourier
component in the time varying power transfer. For deeply
passing particles and small orbit width, the strongest Fourier
component occurs when p ≈ m the poloidal mode number for
one of the eigenmode harmonics, corresponding to when ω ≈
k · v for that Fourier component. Analytical expressions [21]
of alpha drive and ion Landau damping for of TAEs have been
derived for this lowest order power transfer corresponding to
the conditions v‖ = VA and v‖ = VA/3. More generally, the
linear growth rate γL depends on the distribution function
gradients at resonance

γL =

∫
d3x d3v

∑
σ

∑
p

δγ(x, v; p, σ)
n〈ωφ〉+ pωθ − ω

δγ(x, v; p, σ) ∝ ω

(
∂F
∂E

)
μ,Pφ

− n

(
∂F
∂Pφ

)
E,μ

. (6)

On JET [22], resonant wave–particle interaction with TAEs
occurs between ICRH, NBI, fusion products and thermal
plasma species. For typical JET magnetic fields and densities,
the ion velocities present in the NBI and thermal distributions
fall below VA and do not contribute drive to TAEs. Drive
of TAEs observed on JET is almost exclusively provided by
ICRH.

In the sections that follow, we compare predictions of this
stability theory to experimental data on an existing DD dis-
charge 92416 during the afterglow, and provide extrapolations
of TAE stability in DT for the best performing scenario, which
was achieved in discharge 96852.

3. Predictions for the JET ITB afterglow

3.1. Overview of the JET ITB afterglow

Recent scenario development of JET ITBs has been described
previously [2, 23], but here we give a brief summary of key
features of shots 92416 and 96852. The plasma is a monotonic
q(ψ) low shear discharge with Bvac = 3.4 T and Ip = 2.5 MA
operating at elevated q0 > 1.5. The pulses are majority deu-
terium with measured edge hydrogen concentration nH/ne ∼
2%–7%. NBI heating exceeding approximately 25 MW for
JET with the ITER-like (metal) wall can lead to the formation
of an ITB at the q = 2 surface, with some sensitivity on timing
and density, the latter being set as low as shine-through limits
allow. Strong density and ion temperature peaking are a feature
of this scenario which can result in ion/electron temperature
ratios of order Ti ≈ 2Te when discharges are successful at
producing an ITB. Figure 1 gives the measured magnetic probe
signal at the expected TAE gap frequency before and after the
full NBI power phase during 92416. Three modes are observed
at 6.2 s with toroidal mode numbers n = 4, 5, 6. These modes
occur during a period when the NBI has been stopped and
the plasma is cooling. For 92416, ICRH is maintained during
the afterglow so as to deliberately destabilize TAEs. A higher
performance version of the same shot has been developed to
be repeated in DT, 96852, with no ICRH and peak transient
neutron rate RNT = 2.45 × 1016. A range of similar pulses
were developed with very good reproducibility in q-profiles
[2], with variation in performance owing to small changes in
NBI waveform and gas puff affecting the appearance of the
transport barrier.

3.2. Fluid equilibrium reconstruction

The linear TAE spectrum depends sensitively on the equilib-
rium, particularly on the q-profile. Inference of equilibrium is
provided on JET using the EFIT code [24]. However, during
the afterglow MSE measurements are unavailable. A large
variation in q-profiles between equally valid EFIT solutions
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Figure 1. JET shot 92416 afterglow scenario details (above) magnetic spectrum (below).

is possible if internal current profile constraints are absent
[25]. Considering both free functions in the Grad–Shafranov
equation (equation (1)), detailed information on p′(ψ) is avail-
able via measurements and fast ion modelling, but very little
is available to constrain f f ′(ψ) without MSE or computed
parallel current constraint. Over-fitting the pressure pedestal
in these ITB cases led to implausibly low safety factor in the
core. For this study, both free flux functions p′(ψ) and f f ′(ψ)
were instead parametrised by simple quadratic polynomials,
and experimental thermal pressure and computed fast pressure
from TRANSP [26] were used as input constraints. Although
it is likely that this approach does not capture equilibrium
features in the pedestal, our focus was to faithfully capture the
core q-profile.

MHD spectroscopy was used to validate this procedure for
our ITB cases of interest. The locations of instabilities, likely
to be tearing modes, were identified using cross-correlation
between electron cyclotron emission and Mirnov coil data,
and toroidal mode numbers were obtained from the toroidal
separation of the Mirnov array [27]. Two modes, with n =
2 and n = 3, were identified at different times. This pro-
vided measurements of the q = 2 surface at major radius
R = 3.15 ± 0.05 m and q = 7

3 at R = 3.45 ± 0.05 m at times
5.52 s and 5.69 s respectively, before the time of interest
6.2 s. A comparison with the reconstruction is presented
in figure 2.

At highest performance, the reconstructed position of the
q = 2 surface also agrees with the position of the ITB; an
integer value always appears to be necessary for JET ITBs
with monotonic shear [28]. A steady decay from qmin = 2
to qmin = 1 can also be inferred from Alfvén cascades after
the time of interest, beginning from 6.5 s. In practice, the
location and timing of the appearance of the q = 2 surface
was a robust and reproducible experimental feature between
pulses, giving confidence of similar q-profile evolution for

many shots differing in NBI waveform and also regardless of
whether ICRH heating was incorporated.

3.3. Incompressible linear stability

Magnetics signals close to the TAE gap frequency computed
with equation (3) were observed both before the time of peak
performance and during the afterglow (figure 1). A recon-
structed equilibrium at the time of appearance during the
afterglow was obtained at 6.2 s and metric elements of the
straight field line coordinates were obtained with HELENA
[29] for input to linear MHD calculations.

As mentioned previously, the three experimentally
observed modes had toroidal mode numbers n = 4, 5, 6.
On JET, the convention for positive toroidal mode number
and mode frequency indicates a mode propagating in the
ion-diamagnetic direction for peaked core pressure, which
corresponds to a toroidal wave number n∇ξ using the
R̂ × Ẑ = ξ̂ sign convention. Plasma current, toroidal field,
toroidal rotation and neutral beams are all in the same toroidal
direction as the propagating modes.

The straight field line metric elements from HELENA [29]
and a normalized mass density profile were used as inputs
for the incompressible linear MHD code MISHKA-1 [14].
The mass density was approximated on the assumption of
100% deuterium with number density from fitted experimental
LIDAR and Thompson scattering electron number density
data. A range of TAE eigenmode solutions were found for the
toroidal mode numbers n = 4, 5, 6. The rotation of the plasma
at the location of the observed modes was estimated as the
difference in frequency for adjacent mode numbers, owing to
the expected Doppler shift ωlab = ωplasma + nΩ giving a rota-
tional frequency at the modes of Ω/2π = 10 kHz, assuming
the modes are in similar location with similar rotation. Charge-
exchange recombination spectroscopy (CXRS) measurements
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Figure 2. Comparison of q-profile of EFIT reconstruction (curves) to measured midplane position (point with errorbar) of tearing modes at
5.52 s (left) and 5.69 s (right) in JET shot 92416. These correspond to rational surfaces q = 2 and q = 7/3.

Figure 3. JET shot 92416 magnetic spectrum with MISHKA-1 TAE solutions overlayed. All frequencies are given in the lab frame
assuming a toroidal rotation of 10 kHz. Modes are coloured by toroidal mode number and labelled with their normalized eigenvalue as
‘n{mode number}_{ω/ωA}2’.

before the afterglow at 6.1 s range from 17 kHz at the magnetic
axis to 10 kHz at a midplane location of R = 3.47 m. Although
charge exchange measurements were not available during the
afterglow, x-ray crystal spectroscopy (XCS) Doppler measure-
ments fall by 25%, which if replicated in the whole profile,
would suggest 10 kHz rotation occurs at 3.4 m at time of TAE
observation.

The range of eigenmodes predicted from the incompress-
ible theory for the measured profiles and assumed rotation in
the lab frame occurred in the frequency range 135–165 kHz.
Solutions in this range of frequencies have been overlayed onto
the measured magnetic spectrum in figure 3. Once toroidal
mode number is accounted for, three predicted solutions are
found that correspond to within 2%–3% of the observed sig-
nals. This supports the conclusion that the adiabatic prop-
erties of the modes are well modelled by TAEs from the

incompressible theory despite the presence of an ITB and ion
temperature ∼10 keV.

The eigenmodes that most resemble experimental observa-
tions correspond with archetypal core-localised TAEs which
are characteristic of low magnetic shear in the analytical theory
[30] and found to be most unstable in ITER baseline calcu-
lations [31, 32]. These three modes are also of ‘ballooning’
type, where the frequencies are found within the lower half of
the TAE gap in the Alfvén continuum, and the mode positions
are weighted towards the outboard side of the midplane. The
MHD prediction of the eigenmode is presented in figure 4 (top
left) and figure 4 (top right) along with reflectometer measure-
ments in figure 4 (bottom). The reflectometer measures density
fluctuations at a given probed frequency. The TAEs observed
on the magnetics correlate with density fluctuations, with the
n= 4 and n = 5 mode frequencies evident in figure 4 (bottom).
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Figure 4. MISHKA-1 2D perturbed radial velocity sV1 where s =
√

ψ̄p (top left) and the 1D equivalent superimposed on the Alfvén
continuum (top right) for n = 5 eigenmode observed initially at 150 kHz. Reflectometry measurements (bottom) give the position of the
TAEs in JET shot 92416, with the mode at 147 kHz matching the n = 5 mode found on magnetics at 6.325 s.

The probed frequency is scanned in time, altering the radial
position where the density fluctuation is measured, depending
on the cut-off in the probe wave local dispersion relation.
The inferred radial position is shown below the spectrum. The
n = 5 is measured at an outboard major radius of R ≈ 3.33 m
which is consistent with MISHKA-1 predictions. This is com-
parable with the 3.4 m estimate from rotation assumptions
made earlier and CXRS/XCS Doppler measurements. It is
interesting that the n = 4 mode appears slightly earlier on
reflectometry, but this shift of a few cm outwards is not present
in the MISHKA-1 prediction for n4_0.068473, although the

n = 4 mode is wider by a comparable amount. Another n = 4
mode found, n4_0.063727 peaking at 3.4 m could perhaps be a
better fit, but at this level of detail with eigenfrequency varying
within 2%–3%, one would expect that accuracy in q profile
reconstruction (figure 2) must also come into consideration
before looking for additional physics.

3.4. Kinetic ICRH minority and NBI equilibrium

Radio-frequency heating of a hydrogen minority was included
in shot 92416 for the purpose of probing TAE stability during
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Figure 5. SELFO ICRH distribution function at 6.1 s (above) and analytical fitted form (below).

the afterglow. Calculations of resonant wave–particle TAE
drive requires the input of the minority hydrogen distribution
of the form expressed in equation (2) to capture effects of finite
orbit width and strong anisotropy. The SELFO code [33] was
used to solve the quasilinear equations for the ICRH fast proton
distribution in constants of motion. Additionally, NBI heat-
ing was present during the high-performance phase, and then
turned off to decrease resonant wave–particle TAE damping.
The ASCOT code [34] was used to solve the Fokker–Plank
equation for the fast deuterons in position and velocity coor-
dinates, and then converted to the equilibrium form given by
equation (2), capturing all finite orbit width and anisotropy
features present in the beam distributions.

The output of distribution function modelling is pre-
sented in figures 5 and 6. Both distributions show signifi-
cant anisotropy, particularly the SELFO distribution which is
strongly peaked around Λ = μB0

E = 1 as expected from the
quasilinear theory applied to on-axis minority heating.

Being Monte-Carlo solutions, the distributions feature sig-
nificant Monte-Carlo noise, particularly along edges of the
topological orbit boundaries that are sparsely populated in
reality, and poorly resolved in computation. Although per-
fectly valid as collisionless equilibrium distribution functions
by virtue of their representation F = F(E, μ, Pφ; σ), they
are not physically realisable because they violate a smooth-
ness condition in the Fokker–Plank equation; drag and dif-
fusion terms in the collision operators would become large
around any sharp features in the equilibrium, immediately
smoothing the distribution. Stability calculations using such
unphysical equilibria would presumably produce numerically
converged but physically irrelevant results if these gradients

happen to occur near the resonance condition. Under these
circumstances, numerical convergence of the entire integrated
stability calculation would require convergence of the deriva-
tives of the 3D distribution function in the Monte-Carlo
simulations.

In order to de-couple numerical convergence of heating
codes from stability calculations while retaining finite orbit-
width and anisotropic effects, physically motivated parametric
distribution functions derived in [35, 36] were adopted

FICRH

(
E [eV],μ [eV T−1], Pφ [eV s]

)

≡ N

(
1.0 + μ/E

λ0

)(
E
T

)α
√

2π
E− 3

2 e−
(Pφ−P0)2

ΔP2

× e
− E

T

(
1+

( μ
E −λ0)2

Δλ2

)
(7)

FNBI
(
E [eV],μ [eV T−1], Pφ [eV s]

)

≡ N
1√
2π

1

E
3
2 + E

3
2
C

e−
(Pφ−P0)2

ΔP2 e
− E

T

(
( μ

E −λ0)2

Δλ2

)
. (8)

The free parameters T,λ0,Δλ, P0,ΔP, N, Ec,α were man-
ually fitted to best reproduce the functions

(
∂F
∂E

)
μ,Pφ

and(
∂F
∂Pφ

)
E,μ

and the integral velocity moments of the distribution,

the density and pressure. The parameters used are listed in
table 1, with the resulting distributions plotted in figures 5 and
6. Even after this tedious procedure, the fitted ICRH distribu-
tion had missing outboard features in the density profile, and a
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Figure 6. ASCOT NBI distribution function at 6.1 s (above) and analytical fitted form (below).

Table 1. Fitted parameters for analytical representation of heating code output, giving the distribution functions in S.I. units.

T(eV) λ0
(
T−1

)
Δλ

(
T−1

)
P0 (eV s) ΔP (eV s) Ec (eV) α N

ICRH 30 000 0.3 0.05 0.07 0.229 — 0.8 0.3 × 106

NBI σ = + 291 97.1 0.18 0.3 0.0 0.5525 25 000 0.0 2.5 × 106

NBI σ = − 280 90.5 0.18 0.3 0.0 0.6744 25 000 0.0 2.5 × 106

resulting fitted pressure that was 30% too high compared with
SELFO outputs. No automatic tools were available to perform
fits to ICRH/NBI Monte-Carlo output, systematically quanti-
fying the fitting error and propagating implications. Moreover,
as the analytical forms do not capture all processes modelled in
Monte-Carlo heating codes, trade-off decisions are involved in
which features of the distribution function are most important
to capture. We deem this aspect of the integrated fast-ion
stability modelling an important unsolved problem beyond the
scope of this study.

3.5. Resonant ICRH linear stability

Full-orbit calculations of linear wave–particle interaction were
made with HALO using the fitted ICRH distribution approxi-
mation, along with the equilibrium and incompressible eigen-
modes from the presented EFIT/HELENA/MISHKA analysis.
The resulting linear growth rates are presented in figure 7.
Even before the consideration of damping mechanisms, some
important experimental features are evident. Firstly, the three
strongest linearly driven MISHKA-1 eigenmodes correspond
exactly to those observed during the afterglow in figure 3, with

the most unstable of the three modes, the n = 5, appearing
first, and the remaining two also appearing in order. Secondly,
although most of the ICRH fast ion energy is localised in
the core, the calculations correctly predict a very significant
difference between inboard and outboard TAE stability for
the core modes. This is due to the anisotropy of the fitted
ICRH distribution function consisting of mainly trapped parti-
cles with banana tips along R = Rmag, with orbits that remain
on the low field side. While MHD calculations predict the
‘anti-ballooning’ solutions near the top of the frequencies
are possible, experimentally, the inboard TAEs are not evi-
dent in figure 3, with no modes observed above 170 kHz.
This is despite inboard TAEs not being affected by radiative
damping.

3.6. Linear drive and damping during the DD afterglow

A detailed examination of the core ballooning n = 5 TAE
observed during the DD afterglow was conducted to under-
stand the strongest contributions to linear drive and damping.
Smooth experimental fits of 1D electron and ion temperature
were used for the calculation of bulk thermal plasma effects.
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Figure 7. HALO wave–particle interaction calculations for the drive of incompressible TAEs by ICRH hydrogen minority ions. The three
most unstable modes correspond well to three observed modes in the experimental spectra.

The HALO code was used for full-orbit perturbative calcula-
tions of ICRH drive, NBI damping and thermal ion Landau
damping. CASTOR-K was used for drift-kinetic calculations
of ion Landau damping. For non-perturbative calculations of
damping, CASTOR was used to compute the radiative damp-
ing using the complex resistivity approximation, while both
radiative damping and all other thermal plasma effects were
computed with the linear gyrokinetic code LIGKA.

For the CASTOR complex resistivity calculation, values
were taken at the position of the eigenmode: R0 = 2.96 m,
R = 3.30 m, T i = 5.18 keV, Te = 3.40 keV, q = 1.86,
|B| = 3.06 T, |B0| = 3.4 T, ne = 3.52 × 1019 m−3,
ne0 = 4.93 × 1019 m−3. The resistivity normalized to Alfvén
frequency on axis ωA for CASTOR input [32] is given by

ωTAE =
VA(R)
2qR

,ωA =
VA(R0)

R0

ξ =
3
4
+

Te

Ti
(1 − iδ)

η = iξ

(
ω

ωA

)(
ω

ωTAE

)2(
ρi

R0

)2

(9)

giving Im{η} = 4.9 × 10−7. The inclusion of this imaginary
component in the resistivity results in a combination of kinetic
Alfvén wave and TAE in the CASTOR solution. Because the
kinetic Alfvén wave is very sensitive to the wave dissipation δ,
increasing the dissipation suppresses the kinetic Alfvén wave,
leaving only a damped TAE. Extrapolation of TAE damping
to δ = 0 gives the inherent radiative damping of the TAE. The
result of such a scanning process, shown in figure 8, leads to a
radiative damping value of γ

ω
= −1%.

Analytical approximations for ion Landau damping were
also computed. Analytical theory of resonant wave–particle
interaction with TAEs [21] assuming zero orbit width gives
the following expression for damping due to a Maxwellian

Figure 8. CASTOR scan of wave dissipation to obtain the radiative
damping of the n = 5 TAE mode of interest.

population

γ

ω
= −q2β

[
g(λ) + g

(
λ

3

)]

g(λ) =
π

1
2

2
λ
(
1 + 2λ2 + 2λ4

)
e−λ2

λ ≡ VT

VA
, VT ≡

√
2Ti

m
, β = 2μ0niTi/B2

. (10)

The analytical expression in equation (10) captures the
lowest order TAE resonances v‖ = VA and v‖ = VA/3 in the
terms g(λ) and g

(
λ
3

)
respectively.

A summary of linear findings during the afterglow are pre-
sented in figure 9. Damping from NBI and radiative damping
are of similar order for these core localised modes at the
beginning of the afterglow. Antenna measurements at later
times in the pulse [23] seem to be fully explained by radiative

9
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Figure 9. Summary of linear drive and damping findings during the
afterglow. TAE appears at 6.2 s.

damping and do not suggest any further damping mechanisms
not already mentioned. There is good agreement between the
perturbative model HALO and the non-perturbative model
LIGKA that ion Landau damping is small, although CASTOR-
K predicts a large contribution from trapped particles. Both
CASTOR and LIGKA agree that radiative damping by the bulk
thermal plasma is responsible for damping the core TAEs when
NBI fast ions are assumed absent.

Given that TAEs are suppressed at 6.1 s and only appear
at 6.2 s, the ICRH drive calculations are clearly too high by
at least a factor 2 compared with damping. The large error can
be understood by examining the regions in particle phase space
where the resonant wave–particle interaction is producing the
largest power transfer. To illustrate, the HALO code was run
for 30 wave periods with fixed wave amplitude δB

B = 1 × 10−7

and unperturbed equilibrium orbits to accumulate the power
transfer for each δ f marker in the phase space hypercube.
The results are presented in figure 10 as functions of invari-
ants E,Λ ≡ μB0/E, and Pφ. Although the whole hypercube is
populated in the simulation, only a selection of markers with
appreciable power transfer is shown to assist with visualising
the key features. A strong resonance can be identified clearly
in the range 300–600 keV with a faint sideband at around

200 keV. Analysis of the orbital periods for the resonant
particles shows that the strongest power transfer occurs at the
precessional resonance p = 0 in equation (5) with the weaker
line corresponding to p = 1. The finding that the TAE is
destabilized exclusively by particles in the hundreds of keV
range can be readily compared with the distribution func-
tion produced by ICRH modelling in figure 5. It appears
likely that a large uncertainty in the poorly resolved tail of
the ICRH minority distribution is responsible for the large
computed drive. Noisy neutral particle analyser (NPA) mea-
surements taken during the afterglow imply a lost minority
hydrogen tail temperature in the range 170–220 keV. Again,
uncertainty propagation in the ICRH distribution functions
appears crucial to raise linear drive calculations to the point
of falsifiability.

3.7. Breakdown of analytical Landau damping theory in JET
limit

The difference is striking between the analytical estimate of
ion Landau damping and the linear computation in three dif-
ferent models—drift-kinetic, gyrokinetic and full-orbit. The
idealised expression given by equation (10) includes only
deeply passing particle resonances, and only includes the low-
est order bounce harmonics v‖ = VA and v‖ = VA/3. Both
these approximations are very significant under these condi-
tions when examining the power transfer in figure 11. Most
of the markers are where non-resonant random power transfer
occurs. Poloidal flux in our convention is positive and small at
the magnetic axis, and positive and large at the plasma edge,
indicating that low values of Pφ = Zeψ + O

(
ρ
L

)
are near the

bottom of figure 11. Furthermore, co-passing particles travel in
the negative φ direction on JET, meaning that fast co-passing
particles are found at the very bottom of the figure. For par-
ticles at low Λ, the particles are passing, and a thin surface
corresponding to Pφ = mRvφ + ZeψTAE is traced, owing to the
TAE peaking at one value of poloidal flux ψTAE, and this radial
position must be encountered by the particle over its orbit to
perform appreciable work on the mode. The energies associ-
ated with a passing particle resonance condition are 585 keV,
65 keV, 23 keV and 12 keV corresponding to VA, VA

3 , VA
5 , VA

7
respectively. Unsurprisingly, the VA plays no role for a thermal
plasma at tens of keV, however perhaps more surprising is
that VA

3 does not contribute either. It is found that the VA
5 , VA

7
lines are actually the main passing particle resonances, with
VA
5 the most important at these temperatures. Therefore, a large

missing term resembling g
(
λ
5

)
in equation (10) appears to be

appropriate for JET like conditions, and explains much of the
discrepancy with the analytical theory of ion Landau damping.
This suggests at least a factor 10 under-estimate of ion Landau
damping in some previous analytical JET work [37]. Connor
et al [9] anticipated that because of ellipticity and Shafra-
nov shift, the work done by passing particles vD · δE, when
integrated over an orbit, contains small amounts of poloidal
harmonics such as k‖ = 5/2qR and k‖ = 7/2qR corresponding
to VA

5 , VA
7 . They concluded that a better approximation to ion

10
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Figure 10. HALO computed wave–particle power transfer for particles in phase space between minority ICRH ions and the n = 5 TAE. The
p = 0 precessional resonance is most prominent.

Figure 11. HALO computed wave–particle power transfer for particles in phase space. The bright line at 23 kV corresponds to the VA
5

sideband TAE resonance condition.

Landau damping is given by

γ

ω
= −q2β

[
g

(
λ

3

)
+

[
3
4
Δ′ +

3
4

E
r
− 5

4
E′
]2

g

(
λ

5

)

+

[
7

12
E′ − 3

4
E
r

]2

g

(
λ

7

)]
(11)

with Δ(r) the equilibrium Shafranov shift, E/r = (κ−
1)/(κ+ 1) the ellipticity parameter, and dash denotes radial
gradient. However, we have not verified that ellipticity and
Shafranov shift are the main causes for the sideband resonance
in this case and no clear account is made for trapped parti-
cles, which are calculated to be dominant by CASTOR-K (a

result not replicated by HALO or LIGKA). The accuracy of
this more detailed expression should be investigated in more
detail in future work.

As has been noted previously [38], both co and counter
passing particles resonate with the TAE owing to the pair of
poloidal harmonics travelling opposite poloidal directions, so
the VA

5 resonance can be observed on both co and counter
passing branches of Pφ ≈ ZeψTAE in figure 11.

3.8. Extrapolated kinetic alpha equilibrium from 96852 to DT

Having identified that the majority of the damping for the
observed core TAEs occurs because of radiative damping, a
finite plasma temperature effect, we extrapolate the conditions

11
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Figure 12. HALO alpha drive calculations for the eigenmodes from 92416 using the alpha pressure predicted for 96852 (above) and
strongest alpha driven 146 kHz n = 5 mode (below).

of our DD scenario to DT to predict whether these modes can
be driven by alpha particles late in the afterglow when the core
ion temperature has decreased. A standard DT extrapolation
method for JET is to perform interpretive modelling using
the TRANSP code to obtain good agreement for predicted
fusion rates and stored energy, then to re-run the interpre-
tive case assuming a DT gas mixture. No thermal transport
is modelled and only experimental profiles are used in the
extrapolation. A number of similar afterglow experiments with
small variations in fuelling and NBI timing were conducted
in the absence of ICRH, the best performing in DD was
shot 96852. This was chosen as the basis for fusion power
extrapolation. The aim of this extrapolation is to examine the
feasibility of driving similar TAEs when alpha particles are
providing the drive instead of ICRH minority ions, assuming
the best performing ITB scenarios in DD can be re-established
in DT.

To obtain a smooth alpha distribution function, an isotropic
slowing down distribution [39] was assumed of the form

F
(
E [eV],μ [eV T−1], Pφ [J s]

)

= n
(
ψ
(
E,μ, Pφ

)) N
v3 + v3

c
Erfc

[
E − 3.5 × 106 eV

106 × 103√Ti0 [keV]

]

vc ≡
(

3
√
π

meZ1

4

) 1
3
√

2Te0

me

Z1 =
0.5
2mp

+
0.5
3mp

Zeψ
(
E [eV],μ [eV T−1], Pφ [J s]

)
≈ Pφ − mR0

√
2(E − μB0)/m

(12)
where the alpha density profile prediction n(ψ) was taken from
signal NFI from TRANSP using the lowest order approxima-
tion to the orbit-average poloidal flux, and only the on-axis
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Figure 13. CASTOR radiative damping calculations for the MISHKA-1 identified modes.

temperature was used to avoid the complication of a spatial
dependence in the normalization factor N.

3.9. DT predictions

Linear alpha drive calculations for the beginning of the after-
glow were performed using the assumed slowing down form of
the TRANSP alpha distribution function for the extrapolation
of 96852. This corresponds to achieving a fusion power in
DT of Pfus = 8.5 MW with the ITB afterglow scenario. The
result of the HALO calculation assuming the same eigen-
modes as found for 92416 is presented in figure 12. The
modes that are most driven by alpha particles are still some-
what in the core region, although not to the extent seen with
ICRH drive. It is likely that the broadness of the assumed
alpha distribution changes the position of the radial gradient
maximum. Radial drive occurs when the fast ion diamag-
netic frequency nω∗ at resonance exceeds the mode frequency
ω where

ω∗ ≡
(

∂F
∂Pφ

)
E,μ

/

(
∂F
∂E

)
μ,Pφ

as expressed by equation (6). The larger orbit widths and Lar-
mour radii of alpha particles would also favour broader modes
found at lower toroidal mode number and radial position than
those driven by ICRH. The maximum drive obtained was γL

ω =
0.75% which is approximately a factor of 5 lower than the
damping found for DD before the afterglow.

These values of alpha drive can be compared with the radia-
tive damping at the end of the afterglow. The complex resis-
tivity procedure was repeated for all the MISHKA-1 obtained
ideal eigenmodes assuming a 50:50 DT plasma, although not
all eigenmodes could be re-obtained with the complex resistiv-
ity calculation due to a reduced set of poloidal harmonics used
in the more computationally demanding CASTOR calcula-
tions. The results of the radiative damping for all modes at the
end of the DT afterglow are presented figure 13. Subtracting
the radiative damping in figure 13 from the alpha drive in

Figure 14. 142 kHz n = 4 eigenmode with strongest net drive i.e.:
alpha drive implied by 96852 minus radiative damping from 92416.

figure 12, we find that almost all the modes are stable, with the
radiative damping swamping the alpha drive even for 8.5 MW
of fusion power.

This requirement that the confined alpha power exceed
Pα ≈ 2 MW for marginal TAE instability can be compared
with the PICRH = 4.5 MW required to produce three marginally
unstable core TAEs during the afterglow in shot 92416. The
sole unstable alpha driven mode predicted is an n = 4 eigen-
mode at 142 kHz in the lab frame, found closer to the edge of
the plasma (figure 14).

4. Conclusion

Detailed calculations of TAE stability during the JET ITB
afterglow were performed using the best available data on
the thermal and kinetic equilibrium. EFIT reconstructions
using TRANSP fast pressure and measured thermal profiles
together with low order representation for the flux functions
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gave good agreement with q-profiles obtained via MHD spec-
troscopy in these scenarios. Subsequent incompressible MHD
calculations on this equilibrium predicted both the frequency
and position of modes observed. Perturbative calculations of
ICRH drive and NBI damping were conducted using man-
ual fits to Monte-Carlo data, leading to a gross overpredic-
tion of ICRH drive given that mode destabilization occurred
later than predicted. The majority of computed ICRH drive
came from the toroidal precessional resonance where ICRH
distributions were poorly resolved. However, the modes pre-
dicted to experience the strongest drive are those observed in
experiment, and modes predicted to be driven the least are
not observed at all.

Non-perturbative calculations with CASTOR and LIGKA
confirm that the Maxwellian bulk plasma is responsible for
strong radiative damping of core modes contributing roughly
half the damping during the high-performance phase of DD
experiments, the other half coming from than the NBI ions.
The total damping was calculated to be of the order of γ

ω = 4%
at its peak. Analytical Landau damping estimates in JET-like
conditions require contribution from VA/5 sideband resonance
to avoid underprediction, although even then, the Landau
damping was found to be small. DT extrapolations giving
Pfus = 8.5 MW indicate marginal instability of an n = 4 TAE
outside the core, with all other TAEs for n = 4, 5, 6 found
to either be supressed by the radiative damping, or too high
frequency to be driven by the radial gradient.

We anticipate that a likely follow-up study to this work
will compute all known linear drive and damping contributions
for every mode identified in linear and nonlinear regimes, as
has been performed previously for ITER (e.g.: [31, 32, 40]).
In this work, we have instead focussed on the validity of
reduced models to capture the essential measurable features
in order to improve the credibility of such comprehensive pre-
dictions. Certainly, this work should be revisited when alpha
particles are present and uncertainties in inputs to stability
calculations are reduced. We should demand greater fidelity
in our predictive capability in order to be of assistance to
those making design decisions for future reactors. We should
also explore large-scale uncertainty quantification techniques,
propagating all the errors in the equilibrium distributions,
leading to actionable predictions and more clarity on theory
shortcomings.

The finding that radiative damping is a dominant factor in
the stability of core TAEs should be considered good news
for fast ion confinement in burning plasma, even if it poses a
significant challenge to overcome for driving TAEs with alphas
in JET DT.

Acknowledgments

The first author is indebted to Philipp Lauber and Andreas
Bierwage for providing LIGKA calculations on short notice.
This work has been carried out within the framework of the
EUROfusion Consortium and has received funding from the
Euratom Research and Training Programme 2014–2018 and
2019–2020 under Grant Agreement No. 633053 and from the
RCUK Energy Programme (Grant Number EP/P012450/1).

The views and opinions expressed herein do not necessarily
reflect those of the European Commission. To obtain further
information on the data and models underlying this paper
please contact PublicationsManager@ukaea.uk.

ORCID iDs

S.E. Sharapov https://orcid.org/0000-0001-7006-4876
E. Tholerus https://orcid.org/0000-0002-3262-1958
M. Dreval https://orcid.org/0000-0003-0482-0981
P. Vallejos https://orcid.org/0000-0003-4343-6325
T. Johnson https://orcid.org/0000-0002-7142-7103
P. Rodrigues https://orcid.org/0000-0001-6189-6865
A. Figueiredo https://orcid.org/0000-0003-0487-8956
F. Nabais https://orcid.org/0000-0003-4644-2827
R. Dumont https://orcid.org/0000-0002-1030-138X

References

[1] Fasoli A. et al 2007 Progress in the ITER physics basis chapter
5: physics of energetic ions Nucl. Fusion 47 S264–84

[2] Dumont R.J. et al 2018 Scenario development for the obser-
vation of alpha-driven instabilities in JET DT plasmas Nucl.
Fusion 58 082005

[3] Sharapov S.E., Borba D., Fasoli A., Kerner W., Eriksson L.-G.,
Heeter R.F., Huysmans G.T.A. and Mantsinen M.J. 1999
Stability of alpha particle driven Alfvén eigenmodes in high
performance JET DT plasmas Nucl. Fusion 39 373–88

[4] Nazikian R. et al 1997 Alpha-particle-driven toroidal Alfvén
eigenmodes in the tokamak fusion test reactor Phys. Rev. Lett.
78 2976–9

[5] Sauter O. and Medvedev S.Y. 2013 Tokamak coordinate con-
ventions: COCOS Comput. Phys. Commun. 184 293–302

[6] Cooper W. and Wootton A. 1982 βp analysis for tokamak plasma
with anisotropic pressure and mass flow Plasma Phys. 24
1183

[7] Cheng C.Z. and Chance M.S. 1986 Low-n shear Alfvén
spectra in axisymmetric toroidal plasmas Phys. Fluids 29
3695

[8] Candy J. and Rosenbluth M.N. 1994 Nonideal theory of toroidal
Alfvén eigenmodes Phys. Plasmas 1 356–72

[9] Connor J.W., Dendy R.O., Hastie R.J., Borba D., Huysmans
G., Kerner W. and Sharapov S. 1994 Non-ideal effects on
toroidal Alfvén eigenmode stability 21st EPS Conf. on Con-
trolled Fusion and Plasma Physics (Montpellier, France, 27
Jun–1 Jul 1994) (http://libero.ipp.mpg.de/libero/PDF/EPS_
21_Vol2_1994.pdf)

[10] Borba D. and Kerner W. 1999 CASTOR-K: stability analysis
of Alfvén eigenmodes in the presence of energetic ions in
tokamaks J. Comput. Phys. 153 101–38

[11] Gorelenkov N.N., Cheng C.Z. and Fu G.Y. 1999 Fast particle
finite orbit width and Larmor radius effects on low-n toroidic-
ity induced Alfvén eigenmode excitation Phys. Plasmas 6
2802–7

[12] Pinches S.D. et al 1998 The HAGIS self-consistent nonlinear
wave–particle interaction model Comput. Phys. Commun.
111 133–49

[13] Fitzgerald M., Buchanan J., Akers R.J., Breizman B.N. and
Sharapov S.E. 2020 HALO: a full-orbit model of nonlinear
interaction of fast particles with eigenmodes Comput. Phys.
Commun. 252 106773

[14] Mikhailovskii A.B., Huysmans G.T.A., Kerner W.O.K. and
Sharapov S.E. 1997 Optimization of computational MHD

14

https://orcid.org/0000-0001-7006-4876
https://orcid.org/0000-0001-7006-4876
https://orcid.org/0000-0002-3262-1958
https://orcid.org/0000-0002-3262-1958
https://orcid.org/0000-0003-0482-0981
https://orcid.org/0000-0003-0482-0981
https://orcid.org/0000-0003-4343-6325
https://orcid.org/0000-0003-4343-6325
https://orcid.org/0000-0002-7142-7103
https://orcid.org/0000-0002-7142-7103
https://orcid.org/0000-0001-6189-6865
https://orcid.org/0000-0001-6189-6865
https://orcid.org/0000-0003-0487-8956
https://orcid.org/0000-0003-0487-8956
https://orcid.org/0000-0003-4644-2827
https://orcid.org/0000-0003-4644-2827
https://orcid.org/0000-0002-1030-138X
https://orcid.org/0000-0002-1030-138X
https://doi.org/10.1088/0029-5515/47/6/s05
https://doi.org/10.1088/0029-5515/47/6/s05
https://doi.org/10.1088/0029-5515/47/6/s05
https://doi.org/10.1088/0029-5515/47/6/s05
https://doi.org/10.1088/1741-4326/aab1bb
https://doi.org/10.1088/1741-4326/aab1bb
https://doi.org/10.1088/0029-5515/39/3/307
https://doi.org/10.1088/0029-5515/39/3/307
https://doi.org/10.1088/0029-5515/39/3/307
https://doi.org/10.1088/0029-5515/39/3/307
https://doi.org/10.1103/physrevlett.78.2976
https://doi.org/10.1103/physrevlett.78.2976
https://doi.org/10.1103/physrevlett.78.2976
https://doi.org/10.1103/physrevlett.78.2976
https://doi.org/10.1016/j.cpc.2012.09.010
https://doi.org/10.1016/j.cpc.2012.09.010
https://doi.org/10.1016/j.cpc.2012.09.010
https://doi.org/10.1016/j.cpc.2012.09.010
https://doi.org/10.1088/0032-1028/24/9/014
https://doi.org/10.1088/0032-1028/24/9/014
https://doi.org/10.1063/1.865801
https://doi.org/10.1063/1.865801
https://doi.org/10.1063/1.870838
https://doi.org/10.1063/1.870838
https://doi.org/10.1063/1.870838
https://doi.org/10.1063/1.870838
http://libero.ipp.mpg.de/libero/PDF/EPS_21_Vol2_1994.pdf
http://libero.ipp.mpg.de/libero/PDF/EPS_21_Vol2_1994.pdf
https://doi.org/10.1006/jcph.1999.6264
https://doi.org/10.1006/jcph.1999.6264
https://doi.org/10.1006/jcph.1999.6264
https://doi.org/10.1006/jcph.1999.6264
https://doi.org/10.1063/1.873545
https://doi.org/10.1063/1.873545
https://doi.org/10.1063/1.873545
https://doi.org/10.1063/1.873545
https://doi.org/10.1016/s0010-4655(98)00034-4
https://doi.org/10.1016/s0010-4655(98)00034-4
https://doi.org/10.1016/s0010-4655(98)00034-4
https://doi.org/10.1016/s0010-4655(98)00034-4
https://doi.org/10.1016/j.cpc.2019.04.006
https://doi.org/10.1016/j.cpc.2019.04.006


Nucl. Fusion 62 (2022) 106001 M. Fitzgerald et al

normal-mode analysis for tokamaks Plasma Phys. Rep. 23
844–57

[15] Kerner W., Goedbloed J.P., Huysmans G.T.A., Poedts S. and
Schwarz E. 1998 CASTOR: normal-mode analysis of resis-
tive MHD plasmas J. Comput. Phys. 142 271–303

[16] Nyqvist R.M. and Sharapov S.E. 2012 Asymmetric radiative
damping of low shear toroidal Alfvén eigenmodes Phys.
Plasmas 19 082517

[17] Könies A. et al 2018 Benchmark of gyrokinetic, kinetic MHD
and gyrofluid codes for the linear calculation of fast particle
driven TAE dynamics Nucl. Fusion 58 126027

[18] Spong D.A. et al 2012 Verification and validation of linear
gyrokinetic simulation of Alfvén eigenmodes in the DIII-D
tokamak Phys. Plasmas 19 082511

[19] Lauber P., Günter S., Könies A. and Pinches S.D. 2007 LIGKA:
a linear gyrokinetic code for the description of background
kinetic and fast particle effects on the MHD stability in
tokamaks J. Comput. Phys. 226 447–65

[20] Porcelli F., Stankiewicz R., Kerner W. and Berk H.L. 1994
Solution of the drift-kinetic equation for global plasma modes
and finite particle orbit widths Phys. Plasmas 1 470–80

[21] Betti R. and Freidberg J.P. 1992 Stability of Alfvén gap modes
in burning plasmas Phys. Fluids B 4 1465–74

[22] Sharapov S.E. et al 2008 Chapter 5: burning plasma studies at
JET Fusion Sci. Technol. 53 989–1022

[23] Nabais F. et al 2018 TAE stability calculations compared to TAE
antenna results in JET Nucl. Fusion 58 082007

[24] Brix M., Hawkes N.C., Boboc A., Drozdov V. and Sharapov
S.E. 2008 Accuracy of EFIT equilibrium reconstruction with
internal diagnostic information at JET Rev. Sci. Instrum. 79
10F325

[25] Svensson J. and Werner A. (JET-EFDA Contributors) 2008
Current tomography for axisymmetric plasmas Plasma Phys.
Control. Fusion 50 085002

[26] Hawryluk R J 1979 An empirical approach to tokamak trans-
port Physics of Plasmas Close to Thermonuclear Conditions
(Varenna, Italy: CEC, Brussels)

[27] Baruzzo M. et al 2010 Neoclassical tearing mode (NTM)
magnetic spectrum and magnetic coupling in JET tokamak
Plasma Phys. Control. Fusion 52 075001

[28] Joffrin E. et al 2003 Internal transport barrier triggering by
rational magnetic flux surfaces in tokamaks Nucl. Fusion 43
1167–74

[29] Huysmans G.T.A., Goedbloed J.P. and Kerner W. 1991
Isoparametric bicubic hermite elements for solution of
the Grad–Shafranov equation Int. J. Mod. Phys. C 02
371–6

[30] Berk H.L., Van Dam J.W., Borba D., Candy J., Huysmans
G.T.A. and Sharapov S. 1995 More on core-localized toroidal
Alfvén eigenmodes Phys. Plasmas 2 3401–6

[31] Fitzgerald M., Sharapov S.E., Rodrigues P. and Borba D. 2016
Predictive nonlinear studies of TAE-induced alpha-particle
transport in the Q = 10 ITER baseline scenario Nucl. Fusion
56 112010

[32] Rodrigues P., Figueiredo A., Ferreira J., Coelho R., Nabais F.,
Borba D., Loureiro N.F., Oliver H.J.C. and Sharapov S.E.
2015 Systematic linear-stability assessment of Alfvén eigen-
modes in the presence of fusion α-particles for ITER-like
equilibria Nucl. Fusion 55 083003

[33] Hedin J., Hellsten T., Eriksson L.-G. and Johnson T. 2002 The
influence of finite drift orbit width on ICRF heating in toroidal
plasmas Nucl. Fusion 42 527–40

[34] Hirvijoki E., Asunta O., Koskela T., Kurki-Suonio T., Miettunen
J., Sipilä S., Snicker A. and Äkäslompolo S. 2014
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