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Abstract
Ion-gyroradius-scale microinstabilities typically have a frequency comparable to the ion transit
frequency. Due to the small electron-to-ion mass ratio and the large electron transit frequency, it
is conventionally assumed that passing electrons respond adiabatically in ion-gyroradius-scale
modes. However, in gyrokinetic simulations of ion-gyroradius-scale modes in axisymmetric
toroidal magnetic fields, the nonadiabatic response of passing electrons can drive the mode, and
generate fluctuations in narrow radial layers, which may have consequences for turbulent
transport in a variety of circumstances. In flux tube simulations, in the ballooning
representation, these instabilities reveal themselves as modes with extended tails. The small
electron-to-ion mass ratio limit of linear gyrokinetics for electrostatic instabilities is presented,
in axisymmetric toroidal magnetic geometry, including the nonadiabatic response of passing
electrons and associated narrow radial layers. This theory reveals the existence of
ion-gyroradius-scale modes driven solely by the nonadiabatic passing electron response, and
recovers the usual ion-gyroradius-scale modes driven by the response of ions and trapped
electrons, where the nonadiabatic response of passing electrons is small. The collisionless and
collisional limits of the theory are considered, demonstrating parallels in structure and physical
processes to neoclassical transport theory. By examining initial-value simulations of the
fastest-growing eigenmodes, the predictions for mass-ratio scaling are tested and verified
numerically for a range of collision frequencies. Insight from the small electron-to-ion mass
ratio theory may lead to a computationally efficient treatment of extended modes.
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1. Introduction

The leadingmagnetic confinement fusion experiments achieve
single-particle confinement by exploiting strong magnetic
fields that have nested toroidal flux surfaces: the Lorentz force
prevents particles from crossing the magnetic field in the per-
pendicular direction, but particles are free to stream along
magnetic field lines. Despite this, there are still particle and
heat losses from the confined plasma. Neoclassical transport
is driven by interparticle Coulomb collisions in toroidal mag-
netic geometry, and turbulent transport is driven by the free
energy available in the equilibrium temperature and density
gradients.

Turbulence forms through the nonlinear saturation of
microinstabilities. The most important microinstabilities for
transport have frequencies ω comparable to the transit fre-
quency of the constituent particle species, and perpendic-
ular wavenumbers k⊥ comparable to the inverse thermal
gyroradius of the particles, i.e. ω ∼ vth,s/a∼ ρ∗sΩs ≪ Ωs, and
k⊥ρth,s ∼ 1, where vth,s =

√
2 Ts/ms is the thermal speed of

the component species s, a is a typical equilibrium length
scale, Ωs = ZseB/msc is the cyclotron frequency of the com-
ponent species s, and ρ∗s = ρth,s/a≪ 1, with ρth,s = vth,s/Ωs

the thermal gyroradius of the species s. In the above defini-
tions, Ts is the species temperature, ms is the species mass,
Zs is the species charge number, e is the proton charge, B is
the magnetic field strength and c is the speed of light. These
microinstabilities are extended alongmagnetic field lines, with
parallel wave numbers such that k∥qR∼ 1, where qR is the
connection length, q∼ 1 is the safety factor and R∼ a is the
major radius. A diffusive random walk estimate for the heat
flux Qs driven by instabilities at the scale ρth,s gives Qs ∼
Qgb,s = ρ2∗snsTsvth,s, with ns the equilibrium plasma density
of species s. To obtain this estimate, we use the fact that the
macroscopic profiles have a scale of order a, and that turbu-
lent eddies transport heat by a step length ρth,s on a timescale
vth,s/a.

The plasma has multiple-particle species: the simplest
plasma consists of ions, with charge Zie and massmi, and elec-
trons, with charge −e and mass me. In a fusion plasma with
deuterium ions, the separation between the ion and electron
masses has significant consequences for the nature of the tur-
bulence and the underlying instabilities. Since

√
mi/me ≈ 60,

we have that ρth,i ≫ ρth,e and vth,i ≪ vth,e, i.e. instabilities can
be driven over a wide range of space and time scales. Historic-
ally, research has largely focussed on transport and instabil-
ities driven at the larger scale of the ion gyroradius. This
is for the simple reason that the heat flux estimate Qgb,i for
ρth,i-scale turbulence dominates the heat flux estimate Qgb,e

for ρth,e-scale turbulence by (mi/me)
1/2 ≫ 1. However, it is

important not to discount the ρth,e scales for several reasons. It

is known that ρth,e-scale turbulence can drive experimentally
relevant heat fluxes that exceed the Qgb,e estimate by a large
order-unity factor [1–4]. Recently, expensive direct numer-
ical simulations (DNS) with realistic electron-to-hydrogen-
ion-mass ratio [5, 6] and realistic electron-to-deuterium-ion-
mass ratio [6–11] have demonstrated the existence and signi-
ficance of cross-scale interactions between turbulence at the
scales of ρth,i and ρth,e. Finally, as we will demonstrate in this
paper, even familiar long-wavelength modes with binormal
wave numbers kyρth,i ∼ 1 may have narrow radial structures
near mode-rational surfaces that satisfy krρth,e ∼ 1, with kr the
radial wave number. These structures result from the dynam-
ics of the passing electrons [12, 13] and may be important for
understanding the cross-scale interactions in multiscale DNS,
see [6]. It will be seen that there are novel kyρth,i ∼ 1 modes
driven by the electron response to the electron temperature
gradient (ETG) in the krρth,e ∼ 1 narrow layer, and that even
the familiar ion temperature gradient (ITG) mode can exhibit
krρth,e ∼ 1 features.

The anisotropy between the radial wave number kr and the
binormal wave number ky arises naturally in linear modes in
toroidal magnetic fields due to the presence of magnetic shear
ŝ. In the presence of magnetic shear, the linear modes are con-
veniently described in terms of ‘ballooning’ modes that fol-
low the magnetic field line many times around the torus [14].
Ballooning modes have wave fronts that rotate with position
along the magnetic field line. As we shall describe with more
precision later, in a ballooning mode the radial wave num-
ber kr satisfies kr ∝−kyŝθ for large θ, where θ is the exten-
ded poloidal angle that is used to describe the position along
the field line as it winds around the torus. Therefore, it is pos-
sible for kyρth,i ∼ 1 modes to have extended ‘ballooning tails’
at θ≫ 1 that correspond to krρth,i ≫ 1 components. In the real-
space picture, modes with extended ballooning tails are modes
with significant amplitude in a layer aroundmode-rational flux
surfaces—flux surfaces where the field line winds onto itself
after an integer number of toroidal and poloidal turns. With
this in mind, we can understand the origin of electron-driven
ballooning tails with a simple physical argument. On irrational
flux surfaces, where a single field line covers the flux surface,
rapidly moving passing electrons can sample the entire flux
surface and respond adiabatically. However, on mode-rational
flux surfaces, passing electrons can only sample a subset of the
flux surface, and hence, have a nonadiabatic response.

Linear modes with extended ballooning tails have been
observed in simulations with a variety of equilibrium con-
ditions, for example, in simulations of electrostatic modes
in core tokamak conditions [12, 13] and in the pedes-
tal [15], as well as in electromagnetic simulations of lin-
ear micro-tearing modes in spherical and conventional toka-
maks [16–18]. Although simulations of linear modes are
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inexpensive compared to nonlinear simulations of turbulence,
simulations of modes with extended ballooning tails can
be remarkably costly. In implicit codes, the computational
expense arises from the need to resolve the variation of geo-
metric quantities on the scales of 2π in a ballooning angle,
combined with the need to simulate very large ballooning
angles with scales of θ≫ 2π, which leads to an expensivemat-
rix problem. In explicit codes, in addition to the size of the
problem in θ, small time steps are required to resolve kinetic
electron physics in modes with frequencies comparable to the
ion transit frequency. The results presented in this paper are
intended as a step towards efficient reduced models of exten-
ded electron-driven modes.

In this paper, we obtain an asymptotic theory, valid in the
limit of (me/mi)

1/2 → 0, for electrostatic modes that exist at
the long wavelengths of the ion gyroradius scale, i.e. kyρth,i ∼
1. Reduced models of these modes must provide a reduced
treatment of the electron response. In the simplest case, for
example, the classical ITGmode calculation [19, 20], the elec-
tron response is taken to be adiabatic. More advanced cal-
culations retain the bounce-averaged response due to trapped
electrons, needed to capture trapped-electron modes (TEMs),
see, for example, [21, 22]. The nonadiabatic response of
passing electrons is traditionally neglected, despite evidence
from DNS that indicates that the nonadiabatic passing elec-
tron response can play a significant role in electrostatic modes.
Pioneeringwork showed that the passing electron response can
alter transport in linear modes and fully nonlinear turbulence
[12]. This observation has subsequently been reinforced by a
variety of investigations, see, for example, [6, 13, 23–27]. In
this paper, we show that, in the (me/mi)

1/2 → 0 limit, there are
in fact two classes of modes existing at kyρth,i ∼ 1. First, the
familiar ion or trapped-electron response-driven modes (e.g.
the ITG mode or the TEM) that rely on a potential localized at
θ ∼ 1, and second, ETG modes that are driven by the passing
electron response in the large θ tail of the ballooningmode.We
find the large θ equations that govern the electron response in
the tail of the ballooning mode, and we provide the matching
conditions necessary to connect them to the θ ∼ 1 region. We
use simulations performed with the gyrokinetic code GS2 [28]
to show that the orderings used to derive these equations
are satisfied by numerical examples of both classes of
modes.

The clearest physical ordering for the novel passing-
electron-response-driven modes is kyρth,e ∼ qRω/vth,e ≪ 1,
i.e. they are ETG modes at long wavelengths that feature a
radial layer with krρth,e ∼ 1, with an asymptotic separation
between the transit frequency vth,e/qR and the frequency of
the drive ω∗ ∼ ω. We treat the familiar ITG modes and TEMs
in the same formalism as the novel passing-electron-driven
modes by simply making the maximal ordering kyρth,e ∼
(me/mi)

1/2 ≪ 1.Mathematically, the two classes of modes are
distinguished in the formalism by the matching condition for
the passing electrons at θ ∼ 1. This is true in both the ‘colli-
sionless’ limit

vth,e
qR

≫ ω ∼ ω∗ ∼ νee ∼ νei, (1)

where νee and νei are the electron self-collision and the
electron-ion collision frequencies, respectively, and in the
‘collisional’ limit where

vth,e
qR

∼ νee ∼ νei ≫ ω ∼ ω∗. (2)

The remainder of this paper is structured as follows. In
section 2, we briefly review the electrostatic gyrokinetic model
that is the starting point for this work. Those familiar with
gyrokinetics may skip to section 3, where we identify a
convenient form of the gyrokinetic equation that we use to
describe electron dynamics. We obtain the asymptotic the-
ory of collisionless modes in section 4, and we obtain the
asymptotic theory of collisional modes in section 5. We com-
pare the results of sections 4 and 5 to numerical simulations
in section 6. Finally, in section 7, we discuss the implica-
tions of these results and possible extensions of the theory.
Included in this paper are appendices, with results pertain-
ing to the plasma response at large θ. First, in appendix A,
we give a detailed analysis of the ion nonadiabatic response
at large θ. In appendix B, we obtain the equations governing
the electron response in the collisional limit. In appendix C,
we solve the Spitzer problem that is necessary to obtain the
neoclassical parallel and perpendicular flux contributions to
the electron mode equations. In appendix D, we obtain the
classical perpendicular flux contributions to the electron mode
equations. In appendix E, we obtain the parallel and perpen-
dicular fluxes for the electron mode equations in the highly
collisional (Pfirsch–Schlüter) limit. In appendix F, we obtain
the parallel and perpendicular fluxes for the electron mode
equations in the banana regime of collisionality in a small
inverse aspect ratio device. Finally, in appendix G, we obtain
the electron matching conditions in the collisional limit.

2. Electrostatic gyrokinetic equations

In this section, we briefly review the linear, electrostatic, δf
gyrokinetic model [29] that is the starting point for the analysis
in this paper. In gyrokinetic theory, the microinstability mode
frequency ω is taken to be much smaller than the cyclotron fre-
quency Ωs at which particles gyrate around the magnetic field
direction b= B/B, where B is the magnetic field. The mode
frequency ω is taken to be of the order of the transit frequency
vth,s/a. The spatial scale of the fluctuations perpendicular to
the magnetic field line is of the order of the thermal gyrora-
dius ρth,s = vth,s/Ωs, and the fundamental gyrokinetic expan-
sion parameter is ρ∗s = ρth,s/a. In δf gyrokinetics, the fluctu-
ating distribution function δfs for each species s is the sum
of the nonadiabatic response hs, and the adiabatic response
−ZseϕF0s/Ts, i.e.,

δfs(r,v, t) = hs(R,ε,λ, t)−
Zseϕ(r, t)

Ts
F0s, (3)

where ϕ is the fluctuating electrostatic potential, F0s is the
equilibrium Maxwellian distribution, r is the particle pos-
ition, v is the particle velocity, and we have indicated
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that hs is a function of the guiding centre position R=
r−ρs (with ρs = b× v/Ωs), energy ε= msv2/2 (with v=
|v|), and pitch angle λ= v2⊥/v

2B (with v⊥ = |v− bb · v|),
whereas ϕ is a function of r but not of v. In this paper,
we consider linear theory, and so we make the eikonal
ansatz hs(R, t) =

∑
k⊥
hs,k⊥ exp [i(k⊥ ·R−ωt)], and ϕ(r, t) =∑

k⊥
ϕk⊥ exp [i(k⊥ · r−ωt)], where k⊥ is the perpendicular-

to-the-field wave vector. Henceforth, we drop the k⊥ sub-
scripts on the Fourier coefficients.

2.1. Gyrokinetic equation and quasineutrality

The linear, electrostatic gyrokinetic equation is

v∥b ·∇θ
∂hs
∂θ

+ i(k⊥ · vM,s−ω)hs−CGK
s [hs]

= i(ω∗,s−ω)J0sF0s
Zseϕ
Ts

, (4)

where v∥ = b · v, θ is the poloidal angle coordinate that
measures distance along the magnetic field line, vM,s =

(b/Ωs)×
(
v2∥ b ·∇b+ v2⊥ ∇B/2B

)
is the magnetic drift, and

the finite Larmor radius effects are modelled by the 0th Bessel
function of the first kind J0s = J0(bs), with bs = k⊥v⊥/Ωs,
and k⊥ = |k⊥|. Note that Ωi = ZieB/mic> 0, whereas Ωe =
−eB/mec< 0. The frequency ω∗,s contains the equilibrium
drives of instability: ω∗,s/ω

n
∗,s = 1+ ηs (ε/Ts− 3/2), with

ωn∗,s =−(ckαTs/Zse)d lnns/dψ, and ns the equilibrium num-
ber density of species s,α the dimensionless binormal coordin-
ate, kα the binormal wavenumber with respect to α, ψ the
poloidal magnetic flux (α and ψ are defined in section 2.2),
and ηs = d lnTs/d lnns. Finally, the collision operator CGK

s [·]
is shorthand for the linearized gyrokinetic collision operator
of the species s.

For ions, the linearized gyrokinetic collision operator is
defined by

CGK
i [hi] = ⟨exp [ik⊥ ·ρi]Cii [exp [−ik⊥ ·ρi]hi]⟩

γ
, (5)

with Cii[·] the linearized self-collision operator of the ion spe-
cies, and ⟨·⟩γ the gyrophase average at fixed ε and λ. The self-
collision operator of the species s, Css[·], is defined by

Css [ f ] =
2πZ4se

4 lnΛ
m2
s

∂

∂v
·
ˆ
F0sF

′
0sU(v− v ′)

·
(
∂

∂v

(
f
F0s

)
− ∂

∂v ′

(
f ′

F ′
0s

))
d3 v ′, (6)

where f is a distribution function, and we have used the short-
hand notation f= f(v), f ′ = f(v ′), F0s = F0s(v), F ′

0s = F0s(v ′),
and

U(v− v ′) =
I|v− v ′|2 − (v− v ′)(v− v ′)

|v− v ′|3
, (7)

with I the identity matrix.We note that the Coulomb logarithm
lnΛ≈ 17 [30].We define the ion self-collision frequency νii =
4
√
πZ4i nie

4 lnΛ/3m1/2
i T3/2i and the electron self-collision

frequency νee = 4
√
2πnee4 lnΛ/3m1/2

e T3/2e following Brag-
inskii [31], noting the factor of

√
2 difference in the definitions

of νee and ν ii.
For electrons, the linearized gyrokinetic collision operator

is defined by

CGK
e [he] = ⟨exp [ik⊥ ·ρe]Cee [exp [−ik⊥ ·ρe]he]⟩

γ

+

〈
exp [ik⊥ ·ρe]L

[
exp [−ik⊥ ·ρe]he

− mev · δui
Te

F0e

]〉γ
, (8)

whereCee[·] is the linearized self-collision operator of the elec-
tron species, defined by equation (6), and

L [f] =
3
√
π

8
νeiv

3
th,e

∂

∂v
·
(
v2 I− vv

v3
· ∂f
∂v

)
, (9)

is the Lorentz collision operator resulting from electron-ion
collisions, with the electron-ion collision frequency νei =

4
√
2πZ2i nie

4 lnΛ/3m1/2
e T3/2e defined following Braginskii

[31]. In equation (8),

δui =
1
ni

ˆ (
J0iv∥b+ iJ1i

v⊥
k⊥

k⊥ × b
)
hi d

3 v, (10)

where J1s = J1(bs) is the 1st Bessel function of the first kind.
For a simple two-species plasma of ions and electrons,

quasineutrality implies that the equilibrium densities satisfy
Zini = ne. In the electrostatic limit, the system of gyrokinetic
equations for the fluctuations is closed by the quasineutrality
relation. The quasineutrality relation has the form(

ZiTe
Ti

+ 1

)
eϕ
Te

=
δni
ni

− δne
ne
, (11)

where the fluctuating nonadiabatic densities δns are defined
by

δns =
ˆ
J0shs d

3 v. (12)

2.2. Magnetic coordinates and boundary conditions

To describe the plane perpendicular to the magnetic field line,
we use the dimensionless binormal field-line-label coordinate
α, and the flux label ψ, defined so that the magnetic field may
be written in the Clebsch form

B=∇α×∇ψ. (13)

We restrict our attention to axisymmetric magnetic fields of
the form

B= I∇ζ +∇ζ ×∇ψ, (14)

where ζ is the toroidal angle and I(ψ) is the toroidal current
function. An explicit formula for α, in terms of ψ, ζ and the

4
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poloidal angle θ, may be obtained by equating expressions (13)
and (14):

α(ψ,ζ,θ) = ζ − q(ψ)θ− ν(ψ,θ), (15)

with the safety factor

q(ψ) =
1
2π

ˆ 2π

0

B ·∇ζ
B ·∇θ ′

dθ ′, (16)

and

ν(ψ,θ) =

ˆ θ

0

B ·∇ζ
B ·∇θ ′

dθ ′ − qθ. (17)

Note that ν(ψ,2π) = ν(ψ,0) = 0. Using these (ψ,α) coordin-
ates, we write the perpendicular wave vector as

k⊥ = kψ∇ψ+ kα∇α, (18)

with the field-aligned radial and binormal wave numbers kψ
and kα, respectively.

In the study of linear modes, it is convenient to consider the
coordinate θ as an extended ballooning angle and to replace
kψ with θ0 = kψ/q ′kα, where q ′ = dq/dψ. In this formula-
tion, hθ0,kα = hθ0,kα(θ), with −∞< θ <∞ and the boundary
conditions

hθ0,kα(θ) = 0 at θ→−∞, for v∥ > 0, and

hθ0,kα(θ) = 0 at θ→∞, for v∥ < 0. (19)

Much of the discussion in the following sections of this
paper is focussed on the behaviour of the solution at large θ.
The large θ part of the mode corresponds to a narrow radial
layer in the real-space representation. To see this, consider the
(contravariant) radial wave number

kr = k⊥ ·∇r= (θ0 − θ)kα
dq
dr

|∇r|2

− kα(q∇θ ·∇r+∇ν ·∇r), (20)

where r= r(ψ) is aminor radial coordinate that is a function of
ψ only and has dimensions of length. For large |θ0 − θ|, we find
that kr ≃ (θ0 − θ)kα(dq/dr)|∇r|2, i.e. we may obtain narrow
radial structures in the ballooning mode by either imposing a
large θ0 = kψ/q ′kα, or by following the field line, as a result
of magnetic shear.

It will be interesting to consider the behaviour of the mag-
netic drift. The term due to the magnetic drift, ik⊥ · vM,s, may
be written in the following convenient form

ik⊥ · vM,s = ikαvM,s · (∇α+ θ∇q)

+ ikα
dq
dr

(θ0 − θ)vM,s ·∇r. (21)

We note that the quantity∇α+ θ∇q=∇ζ − q∇θ−∇ν con-
tains no secular variation in θ. Hence, for large |θ0 − θ| the
magnetic drift is dominated by the radial component ik⊥ ·
vM,s ≃ ikrvM,s ·∇r/|∇r|2 for |θ0 − θ| ≫ 1. Thus, the leading

behaviour of the ballooning mode at large θ should be expec-
ted to involve the radial magnetic drift. We will often make use
of the identity for the radial magnetic drift in an axisymmetric
magnetic field

vM,s ·∇ψ = v∥b ·∇θ
∂

∂θ

(
Iv∥
Ωs

)
. (22)

Finally, we complete this discussion of coordinates by
defining a field-aligned radial wave number and binormal
wave number with dimensions of length, kx and ky, respect-
ively. First, we define local radial and binormal coordinates
with units of length, x= (ψ−ψ0)(dψ/dx)−1 and y= (α−
α0)(dα/dy)−1, respectively, where (ψ0,α0) are the coordin-
ates of the field line of interest. Then, the field-aligned radial
wavenumber kx = kψ(dψ/dx) and the binormal wave num-
ber ky = kα(dα/dy). We take the proportionality constants to
be dψ/dx= rI/qR0 and dα/dy= (I/R0)dr/dψ. The functions
I(ψ), r(ψ) and q(ψ) appearing in the proportionality constants
should be evaluated on the local flux surface of interest, and
R0 = (Rmax +Rmin)/2 is a reference major radius, with Rmax

andRmin themaximum andminimummajor radial positions on
the flux surface, respectively. Note that for circular concentric
flux surfaces R0 is the major radius at the magnetic axis. Using
these normalizations, we find that the true radial wave num-
ber kr ≃ (θ0 − θ)kyŝκ̂|∇r|2 for |θ0 − θ| ≫ 1, with themagnetic
shear defined by ŝ= (r/q)dq/dr and the geometrical factor
κ̂= (qR0/Ir)dψ/dr.

3. A convenient form of the gyrokinetic equation

It is possible to use the identity for the radial magnetic drift in
equation (22) to rewrite the gyrokinetic equation in a novel
way that simplifies the asymptotic analysis of the electron
response. Collecting terms due to parallel streaming and radial
drifts, we find that we can write

v∥b ·∇θ
∂hs
∂θ

+ ikαq
′(θ0 − θ)v∥b ·∇θ

∂

∂θ

(
Iv∥
Ωs

)
hs

= exp [−iλs(θ0 − θ)]v∥b ·∇θ
∂

∂θ
× (exp [iλs(θ0 − θ)]hs)+ iλsv∥b ·∇θ hs,

(23)

with

λs =
kαq ′Iv∥

Ωs
. (24)

Note that λs should not be confused with the pitch angle
coordinate λ. We define the new function Hs by

Hs = exp [iλs(θ0 − θ)]hs, (25)

and hence, we can rewrite the gyrokinetic equation, equation
(4), as

v∥b ·∇θ
∂Hs

∂θ
+ i(ωM,s−ω)Hs− Ĉs[Hs]

= i(ω∗,s−ω)exp [iλs(θ0 − θ)]J0sF0s
Zseϕ
Ts

, (26)

5
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where

ωM,s = kα

(
vM,s · (∇α+ θ∇q)+ b ·∇θ

q ′Iv2∥
Ωs

)
, (27)

and

Ĉs[Hs] = exp [iλs(θ0 − θ)]CGK
s [exp [−iλs(θ0 − θ)]Hs]. (28)

It is also useful to consider the form of the nonadiabatic
density appearing in the quasineutrality relation, equation
(11). In terms ofHs, we can write the nonadiabatic, fluctuating
density δns as

δns =
ˆ

exp [−iλs(θ0 − θ)]J0sHs d
3 v. (29)

When the gyrokinetic equation is written in terms of Hs, the
oscillation in the distribution function due to the radial mag-
netic drift appears explicitly as the phase exp [iλs(θ0 − θ)]—
this phase may be thought of in analogy to the phase
exp [ik⊥ ·ρs] arising from the finite Larmor radius in gyrokin-
etic theory. In fact, the appearance of exp [iλs(θ0 − θ)] is due
to the finite particle drift orbit width. This may be noted by
writing λs(θ0 − θ) = kαq ′(θ0 − θ)∆ψ, recalling that ∆ψ =
Iv∥/Ωs is the excursion in flux label ψ made by trapped
particles in a banana orbit [32], and finally, noting that, in the
limit of large |θ0 − θ|, λs(θ0 − θ)≃ kr(dr/dψ)∆ψ/|∇r|2.

4. Long-wavelength collisionless electrostatic
modes in the (me/mi)1/2 → 0 limit

In this section, we derive reduced model equations for long-
wavelength, electrostatic modes in the (me/mi)

1/2 → 0 limit,
using the ‘collisionless’ ordering (1), with kyρth,i ∼ θ0 ∼
1. In this ordering, the extent of the ballooning mode is
controlled by the balance of free streaming, precessional
drifts, finite-Larmor-radius and finite-orbit-width phases, and
the orbit-averaged electron collision operator, with the res-
ult that the mode extends to a ballooning angle θ ∼
(kyŝρth,e)−1 ∼ (mi/me)

1/2 ≫ 1. For consistency with the elec-
tron species, we take the ion self-collision frequency νii ∼
(me/mi)

1/2vth,i/qR≪ vth,i/qR∼ ω.
We first examine the θ ∼ 1 region of the ballooning

mode. This discussion reveals the existence of passing-
electron-response-driven modes, in addition to the usual ion-
response-driven and trapped-electron-response-driven modes,
and motivates an examination of the θ ∼ (mi/me)

1/2 region of
the collisionless ballooning mode in section 4.2. To aid com-
prehension, we summarize the results for trapped-electron-
response-driven and ion-response-drivenmodes in section 4.3,
and for passing-electron-response-drivenmodes in section 4.4.
Finally, in section 4.5, we comment on the relationship
between the derivation of gyrokinetics and the derivation
of the reduced model equations for the electron response.

Although these theories have fundamental differences, they
have a similar structure, relying on the finite Larmor
radius and the finite magnetic drift orbit width of particles,
respectively.

4.1. Outer solution—krρth,i ∼ 1

We define the outer region of the mode to be the region where
krρth,i ∼ θ ∼ 1. In real space, the outer region is the large-scale
region far from the rational flux surface. In the collisionless
ordering, it is natural to expand the electrostatic potential ϕ,
distribution functions hs and frequency ω in (me/mi)

1/2: for
the potential ϕ, we expand

ϕ= ϕ(0) +ϕ(1) +O

((
me

mi

)
ϕ

)
, (30)

with ϕ(n) ∼ (me/mi)
n/2
ϕ(0). We make expansions of the same

form as (30) for hs and ω, with h
(n)
s ∼ (me/mi)

n/2
(eϕ/Te)F0s

and ω(n) ∼ (me/mi)
n/2
ω.

4.1.1. Ion response in the outer region. For the ion spe-
cies, we start with the usual form of the gyrokinetic equation,
equation (4). In the collisionless limit, the leading order
equation for the ion response is

v∥b ·∇θ
∂hi(0)

∂θ
+ i
(
k⊥ · vM,i −ω(0)

)
hi

(0)

= i
(
ω∗,i −ω(0)

)
J0iF0i

Zieϕ(0)

Ti
. (31)

Using equation (31), and the estimates ω ∼ vth,i/a∼ ω∗,i and
bi ∼ 1, we find that hi(0)/F0i ∼ eϕ(0)/Ti. The equation for the
nonadiabatic ion density is

δn(0)i

ni
=

ˆ
J0i
hi(0)

ni
d3 v∼ eϕ(0)

Te
, (32)

where we have assumed that Ti ∼ Te in the final estimate of
equation (32). As expected, the ion nonadiabatic response con-
tributes at leading order to ϕ in the outer region.

4.1.2. Electron response in the outer region. For the electron
species, we use the modified form of the gyrokinetic equation,
equation (26). We do this to avoid integrating the radial mag-
netic drift vM,e ·∇ψ by parts in θ at every order when applying
transit or bounce averages. The leading order equation for the
electron response is

v∥b ·∇θ
∂H(0)

e

∂θ
= 0, (33)

where we have used the fact that the electron parallel stream-
ing term is larger than every other term in equation (26) by
the ordering (1). We note that for electrons λe ∼ (me/mi)

1/2,
and hence, for θ0 ∼ θ ∼ 1 the phase exp [iλe(θ0 − θ)] may be
expanded as

6
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exp [iλe(θ0 − θ)] = 1+ iλe(θ0 − θ)− λ2e
2
(θ0 − θ)2

+O

((
me

mi

)3/2
)
. (34)

As a consequence of equation (33), the leading-order non-
adiabatic electron response is independent of θ for θ ∼ 1. The
remainder of the expansion must be carried out separately for
passing and trapped particles.

Trapped particles occupy the range of pitch angles
1/Bmax < λ⩽ 1/B(θ), with Bmax the maximum value of B(θ).
In each well, trapped particles bounce at the upper and lower
bounce points, θ+b and θ−b , respectively. Equation (33) for

trapped particles states that H(0)
e is constant in θ within each

magnetic well. Imposing the trapped particle boundary condi-
tions

he(θ
±
b ,σ = 1) = he(θ

±
b ,σ =−1), (35)

where σ = v∥/|v∥|, and using equation (25), we find that

H(0)
e (σ = 1) = H(0)

e (σ =−1), and so H(0)
e is independent of

(θ,σ). The trapped electron piece of the distribution function
H(0)

e is determined by the equation for the next order in the
electron response

v∥b ·∇θ
∂H(1)

e

∂θ
+ i(ωM,e −ω(0))H(0)

e −C[H(0)
e ]

=−i
(
ω∗,e −ω(0)

)
F0e

eϕ(0)

Te
, (36)

where we have used that for be = O((me/mi)
1/2

), J0e = 1+

O(me/mi) and exp [iλe(θ0 − θ)] = 1+O
(
(me/mi)

1/2
)
, and

we have employed k⊥ ·ρe ∼ be ∼ (me/mi)
1/2 to reduce the

collision operator in equation (36) to the drift-kinetic electron
collision operator

C [·] = Cee [·] +L [·] . (37)

To close equation (36), we introduce the bounce average for
trapped particles

⟨·⟩b =

∑
σ

ˆ θ+b

θ−b

dθ (·)/|v∥|b ·∇θ

2
ˆ θ+b

θ−b

dθ/|v∥|b ·∇θ
. (38)

Applying ⟨·⟩b to equation (36), we find the solvability
condition

i
(
⟨ωM,e⟩b −ω(0)

)
H(0)

e −
〈
C[H(0)

e ]
〉b

=−i
(
ω∗,e −ω(0)

)
F0e

e
〈
ϕ(0)

〉b
Te

, (39)

where we have used the property〈
v∥b ·∇θ

∂f
∂θ

〉b

= 0, (40)

of the bounce average, valid for any f= fθ0,kα(ε,λ,σ,θ)
satisfying the bounce condition fθ0,kα(ε,λ,σ = 1,θ±b ) =
fθ0,kα(ε,λ,σ =−1,θ±b ).

Passing particles occupy the range of pitch angles 0⩽ λ⩽
1/Bmax, and hence, passing particles are free to travel between
magnetic wells. For passing electrons, equation (33) determ-
ines that, for a given (θ0,kα) mode, H(0)

e is a constant in θ for
each sign of the parallel velocity σ, i.e. H(0)

e = H(0)
e (ε,λ,σ).

To determine this constant H(0)
e , we need to supply an appro-

priate incoming boundary condition to the θ ∼ 1 region. This
requires us to consider the θ≫ 1 region.

In the conventional treatment of passing electrons, it is
argued that the incoming boundary condition (19) implies that
H(0)

e = 0 in the passing piece of velocity space, see [33, 34].
This assumption results in modes driven at scales of kyρth,i ∼ 1
by the ion response or the trapped electron response. Under
this assumption, the leading-order nonadiabatic response
of passing electrons H(1)

e is determined by the first-order
equation

v∥b ·∇θ
∂H(1)

e

∂θ
−Cee[H

(0)
e ] =−i

(
ω∗,e −ω(0)

)
F0e

eϕ(0)

Te
, (41)

where the magnetic drift, frequency and electron-ion colli-
sion terms are neglected because H(0)

e = 0 in the passing part
of velocity space. The collision operator term Cee[H

(0)
e ] is

retained because Cee[H
(0)
e ] is a nonlocal operator representing

the drag of trapped particles on passing particles. In this order-
ing, passing electrons coming from the θ≫ 1 region receive
a (me/mi)

1/2 small impulse from the θ ∼ 1 electrostatic
potential:

H(1)
e (θ,σ =±1)−H(1)

e (∓∞,σ =±1)

=

ˆ θ

∓∞

1
v∥b ·∇θ

(
Cee[H

(0)
e ]− i

(
ω∗,e −ω(0)

) eϕ(0)

Te
F0e

)
dθ ′,

(42)

where H(1)
e (∓∞,σ =±1) should be determined consistently

in the θ≫ 1 region. BecauseH(1)
e contributes only a small cor-

rection to quasineutrality, the nonadiabatic response of passing
electrons is conventionally ignored.

One of the key contributions of this paper is to note a flaw
in the conventional argument. In fact,H(0)

e need not vanish, but
instead H(0)

e can be determined self-consistently in the θ≫ 1

7
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region. The resulting class of modes is driven by the non-
adiabatic response of passing electrons, with no leading-order
impact from the ion response or trapped electron response in
the θ ∼ 1 region. We now turn to the θ≫ 1 region for the col-
lisionless ordering: the equations that we obtain there provide
the nonadiabatic passing electron response, H(0)

e (ε,λ,σ =
±1), in the case of passing-electron-response driven modes,
and the boundary conditions H(1)

e (θ =∓∞,ε,λ,σ =±1) in
the case of modes in the conventional ordering.

4.2. Inner solution—krρth,e ∼ 1

In real space, the inner region is the radial layer close to the
rational flux surface. The inner region is characterized by fine
radial scales associated with electron physics. In order to cap-
ture these scales analytically in the ballooning formalism, we
introduce an additional ballooning angle coordinate χ that
measures distance along the magnetic field line. The coordin-
ate θ will capture periodic variation in ballooning angle on the
scale of 2π associated with the equilibrium geometry, whereas
the coordinateχwill measure secular variation on scales much
larger than 2π. In the inner region, distribution functions and
fields become functions of the independent variables θ and χ,
i.e.,

f(θ)→ f(θ,χ), (43)

and parallel-to-the-field-line derivatives become

∂

∂θ
→ ∂

∂θ
+

∂

∂χ
. (44)

We order ∂/∂χ∼ (me/mi)
1/2
∂/∂θ, and we order krρth,e ∼ 1,

whilst keeping kyρth,i ∼ 1.
The parallel-to-the-field variable θ appears in two forms

in the gyrokinetic equation (26). As the argument of peri-
odic functions associated with the magnetic geometry, and
linearly in the combination −kαq ′(θ− θ0). To treat the
scale separation within the part of the mode where θ ∼
(mi/me)

1/2 ≫ 1, we send θ→ χ where θ appears in secular
terms (e.g.−kαq ′(θ− θ0)), and we take χ∼ (mi/me)

1/2 ≫ 1.
This assignment captures the effect of secular growth of the
radial wave number kr in the θ≫ 1 region. With this proced-
ure, we note that, in the inner region, we can usefully write

k⊥ = k(0)⊥ + k(1)⊥ , (45)

with

k(0)⊥ =−kαχ∇q, (46)

and

k(1)⊥ = kαθ0 ∇q+ kα(∇α+ θ∇q) = O
(
χ−1k⊥

)
, (47)

where we recall that ∇α+ θ∇q=∇ζ − q∇θ−∇ν has no
secular dependence on θ.

We also need to consider the argument of the Bessel
function

bs =
k⊥v⊥msc
ZseB

=
k⊥(θ)c
Zse

√
2 msελ

B(θ)
. (48)

In the region χ∼ (mi/me)
1/2, we find that

bs = kα|∇q|(θ)
c
Zse

√
2msελ

B(θ)
|χ|+O

(
χ−1bs

)
. (49)

Note that bs has a linear dependence on χ, whereas θ appears
only through the periodic functions |∇q|= |q ′||∇ψ|(θ) and
B(θ). The plasma ismagnetized, and hence,B(θ) is never close
to zero: B(θ) has an order unity component independent of θ.
Likewise, |∇ψ| will be nowhere zero on any given flux sur-
face (except perhaps if there is an X-point on the last closed
flux surface). Hence, changes in θ cause only order unity oscil-
lations in bs, whereas changes in χ can cause arbitrarily large
variations in bs.

Finally, to solve for the electron distribution function, we
need to impose a 2π periodic boundary condition on θ, and a
‘ballooning’ boundary condition on χ, i.e.,

he(θ = π,χ) = he(θ =−π,χ), (50)

and

he(χ=−∞) = 0, for v∥ > 0, and

he(χ=∞) = 0, for v∥ < 0. (51)

The results for large χ above, equations (45)–(51), are not
peculiar to the ordering χ∼ (mi/me)

1/2. We will reuse res-
ults (45)–(51) for χ∼ (mi/me)

1/4 when we come to discuss
the collisional inner region in section 5.1.

To solve for the electron response, we will again use
the modified electron distribution function He, defined by
equation (25), and the modified electron gyrokinetic equation
(equation (26) with s= e). We note that, in the inner region of
the collisionless ordering, θ ∼ (mi/me)

1/2 ≫ 1∼ θ0 ≫ λe ∼
(me/mi)

1/2, and hence, the phase in (25) becomes

exp [iλe(θ0 − θ)]

= exp [−iλeχ]

(
1+ iλeθ0 −

λ2e θ
2
0

2
+O

((
me

mi

)3/2
))

.

(52)

Consistent with the expansion in the outer region, in the
inner region we expand the electrostatic potential ϕ, the distri-
bution functions hi and He, and the frequency ω in powers of
(me/mi)

1/2. However, we leave the relative size of the fluctu-
ations in the outer and inner regions to be determined. We will
return to this point in sections 4.3 and 4.4.
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4.2.1. Ion response in the inner region. The leading-order
equation for the ion response in the inner region is

(
k2αq

′2|∇ψ|2 χ2v2

4Ω2
i

(
ν∥,iλB+

ν⊥,i
2

(2−λB)
)

− ikαq
′χvM,i ·∇ψ

)
hi

(0) = i
(
ω∗,i −ω(0)

)
J0iF0i

Zieϕ(0)

Ti
,

(53)

where we have defined the collision frequencies

ν∥,i =

√
π

2
νii

Ψ(v/vth,i)
(v/vth,i)3

, (54)

and

ν⊥,i =

√
π

2
νii

erf(v/vth,i)−Ψ(v/vth,i)
(v/vth,i)3

, (55)

with the functions

erf(z) =
2√
π

ˆ z

0
exp
[
−s2
]
ds, (56)

and

Ψ(z) =
1
2z2

(
erf(z)− 2z√

π
exp
[
−z2
])
. (57)

The first term on the left of equation (53) is due to the finite-
Larmor-radius terms in the ion gyrokinetic self-collision oper-
ator (5) (see [35–37]). The ion response given by equation
(53) is local in ballooning angle—a more detailed analysis
demonstrating how this response arises is given in appendix A.
We note that J0i ∼ χ−1/2 ∼ (me/mi)

1/4 for bi ∼ krρth,i ∼ χ∼
(mi/me)

1/2 ≫ 1. Hence, if νii/ω ∼ (me/mi)
1/2, we take the

ion nonadiabatic response hi(0)/F0i ∼ χ−3/2(eϕ(0)/Te) in the
inner region. Hence, the contribution of hi(0) to ϕ is small.
Estimating the size of the ion nonadiabatic density δn(0)i and

ion mean velocity δu(0)i in the inner region, we find that

δn(0)i

ni
∼
δu(0)i

vth,i
∼ me

mi

eϕ(0)

Te
≪ eϕ(0)

Te
. (58)

We have used the conventional distribution function hi and
conventional form of the gyrokinetic equation to describe the
ion species. We could obtain the estimate (58) by using the
alternative form of the gyrokinetic equation, equation (26).
However, if we use the distribution function Hi and equation
(26) for ions, we need to be careful with estimates involving
integrals of the phase exp [−iλiχ], because λiχ≫ 1 in the
inner region.

4.2.2. Electron response in the inner region. The leading-
order equation for the electron response in the inner region
takes the form of equation (33). Equation (33) appears to be
trivially simple because of the choice to use the modified elec-
tron gyrokinetic equation (26) and modified distribution func-
tion He. In terms of he, and using equation (25), equation (33)
tells us that the leading-order electron distribution function has
the form

he
(0)(θ,χ) = exp [iλeχ]H

(0)
e (χ), (59)

i.e. the θ dependence in he(0) comes entirely from the radial-
magnetic-drift phase exp [iλeχ], and H(0)

e (χ) is the slowly
decaying envelope of he(0). This observation motivates the
choice of presenting the derivation in terms of He rather than
he.

The distribution function H(0)
e is determined by the first-

order equation for the electron response in the inner region

v∥b ·∇θ

(
∂H(1)

e

∂θ
+

∂H(0)
e

∂χ

)
+ i
(
ωM,e −ω(0)

)
H(0)

e − Ĉ(0)
e [H(0)

e ]

=−i
(
ω∗,e −ω(0)

)
exp [−iλeχ]J

(0)
0e F0e

eϕ(0)

Te
, (60)

where

Ĉ(0)
e [H(0)

e ] = exp [−iλeχ]

〈
exp
[
ik(0)⊥ ·ρe

]
C
[
exp
[
−ik(0)⊥ ·ρe

]
× exp [iλeχ]H

(0)
e

]〉γ
, (61)

with C [·] defined by equation (37), and J(0)0e = J0(b
(0)
e ). In

order to solve equation (60) for passing particles, we must
impose a solvability condition that H(1)

e is periodic in θ. This
condition can be imposed by using the transit average

⟨·⟩t =
´ π
−π dθ (·)/v∥b ·∇θ´ π
−π dθ/v∥b ·∇θ

. (62)

Applying the transit average to equation (60) results in the
equation for H(0)

e

〈
v∥b ·∇θ

〉t ∂H(0)
e

∂χ
+ i
(
⟨ωM,e⟩t −ω(0)

)
H(0)

e −
〈
Ĉ(0)
e

[
H(0)

e

]〉t
=−i

(
ω∗,e −ω(0)

)
F0e

〈
exp [−iλeχ]J

(0)
0e
eϕ(0)

Te

〉t

.

(63)

For trapped electrons, we need to be careful in our interpret-
ation of the two scales in equation (60). Physically, trapped
particles cannot pass between wells in the magnetic field
strength. Trapped particles can observe only changes of order
unity in poloidal angle as they follow trapped orbits. This
prohibits large variation in the ballooning poloidal angle
χ for individual particles. The trapped particle distribution

9
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function should satisfy the trapped particle boundary con-
ditions, equation (35). Noting that λe(θ

±
b ) = 0 as v∥(θ

±
b ) =

0, we have that for trapped particles H(0)
e (θ±b ,σ = 1) =

H(0)
e (θ±b ,σ =−1), and hence,H(0)

e is constant in both θ and σ.
To go to higher order, we must impose a solvability condition
that H(1)

e satisfies the bounce conditions H(1)
e (θ±b ,σ = 1) =

H(1)
e (θ±b ,σ =−1). Hence, to obtain the equation for H(0)

e for
trapped electrons, we apply the bounce average ⟨·⟩b, defined
in equation (38), to equation (60). The result is as follows:

i
(
⟨ωM,e⟩b −ω(0)

)
H(0)

e −
〈
Ĉ(0)
e

[
H(0)

e

]〉b
=−i

(
ω∗,e −ω(0)

)
F0e

〈
exp [−iλeχ]J

(0)
0e
eϕ(0)

Te

〉b

,

(64)

where we have used the property (40) of the bounce average
to eliminate the parallel derivative in θ on the left-hand side of
equation (60), and we have used the property〈

v∥g
〉b

= 0, (65)

valid for any σ-independent function g= gθ0,kα(ε,λ,θ), to

eliminate the term
〈
v∥b ·∇θ

〉b
∂H(0)

e /∂χ. Note that no deriv-
atives in χ appear explicitly in equation (64) and, hence, for
trapped particles, H(0)

e is only a parametric function of χ.
This is a manifestation of the physical intuition that trapped
particles do not move between magnetic wells.

4.3. Modes with (me/mi)
1/2 small electron tails

In this section, we describe a class of modes in collision-
less ordering that have small electron tails. This class of
modes includes the conventional ITG mode and the TEM so
much of the discussion will be familiar. To obtain the ‘small-
tail’ modes, we assume a priori that H(0)

e,outer = 0 for passing
electrons in the outer region of the mode where krρth,i ∼
θ ∼ 1. Then, the passing electron response has a leading-
order nonzero component H(1)

e,outer, given by equation (42).

We obtain the leading-order trapped electron response H(0)
e,outer

from equation (39), and the leading-order ion response h(0)i,outer
from equation (31). No parallel boundary condition is required
to solve the trapped-electron equation (39). For equation (31)
for the ion response, we supply the zero-incoming boundary
condition (19), without referring to the inner region where
krρth,i ∼ θ≫ 1. This is justified by the fact that in the inner
region h(0)i,inner is small. We can regard H(0)

e,outer and h(0)i,outer

as functionals of ϕ(0)outer and functions of ω(0), i.e. H(0)
e,outer =

H(0)
e,outer[ϕ

(0)
outer,ω

(0)] and h(0)i,outer = h(0)i,outer[ϕ
(0)
outer,ω

(0)]. The fre-

quency ω(0) and potential ϕ(0)outer are determined through the
leading-order quasineutrality relation in the outer region(

ZiTe
Ti

+ 1

)
eϕ(0)outer

Te
=

ˆ
J0i
h(0)i,outer

ni
d3 v−

ˆ
H(0)

e,outer

ne
d3 v,

(66)

where we have used that J0e = 1+O(me/mi) for kyρth,i ∼
krρth,i ∼ 1.

The small correction H(1)
e,outer from passing electrons does

not enter in the leading-order eigenvalue problem, equation
(66). As a result, in small-tail modes the nonadiabatic passing
electron response is a ‘cosmetic’ feature that does not con-
tribute to determining the basic properties of the mode. Non-
etheless, observable electron tails can develop in krρth,e ∼ 1

regions
(
θ ∼ (mi/me)

1/2
)
. We illustrate this in figure 1. The

mode is decomposed into three regions: θ ∼ 1, and |θ| ∼
(mi/me)

1/2 for θ > 0 and θ < 0. Forward-going passing elec-
trons travel through the θ ∼ 1 region, receiving an impulse

∆He =

ˆ ∞

−∞

1
v∥b ·∇θ ′

×

(
Cee

[
H(0)

e,outer

]
− i
(
ω∗,e −ω(0)

) eϕ(0)outer

Te
F0e

)
dθ ′,

(67)

from the electrostatic potential ϕouter. The matching condition
for the electron nonadiabatic response in the θ ∼ (mi/me)

1/2

region He,inner is obtained from the jump condition (67) by
demanding that the passing electron distribution function is
continuous across the boundary between the outer and inner
regions, i.e.,

H(1)
e,outer(θ =±∞) = H(0)

e,inner(χ= 0±), for 0⩽ λBmax ⩽ 1.
(68)

Combining equations (42), (67) and (68), we find that the
matching condition for solving for the passing electron
response in the small-tails limit is

H(0)
e,inner(χ= 0+) = H(0)

e,inner(χ= 0−)+∆He, (69)

valid for both σ± 1. Once ϕ(0)outer and ω
(0) are determined, we

can self-consistently obtain the electron tails associated with
the small-tail mode by solving the inner region equations (63)
and (64) for the nonadiabatic response of passing electrons and
trapped electrons, respectively, subject to the jump condition
(69) at χ= 0. With this, we obtain the functional H(0)

e,inner =

H(0)
e,inner

[
ϕ
(0)
inner,ϕ

(0)
outer,ω

(0)
]
. Finally, we impose quasineutrality

in the inner region to obtain a relation for ϕ(0)inner in terms of the

jump over ϕ(0)outer, using the leading-order equation(
ZiTe
Ti

+ 1

)
eϕ(0)inner

Te
=−
ˆ

exp [iλeχ]J
(0)
0e

H(0)
e,inner

ne
d3 v, (70)

where we have used the fact that the ion contribution to
quasineutrality is small, see equation (58).

We obtain an estimate for the size of ϕ(0)inner by noting that
the impulse (67) sets the natural size of He,inner compared to
the size of the potential in the outer region:

He,inner ∼∆He ∼
(
me

mi

)1/2 eϕouter
Te

F0e. (71)

10
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Figure 1. The illustration shows the nonadiabatic passing electron response for forward-going particles in the small-tail limit. At
leading-order in the (me/mi)

1/2 expansion, the mode frequency is determined by the response of ions and trapped electrons in the outer
region (θ ∼ 1), by solving equations (31) and (39), with quasineutrality (66). The passing part of the electron distribution function He is
propagated from left to right, via equation (63), starting with zero amplitude at θ =−∞, receiving an impulse ∆He from the potential ϕ in
the outer region (see equation (67)), and finally, carrying that amplitude into the inner region (θ ∼ (mi/me)

1/2). In the inner region, the
trapped electron response may be determined with equation (64), and the electron response determines ϕ, via quasineutrality (70).

Combining this estimate with equation (70), we find that the
electrostatic potential in the inner region ϕinner is of size

eϕinner
Te

∼
(
me

mi

)1/2 eϕouter
Te

. (72)

4.4. Modes with dominant electron tails

We now turn to the novel class of modes identified in this
paper. To obtain a ‘large-tail’ mode in the (me/mi)

1/2 → 0
limit, we assume that the leading-order nonadiabatic passing
electron response is nonzero in the outer region, i.e.,

He,outer

F0e
∼ eϕouter

Te
. (73)

We recall from section 4.1.2 that H(0)
e,outer is a constant in θ and

is independent of the ion response and the trapped electron
response in the outer region. As a consequence, in the ordering
(73) we may solve the leading-order equations (63) and (64)
for H(0)

e in the inner region with the boundary condition that

H(0)
e,inner(χ= 0−) = H(0)

e,inner(χ= 0+). (74)

Imposing quasineutrality via equation (70) results in an eigen-
value problem for ϕ(0)inner and ω

(0). We illustrate the mode struc-
ture of the large-tail ordering in figure 2. Note in particular

that the nonadiabatic passing electron response changes by

only a small
(
(me/mi)

1/2
)
amount over the θ ∼ 1 region. As a

consequence of the ordering (73), and the boundary condition
(74), we find that the electrostatic potential in the inner region
has no mass ratio scaling with respect to the electrostatic
potential in the outer region, i.e.,

eϕinner
Te

∼ eϕouter
Te

. (75)

An interesting corollary of these arguments is that the leading-
order complex frequency ω(0) of a large-tail mode should be
independent of θ0.

Finally, in the large-tail mode, the role of the nonadia-
batic ion response (and nonadiabatic trapped electron response
for θ ∼ 1) is to modify the leading-order mode structure at
θ ∼ 1 without modifying the frequency ω(0). To see this,
note that equations (63), (64), and (70) determine the fre-
quency ω(0). However, ϕ(0)outer is not yet determined; in the
θ ∼ 1 region only the nonadiabatic density due to passing
electrons δn(0)e,passing is fixed by the passing electron tails. To

obtain ϕ
(0)
outer, we solve equation (31) for the nonadiabatic

ion response h(0)i,outer = h(0)i,outer[ϕ
(0)
outer,ω

(0)], and equation (39)

for the nonadiabatic trapped electron responseH(0)
e,outer-trapped =

H(0)
e,outer-trapped[ϕ

(0)
outer,ω

(0)], where we have indicated that h(0)i,outer

andH(0)
e,outer-trapped are functionals ofϕ

(0)
outer and functions ofω

(0).
We then use θ ∼ 1 quasineutrality, equation (66), to obtain

11
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Figure 2. The illustration shows the nonadiabatic passing electron response for forward-going particles in the large-tail limit. In this limit,

the electron response in the inner region
(
θ ∼ (mi/me)

1/2
)
determines the mode frequency to leading order in the (me/mi)

1/2 expansion.

We solve equations (63) and (64) for the passing and trapped electron response, respectively, subject to quasineutrality (70). In the outer
region, the electron response He is approximately constant, and ions respond passively, without modifying the frequency to leading order.

ϕ
(0)
outer as a function of δn(0)e,passing. The role of the nonadiabatic

ion response (and the nonadiabatic trapped electron response)
is to modify the response of the electrostatic potential ϕ(0)outer to
an input ω(0) and δn(0)e,passing.

4.5. Relating the derivation of gyrokinetics to the derivation of
the transit and bounce-averaged equations for the electron
response

We conclude this section on collisionless physics by com-
menting on the relationship between the derivation of gyrokin-
etics and the derivation of the transit and bounce-averaged
equations for the electron response in the inner region.We note
that in the derivation of the gyrokinetic equation the change of
variables from (r,ε,λ,γ) to (R,ε,λ,γ) introduces the finite-
Larmor-radius phase exp [ik⊥ ·ρs] into the kinetic equation.
The γ dependence in the kinetic equation can be removed
by a gyroaverage ⟨·⟩γ because the field ϕ(r) has no depend-
ence on the gyrophase γ, and the finite-Larmor-radius phases
are converted into a Bessel function J0(bs) by the gyroaver-
age ⟨·⟩γ . From the derivation of the equations for the electron
response in the inner region, equations (63) and (64), we find
that the leading-order electron distribution function H(0)

e =

H(0)
e (χ,ε,λ,σ) is independent of θ, and the phase exp [−iλeχ]

keeps track of the electron drift-orbit motion. However, the
potential ϕ(0) = ϕ(0)(θ,χ) has a nontrivial dependence on θ.
This can be observed by inspecting the inner region quasineut-
rality relation, equation (70), where we see that the velocity-
space structure in H(0)

e influences the θ structure of ϕ(0). As a
consequence, we may not directly remove θ when solving the
system of equations (63), (64), and (70).

5. Long-wavelength collisional electrostatic modes
in the (me/mi)1/2 → 0 limit

In this section, we present reduced model equations for
long-wavelength, collisional, electrostatic modes in the
(me/mi)

1/2 → 0 limit. We define the collisional limit to be
the limit (2). In the collisional limit, the scale of the mode
in extended ballooning angle χ is set by the balance between
parallel and perpendicular classical and neoclassical diffusion
terms appearing in the equations for the mode. This means
that we expect a balance

v2th,e
q2 R2

0 νee

∂2

∂χ2
∼ νeek

2
y ρ

2
th,e χ

2. (76)

We can rearrange the balance (76) to give an estimate for the
size of χ. We find that

χ∼
(
qR0 νee
vth,e

)−1/2(mi

me

)1/4

. (77)

For the collisional ordering of qR0 νee/vth,e ∼ 1, the scale of
the electron tail is χ∼ (mi/me)

1/4. As expected, the ‘colli-
sionless’ ordering of qR0 νee/vth,e ∼ (me/mi)

1/2 in the estim-
ate (77) yields the scale χ∼ (mi/me)

1/2. In section 5.1.4, we
demonstrate that there is a continuous transition between the
collisional and the collisionless limits.

We obtain the equations for the response of ions and elec-
trons in a kyρth,i ∼ 1 mode with a θ ∼ 1 outer region, and

a θ ∼ (mi/me)
1/4 inner region. Although the details of the

equations obtained here are different to the collisionless case,
the final result is qualitatively similar. Two types of modes

12
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exist. Large-tail modes driven by the nonadiabatic electron
response at θ ∼ (mi/me)

1/4 scales, and conventional small-
tail modes driven by the ion response at θ ∼ 1 scales. Note
that in the collisional limit, trapped electrons cannot drive an
instability because their orbits are disrupted by collisions. In
order to motivate the (me/mi)

1/4 expansion, we first present
the equations in the θ≫ 1 region. As in the collisionless case,
the equations that we obtain in the θ≫ 1 region are common
to both classes of mode. The two different classes of mode are
distinguished by the boundary matching at θ ∼ 1. Section 5.3
provides a description of the boundary matching between the
outer and inner regions for the small-tail mode, in addition
to a plenary summary of how to solve the small-tail mode
equations. Finally, section 5.4 provides a description of the
boundary matching between the outer and inner regions for
the large-tail mode and a plenary summary of how to solve the
large-tail mode equations.

5.1. Collisional inner solution—θ ∼ (mi/me)1/4—krρth,e
∼ (me/mi)

1/4

To treat the fine radial scales of the collisional inner region, we
introduce an additional coordinate χmeasuring distance along
the magnetic field line, via the substitutions (43) and (44).
The coordinate θ will measure 2π periodic variation, whereas
χ∼ (mi/me)

1/4 is an extended ballooning angle for the envel-
ope of the mode. Refer to the discussion in section 4.2 for the
details of the substitution of geometric quantities (equations
(45)–(49)) and the modifications to the boundary conditions
on the electron distribution function (equations (50) and (51)).
In the collisional limit, we note the similarity of the structure
of the derivation of the inner region equations to the treatment
of resistive ballooning modes and semi-collisional tearing
modes in toroidal geometry, see, for example, [38] and [39],
respectively.

To proceed, we expand electrostatic potential ϕ, distribu-
tion functions hs, and frequency ω in powers of (me/mi)

1/4,
i.e. for the potential we expand

ϕ= ϕ(0) +ϕ(1/2) +ϕ(1) +O

((
me

mi

)3/4

ϕ

)
, (78)

withϕ(n) ∼ (me/mi)
n/2
ϕ. Identical expansions aremade for hs

and ω, again taking hs(n) ∼ (me/mi)
n/2

(eϕ/Te)F0s and ω(n) ∼
(me/mi)

n/2
ω. As in the collisionless case, to solve for the elec-

tron response, we use the modified electron distribution func-
tion He, defined by equation (25), rather than the usual distri-
bution function he.We leave the relative size of the fluctuations
in the outer and inner regions to be determined by thematching
in sections 5.3 and 5.4.

5.1.1. Ion response in the collisional inner region. Before
considering the electron response, we first comment on the ion
response in the inner region in the collisional limit. The ana-
lysis proceeds almost identically to the analysis presented in
section 4.2.1 for the ion response in the collisionless limit. For

νii/ω ∼ 1 and χ∼ (mi/me)
1/4, we find that the leading-order

equation for the ion response has the same form as equation
(53), apart from the fact that the radial magnetic drift term is
neglected. This observation allows us to obtain an estimate for
hi(0): hi(0)/F0i ∼ χ−5/2 eϕ(0)/Te, where we have employed
that J0i ∼ O

(
χ−1/2

)
for χ≫ 1. This estimate for hi(0) yields

estimates for the ion nonadiabatic density δn(0)i and the ion

mean velocity δu(0)i , required for the electron-ion piece of the
electron collision operator,

δn(0)i

ni
∼
δu(0)i

vth,i
∼
(
me

mi

)3/4 eϕ(0)

Te
≪ eϕ(0)

Te
, (79)

where we have used that J0i ∼ J1i ∼ O
(
(me/mi)

1/8
)
. The

estimate (79) shows that the nonadiabatic ion response has no
leading-order contribution to the mode evolution in the inner
region.

5.1.2. Electron response in the collisional inner region. The
calculation of the electron response in the collisional inner
region has a structure that is reminiscent of neoclassical trans-
port theory. The leading-order equation constrains the leading-
order electron distribution function to be a perturbed Max-
wellian with no flow. The first-order equation takes the form
of a Spitzer–Härm problem [31, 32, 41]. Physically, the first-
order terms control the self-consistent parallel flows that res-
ult from the leading-order perturbations. The second-order
equation governs the time evolution of the leading-order fluc-
tuations. The poloidal angle average

⟨·⟩θ =
ˆ π

−π
(·) dθ

B ·∇θ

/ˆ π

−π

dθ
B ·∇θ

, (80)

of the density and temperature velocity moments of the
second-order equation yields transport equations for the elec-
tron density and temperature fluctuations, closing the system
of equations. In this section, we give the form of the transport
equations in the (me/mi)

1/4 → 0 limit, with qR0 νee/vth,e ∼ 1.
The full details of the calculation are contained in appendix B.

The leading-order equation for the electron response in the
inner region is a balance between parallel streaming in the
periodic coordinate θ and collisions:

v∥b ·∇θ
∂H(0)

e

∂θ
= Cee

[
H(0)

e

]
+L

[
H(0)

e

]
. (81)

To solve equation (81), in appendix B we follow the standard
H-theorem procedure [32, 40] to prove thatH(0)

e is a perturbed
Maxwellian with no flow, i.e.,

H(0)
e

F0e
=
δn(0)e

ne
+
δT(0)e

Te

(
ε

Te
− 3

2

)
, (82)

where the nonadiabatic density δn(0)e and temperature δT(0)e are
constant in θ, i.e.,

δn(0)e = δn(0)e (χ), and δT(0)e = δT(0)e (χ). (83)
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To obtain evolution equations for δn(0)e and δT(0)e , in
appendix B we go to second order in the expansion in
(me/mi)

1/4.
Before writing down the transport equations, we consider

the collisional inner-region quasineutrality relation. Using
the ordering (79), and the solution (82), with J0e = 1+

O
(
(me/mi)

1/2
)
and exp [iλe(χ− θ0)] = 1+O

(
(me/mi)

1/4
)

for χ∼ (mi/me)
1/4 and kyρth,i ∼ 1, we find that the leading-

order quasineutrality relation is(
ZiTe
Ti

+ 1

)
eϕ(0)

Te
=−
ˆ

H(0)
e

ne
d3 v=−δn

(0)
e

ne
. (84)

Equation (84) allows us to note that the electrostatic poten-
tial in the inner region is not a function of geometric angle θ,
i.e. ϕ(0) = ϕ(0)(χ). This is a significant simplification over the
collisionless case (see equation (70)), where ϕ(0) = ϕ(0)(θ,χ).
This simplification arises in the collisional limit because,
first, there is no distinction between trapped and passing
particles, and second, the extent of the mode is shortened to
χ∼ (mi/me)

1/4, meaning that finite-Larmor-radius and finite-
orbit-width effects do not enter at leading order.

The final transport equations for δn(0)e and δT(0)e are most
clearlywritten in a formwhere the terms admit simple physical
interpretations. We have a continuity equation

⟨b ·∇θ⟩θ
∂δu∥
∂χ

+ i⟨ωD⟩θ
(
δn(0)e

ne
+
δT(0)e

Te

)
− iω(0) δn

(0)
e

ne

− ikyŝκ̂χ

(
δΓC

ne
+
δΓN

ne

)
=−i(ωn∗,e −ω(0))

eϕ(0)

Te
, (85)

and a temperature equation

⟨b ·∇θ⟩θ ∂

∂χ

(
δq∥
neTe

+ δu∥

)
+ i⟨ωD⟩θ

(
δn(0)e

ne
+

7
2
δT(0)e

Te

)

− i
3
2
ω(0) δT

(0)
e

Te
− ikyŝκ̂χ

(
δΓC

ne
+
δqC
neTe

+
δΓN

ne
+
δqN
neTe

)
=−i

3
2
ωn∗,eηe

eϕ(0)

Te
. (86)

The physical interpretations of the terms in equations (85) and
(86) are, from left to right: parallel diffusion, magnetic (pre-
cession) drifts within the flux surface, time evolution, clas-
sical perpendicular diffusion, neoclassical perpendicular dif-
fusion, and drives of instability by equilibrium gradients. To
write equations (85) and (86), we have defined the effective
parallel velocity and effective parallel heat flux

δu∥ =
1

⟨b ·∇θ⟩θ

〈
b ·∇θ
ne

ˆ
v∥(H

(1/2)
e + iλeχH

(0)
e ) d3 v

〉θ
,

(87)

and

δq∥ =
1

⟨b ·∇θ⟩θ

×

〈
b ·∇θ

ˆ
v∥

(
ε− 5Te

2

)
(H(1/2)

e + iλeχH
(0)
e ) d3 v

〉θ
,

(88)

respectively, the thermal magnetic precession drift

ωD =
kαv2th,e
2Ωe

b×
(
b ·∇b+ ∇B

B

)
· (∇α+ θ∇q) , (89)

the fluctuating perpendicular fluxes: the classical particle flux

δΓC = i

〈ˆ
∇r ·ρe C

[
k(0)⊥ ·ρe H(0)

e

]
d3 v

〉θ
, (90)

the classical heat flux

δqC = i

〈ˆ (
ε− 5Te

2

)
∇r ·ρe C

[
k(0)⊥ ·ρe H(0)

e

]
d3 v

〉θ
,

(91)

the neoclassical particle flux

δΓN =−
〈

I
Ωe

dr
dψ

ˆ
v∥ C

[
H(1/2)

e + iλeχH
(0)
e −HSH

]
d3 v

〉θ
,

(92)

and the neoclassical heat flux

δqN =−

〈
I
Ωe

dr
dψ

ˆ (
ε− 5Te

2

)
v∥ C

[
H(1/2)

e

+ iλeχH
(0)
e −HSH

]
d3 v

〉θ
. (93)

To obtain δu∥, δq∥, δΓN and δqN, we require the (me/mi)
1/4

small distribution functions HSH and H(1/2)
e . The distribution

functionHSH is determined by solving the Spitzer–Härm prob-
lem [31, 32, 41]

v∥b ·∇θ
∂H(0)

e

∂χ
= C[HSH], (94)

whereas H(1/2)
e is determined by solving the first-order elec-

tron equation

v∥b ·∇θ
∂H(1/2)

e

∂θ
= C

[
H(1/2)

e + iλeχH
(0)
e −HSH

]
. (95)

In general, equation (95) is not solvable analytically. To
maximize the physical insight from the calculation, we sub-
sequently solve equation (95) in the subsidiary limits of large
and small collisionality.
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The classical fluxes δΓC and δqC are due to Larmor orbits
being interrupted by collisions and can be evaluated for arbit-
rary qR0 νee/vth,e [31, 32]. We use the results of appendix D
to write down the classical particle flux δΓC and classical heat
flux δqC. We use result (D.4) to find that

δΓC

ne
= ikyŝκ̂χ

νeiρ
2
th,e

2

〈
B
2 |∇r|2

B2

〉θ(
δn(0)e

ne
− 1

2
δT(0)e

Te

)
, (96)

where we have used that k(0)⊥ =−kα(dq/dr)χ∇r=
−kyŝκ̂χ∇r, with ρth,e = vth,e/Ωe, Ωe =−eB/mec, and B=

⟨B⟩θ. Similarly, we use the results (D.5) and (D.19) to find
that

δqC
neTe

= ikyŝκ̂χ
νeiρ

2
th,e

2

〈
B
2 |∇r|2

B2

〉θ
×

((
7
4
+

√
2
Zi

)
δT(0)e

Te
− 3

2
δn(0)e

ne

)
, (97)

where we have used that νee/νei = 1/Zi.
The mode evolution equations for the density and the tem-

perature, equations (85) and (86), respectively, have the prom-
ised structure. The envelope of the mode is controlled by a
combination of the finite-orbit-width and finite-Larmor-radius
perpendicular diffusion, and parallel diffusion. The perpendic-
ular diffusion terms scale as νei(kyρth,e)2 χ2, whereas equations
(95), (87) and (88) show implicitly that the parallel diffu-
sion terms scale as (v2th,e/νeiq

2 R2
0)∂

2/∂χ2. This result justi-
fies the initial ordering (77) and the discussion in section 5.1.
To obtain explicit analytical forms for all terms in the trans-
port equations (85) and (86), we consider the qR0 νee/vth,e ≫
1 (Pfirsch–Schlüter) regime in the next section. To demon-
strate the transition between the collisionless and collisional
regimes, we consider the qR0 νee/vth,e ≪ 1 (banana-plateau)
regime in section 5.1.4.

5.1.3. Parallel flows and perpendicular diffusion in the subsidi-
ary limit of qR0νee/vth,e ≫ 1—the Pfirsch–Schlüter regime. In
order to obtain the analytical form of the transport equations in
the subsidiary limit qR0 νee/vth,e ≫ 1, we must solve equation
(95) to obtain approximate solutions for H(1/2)

e . Using the
results of appendix E, we write down the effective parallel
velocity, parallel heat flux and perpendicular diffusion terms
that appear in the transport equations (85) and (86) in the
qR0 νee/vth,e ≫ 1 limit. We find that

δu∥
vth,e

=−vth,e
2νei

(⟨B ·∇θ⟩θ)2

⟨b ·∇θ⟩θ ⟨B2⟩θ

×

[
1.97

∂

∂χ

(
δn(0)e

ne

)
+ 3.37

∂

∂χ

(
δT(0)e

Te

)]

+
i
2

kyρth,eκ̂ŝχ

⟨b ·∇θ⟩θ
BI
dr
dψ

(〈
B ·∇θ
B2

〉θ
− ⟨B ·∇θ⟩θ

⟨B2⟩θ

)

×

(
δn(0)e

ne
+
δT(0)e

Te

)
, (98)

where we have used equation (E.24), with the numerical res-
ults (C.16) and (C.17) for the transport coefficients, assuming
Zi = 1. Similarly, using (E.25), we obtain the effective elec-
tron parallel heat flux

δq∥
neTevth,e

=−5vth,e
4νei

(⟨B ·∇θ⟩θ)2

⟨b ·∇θ⟩θ ⟨B2⟩θ

×

[
0.56

∂

∂χ

(
δn(0)e

ne

)
+ 2.23

∂

∂χ

(
δT(0)e

Te

)]

+
5i
4

kyρth,eκ̂ŝχ

⟨b ·∇θ⟩θ
BI
dr
dψ

×

(〈
B ·∇θ
B2

〉θ
− ⟨B ·∇θ⟩θ

⟨B2⟩θ

)
δT(0)e

Te
. (99)

We note that the terms linear in χ in equations (98) and (99)
arise from the radial magnetic drift, whereas the terms in ∂/∂χ
arise from the effective electric field generated by the leading-
order electron response (see equation (B.8)).

The neoclassical particle flux δΓN appearing in the nonadia-
batic density transport equation, equation (85), can be evalu-
ated using the result (E.28). We find that

δΓN

ne
=−

vth,eρth,e
2

I
dr
dψ

B

(
⟨B ·∇θ⟩θ

⟨B2⟩θ
−
〈
B ·∇θ
B2

〉θ)

×

(
∂

∂χ

(
δn(0)e

ne

)
+

∂

∂χ

(
δT(0)e

Te

))

+ ikyŝκ̂χ
νeiρ

2
th,e

2

(
I
dr
dψ

)2
〈B2

B2

〉θ
− B

2

⟨B2⟩θ


×

[
0.67

δn(0)e

ne
+ 0.11

δT(0)e

Te

]
. (100)

Similarly, the neoclassical heat flux δqN appearing in the tem-
perature transport equation, equation (86), can be evaluated
using the result (E.29). We find that

δqN
neTe

=−
5vth,eρth,e

4
I
dr
dψ

B

(
⟨B ·∇θ⟩θ

⟨B2⟩θ
−
〈
B ·∇θ
B2

〉θ)

× ∂

∂χ

(
δT(0)e

Te

)
+ ikyŝκ̂χ

νeiρ
2
th,e

2

(
I
dr
dψ

)2

×

〈B2

B2

〉θ
− B

2

⟨B2⟩θ

[1.41δT(0)e

Te
− 0.56

δn(0)e

ne

]
.

(101)

Physically, equations (100) and (101) indicate that diffusive
transport arises from the radial magnetic drift (note the terms
linear in χ).

We note that the scale of the extended tail, χ, decreases
with increasing qR0 νee/vth,e. This is explicit in the estimate
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(77). Using (77), it can be seen that, for extreme collision fre-
quencies where qR0 νee/vth,e ∼ (mi/me)

1/2, there is no separ-
ation between the scale of the electron tail and the scale of the
geometric quantities, for such an extreme collisionality,χ∼ 1.
The fluid equations for this extreme regime are not examined
in this paper.

5.1.4. Subsidiary limit of qR0 νee/vth,e ≪ 1—the banana-
plateau regime. We now examine equation (95) in the sub-
sidiary limit qR0 νee/vth,e ≪ 1. This discussion will enable us
to demonstrate the smooth transition between the collisionless
and collisional regimes. We will need to go to first-order in the
subsidiary expansion of qR0 νee/vth,e ≪ 1, and so we expand

H(1/2)
e = H(1/2)

e,(0) +H(1/2)
e,(1) +O

((
qR0 νee
vth,e

)2

H(1/2)
e,(0)

)
, (102)

whereH(1/2)
e,(0) ∼ iλeχH

(0)
e ∼ HSH andH(1/2)

e,(n) ∼ (qR0 νee/vth,e)
n

×H(1/2)
e,(0) . The leading-order form of equation (95) is

v∥b ·∇θ
∂

∂θ

(
H(1/2)

e,(0)

)
= 0, (103)

i.e. we learn that H(1/2)
e,(0) = H(1/2)

e,(0) (χ,ε,λ,σ). Going to first-
order terms in the expansion of the drift-kinetic equation (95),
we find that

v∥b ·∇θ
∂

∂θ

(
H(1/2)

e,(1)

)
= C

[
H(1/2)

e,(0) + iλeχH
(0)
e −HSH

]
. (104)

We now impose a solvability condition thatH(1/2)
e,(1) (θ,χ,ε,λ,σ)

should be 2π-periodic in θ. We must treat the passing and
trapped part of the velocity space independently. For passing
particles, we apply the transit average ⟨·⟩t, defined in equation
(62), to obtain〈

C
[
H(1/2)

e,(0) + iλeχH
(0)
e −HSH

]〉t
= 0. (105)

We note that equation (105) is a partial differential equation
in (ε,λ) at fixed χ. For trapped particles we apply the bounce
average ⟨·⟩b, defined in equation (38), to obtain〈

C
[
H(1/2)

e,(0)

]〉b
= 0, (106)

where we have used that iλeχH
(0)
e and HSH are odd in σ =

v∥/|v∥|, and therefore vanish under ⟨·⟩b. The trapped particle
bounce condition requires that

H(1/2)
e (θ±b ,σ = 1) = H(1/2)

e (θ±b ,σ =−1),

and hence, H(1/2)
e,(0) is even in σ, by virtue of being constant in

θ. In contrast, we can see from equation (105) that the passing
particle response must be odd in σ. A Maxwellian solution to
equation (106) is not valid, because of the change in the σ sym-
metry of H(1/2)

e,(0) at the trapped-passing boundary, and hence,

we must have that H(1/2)
e,(0) = 0 for trapped particles. To obtain

H(1/2)
e,(0) for passing particles, we must solve equation (105) sub-

ject to continuity in H(1/2)
e,(0) at the trapped-passing boundary.

In order to make progress analytically, it is necessary to
expand in inverse aspect ratio ϵ= r/R0 ≪ 1, where r is the
minor radial coordinate of the flux surface of interest. We
assume that the normalized collisionality

ν∗ =
qR0 νee
ϵ3/2vth,e

≪ 1, (107)

and assume that the equilibrium can be approximated by a
solution with circular flux surfaces [30, 42]. Then, we can use
the techniques of neoclassical theory [32, 40] to obtain H(1/2)

e,(0)

to leading-order in ϵ and the velocity δu∥ and flux δq∥, and the

neoclassical perpendicular diffusion terms to order ϵ1/2. These
calculations are performed in appendix F.We conclude that for
ν∗ ≪ 1 the electron parallel velocity and electron parallel heat
flux have a diffusive character.

Finally, we comment on the smooth transition between the
equations for the electron response in the collisionless and the
collisional regimes. To obtain the mode transport equations
(85) and (86) from the equations in the collisionless limit for
the passing electron response, equation (63), and the trapped
electron response, equation (64), we take the following steps.
First, in equations (63) and (64), we take the electron collision
frequency to be large compared to the ion transit frequency,
i.e. qR0 νee/vth,i ≫ 1, and we take the extent of the ballooning
mode to be small, with

1 ≪ χ∼
(
qR0 νee
vth,i

)−1/2(mi

me

)1/2

≪
(
mi

me

)1/2

. (108)

Then, the leading-order equation for the electron response is

C
[
H(0)

e

]
= 0, (109)

i.e. H(0)
e is a perturbed Maxwellian with no flow and

with no dependence on θ. Second, we collect terms of
O
(
(qR0 νee/vth,i)−1/2

)
in the subsidiary expansion, and obtain

equations for the passing and trapped electron response of
the form (105) and (106), respectively. Finally, we collect the
terms of O

(
(qR0 νee/vth,i)−1

)
in the subsidiary expansion and

obtain the transport equations for the nonadiabatic density and
temperature, equations (85) and (86), respectively. The fact
that the extent of the mode shortens when going from the col-
lisionless to the collisional limits, according to the ordering
(108), along with the Maxwellianisation of the distribution
function by increasing interparticle collisions, see equation
(109), ensures that the collisionless inner-region quasineutral-
ity relation (70) takes the form of the collisional inner-region
quasineutrality relation (84).

5.2. Collisional outer solution—θ ∼ 1—krρth,e ∼ (me/mi)
1/2

Just as in the collisionless case, the class of mode that we
obtain in the collisional limit depends on the matching con-
dition that we use to solve for the electron response in the
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inner region (θ≫ 1) via equations (85) and (86).We obtain the
matching conditions by considering the outer region (θ ∼ 1),
and expanding in powers of (me/mi)

1/4, for consistency with
the expansion in the inner region.

For the ions in the collisional ordering, we take νii ∼
vth,i/qR. As the electron mass does not appear in the ion
gyrokinetic equation, no approximations are possible for this
ordering, and the gyrokinetic equation for the ions in the outer
region is simply equation (4) with s= i. The nonadiabatic
response of ions hi contributes at leading-order to the potential
ϕ in the outer region. As in the collisionless case (see equation
(32)), the estimate for the size of the ion nonadiabatic density
is δni/ni ∼ eϕ/Te.

5.3. Electron response in the outer region for small-tail modes

In a collisional small-tail mode, the fluctuations must satisfy
the ordering

He,inner

F0e
∼ eϕinner

Te
∼ He,outer

F0e
≪ eϕouter

Te
, (110)

so that the nonadiabatic electron response is subdominant to
the nonadiabatic ion response in the outer region. This order-
ing will recover the ITG mode.

In this section, we present the matching conditions neces-
sary to solve for the electron response in modes that obey the
ordering (110). The details of the calculation of the match-
ing condition are contained in appendix G. At leading order,
we find that the electron distribution function is a Maxwellian
with no flow. At first order, we find that the electron parallel
flows are determined by the potential generated by the ions. To
match the solutions in the outer and inner regions, we note that
in the inner region, the electron flows are (me/mi)

1/4 smaller
than the density and temperature components of the electron
response, i.e.,

δu∥,inner
vth,e

∼
δq∥,inner
vth,eneTe

∼
(
me

mi

)1/4

×
δn(0)e,inner

ne
∼
(
me

mi

)1/4 δT(0)e,inner

Te
. (111)

This must be true in the outer solution for the solutions to be
matched. The size of δu∥,inner and δq∥,inner is set by the jump
in the electron parallel flows across the outer region due to
the presence of the electrostatic potential ϕouter. In terms of
estimates, we have that

[
δu∥,e,outer
vth,e

]θ=∞

θ=−∞
∼
[
δq∥,e,outer
vth,eneTe

]θ=∞

θ=−∞
∼
(
me

mi

)1/2 eϕouter
Te

.

(112)

Combining estimates (111) and (112) with a demand that the
electron distribution function is continuous across the bound-
ary of the outer and inner regions, we find an estimate for the
size of the fluctuations in the inner region

eϕ(0)inner

Te
∼
δn(0)e,inner

ne
∼
δT(0)e,inner

Te
∼
(
me

mi

)1/4 eϕ(0)outer

Te
. (113)

In appendix G, we show that the above arguments lead
to the following matching conditions for δn(0)e,inner, δT

(0)
e,inner,

δu∥,inner and δq∥,inner. We have continuity for the density and
temperature fluctuations, i.e.,

δn(0)e,inner(χ= 0+) = δn(0)e,inner(χ= 0−), (114)

and

δT(0)e,inner(χ= 0+) = δT(0)e,inner(χ= 0−). (115)

The small outer region electron density and temperature are
set by δn(1/2)e,outer = δn(0)e,inner(χ= 0) and δT(1/2)e,outer = δT(0)e,inner(χ=
0). For the effective parallel velocity and heat flux, we have
the jump conditions[

δu∥,inner
]χ=0+

χ=0−

=−i
(
ωn∗,e −ω(0)

) ⟨B ·∇θ⟩θ

⟨b ·∇θ⟩θ

ˆ ∞

−∞

eϕ(0)outer(θ)

Te

dθ
B ·∇θ

,

(116)

and[
δq∥,inner
neTe

]χ=0+

χ=0−

=−i

(
3
2
ωn∗,eηe −ωn∗,e +ω(0)

)

× ⟨B ·∇θ⟩θ

⟨b ·∇θ⟩θ

ˆ ∞

−∞

eϕ(0)outer(θ)

Te

dθ
B ·∇θ

.

(117)

Finally, we can describe the procedure for solving for the
small-tail mode in the (me/mi)

1/2 → 0 limit. To determine
the frequency ω(0) and the potential ϕ(0)outer, we solve the ion
gyrokinetic equation (4) with s= i, closed by the quasineut-
rality relation (neglecting the electron nonadiabatic response)

(
ZiTe
Ti

+ 1

)
eϕ(0)outer

Te
=

ˆ
J0i
h(0)i,outer

ni
d3 v. (118)

With ω(0) and ϕ(0)outer determined, we solve for the electron
response using equations (85) and (86), with the inner-region
quasineutrality equation (84). The causal link between the
solution in the outer region and the inner region is provided
by boundary matching conditions (114)–(117). An illustration
demonstrating the matching in the collisional small-tail mode
is given in figure 3.
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Figure 3. The illustration shows the nonadiabatic electron density δne and electron mean velocity δu∥,e in the collisional, small-tail limit.
The leading-order mode frequency is determined by ions in the θ ∼ 1 (outer) region, by solving equation (4) (with s= i) subject to
quasineutrality, equation (118). The electron tails at θ ∼ (mi/me)

1/4 are obtained by solving the transport equations (85) and (86), with
inner-region quasineutrality (84) and the boundary conditions (114)–(117). From the perspective of the θ ∼ (mi/me)

1/4 region, the electron
density is a cusp, set up by the discontinuity in δu∥,e, ∆δu∥,e.

5.4. Electron response in the outer region for large-tail modes

The large-tail ordering is a combination of the orderings (73)
and (75). As a consequence, the equation for the leading-order
electron response H(0)

e,outer takes the form of equation (81). Fol-
lowing the same arguments as used in appendix G, we demon-
strate that the solution to equation (81) is that the electron dis-
tribution is a perturbedMaxwellian with a fluctuating nonadia-
batic density δn(0)e,outer and temperature δT(0)e,outer, no flow and
no dependence on θ, as required to match the inner region.
For the matching conditions on the leading-order distribution
function, we require that the nonadiabatic density and tem-
perature that define the electron distribution function are con-
tinuous across χ= 0 after equations (114) and (115), with
δn(0)e,outer = δn(0)e,inner(χ= 0) and δT(0)e,outer = δT(0)e,inner(χ= 0).

For this class of mode, the frequency is determined by
the eigenmode equations (85) and (86), with the inner-region
quasineutrality equation (84) and the matching conditions
(114) and (115). Since the eigenmode equations are second-
order differential equations in χ, two further matching condi-
tions are required. These conditions are that the electron flows
δu∥ and δq∥ are continuous across χ= 0, i.e.,

δu∥(χ= 0+) = δu∥(χ= 0−), (119)

and

δq∥(χ= 0+) = δq∥(χ= 0−). (120)

Equations (119) and (120) can be derived by noting that the
jump in the electron parallel flow across the outer region has

a fixed size, given by the estimate (112). In a large tail mode,
we have that

δu∥,e,inner
vth,e

∼
δq∥,e,inner
vth,eneTe

∼
(
me

mi

)1/4 eϕinner
Te

∼
(
me

mi

)1/4

× eϕouter
Te

≫
(
me

mi

)1/2 eϕouter
Te

, (121)

and hence, the flows are continuous across the outer region to
leading order. This result can be obtained explicitly by inspect-
ing equations (116) and (117), with ordering (121). An illus-
tration of the structure of the collisional, large-tail mode is
presented in figure 4.

Finally, we note that the nonadiabatic ion response has
no role in determining the leading-order frequency ω(0).
Instead, the ions respond passively, serving only to self-
consistently determine the electrostatic potentialϕ(0)outer through
the quasineutrality equation (66) (noting that here the velo-
city space dependence ofH(0)

e is given by equation (82)). Note
that ϕ(0)outer has not entered into the equations that determine the
electron response in the large-tail mode.

6. Numerical results

In this section, we present numerical results that support the
analytical theory of the previous sections. We use the gyrokin-
etic code GS2 [28] to calculate the fastest-growing linear
modes for parameters where we observe extended electron-
driven tails in the ballooning eigenfunction.
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Figure 4. The illustration shows the nonadiabatic electron density δne and electron mean velocity δu∥,e in the collisional, large-tail limit. At

leading-order, the mode frequency is determined by the nonadiabatic electron response in the θ ∼ (mi/me)
1/4 (inner) region, by solving the

transport equations (85) and (86), with inner-region quasineutrality (84), and the boundary conditions (114), (115), (119), and (120). The
ion response to the leading-order frequency can be obtained by solving equation (4) (with s= i) subject to quasineutrality, equation (66). In
the large-tail mode, the leading-order flows are developed in the θ ∼ (mi/me)

1/4 region, and there is no leading-order electron density cusp
near the boundary of the θ ∼ 1 region.

We propose a novel method to test the analytical theory.
For a given mode with extended tails, we scan in our expan-
sion parameter (me/mi)

1/2 and test the (me/mi)
1/2 depend-

ence of the eigenmodes and complex frequencies. When we
perform the scan in (me/mi)

1/2, we hold fixed kyρth,i, so that
we scan in the separation between the electron parallel stream-
ing frequency vth,e/qR0, and frequency of the driveω∗ ∼ ω.We
must also choose how to treat the collision frequency νee. The
normalized electron collision frequency ν∗ = qR0νee/vth,eϵ3/2

is independent of me/mi, and so in a physical mass scan we
would vary vth,e/qR0 and νee, holding ν∗ fixed. This physical
mass scan is appropriate for the collisional limit (2). How-
ever, to test the ‘collisionless’ limit (1), if νee is compar-
able to ω, we need to enforce νee ∼ ω ∼ ω∗ as (me/mi)

1/2 →
0, meaning that we would vary vth,e/qR0 but hold aνee/vth,i
fixed.

In the analytical theory that we have developed here, geo-
metrical factors from the magnetic geometry enter into the
equations for the inner region only through the poloidal angle
average ⟨·⟩θ. Hence, modes that are driven by the electron
response in the inner region are unlikely to be sensitive to the
details of any given magnetic geometry. We therefore choose
the simple Cyclone Base Case (CBC) [43] magnetic geometry
to illustrate our theory. We study modes on a circular flux
surface centred on the magnetic axis. To specify the mag-
netic geometry, we use the Miller equilibrium parameterisa-
tion [44]. We take the reference major radius R0 = 3.0a, with
the normalizing length a the half-diameter of the last closed
flux surface. We examine microstability on the flux surface
with minor radius r= 0.54a. We take the safety factor to be
q= 1.4, the magnetic shear to be ŝ= (q/r)dq/dr= 0.8, the

plasma beta β= 0, the Shafranov shift derivative d∆/dr=
0, the elongation κ= 1.0, the elongation derivative dκ/dr=
0.0, the triangularity δ= 0.0 and the triangularity derivative
dδ/dr= 0.0. The reference magnetic field is given by Bref =
I(ψ)/Rgeo, i.e. toroidal magnetic field at the major radial pos-
ition Rgeo. We take Rgeo = R0. In section 2.2, we define local
radial and binormal coordinates with units of length x and y,
respectively, and associated radial and binormal wavenumbers
kx and ky, respectively. We parameterize the radial wave num-
ber kx with θ0 = kx/ŝky.

We consider a two-species plasma of ions and electrons,
with Zi = 1, equal temperatures Ti = Te and an equilibrium
density gradient a/Ln = 0.733, where the length scale Ln =
−dr/d lnne. We take the equilibrium ion temperature gradient
to be a/LTi = 2.3, where the equilibrium temperature gradi-
ent length scale of species s is defined by LTs =−dr/d lnTs.
These parameters have been chosen to be close to the CBC
benchmark equilibrium profiles. In order to examine different
instabilities with these CBC-like parameters, we vary θ0, the
equilibrium electron temperature gradient length scale LTe , and
the normalized electron collisionality ν∗ = qR0νee/vth,eϵ3/2,
where ϵ= r/R0 = 0.18. In section 6.1, we take θ0 = 1.57 and
a large electron temperature gradient a/LTe = 3a/LTi = 6.9,
resulting in novel modes that conform to the large-tail mode
ordering. In section 6.2, we take θ0 = 0.1 and equal elec-
tron and ion temperature gradients a/LTe = a/LTi = 2.3. This
allows us to consider a familiar ITG mode, where we demon-
strate that the passing electron response satisfies the small-tail
mode ordering. Finally, in section 6.3, we briefly discuss the
transition between large-tail and small-tail modes as a function
of θ0 in a scenario with a/LTe = 3.45 and a/LTi = 2.3.
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For the simulations presented here, we use the follow-
ing numerical resolutions: nθ = 33 points per 2π element in
the ballooning angle grid; nλ = 27 points in the pitch angle
grid; and nε = 24 points in the energy grid. The energy grid
is constructed from a spectral speed grid [45], and the pitch
angle grid is constructed from a Radau–Gauss grid for passing
particles and an unevenly spaced grid for trapped particles. We
give the number of 2π elements in the ballooning grid n2π and
time step size ∆t in each of the following subsections. The
convergence of these resolutions was tested by doubling (or
halving) each parameter.

6.1. Large-tail modes

In this section, we present numerical results that are consist-
ent with the asymptotic theory of linear modes with large elec-
tron tails, summarized in sections 4.4 (the collisionless case)
and 5.4 (the collisional case). In order to make the passing-
electron-response-driven modes the fastest growing instabil-
ity in the system, it is necessary to increase the electron drive
with respect to the ion drive. We take a/LTe = 3a/LTi = 6.9,
and we focus on modes at kyρth,i = 0.5 with θ0 = 1.57. We
vary ν∗ in order to see the effect of electron collisionality on
the mode. The geometry and physical parameters of the sim-
ulations are otherwise as described at the start of this section.
We use the full GS2 model collision operator [36, 37], includ-
ing pitch angle scattering, energy diffusion, and momentum
and energy conserving terms. For the parameters that we con-
sider here, we find that the inclusion of pitch-angle scattering
collisions is crucial for making the large-tail mode the fastest-
growing instability.

In figure 5, we show the results of calculating the lin-
ear growth rate γ and frequency ωr for the deuterium mass
ratio (me/mi)

1/2 ≈ 1/61 and a range of ν∗. We vary the
ion collision frequency ν ii consistently with ν∗, i.e. νii =
ϵ3/2ν∗vth,i/

√
2qR0. We take ∆t= 0.025a/vth,i and n2π = 65.

For the range of ν∗ shown in figure 5, we identify that the
modes are large-tail modes, by a method that we now describe.
We recall the cartoons given in figures 2 and 4. In the large-
tail mode, the relative amplitude of the potentialϕ has the same
size in the outer and inner regions as (me/mi)

1/2 → 0, and the
size of the passing part of the electron distribution functionHe

in the outer and inner regions remains fixed as (me/mi)
1/2 →

0. To demonstrate that the mode is a large-tail mode, we use
a procedure with three steps. First, we perform a scan in the
value of (me/mi)

1/2. Second, we identify an integral measure
of He and use it to demonstrate that He,outer ∼ He,inner, inde-

pendent of the value of (me/mi)
1/2. Third, we plot ϕ normal-

ized to the chosen integral measure of He and demonstrate
that ϕouter ∼ ϕinner, independent of the value of (me/mi)

1/2.
We determine the scale of the inner region χ by using the
scan in (me/mi)

1/2 to determine α such that we can rescale
He(θ)→ He(θ (me/mi)

α
) and so overlay the integral measure

of He for the modes with different values of (me/mi)
1/2. Col-

lisionless modes are expected to have α= 1/2, whereas colli-
sional modes are expected to have α= 1/4. To show how this
procedure works in practice, we consider the clean examples

Figure 5. Growth rate γ and frequency ωr for the large-tail mode
with (mi/me)

1/2 = 61, kyρth,i = 0.5 and θ0 = 1.57, as a function
of ν∗. For ν∗ < 10−3 the large-tail mode is no longer the
fastest-growing mode at this (ky,θ0). Vertical dashed lines A and B
indicate the ν∗ of the collisionless and collisional examples of
large-tail modes that are predicted by the theory in sections 4.4 and
5.4, respectively.

of collisionless and collisional large-tail modes indicated by
‘A’ and ‘B’ on figure 5, respectively.

6.1.1. Case A—a collisionless large-tail mode. In the first
step in our procedure, we scan in the electron mass ratio
from me/mi = 5.4× 10−4 to 5.4× 10−5, whilst holding fixed
aνee/vth,i = 5.21× 10−3. The value of νee is chosen so that
ν∗ = 4.70× 10−3 for the approximate deuterium mass ratio
(mD/me)

1/2 = 61, and ν ii is set by νii/νee = (me/mD)
1/2/

√
2.

We note that this example ν∗ takes a similar value to aνee/vth,i.
This is a result of the large value of qR0/aϵ3/2 = 55.0∼
(mD/me)

1/2. To set n2π for different ion masses mi, we scale
the number of 2π elements appropriately with the mass ratio,
i.e. n2π = 65

√
mi/mD. The time step size is taken to be∆t=

0.025a/vth,i.
In the second step of the procedure, we define a useful

integral measure of the electron distribution function

j∥ = j+∥ − j−∥ , (122)

with

j±∥ =−e
ˆ ∞

0

ˆ 1/Bmax

0

|v∥|
B
He(σ =±1)

2πBε
m2

e |v∥|
dλ dε. (123)

The field j∥ has dimensions of current over magnetic field
strength, and the quantities j+∥ and j−∥ are the contributions
from the forward-going (σ= 1) and backward-going (σ =−1)
particles, respectively. The prime usefulness of j±∥ stems from

the fact that H(0)
e is independent of the 2π-periodic poloidal

angle θ in the asymptotic theory, and, hence, we expect that
j±∥ is a smoothly varying function of ballooning angle, with

minimal geometric 2π-periodic oscillation. We use j+∥ as a
proxy to visualize the distribution of forward-going particles.
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Figure 6. Plot of the field j+∥ , calculated for different mass ratios holding fixed aνee/vth,i = 5.21× 10−3 (ν∗ = 4.70× 10−3 for

(mi/me)
1/2 = 61—case A of figure 5). Note that the curves overlay on the θ/(mi/me)

1/2 axis.

Figure 7. Two views of the electrostatic potential ϕ, for different mass ratios holding fixed aνee/vth,i = 5.21× 10−3 (corresponding to
ν∗ = 4.70× 10−3 when (mi/me)

1/2 = 61, case A of figure 5). The potential is plotted against the scaled ballooning angle θ/(mi/me)
1/2,

and normalized to the maximum value of j+∥ (see equation (123) and figure 6). The fact that the curves overlay on the θ/(mi/me)
1/2 axis

confirms that the mode is a collisionless large-tail mode. Note that the geometric 2π-periodic oscillation in ϕ is due to geometric factors in
the velocity integral over the electron distribution function (see equation (70)). The dimensions are ϕref = Te/e and jref∥ = enevth,e/Bref.

In figure 6, we plot |j+∥ |, normalized to its maximum value, for

different values of (mi/me)
1/2. Figure 6 shows that j+∥ is self-

similar for modes with different (me/mi)
1/2, provided that the

ballooning angle θ is rescaled to θ/(mi/me)
1/2. This confirms

that He,outer ∼ He,inner, and that χ∼ (mi/me)
1/2.

Finally, in the last step of the procedure, we visualize the
electrostatic potential in figure 7.We normalize the potential to
the maximum value of |j+∥ |, and give the result |ϕ|/max|j+∥ | in
the units of ϕref/jref∥ , where ϕref = Te/e and jref∥ = enevth,e/Bref.
In figure 7, we can see that ϕ has an envelope on the scale of
θ ∼ (mi/me)

1/2, and an irreducible geometric structure on the
scale of θ ∼ 2π. The envelope of |ϕ| overlays well in figure 7,
confirming that ϕouter ∼ ϕinner and, hence, that the mode is a
large-tail mode. The geometric 2π-oscillations in ϕ appear
because of the geometric poloidal angle dependence in the
Jacobian 2πBε/m2

e |v∥| of the velocity integral, equation (B.5),
because of the inclusion of trapped particles in the velocity
integral and because of the appearance of the Bessel function

J(0)0e and phase exp [iλeχ] in the quasineutrality relation in the
large-θ region, equation (70).

Based on the asymptotic theory in section 4, we would
expect to see that the growth rate has a leading-order piece

γ(0), and an O
(
(me/mi)

1/2
)
small correction γ(1). In figure 8,

we plot γ (figure 8, left) and ωr (figure 8, right) as a func-
tion of (me/mi)

1/2. Linear fits are provided to show that the
changes with (me/mi)

1/2 in γ and ωr are consistent with an
expansion in (me/mi)

1/2. The fit parameters are of order unity,
and the overall variation in γ and ωr is small. We note that
the linear fit is particularly good for γ for the whole range
of (me/mi)

1/2. In the case of ωr, a linear trend arises only at
small (me/mi)

1/2. In general, we would expect to recover a
linear trend for sufficiently small (me/mi)

1/2. We note that,
because νee/ω≪ 1, the qualitative results of figures 6–8 can
be reproduced by a scan holding fixed ν∗ rather than aνee/vth,i,
provided that νee/ω does not approach values of order
unity.
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Figure 8. Plots of the growth rate γ (left) and real frequency ωr (right) as a function of (me/mi)
1/2, for fixed aνee/vth,i = 5.21× 10−3

(corresponding to case A of figure 5 when (mi/me)
1/2 = 61 and ν∗ = 4.70× 10−3). We give a linear fit to demonstrate that the dependence

of γ and ωr on (me/mi)
1/2 is consistent with an (me/mi)

1/2 expansion of the form given by equation (30).

Figure 9. Distribution function for forward-going particles, for the mode with (mi/me)
1/2 = 61 in figure 6, for ε/Te = 0.79 and

λBref = 0.22. On the left, we plot he for forward-going particles. Note the rapid oscillation in θ for θ ≫ 1. On the right, we plot He for
forward-going particles. Note the smoothness of He compared to he for θ ≫ 1.

Finally, we comment on the use of the modified distribu-
tion functionHe in place of the usual nonadiabatic response he
in the asymptotic theory. In figure 9, we plot the distribution
functions he and He, as a function of θ, for the velocity space
element ε/Te = 0.79, λBref = 0.22 and σ= 1. We show the
distribution functions for the (mi/me)

1/2
= 61 mode featured

in figure 6. We observe that the distribution function he shows
large 2π-scale oscillations in phase, whereas He is a smoothly
varying function. In general,He appears to be a smoother vari-
able than he for the parts of the electron distribution function
where v∥ ∼ vth,e ≫ vth,i. These observations justify the choice
to use the modified distribution function He in the asymptotic
theory.

6.1.2. Case B—a collisional large-tail mode. We now
consider an example of a collisional large-tail mode. We
must demonstrate that He,outer ∼ He,inner and ϕouter ∼ ϕinner as

(me/mi)
1/4 → 0, and show that the envelope of the eigen-

mode scales like χ∼ (mi/me)
1/4. The physics parameters are

identical to those of the collisionless large-tail mode described
in section 6.1.1, except that the electron collisionality is
increased to ν∗ = 1.22.We scan in the electronmass ratio from
me/mi = 5.4× 10−4 to 5.0× 10−6 while holding ν∗ fixed. We

take νii = ϵ3/2ν∗vth,i/
√
2qR0. Anticipating that the scale of the

ballooning envelope should go with (mi/me)
1/4 in the colli-

sional limit, in this case we take n2π = 39(mi/mD)
1/4. Perhaps

due to the larger collision frequency, we find that convergence
is reached only with relatively small time steps for the largest
(mi/me)

1/4 considered in the scan. In the simulations presen-
ted here,∆t= 0.00625a/vth,i. Obtaining convergence in∆t is
more challenging for smaller (me/mi)

1/4.
In the collisional ordering, the asymptotic theory of large-

tail modes in section 5 indicates that there are three leading-
order quantities that are free from geometric 2π poloidal angle
oscillations at large θ: the electron nonadiabatic density δne,
electron temperature δTe and electrostatic potential ϕ. The
electron nonadiabatic density and temperature are plotted in
figure 10, with the ballooning angle θ rescaled by (mi/me)

1/4.
We observe good agreement for different (mi/me)

1/4 in the
mass ratio scan. In figure 11, we plot the electrostatic potential
ϕ, normalized to the maximum value of δne. Figure 11 shows
good agreement for different (mi/me)

1/4. Together, figures 10
and 11 demonstrate that the mode featured is a collisional
large-tail mode.

In the asymptotic theory of the collisional large-tail mode,
the parallel-to-the-field flows play an important diffusive
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Figure 10. (left) Electron nonadiabatic density δne, calculated for ν∗ = 1.22 (case B of figure 5) for different mass ratios. The density is
normalized to its maximum value and plotted against the scaled ballooning angle θ/(mi/me)

1/4. (right) Electron temperature, normalized to
the maximum value of the electron nonadiabatic density. Here nref = ne, T ref = Te.

Figure 11. Electrostatic potential ϕ, calculated for ν∗ = 1.22 (case
B of figure 5) for different mass ratios. The potential is normalized
to the maximum value of δne, max|δne|. Good agreement for the
rescaled potential normalized to max|δne| suggests that this mode
can be regarded as a collisional large-tail mode. Here, ϕref = Te/e
and nref = ne.

role, despite being small by (me/mi)
1/4. In figure 12, we

plot the current-like field j∥, defined in equation (122),

with the ballooning angle θ rescaled by (mi/me)
1/4, and

the amplitude rescaled by (me/mi)
1/4. Although the curves

do not overlay perfectly on the (mi/me)
1/4 ballooning

angle rescaling, the curves appear to be converging for
the largest (mi/me)

1/4 in the scan. We note that the
(mi/me)

1/4 ballooning angle rescaling shown in figure 12
gives better agreement than the (mi/me)

1/2 ballooning angle
rescaling.

The asymptotic expansion for the collisional large-tail
mode is carried out in powers of (me/mi)

1/4. As a con-
sequence, we would expect that γ and ωr would have leading-
order components γ(0) and ω(0)

r , respectively, that are inde-
pendent of mass ratio, and sub-leading components γ(1/2) and
ω
(1/2)
r , respectively, that scale linearly with (me/mi)

1/4. In
figure 13, we plot γ and ωr versus (me/mi)

1/4, with linear
fits given to indicate the order of magnitude of the variation

Figure 12. Current-like field j∥, defined in equation (122),
normalized to the maximum value of δne, for ν∗ = 1.22 (case B of
figure 5). Note that j∥ is a (me/mi)

1/4 small quantity. If the numerics
perfectly reproduced the asymptotic theory of section 5, the plotted
curves would overlay. (mi/me)

1/4 rescaling produces better
agreement than the (mi/me)

1/2 rescaling, and we note that the
curves appear to be converging for the largest (mi/me)

1/4. Here,
jref∥ = enevth,e/Bref and n

ref = ne.

with (me/mi)
1/4. The fit coefficients are of order unity con-

sistent with an (me/mi)
1/4 expansion. We note that a nonlinear

trend is observed in γ for the smallest (me/mi)
1/4. This may

be a result of numerical difficulties, in the light of the very
small ∆t required to converge the smallest (me/mi)

1/4 points
in figure 13.

6.2. Small-tail modes

In this section, we verify the mass ratio scaling for collision-
less small-tail modes, described in section 4.3 and collisional
small-tail modes, described in section 5.3. We focus on the
example of the ITG mode. We perform simulations using the
magnetic geometry described at the start of section 6. We
take the temperature and density-scale lengths to be a/LTi =
a/LTe = 2.3 and a/Ln = 0.733, respectively. We examine the
mode with kyρth,i = 0.5 and θ0 = 0.1.
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Figure 13. Plots of the growth rate γ (left) and real frequency ωr (right) as a function of (me/mi)
1/4, for ν∗ = 1.22 (case B of figure 5). We

give a linear fit to illustrate the dependence of γ and ωr on (me/mi)
1/4.

Figure 14. Growth rate γ and real frequency ωr of the small-tail,
ITG mode with kyρth,i = 0.5, θ0 = 0.1, and (mi/me)

1/2 = 61, as a
function of normalized electron collisionality ν∗. Note that γ and ωr

experience O(1) changes for ν∗ ≳ 10−2. We explain this feature in
figure 15. Vertical dashed lines C and D indicate the ν∗ of the
collisionless and collisional examples of the small-tail mode that are
predicted by the theory in sections 4.3 and 5.3, respectively.

In figure 14, we plot the growth rate γ and real frequency
ωr as a function of ν∗, for (mi/me)

1/2
= 61. We take ∆t=

0.025a/vth,i and n2π = 65. We set the ion collision frequency
consistent with ν∗, i.e. νii = ϵ3/2ν∗vth,i/

√
2qR0. By scanning in

(me/mi)
1/2, we identify that the modes in figure 14 are small-

tail modes by verifying that the θ≫ 1 part of the eigenmode
eϕinner/Te is bounded by the estimates (me/mi)

1/2 eϕouter/Te
(the collisionless case, where νee ≲ ω and we hold aνee/vth,i
fixed) and (me/mi)

1/4 eϕouter/Te (the collisional case, where
νee ≫ ω, ν∗ ∼ 1 and we hold ν∗ fixed). The vertical dashed
lines indicate the ν∗ of the clean examples of the collisionless
and collisional small-tail modes that we describe in detail in
the following sections. Figure 14 shows that γ and ωr depend
on ν∗ for ν∗ ≳ 10−2. In figure 15, we demonstrate that this
ν∗ dependence arises from the trapped electron response. We
compare γ and ωr of the ITG mode calculated using three dif-
ferent electron responses (see [13, 33, 46]): the fully kinetic
electron response (black crosses), a hybrid electron response
with kinetic trapped electrons and adiabatic passing electrons

(blue triangles), and adiabatic electrons (red triangles). By
comparing the hybrid electron case to the adiabatic electron
case, it can be seen that for very small ν∗, trapped electrons are
decoupled from passing electrons and provide an O(1) modi-
fication to the growth rate. When ν∗ become sufficiently large,
the effect of collisions is to detrap the trapped electrons so
that the electron response is essentially adiabatic. The differ-
ence between the cases with the fully kinetic electron response
and the hybrid electron response shows that passing electrons
make a small modification to γ and ωr, consistent with the
asymptotic theory. We note that simulations with adiabatic
passing electrons can be converged with small n2π . For the
simulations presented here, we take n2π = 9.

6.2.1. Case C—a collisionless small-tail mode. We consider
the ITG mode from figure 14 with ν∗ = 5.40× 10−5. We scan
in me/mi = 5.4× 10−4 to 5.4× 10−5, whilst holding fixed
aνee/vth,i = 5.98× 10−5. The value of νee is chosen so that
ν∗ = 5.40× 10−5 for (mi/me)

1/2
= (mD/me)

1/2, and we take
νii/νee = (me/mD)

1/2/
√
2. To identify themode as a collision-

less small-tail mode, we must demonstrate several properties.
First, that there is a θ ∼ 1 region where eϕ/Te is independent
of (me/mi)

1/2 at leading order. Second, that the potential in the
θ≫ 1 region has an amplitude given by estimate (72), and an
envelope θ ∼ (mi/me)

1/2. Third, that the electron distribution
function has a size given by estimate (71), and an envelope
with scale θ ∼ (mi/me)

1/2. In figure 16, we demonstrate that
the first and second properties are satisfied. In figure 17, we use
j+∥ as a measure of He to demonstrate that the third property is
satisfied. In these simulations, we take ∆t= 0.025a/vth,i and
n2π = 65

√
mi/mD.

Finally, we discuss the (me/mi)
1/2 dependence of the

growth rate γ and real frequency ωr in the collisionless
example small-tail mode featured in figures 16 and 17. The
growth rate and frequency are plotted in figure 18. As the
asymptotic expansion is carried out in (me/mi)

1/2, we expect
to see a linear dependence in (me/mi)

1/2. This is observed
for a wide range of (me/mi)

1/2 in γ, but for a smaller range
of (me/mi)

1/2 for ωr. We note that the fit coefficients are of
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Figure 15. ITG mode growth rate γ (left) and real frequency ωr (right), calculated for the physical parameters given in figure 14, for three
different electron response models: the fully kinetic electron response (black crosses); a hybrid electron response, where the passing
electrons are forced to respond adiabatically, but trapped electrons respond kinetically (blue upward triangles); and a fully adiabatic electron
response (red downward triangles). Note that the fully kinetic electron response results in a similar growth rate to the case with a hybrid
electron response—this implies that trapped electrons are responsible for the O(1) variation in γ and ωr.

Figure 16. Two views of the electrostatic potential ϕ, calculated for different mass ratios with fixed aνee/vth,i = 5.98× 10−5, corresponding
to case C of figure 14 when (mi/me)

1/2 = 61, and, hence, ν∗ = 5.40× 10−5. (left) The potential ϕ is plotted against the unscaled
ballooning angle θ and normalized to its maximum value. The fact that the curves overlay for θ ∼ 1 indicates that the potential eigenmode is
independent of (me/mi)

1/2 to leading order. (right) The potential is plotted against the scaled ballooning angle θ/(mi/me)
1/2, and

normalized by a factor of (me/mi)
1/2max|ϕ|. The fact that the curves overlap in the region θ ∼ (mi/me)

1/2 indicates that the mode is a
small-tail mode, satisfying the ordering (72).

Figure 17. Plot of the field j+∥ , calculated for different mass ratios and fixed aνee/vth,i = 5.98× 10−5, corresponding to ν∗ = 5.40× 10−5

for (mi/me)
1/2 = 61 (case C of figure 14). The fact that the curves overlay on the θ/(mi/me)

1/2 axis confirms that the mode is a
collisionless small-tail mode, satisfying the ordering (71).
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Figure 18. Plots of the growth rate γ (left) and real frequency ωr (right) as a function of (me/mi)
1/2, for the mode featured in figures 16 and

17. We give a linear fit to demonstrate that the dependence of γ and ωr on (me/mi)
1/2 is consistent with an (me/mi)

1/2 expansion.

Figure 19. Two views of the electrostatic potential ϕ, calculated for ν∗ = 1.22 (case D of figure 14) for different mass ratios. (left) The
potential ϕ is plotted against the unscaled ballooning angle and normalized to its maximum value. The fact that the curves overlay in the
θ ∼ 1 region indicates that the mode is a small-tail mode. (right) Potential ϕ is plotted against the scaled ballooning angle θ/(mi/me)

1/4,
and normalized to its maximum value, divided by (me/mi)

1/4. The fact that the curves overlay for θ ∼ (mi/me)
1/4 indicates that we have

correctly identified the scaling (113) for the size of the electron response, and the size of the mode envelope.

order unity, confirming that the dependence of γ and ωr on
(me/mi)

1/2 is consistent with the (me/mi)
1/2 expansion.

6.2.2. Case D—a collisional small-tail mode. In the col-
lisional limit, the electron response of the small-tail mode
is characterized by a jump in the electron flow across the
θ ∼ 1 region. This results in the scaling (113) for the elec-
trostatic potential, electron density and electron temperature
in the θ≫ 1 region. As in the large-tail collisional mode, the
size of the envelope of the mode is expected to be of scale
θ ∼ (mi/me)

1/4. To test these scalings, we examine an ITG
mode with normalized electron collision frequency ν∗ = 1.22
(case D of figure 14). We scan in me/mi from 5.4× 10−4

to 5.0× 10−6 while holding ν∗ fixed. We plot the electro-
static potential ϕ in figure 19. We note that ϕ has no mass
dependence for θ ∼ 1, and that ϕ has the mass scaling given
by the estimate (113) for θ ∼ (mi/me)

1/4. This confirms that
the mode is a collisional, small-tail mode. In the simulations,
we take∆t= 0.025a/vth,i and n2π = 39(mi/mD)

1/4.
To further illustrate the electron response, we plot the non-

adiabatic electron density δne and electron temperature δTe in
figure 20. The scaling (113) is confirmed by the fact that the

curves overlay with the mass scaling (me/mi)
1/4 in the amp-

litude and themass scaling (mi/me)
1/4 in the ballooning angle.

In figure 21, we plot the field j∥, normalized to the maximum
value of |ϕ|. Consistent with the identification of the mode
as a collisional small-tail mode, the envelope of j∥ appears

to scale like θ ∼ (mi/me)
1/4, and the amplitude is small by

(me/mi)
1/2. Although the envelope rescaling is not perfect in

figure 21, the curves appear to be converging for the largest
(mi/me)

1/4 in the scan. We note that the (mi/me)
1/4 rescal-

ing is better than the (mi/me)
1/2 rescaling. This figure com-

pletes the demonstration of the physical picture for the col-
lisional small-tail mode. The ions generate an electrostatic
potential at θ ∼ 1, the electrons respond with a (me/mi)

1/2

small flow and the small electron flow self-consistently sets
up a (me/mi)

1/4 nonadiabatic electron density and temperature
response.

Finally, in figure 22 we plot the growth rate γ and
the real frequency ωr as a function of (me/mi)

1/4. The
asymptotic expansion for the collisional small-tail mode
is carried out in powers of (me/mi)

1/4. Hence, we would
expect the leading corrections to the frequency to scale as
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Figure 20. (left) Electron nonadiabatic density δne, and (right) the electron temperature δTe, calculated for ν∗ = 1.22 (case D of figure 14)
for different mass ratios.

Figure 21. Plot of the field j∥, calculated for ν∗ = 1.22 (case D of figure 14) for different mass ratios. Whilst the curves do not overlay

perfectly, we note that the curves appear to be converging for the largest (mi/me)
1/4 in the scan.

Figure 22. Plots of the growth rate γ (left) and real frequency ωr (right) as a function of (me/mi)
1/4, for ν∗ = 1.22 (case D of figure 14).

We give a quadratic fit to demonstrate that the dependence of γ and ωr on (me/mi)
1/4 is consistent with an (me/mi)

1/4 expansion if a
(me/mi)

1/2 term is included.

ω(1/2)/ω(0) ∼ (me/mi)
1/4, with a subleading correction scal-

ing likeω(1)/ω(0) ∼ (me/mi)
1/2. Possibly consistent with this,

in figure 22 we see that the coefficients of plausible quadratic
fits have parameters γ0 and γ2 (ω0 and ω2) of order unity,
with γ1 (ω1) unexpectedly small. This may indicate the need
for a more complicated asymptotic theory or simply that the
(me/mi)

1/4 correction is small in this example.

6.3. Transition between the large-tail and small-tail modes

In the previous sections, we have focused on examples where
either a large-tail mode or a small-tail mode is clearly dom-
inant. However, in practice, it is possible to find cases where
these different asymptotic branches have similar growth rates
at the same ky and θ0, meaning that a transition can be observed
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Figure 23. Real frequency ωr (left) and growth rate γ (right) as a function of θ0 and (mi/me)
1/2, for aνee/vth,i = 5.21× 10−3, a/LTe = 3.45

and a/LTi = 2.3. Discontinuity in ωr indicates a transition between different instability branches. Modes to the left of the dashed line are
small-tail modes (driven by trapped electrons and ions), whereas modes to the right of the dashed line are large-tail modes (driven by
passing electrons). Note that ωr and γ are approximately independent of θ0 for the large-tail modes over a wide range of θ0.

with the variation of some parameter. To illustrate this,
we consider modes with kyρth,i = 0.5, a/LTe = 3.45, a/LTi =
2.3, and an electron collisionality of aνee/vth,i = 5.21× 10−3.
Figure 23 shows the real frequency ωr and growth rate γ
of these modes as a function of θ0, for different values
of (mi/me)

1/2 at fixed aνee/vth,i. There is a clear discon-
tinuity in ωr, indicating a transition between different mode
branches. By examining the eigenmodes using the techniques
of sections 6.1 and 6.2, we verify that the modes to the right
of the dashed line are collisionless large-tail modes. In con-
trast, we identify that the modes to the left of the dashed line
are collisionless small-tail modes. We note that the small-tail
mode drifts in the ion diamagnetic direction, whereas the
large-tail mode drifts in the electron diamagnetic direction.
As (mi/me)

1/2 increases, the γ and ωr of the large-tail mode
become independent of θ0, in accordance with the predictions
of section 4.4.

We note that initial-value simulations of eigenmodes are
challenging to converge when distinct instabilities exist at the
same (ky,θ0) with the same γ. The data plotted in figure 23
are for modes where the ωr and γ are converged to 0.5%
(compared to values averaged over a 5a/vth,i window) after
500a/vth,i. A time step size of ∆t= 0.1a/vth,i was found to
be adequate to resolve the collisionless modes featured in this
section. The number of 2π elements of the ballooning chain
was taken to be n2π = 65

√
mi/mD.

7. Discussion

In the conventional treatment of the nonadiabatic electron
response in modes with binormal wavenumbers on the scale
of the ion thermal gyroradius, i.e., in modes with kyρth,i ∼ 1,
rapid electron parallel streaming is assumed to imply that
the nonadiabatic response of passing electrons should be
small. This assumption leads to the usual ITG-driven modes
and TEMs where the nonadiabatic passing electron response
is subdominant. However, several numerical investigations
have revealed the existence of long-wavelength modes with

extended ballooning tails, where the nonadiabatic passing
electron response appears to play a significant role, see, for
example, [12, 13, 15–18, 25, 27]. In terms of a wavenumber-
space description, these electron-driven modes are fluctu-
ations with large radial wave numbers, i.e. krρth,i ≫ 1. In the
real-space description, these modes are fine-scale fluctuations
with significant amplitudes near mode-rational flux surfaces.
Examples of these modes may be found in the core of toka-
maks [12, 13], and in the pedestal [15]. Qualitatively, the
micro-tearing modes in tokamaks share the same features as
the extended electrostatic modes in [12, 13, 15], with both
extended ballooning tails and an ETG drive [16–18].

In this paper, we show that it is possible to obtain an
asymptotic theory for novel electron-response-driven kyρth,i ∼
1modes by assuming that the nonadiabatic response of passing
electrons cannot be neglected, and by carefully considering the
regions of the mode with large kr. The physics of these novel
modes turns out to be dominated by the physics at krρth,i ≫ 1,
and surprisingly, the nonadiabatic ion response is unimport-
ant (but not small). When the nonadiabatic-electron-response-
driven modes are unstable, their growth rate is expected to
be insensitive to the exact details of the magnetic geometry
because the leading-order equations for the modes contain
only poloidal-angle-averaged geometric quantities. As a corol-
lary, the growth rate of the mode is expected to be independ-
ent of θ0. Hence, extended, electrostatic electron-drivenmodes
may be insensitive to equilibrium flow shear, driving turbu-
lence even when the more familiar ITG modes and TEMs are
flow-shear stabilized. These observations may be important
for projected tokamak scenarios that rely on equilibrium flow
shear to stabilize microinstabilities, see [47].

We identify two limits where there are simple orderings.
First, we examine the collisionless limit, where qR0 νee/vth,e ∼
(me/mi)

1/2 ≪ 1, the radial wave number satisfies krρth,e ∼ 1,
and the fundamental expansion parameter is (me/mi)

1/2 ≪ 1.
In collisionless ordering, the extent of the mode is set by
the physics of electron-free streaming, electron finite Larmor
radius and electron finite orbit width effects. Second, we exam-
ine the collisional limit where qR0 νee/vth,e ∼ 1, the radial
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wave number satisfies krρth,e ∼ (me/mi)
1/4, and the funda-

mental expansion parameter is (me/mi)
1/4 ≪ 1. In collisional

ordering, the extent of the mode is set by parallel and per-
pendicular classical and neoclassical diffusion. We note that
the collisionless and collisional orderings for the extent of the
electrostatic modes considered in this paper are reminiscent of
the collisionless and semi-collisional orderings for the size of
a tearing layer in a sheared magnetic field, see, for example,
[39, 48–51].

We derive scaling laws for the relative sizes of the electron
and ion responses in the krρth,i ∼ 1 and krρth,i ≫ 1 regions of
the ballooning mode. To confirm our analytically derived scal-
ings, we use the gyrokinetic stability code GS2 to perform a
series of linear simulations for a range of normalized electron
collisionality ν∗ = qR0 νee/ϵ

3/2vth,e, and a range of me/mi.
We identify parameters where a novel passing-electron-driven
mode is the fastest unstable mode. We present two relatively
clean examples of the passing-electron-driven mode: a colli-
sionless case and a collisional case. We perform the same ana-
lysis for an ITG mode and verify the scalings for the subdom-
inant nonadiabatic electron response.

Although the theory presented here neglects electromag-
netic fluctuations, many features of these novel electro-
static modes are common to micro-tearing modes. We spec-
ulate that some classes of micro-tearing modes may be well
described by a collisionless (me/mi)

1/2 → 0 theory or colli-
sional (me/mi)

1/4 → 0 theory similar to the theories presented
in this paper. The development of these asymptotic theories
provides not just physical insight, but the possibility of per-
forming reduced linear simulations of nonadiabatic-electron-
response-driven modes. Simulations of extended ballooning
modes can be expensive in comparison to simulations of famil-
iar ITG-driven modes. A reduction of the size of the prob-
lem by removing the geometric 2π poloidal-angle scale from
the gyrokinetic equations may be an advantage. We anticipate
that the need for computational efficiency in simulating exten-
ded ballooning modes will become more urgent in the light
of recent work [52] that suggests high-β spherical tokamak
reactor equilibria may be unstable to extended micro-tearing
modes for a wide range of ky.

The nonadiabatic response of passing electrons has recently
been shown to be a significant factor in determining the iso-
tope effect [23, 24]. In fact, Belli et al [24] argue that changes
in a (me/mi)

1/2-small passing electron nonadiabatic response
can lead to O(1) changes in the heat fluxes as a result of the
divergent asymptotic expansion in (me/mi)

1/2. In this paper,
we show that, in linear modes, the nonadiabatic response of
passing electrons does not need to be small in (me/mi)

1/2.
Indeed, it is not even obvious that an expansion should be
carried out in (me/mi)

1/2. Instead, (me/mi)
1/4 could be the

relevant expansion parameter for sufficiently large collision-
ality. This is an important observation because, in practice,
(me/mi)

1/4 ≈ 1/8 is likely to be a worse expansion parameter
than (me/mi)

1/2 ≈ 1/60. For sufficiently large collisionality,
nonasymptotic behaviour may perhaps be observed because
the physical value of (me/mi)

1/4 is not small enough. Whilst

we do not develop a nonlinear theory in this paper, we specu-
late that the isotope effect may well be the result of the non-
adiabatic response of passing electrons in krρth,i ≫ 1 narrow
layers regulating turbulent transport.

The impact of electron-driven narrow radial layers on non-
linearly saturated turbulence is the subject of active research.
Studies of turbulence using DNS have demonstrated that the
nonadiabatic response of passing electrons in narrow layers
near the mode-rational flux surfaces can have a significant
impact on turbulence saturation levels and fluxes, see, for
example, [12, 13, 25–27, 53]. We note that electron-driven
narrow radial layers are not necessarily associated with mode-
rational surfaces. In fact, narrow radial structures formed by
ion-gyroradius-scale toroidal ETGmodes near the top and bot-
tom of the tokamak [15] have recently been observed to regu-
late the fluxes in nonlinear DNS of ETG-driven pedestal tur-
bulence [54]. The pedestal toroidal ETG modes driving these
structures rely on magnetic drift resonances and have large
radial wave numbers as a result of the large gradients of dens-
ity and temperature, but, in contrast to the modes featured in
this paper, they rely on favourable local magnetic geometry
and are relatively localized in the ballooning angle. As men-
tioned in the introduction, electron-tail modes with extended
ballooning eigenfunctions may nonetheless be observed in the
pedestal at very long binormal wavelengths (see appendix B
of [15]). Extended eigenfunctions arise naturally when there
is a separation between the frequencies associated with free
streaming and the drives of instability.

Further evidence for the importance of the nonadiabatic
response of passing electrons in narrow layers may be found in
DNS that bridge kyρth,i ∼ 1 to kyρth,e ∼ 1 scales. Entropy trans-
fer analysis suggests that the nonadiabatic response of passing
electrons mediates the backreaction of kyρth,e ∼ 1 eddies on
kyρth,i ∼ 1 turbulence, via krρth,i ≫ 1 narrow layers [6]. These
observations suggest that theories of turbulence that attempt
to capture the (me/mi)

1/2 → 0 limit may need to be modi-
fied to include the effects of electrons in narrow radial lay-
ers on saturation. This includes theories of turbulence on
kyρth,i ∼ 1 scales in isolation (see [34]) and theories of cross-
scale interactions between kyρth,i ∼ 1 and kyρth,e ∼ 1 scales
(see [33, 46]).

Finally, we note that whilst the results presented here are
specific to an axisymmetric tokamak by virtue of using the
identity (22), we speculate that a similar theory to the one
we present might be obtained for stellarator geometries. Phys-
ically, passing-electron-driven resonances at mode rational
surfaces can arise in tokamaks due to the vanishing aver-
age radial magnetic drift—undisturbed passing particles may
return many times to the same location on the flux surface.
Stellarator geometries also guarantee that the average radial
magnetic drift of passing particles is zero [58], possibly allow-
ing for similar passing-electron-driven modes at rational sur-
faces. In a stellarator, trapped particles only have zero average
radial magnetic drift if the geometry is omnigeneous [55–60].
As a consequence, in an arbitrary stellarator trapped particles
may act to disturb passing-electron-driven modes by dragging
passing particles off rational surfaces through collisions—we
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note that this effect would disappear in the ν∗ ≫ 1 limit in
which trapped particles cannot complete an orbit.
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Appendix A. A detailed analysis of the ion
response for large θ

In this appendix, we give a detailed analysis of the nonadia-
batic ion response at large ballooning θ. This discussion will
illustrate in more detail how the hyperbolic ion gyrokinetic
equation, equation (4) with s= i, reduces to the local algebraic
equation (53) in the electron-dominated tail of the ballooning
mode.

We note that, for large θ, the leading-order ion gyrokinetic
equation has the form

σ
∂hi
∂θ

+P(θ)hi = S(θ), (A.1)

where the source S= i(ω∗,i −ω)J0iF0i Zieϕ/Ti|v∥|b ·∇θ, and
the factor P≫ 1. We argue, in section 4.2.1, that in the colli-
sionless limit

P=
1

|v∥|b ·∇θ

(
k2αq

′2|∇ψ|2 θ2v2

4Ω2
i

(
ν∥,iλB+

ν⊥,i
2

(2−λB)
)

− ikαq
′θvM,i ·∇ψ

)
, (A.2)

whereas, in section 5.1.1, we argue that in the collisional limit

P=
k2αq

′2|∇ψ|2 θ2v2

4Ω2
i |v∥|b ·∇θ

(
ν∥,iλB+

ν⊥,i
2

(2−λB)
)
, (A.3)

i.e. we can neglect the term due to the radial magnetic drift. In
solving for the ion response, we have no need to distinguish
between θ and χ—this distinction is only a requirement for
solving for the electron response. For simplicity, in the sub-
sequent algebra, we drop the usage of χ. In writing equation
(A.1), we have emphasised the θ dependence of S and P, and
we have neglected the differential terms of the ion gyrokinetic
collision operator, the terms due to the time derivative of hi
and the precessional magnetic drift. These terms can be neg-
lected because θ≫ 1, kyρth,i ∼ 1 and ω ∼ vth,i/a, and, hence,
the leading terms are large, i.e. P≫ 1. Note that the real part
of P is positive, i.e. ℜ [P]> 0.

We consider the solution of equation (A.1) for θ > 0. Integ-
rating equation (A.1) directly, we find that, for forward-going
particles (σ= 1),

hi =
ˆ θ

0
S(θ ′ ′)exp

[
−
ˆ θ

θ ′ ′
P(θ ′)dθ ′

]
dθ ′ ′

+ hi(θ = 0,σ = 1)exp

[
−
ˆ θ

0
P(θ ′)dθ ′

]
. (A.4)

For backward-going particles (σ =−1), we find that

hi =
ˆ ∞

θ

S(θ ′ ′)exp

[
−
ˆ θ ′ ′

θ

P(θ ′)dθ ′
]
dθ ′ ′, (A.5)

where we have used hi(θ =∞,σ =−1) = 0 as a boundary
condition. Inspecting the solutions (A.4) and (A.5), we note
that there are two components: a ‘local’ solution involving
S, and an exponentially decaying solution (proportional to
hi(θ = 0,σ = 1)) due to the outgoing particles from θ= 0. The
exponentially decaying part of the solution gives rise to the
logarithmic boundary layer referred to in appendix G. In this
discussion, we can neglect the exponentially decaying part of
the ion response because the electron tail at large θ generates
its own potential that drives the ions via the ‘local’ response.

We now consider the form of the local solution when P≫ 1
and ℜ[P]> 0, and the integrals can be treated using the stand-
ard Laplace method [62]. We treat the case of σ= 1 explicitly.
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First, we note that the dominant contributions to the integrals
in equation (A.4) come from where θ ≃ θ ′ ′. In this region, we
write

exp

[
−
ˆ θ

θ ′ ′
P(θ ′)dθ ′

]
= exp [−P(θ)(θ− θ ′ ′)]

×
(
1+O

(
1
P
∂P
∂θ

(θ− θ ′ ′)

))
,

(A.6)

which is accurate provided that (θ− θ ′ ′)/θ≪ 1.We introduce
a parameter δ, so that we can write

hi = I0 + Iδ, (A.7)

with

I0 =
ˆ θ

θ−δ
S(θ ′ ′)exp

[
−
ˆ θ

θ ′ ′
P(θ ′)dθ ′

]
dθ ′ ′, (A.8)

and

Iδ =
ˆ θ−δ

0
S(θ ′ ′)exp

[
−
ˆ θ

θ ′ ′
P(θ ′)dθ ′

]
dθ ′ ′. (A.9)

We can use the approximation (A.6) in I0 provided δ/θ≪ 1.
Using (A.6), the leading contribution to I0 is given by

I0 =
ˆ θ

θ−δ
S(θ)exp [−P(θ)(θ− θ ′ ′)]dθ ′ ′. (A.10)

Evaluating the integral, we find that

I0 =
S(θ)
P(θ)

(1− exp [−P(θ)δ]) . (A.11)

Taking δ so thatℜ[P]δ≫ 1 (consistent with δ/θ≪ 1), we find
that, to leading order

hi =
S(θ)
P(θ)

, (A.12)

where we have used the smallness of exp [−P(θ)δ] to neglect
Iδ . An analogous calculation can be performed for σ =−1,
with the result that hi satisfies (A.12) for both signs of the
velocity. The result (A.12) is identical in form to equations
(53). We have demonstrated that, although the ion gyrokinetic
equation is hyperbolic, the fact that P≫ 1 means that paral-
lel streaming is unable to effectively propagate information at
large θ, and, hence, the nonadiabatic response of ions is local
in ballooning angle.

Appendix B. Obtaining the electron transport
equations in the collisional inner region

In this section, we calculate the forms of the trans-
port equations that describe the electron response in
the (me/mi)

1/4 → 0 limit, for kyρth,i ∼ 1 modes with
qR0 νee/vth,e ∼ 1. We note that, in the ordering for the col-
lisional inner region, χ∼ (mi/me)

1/4 ≫ 1∼ θ0 ≫ λe ∼
(me/mi)

1/2, and, hence, the phase in equation (25) for He

becomes

exp [iλe(θ0 − θ)]

=

(
1− iλeχ− λ2e χ

2

2
+ iλeθ0 +O

((
me

mi

)3/4
))

.

(B.1)

In addition, we will need to expand the phase due to the finite
Larmor radius exp [ik⊥ ·ρe] in the collision operator CGK

e [·].
In the inner region, we find

exp [ik⊥ ·ρe] = 1+ ik(0)⊥ ·ρe−
1
2
(k(0)⊥ ·ρe)2 + ik(1)⊥ ·ρe

+O

((
me

mi

)3/4
)
, (B.2)

where we note that k(0)⊥ ·ρe ∼ (me/mi)
1/4 and k(1)⊥ ·ρe ∼

(me/mi)
1/2.

The leading-order equation for the electron response in the
inner region is equation (81). To obtain equation (81), we
have used equations (B.1) and (B.2) for the finite-orbit-width
and finite-Larmor-radius phases, respectively, and the estim-
ate (79) for δui to simplify the collision operators to the drift-
kinetic form. We have also noted that H(0)

e is gyrophase inde-
pendent, and Cee[·] and L[·] commute with ⟨·⟩γ .

We follow an H-theorem procedure [32, 40] to solve
equation (81). First, we multiply equation (81) by H(0)

e /F0e,
with the following result:

v∥b ·∇θ
∂

∂θ


(
H(0)

e

)2
2F0e

=
H(0)

e

F0e
Cee

[
H(0)

e

]
+
H(0)

e

F0e
L
[
H(0)

e

]
.

(B.3)

Second, we integrate over velocity space:

B ·∇θ ∂
∂θ

ˆ v∥
B

(
H(0)

e

)2
2F0e

d3 v


=

ˆ
H(0)

e

F0e
Cee

[
H(0)

e

]
d3 v+

ˆ
H(0)

e

F0e
L
[
H(0)

e

]
d3 v,

(B.4)

where we have used the form of the velocity integral in (ε,λ)
coordinatesˆ

(·) d3 v=
∑
σ

ˆ ∞

0

ˆ 1/B

0

2πBε
m2
s |v∥|

(·) dλ dε, (B.5)
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and taken the ∂/∂θ derivative through the integral. Finally,
we apply the poloidal angle average ⟨·⟩θ, defined by equation
(80), to equation (B.4), and impose periodicity of H(0)

e in θ, to
obtain

〈ˆ
H(0)

e

F0e
Cee

[
H(0)

e

]
d3 v

〉θ
+

〈ˆ
H(0)

e

F0e
L
[
H(0)

e

]
d3 v

〉θ
= 0.

(B.6)

The collision operatorsCee [·] andL [·] have the properties [32]

ˆ
g
F0e

Cee [g] d
3 v⩽ 0 and

ˆ
g
F0e

L [g] d3 v⩽ 0, (B.7)

respectively. Collisions always increase the entropy of the sys-
tem. The equality

´
(g/F0e) Cee [g] d3 v= 0 is only achieved

when g is a perturbed Maxwellian so that Cee [g] = 0. The
equality

´
(g/F0e) L [g] d3 v= 0 is only achieved when g is

isotropic in v so that L [g] = 0. As a consequence of equation
(B.6), we find that H(0)

e satisfies equation (82) with δn(0)e

and δT(0)e functions of θ and χ to be determined. Return-
ing to equation (81), we now find that H(0)

e must also satisfy
v∥b ·∇θ∂H

(0)
e /∂θ = 0. For ∂H(0)

e /∂θ = 0 to hold for all ε, we

must have that δn(0)e and δT(0)e are constant in θ, i.e. δn(0)e and
δT(0)e have the form given by equation (83).

The first-order equation for the electron response in the
inner region takes the form

v∥b ·∇θ
∂H(1/2)

e

∂θ
+ v∥b ·∇θ

∂H(0)
e

∂χ
= C

[
H(1/2)

e + iλeχH
(0)
e

]
,

(B.8)

where we have used the definition of the drift-kinetic electron
collision operator C [·], equation (37). To expand the collision
operator (28) for electrons, we have used the definition (8),
equations (B.1) and (B.2), the estimate (79) and the identities

〈
ik(0)⊥ ·ρe C

[
H(0)

e

]〉γ
=
〈
C
[
ik(0)⊥ ·ρe H(0)

e

]〉γ
= C[H(0)

e ] = 0.

(B.9)

Equation (B.8) bears a resemblance to the neoclassical
drift-kinetic equation in the banana collisionality regime
[32, 40]. We note that the term v∥b ·∇θ∂H

(0)
e /∂χ plays the

role of the equilibrium inductive electric field in the cor-
responding neoclassical equation. The resemblance can be
made explicit by absorbing the v∥b ·∇θ∂H

(0)
e /∂χ term into

the collision operators by solving the Spitzer–Härm problem,
equation (94). It is useful to note that because the collision
operator C[·] is isotropic [32], HSH must have the form

HSH = v∥KSH(ε,χ)F0e, (B.10)

where KSH is a function of ε and χ. We determine KSH in
appendix C. Using HSH, we can rewrite equation (B.8) in the
form of equation (95).

To determine the time evolution of δn(0)e and δT(0)e , we con-

tinue to the O
(
(me/mi)

1/2
)
equation. After collecting terms

of O
(
(me/mi)

1/2
)
, we find that the equation that determines

H(0)
e is

v∥b ·∇θ
∂H(1)

e

∂θ
+ v∥b ·∇θ

∂H(1/2)
e

∂χ
+ i(ωM,e −ω(0))H(0)

e

−C
[
H(1)

e + iλeχH
(1/2)
e −

(1
2

(
λ2
eχ

2

+
〈
(k(0)⊥ ·ρe)

2
〉γ )

+iλeθ0

)
H(0)

e

]
+ iλeχC

[
H(1/2)

e + iλeχH
(0)
e

]
−
〈
k(0)⊥ ·ρe C

[
k(0)⊥ ·ρe H

(0)
e

]〉γ
=−i(ω∗,e −ω(0))F0e

eϕ(0)

Te
, (B.11)

where, to obtain equation (B.11), we have used equations
(B.1) and (B.2), estimate (79), identities (B.9), that J0e = 1+

O
(
(me/mi)

1/2
)

for χ∼ (mi/me)
1/4, and that C[·] and ⟨·⟩γ

commute.
We can convert equation (B.11) into equations for δn(0)e (χ)

and δT(0)e (χ) by multiplying equation (B.11) by the appropri-
ate velocity space function (1 or ε/Te − 3/2), integrating over
velocity space, integrating over θ, and finally imposing onH(1)

e

the condition of 2π-periodicity in θ. After performing these
operations, and dividing by ne, the equation for the density
moment is

∂

∂χ

(〈
b ·∇θ δU(1/2)

∥,e

〉θ)
+ i
〈
ωth
M,e

〉θ(δn(0)e

ne
+
δT(0)e

Te

)

− iω(0) δn
(0)
e

ne
+

〈
1
ne

ˆ
iλeχ C

[
H(1/2)

e + iλeχH
(0)
e

]
d3 v

〉θ
−
〈

1
ne

ˆ 〈
k(0)⊥ ·ρe C

[
k(0)⊥ ·ρe H(0)

e

]〉γ
d3 v

〉θ
=−i(ωn∗,e −ω(0))

eϕ(0)

Te
, (B.12)

where we have defined the effective thermal magnetic drift fre-
quencyωth

M,e = ωD+ kαv2th,e b ·∇θq ′I/2Ωe, the nth-order com-

ponent of the v∥ moment of H(0)
e

δU(n)
∥,e =

1
ne

ˆ
v∥H

(n)
e d3 v, (B.13)

and used that the collision operator C [·] satisfies

ˆ
C [ f ] d3 v= 0, (B.14)
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for f an arbitrary function of v. Similarly, the equation for the
electron temperature is

∂

∂χ

〈b ·∇θ
δQ(1/2)

∥,e

neTe
+ δU(1/2)

∥,e

〉θ


+ i
〈
ωth
M,e

〉θ(δn(0)e

ne
+

7
2
δT(0)e

Te

)
− i

3
2
ω(0) δT

(0)
e

Te

+

〈
1
ne

ˆ (
ε

Te
− 3

2

)
iλeχ C

[
H(1/2)

e + iλeχH
(0)
e

]
d3 v

〉θ
−
〈

1
ne

ˆ (
ε

Te
− 3

2

)〈
k(0)⊥ ·ρe C

[
k(0)⊥ ·ρe H(0)

e

]〉γ
d3 v

〉θ
=−i

3
2
ωn∗,eηe

eϕ(0)

Te
, (B.15)

where we have defined the nth-order component of the
v∥(ε/Te − 5/2) moment of H(0)

e

δQ(n)
∥,e =

ˆ
v∥

(
ε− 5Te

2

)
H(n)

e d3 v, (B.16)

and used that the collision operator C [·] satisfies
ˆ (

ε

Te
− 3

2

)
C [f] d3 v= 0. (B.17)

Equations (B.12) and (B.15) have simple physical inter-
pretations when written in terms of the leading-order nonzero
components of the electron parallel velocity

δu(1/2)∥,e =
1
ne

ˆ
v∥(H

(1/2)
e + iλeχH

(0)
e ) d3 v, (B.18)

and electron parallel heat flux

δq(1/2)∥,e =

ˆ
v∥

(
ε− 5Te

2

)
(H(1/2)

e + iλeχH
(0)
e ) d3 v. (B.19)

After defining the effective, parallel velocity and effect-

ive parallel heat flux, δu∥ =
〈
b ·∇θ δu(1/2)∥,e

〉θ
/⟨b ·∇θ⟩θ and

δq∥ =
〈
b ·∇θ δq(1/2)∥,e

〉θ
/⟨b ·∇θ⟩θ, respectively, we obtain

equations (85) and (86).

Appendix C. Spitzer–Härm component of the
parallel diffusion collisional terms

In order to evaluate the parallel flow and neoclassical perpen-
dicular diffusion terms in equations (85) and (86), we need to
solve equation (94) forHSH. To solve forHSH, we first note that
the collision operators Cee[·] and L[·], defined in equations (6)
and (9), respectively, are isotropic operators [32], and hence,
HSH may be assumed to have the form given in equation
(B.10). Second, we note that equation (94) is linear in δn(0)e

and δT(0)e . Third, we may express the ε dependence of KSH in
a convenient basis of polynomials. Hence, KSH is given by

KSH = b ·∇θ
∂

∂χ

(
δn(0)e

ne

)
fSH(x̂)+ b ·∇θ

∂

∂χ

(
δT(0)e

Te

)
gSH(x̂),

(C.1)

where

fSH(x̂) =
∑
p=0

apL
3/2
p (x̂), (C.2)

and

gSH(x̂) =
∑
p=0

cpL
3/2
p (x̂), (C.3)

with x̂= ε/Te = v2/v2th,e, L
3/2
p (x̂) the pth generalised Laguerre

polynomial Ljp(x̂) of index j= 3/2, and ap and cp coefficients
to be determined. The generalised Laguerre polynomials of
index j= 3/2 are particularly convenient for this problem
because we will be able to exploit the orthogonality relation
[32]

ˆ ∞

0
Ljp(x̂)L

j
q(x̂)exp [−x̂]x̂jdx̂=

Γ(p+ j+ 1)
p!

δp,q, (C.4)

where Γ( j) =
´∞
0 x̂j−1 exp [−x̂]dx̂ is the Gamma function and

δp,q is the Kronecker delta. The polynomial Ljp(x̂) may be
obtained from the generating function [32]

G(x̂,z) =
exp [−x̂z/(1− z)]

(1− z)j+1
=
∑
p=0

zpLjp(x̂). (C.5)

With the form of KSH given by equation (C.1), the problem
(94) may be cast into two separate Spitzer problems for fSH
and gSH:

v∥L
3/2
0 F0e = C

[
v∥fSHF0e

]
, (C.6)

and,

v∥(L
3/2
0 −L3/21 )F0e = C

[
v∥gSHF0e

]
, (C.7)

where we have used the first two generalised Laguerre polyno-
mials, L3/20 (x̂) = 1 and L3/21 (x̂) = 5/2− x̂. We solve equations
(C.6) and (C.7) by converting them into matrix equations for
the coefficients ap and cp, respectively. To do this, we define an
inner product ⟨·|·⟩ acting on velocity space functions f= f(v)
and g= g(v) by

⟨f|g⟩=
ˆ

f(v)g(v)
F0e

d3 v, (C.8)

andwe take the inner product of equations (C.6) and (C.7) with
the function v∥L

3/2
q F0e. To perform the velocity integrals, we

use the velocity coordinates (x̂, ξ,γ), where ξ = v∥/v, and we
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recall that γ is the gyrophase. The velocity integral in these
coordinates becomes

ˆ
(·) d3 v=

ˆ 2π

0

ˆ 1

−1

ˆ ∞

0
(·)

v3th,e
2

√
x̂ dx̂ dξ dγ. (C.9)

Using the orthogonality relation (C.4), we find that the matrix
form of equation (C.6) is∑

q

(νeeCp,q+ νeiLp,q)aq =−δ0,p, (C.10)

where the matrix elements Cp,q and Lp,q are defined by

Cp,q =− 2
neνee

〈
x̂1/2ξF0eL

3/2
p

∣∣∣Cee

[
x̂1/2ξF0eL

3/2
q

]〉
, (C.11)

and,

Lp,q =− 2
neνei

〈
x̂1/2ξF0eL

3/2
p

∣∣∣L[x̂1/2ξF0eL
3/2
q

]〉
, (C.12)

respectively. Similarly, we find that the matrix form of
equation (C.7) is∑

q

(νeeCp,q+ νeiLp,q)cq =
5
2
δ1,p− δ0,p. (C.13)

To solve the problem, we invert the matrix equations (C.10)
and (C.13). In practice, we must include a finite number of
polynomials, with the series truncated at a finite p=N. Velo-
city moments of HSH will depend only on low-order coeffi-
cients ap and cp, and so only a few polynomials are required
before convergence is reached. This same solution may be
obtained using a variational method [32].

Although the calculation is tedious, it is relat-
ively straightforward to calculate the matrix ele-
ments Cp,q and Lp,q using the generating function
G(x̂,z). Truncating the series at polynomial order
N= 4, we find the coefficient matrices (see [31, 32])

C=
√
2


0 0 0 0 0
0 1 3/4 15/32 35/128
0 3/4 45/16 309/128 885/512
0 15/32 309/128 5657/1024 20349/4096
0 35/128 885/512 20349/4096 149749/16384

 , (C.14)

and

L=


1 3/2 15/8 35/16 315/128

3/2 13/4 69/16 165/32 1505/256
15/8 69/16 433/64 1077/128 10005/1024
35/16 165/32 1077/128 2957/256 28257/2048

315/128 1505/256 10005/1024 28257/2048 288473/16384

 . (C.15)

To illustrate the final result of the calculation for a simple
case, we solve equations (C.10) and (C.13) for a hydrogenic
plasma with Zi = 1, i.e. νei = νee. To three decimal places, we
find that the coefficients {an} and {cn} are

a0
a1
a2
a3
a4

=
1
νei


−1.969
0.559
0.017
0.016
0.027

 , (C.16)

and 
c0
c1
c2
c3
c4

=
1
νei


−3.366
2.226
−0.635
0.095
0.003

 , (C.17)

respectively.

To calculate the parallel flow and the neoclassical perpen-
dicular diffusion terms, we need to evaluate velocity integrals
of the form

ˆ
v∥HSH d

3 v

=
nev2th,e
2

b ·∇θ

(
a0

∂

∂χ

(
δn(0)e

ne

)
+ c0

∂

∂χ

(
δT(0)e

Te

))
,

(C.18)

and

ˆ
v∥

(
v2

v2th,e
− 5

2

)
HSH d

3 v

=
5nev2th,e

4
b ·∇θ

(
a1

∂

∂χ

(
δn(0)e

ne

)
+ c1

∂

∂χ

(
δT(0)e

Te

))
.

(C.19)
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Appendix D. Classical perpendicular diffusion
collisional terms

The collision integrals appearing in the definitions of the clas-
sical fluxes δΓC and δqC, equations (90) and (91), respectively,
have the structural form

ˆ
g(v)v · τ C

[
H(0)

e (v)v ·σ
]
d3 v, (D.1)

with the isotropic function of v, g, satisfying either g= 1 or
g= v2/v2th,e − 5/2, and σ = k(0)⊥ × b/Ωe and τ = i∇r× b/Ωe

velocity independent vectors. Note that k(0)⊥ ∝∇r, and hence,
σ ∝ τ . We now proceed to evaluate the integral defined by
equation (D.1). We first evaluate contributions from the elec-
tron Lorentz collision operator L[·].

D.1. Lorentz collision operator contributions

The Lorentz collision operator is given by equation (9). Insert-
ing the definition (9) into equation (D.1), using the form of
H(0)

e , equation (82), and integrating by parts, we find that

ˆ
g(v)v · τ L

[
H(0)

e (v)v ·σ
]
d3 v

=
3
√
π

8
νeiv

3
th,eτσ :

×
ˆ {

g(v)

(
δn(0)e

ne
+

δT(0)e

Te

(
v2

v2th,e
− 3

2

))
v2 I− vv

v3
F0e

}
d3 v.

(D.2)

To evaluate equation (D.2) for the appropriate functions g, we
use the normalized velocity w= v/vth,e, and the identities

ˆ (
1,w2,w4

)
exp
[
−w2

]w2 I−ww
w3

d3 w=
4π
3
I(1,1,2) ,

(D.3)

with w= |w|. For the case of g= 1, we find that

ˆ
v · τ L

[
H(0)

e (v)v ·σ
]
d3 v

=−neνeiv2th,e
τ ·σ
2

(
δn(0)e

ne
− 1

2
δT(0)e

Te

)
. (D.4)

For the case of g= v2/v2th,e − 5/2, we find that

ˆ (
v2

v2th,e
− 5

2

)
v · τ L

[
H(0)

e (v)v ·σ
]
d3 v

=−neνeiv2th,e
τ ·σ
2

(
7
4
δT(0)e

Te
− 3

2
δn(0)e

ne

)
. (D.5)

D.2. Electron self-collision operator contributions

In this section, we evaluate the perpendicular-diffusion con-
tributions from the electron self-collision operator Cee [·], fol-
lowing [63]. The electron self-collision operator is defined
by equation (6) with s= e. To perform the calculation, first,
we substitute the definition (6) into the form (D.1) of the
perpendicular-diffusion integral, noting that 2πe4 lnΛ/m2

e =
3
√
πνeev3th,e/8ne. Second, we integrate by parts, and symmet-

rise the resulting integral by relabelling the dummy variables
v and v ′. Writing f(v) = H(0)

e (v)/F0e, we obtain the following
result:
ˆ
g(v)v · τ Cee [ f(v)v ·σF0e] d

3 v

=−3
√
π

16

νeev3th,e
ne

ˆ ˆ
F0eF

′
0eψ ·U ·Φ d3 v ′ d3 v,

(D.6)

where the vectors

ψ(v,v ′) = τ (g− g ′)+ (v · τ )∂g
∂v

− (v ′ · τ )∂g
′

∂v ′
, (D.7)

and

Φ(v,v ′) = σ( f− f ′)+ (v ·σ) ∂f
∂v

− (v ′ ·σ) ∂f
′

∂v ′
, (D.8)

with g ′ = g(v ′), and f ′ = f(v ′). The form of the vector ψ,
defined in equation (D.7), shows that there is no self-collision
operator contribution to the perpendicular-diffusion terms in
the density equation, for which g= 1. To evaluate the self-
collision operator contribution to the temperature equation, we
take g(v) = v2/v2th,e − 3/2 and use that

f(v) =
H(0)

e

F0e
=
δn(0)e

ne
+
δT(0)e

ne

(
v2

v2th,e
− 3

2

)
. (D.9)

After substituting for g and f in equations (D.7) and (D.8),
respectively, we find that

ψ(v,v ′) = τ
v2 − v ′2

v2th,e
+

2(v(v · τ )− v ′(v ′ · τ ))
v2th,e

, (D.10)

and

Φ(v,v ′) =

(
σ
v2 − v ′2

v2th,e
+

2(v(v ·σ)− v ′(v ′ ·σ))
v2th,e

)
δT(0)e

Te
.

(D.11)

To compute the velocity integrals in equation (D.6), we convert
to the center-of-mass variables

s=
v+ v ′√
2vth,e

, and w=
v− v ′√
2vth,e

, (D.12)

with the following result:
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ˆ ˆ
F0eF

′
0eψ ·U ·Φ d3 v ′ d3 v

=
4n2e√

2π3 vth,e

δT(0)e

Te

ˆ ˆ
exp
[
−w2 − s2

]
× (τ (s ·w)+ (w · τ )s) · Û · (σ(s ·w)+ s(w ·σ)) d3 s d3 w,

(D.13)

where we have used that the Jacobian d3 v ′d3 v=
v6th,ed

3 sd3 w, the functions v2 − v ′2 = 2 v2th,e w · s, vv− v ′v ′ =

v2th,e(ws+ sw), v2 + v ′2 = v2th,e(w
2 + s2), and U(v− v ′) =

Û(w)/(
√
2vth,e), with

Û(w) =
w2 I−ww

w3
. (D.14)

Note as well that w · Û(w) = 0. We first evaluate the integral
in s using the identity

ˆ
exp
[
−s2
]
ss d3 s=

π3/2

2
I. (D.15)

The result is

ˆ ˆ
F0eF

′
0eψ ·U ·Φ d3 v ′ d3 v= (D.16)

√
2n2e

π3/2vth,e

δT(0)e

Te
τσ :

ˆ
exp
[
−w2

](
w2Û+ww Tr

[
Û
])

d3 w,

(D.17)

where Tr
[
Û
]
= 2/w is the trace of the tensor Û(w). Finally,

using equations (D.6) and (D.16), with the identities (D.3) and

ˆ
wwTr

[
Û
]
exp
[
−w2

]
d3 w=

4π
3
I, (D.18)

we can write down the result of the perpendicular-diffusion
collision integral:

ˆ (
v2

v2th,e
− 3

2

)
v · τ Cee

[
H(0)

e (v)v ·σ
]
d3 v

=− 1√
2
νeenev

2
th,e τ ·σ δT

(0)
e

Te
. (D.19)

Appendix E. Pfirsch–Schlüter parallel and
perpendicular fluxes

In this section, we compute the parallel flows and the
perpendicular diffusion terms in the subsidiary limit of
qR0 νee/vth,e ≫ 1. We must solve equation (95) to obtain
approximate solutions for H(1/2)

e . We expand

H(1/2)
e = H(1/2)

e,(−1) +H(1/2)
e,(0) +H(1/2)

e,(1)

+O

((
qR0 νee
vth,e

)−2

iλeχH
(0)
e

)
, (E.1)

with

H(1/2)
e,(n) ∼

(
qR0 νee
vth,e

)−n

H(1/2)
e,(0) , (E.2)

and H(1/2)
e,(0) ∼ iλeχH

(0)
e ∼ HSH. The ordering iλeχH

(0)
e ∼ HSH

is a manifestation of the ordering (77) for χ.
With the expansion (E.1), the leading-order form of

equation (95) is

C
[
H(1/2)

e,(−1)

]
= 0, (E.3)

i.e.,

H(1/2)
e,(−1) =

δn(1/2)e,(−1)

ne
+
δT(1/2)e,(−1)

Te

(
ε

Te
− 3

2

)F0e, (E.4)

is a perturbed Maxwellian distribution function with no
flow. Note that δn(1/2)e,(−1) = δn(1/2)e,(−1)(θ,χ) and δT(1/2)e,(−1) =

δT(1/2)e,(−1)(θ,χ) are functions of both the geometric poloidal
angle θ and the ballooning angle χ.

To obtain equations for δn(1/2)e,(−1) and δT
(1/2)
e,(−1), we must go

to the second-order equation in the subsidiary expansion. We
proceed to the first-order equation in the subsidiary expansion,
which is

v∥b ·∇θ
∂

∂θ

(
H(1/2)

e,(−1)

)
= C

[
H(1/2)

e,(0) + iλeχH
(0)
e −HSH

]
. (E.5)

Equation (E.5) can be solved by inverting an additional
Spitzer–Härm problem:

v∥b ·∇θ
∂

∂θ

(
H(1/2)

e,(−1)

)
= C

[
H(1/2)

SH

]
. (E.6)

With the Spitzer–Härm distributionH(1/2)
SH defined by equation

(E.6), we may write equation (E.5) in the form

C
[
H(1/2)

e,(0) + iλeχH
(0)
e −HSH −H(1/2)

SH

]
= 0. (E.7)

Hence, we find that

H(1/2)
e,(0) =

δn(1/2)e,(0)

ne
+
δT(1/2)e,(0)

Te

(
ε

Te
− 3

2

)F0e− iλeχH
(0)
e

+HSH +H(1/2)
SH , (E.8)

where δn(1/2)e,(0) = δn(1/2)e,(0) (θ,χ) and δT
(1/2)
e,(0) = δT(1/2)e,(0) (θ,χ). The

second-order equation in the subsidiary expansion of equation
(95) is

v∥b ·∇θ
∂

∂θ

(
H(1/2)

e,(0)

)
= C

[
H(1/2)

e,(1)

]
. (E.9)
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The equations for δn(1/2)e,(−1) and δT
(1/2)
e,(−1) are obtained from the

solvability conditions of equation (E.9). These are

B ·∇θ ∂
∂θ

(ˆ
v∥
B
H(1/2)

e,(0) d
3 v
)
= 0, (E.10)

and

B ·∇θ ∂
∂θ

(ˆ
v∥
B

(
ε

Te
− 5

2

)
H(1/2)

e,(0) d
3 v
)
= 0. (E.11)

The conditions (E.10) and (E.11) are obtained by multiplying
equation (E.9) by 1 and ε/Te − 5/2, respectively, and integrat-
ing over velocity space. Equations (E.10) and (E.11) indicate
that

ˆ
v∥
B
H(1/2)

e,(0) d
3 v=Kn(χ), (E.12)

and

ˆ
v∥
B

(
ε

Te
− 5

2

)
H(1/2)

e,(0) d
3 v=KT(χ), (E.13)

where Kn(χ) and KT(χ) are functions of the ballooning angle
χ only. We explicitly evaluate Kn and KT using the results
(C.18) and (C.19) of appendix C. We find that

ˆ
v∥
B
H(1/2)

e,(0) d
3 v=

nev2th,e
2

B ·∇θ

B2

×

[
a0

(
∂

∂χ

(
δn(0)e

ne

)
+

∂

∂θ

(
δn(1/2)e,(−1)

ne

))

+c0

(
∂

∂χ

(
δT(0)e

Te

)
+

∂

∂θ

(
δT(1/2)e,(−1)

Te

))]

−
nev2th,e
2

ikαq ′χI
ΩeB

(
δn(0)e

ne
+

δT(0)e

Te

)
, (E.14)

where a0 =−1.969/νei, c0 =−3.366/νei, and we have
assumed Zi = 1, and

ˆ
v∥
B

(
ε

Te
− 5

2

)
H(1/2)

e,(0) d
3 v

=−
5nev2th,e

4
B ·∇θ

B2

[
a1

(
∂

∂χ

(
δn(0)e

ne

)
+

∂

∂θ

(
δn(1/2)e,(−1)

ne

))

+c1

(
∂

∂χ

(
δT(0)e

Te

)
+

∂

∂θ

(
δT(1/2)e,(−1)

Te

))]

−
5nev2th,e

4
ikαq ′χI
ΩeB

δT(0)e

Te
, (E.15)

where a1 = 0.559/νei and c1 = 2.226/νei. We obtain explicit
expressions for Kn and KT by multiplying equations (E.14)
and (E.15) by B2, and applying poloidal angle average ⟨·⟩θ.
The results are

Kn(χ) =
nev2th,e
2

⟨B ·∇θ⟩θ

⟨B2⟩θ

×

[
a0

∂

∂χ

(
δn(0)e

ne

)
+ c0

∂

∂χ

(
δT(0)e

Te

)]

−
nev2th,e
2

ikαq ′χIB

Ωe

1

⟨B2⟩θ

(
δn(0)e

ne
+
δT(0)e

Te

)
,

(E.16)

and

KT(χ) =−
5nev2th,e

4
⟨B ·∇θ⟩θ

⟨B2⟩θ

×

[
a1

∂

∂χ

(
δn(0)e

ne

)
+ c1

∂

∂χ

(
δT(0)e

Te

)]

−
5nev2th,e

4
ikαq ′χIB

Ωe

1

⟨B2⟩θ
δT(0)e

Te
, (E.17)

respectively. Finally, to obtain equations for δn(1/2)e,(−1) and

δT(1/2)e,(−1), we subtract equation (E.16) from equation (E.14),
and equation (E.17) from equation (E.15). The result is that

B ·∇θ
B2

a0 ∂
∂θ

δn(1/2)e,(−1)

ne

+ c0
∂

∂θ

δT(1/2)e,(−1)

Te


=

(
⟨B ·∇θ⟩θ

⟨B2⟩θ
− B ·∇θ

B2

)

×

[
a0

∂

∂χ

(
δn(0)e

ne

)
+ c0

∂

∂χ

(
δT(0)e

Te

)]

+

(
1
B2

− 1

⟨B2⟩θ

)
ikαq ′χIB

Ωe

(
δn(0)e

ne
+
δT(0)e

Te

)
,

(E.18)

and

B ·∇θ
B2

a1 ∂
∂θ

δn(1/2)e,(−1)

ne

+ c1
∂

∂θ

δT(1/2)e,(−1)

Te


=

(
⟨B ·∇θ⟩θ

⟨B2⟩θ
− B ·∇θ

B2

)

×

[
a1

∂

∂χ

(
δn(0)e

ne

)
+ c1

∂

∂χ

(
δT(0)e

Te

)]

−

(
1
B2

− 1

⟨B2⟩θ

)
ikαq ′χIB

Ωe

δT(0)e

Te
. (E.19)

Inverting equations (E.18) and (E.19) for ∂
(
δn(1/2)e,(−1)

)
/∂θ and

∂
(
δT(1/2)e,(−1)

)
/∂θ, we find that
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B ·∇θ
B2

∂

∂θ

δn(1/2)e,(−1)

ne


=

(
⟨B ·∇θ⟩θ

⟨B2⟩θ
− B ·∇θ

B2

)
∂

∂χ

(
δn(0)e

ne

)

+

(
1
B2

− 1

⟨B2⟩θ

)
ikαq ′χIB

Ωe

×

(
c1

a0c1 − a1c0

δn(0)e

ne
+

c1 + c0
a0c1 − a1c0

δT(0)e

Te

)
, (E.20)

and

B ·∇θ
B2

∂

∂θ

δT(1/2)e,(−1)

Te


=

(
⟨B ·∇θ⟩θ

⟨B2⟩θ
− B ·∇θ

B2

)
∂

∂χ

(
δT(0)e

Te

)

−

(
1
B2

− 1

⟨B2⟩θ

)
ikαq ′χIB

Ωe

×

(
a0 + a1

a0c1 − a1c0

δT(0)e

Te
+

a1
a0c1 − a1c0

δn(0)e

ne

)
. (E.21)

To evaluate the effective electron parallel velocity δu∥,
defined in equation (87), we compute the integral

δu∥ =
1

⟨b ·∇θ⟩θ

〈
b ·∇θ
ne

ˆ
v∥
(
H(1/2)

e,(−1)

+H(1/2)
e,(0) + iλeχH

(0)
e

)
d3 v

〉θ
, (E.22)

where we have used the definition (B.18) and the expansion
(E.1). With the solutions (E.4) and (E.8), and the integral
(C.18), we find that

δu∥ =
v2th,e/2

⟨b ·∇θ⟩θ

〈
(B ·∇θ)2

B2

〉θ
×

[
a0

∂

∂χ

(
δn(0)e

ne

)
+ c0

∂

∂χ

(
δT(0)e

Te

)]

+
v2th,e/2

⟨b ·∇θ⟩θ

〈
(B ·∇θ)2

B2

[
a0
∂

∂θ

δn(1/2)e,(−1)

ne


+ c0

∂

∂θ

δT(1/2)e,(−1)

Te

]〉θ. (E.23)

Finally, using equations (E.20) and (E.21) to substitute for

∂
(
δn(1/2)e,(−1)

)
/∂θ and ∂

(
δT(1/2)e,(−1)

)
/∂θ, we find that

δu∥ =
v2th,e/2

⟨b ·∇θ⟩θ
(⟨B ·∇θ⟩θ)2

⟨B2⟩θ

×

[
a0

∂

∂χ

(
δn(0)e

ne

)
+ c0

∂

∂χ

(
δT(0)e

Te

)]

+ i
vth,e
2

kαq ′Iχρth,eB

⟨b ·∇θ⟩θ

(〈
B ·∇θ
B2

〉θ
− ⟨B ·∇θ⟩θ

⟨B2⟩θ

)

×

(
δn(0)e

ne
+
δT(0)e

Te

)
. (E.24)

Using the same techniques, and the integral (C.19), we obtain
the effective electron parallel heat flux

δq∥ =−5
4

neTev2th,e
⟨b ·∇θ⟩θ

(⟨B ·∇θ⟩θ)2

⟨B2⟩θ

×

[
a1

∂

∂χ

(
δn(0)e

ne

)
+ c1

∂

∂χ

(
δT(0)e

Te

)]

+ i
5
4
neTevth,e

kαq ′Iχρth,eB

⟨b ·∇θ⟩θ

×

(〈
B ·∇θ
B2

〉θ
− ⟨B ·∇θ⟩θ

⟨B2⟩θ

)
δT(0)e

Te
. (E.25)

We now turn to the calculation of the neoclassical perpen-
dicular diffusion terms appearing in equations (85) and (86).
To evaluate the particle flux δΓN, defined in equation (92), we
use equations (E.3) and (E.5) to show that

δΓN =−
〈

I
Ωe

dr
dψ

ˆ
v2∥ b ·∇θ

∂

∂θ

(
H(1/2)

e,(−1)

)
d3 v

〉θ
. (E.26)

Substituting the solution (E.4) into equation (E.26), we find
that

δΓN =−
nev2th,e
2

IB

Ωe

dr
dψ

〈
B ·∇θ
B2

(
∂

∂θ

δn(1/2)e,(−1)

ne


+

∂

∂θ

δT(1/2)e,(−1)

Te

)〉θ. (E.27)

Finally, we substitute results (E.20) and (E.21) into equation
(E.27) to find the neoclassical particle flux

δΓN

ne
=−

v2th,e
2

IB

Ωe

dr
dψ

(
⟨B ·∇θ⟩θ

⟨B2⟩θ
−
〈
B ·∇θ
B2

〉θ)

×

(
∂

∂χ

(
δn(0)e

ne

)
+

∂

∂χ

(
δT(0)e

Te

))

+ ikα
dq
dr
χ
v2th,e
2

(
IB

Ωe

dr
dψ

)2
(〈

1
B2

〉θ
− 1

⟨B2⟩θ

)

×

[
a1 − c1

a0c1 − a1c0

δn(0)e

ne
+
a1 + a0 − c1 − c0
a0c1 − a1c0

δT(0)e

Te

]
.

(E.28)
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Following identical steps, we find that the neoclassical heat
flux δqN, defined in equation (93), is

δqN
neTe

=−
5v2th,e
4

IB

Ωe

dr
dψ

×

(
⟨B ·∇θ⟩θ

⟨B2⟩θ
−
〈
B ·∇θ
B2

〉θ)
∂

∂χ

(
δT(0)e

Te

)

+ ikα
dq
dr
χ
v2th,e
2

(
IB

Ωe

dr
dψ

)2
(〈

1
B2

〉θ
− 1

⟨B2⟩θ

)

×

[
(5/2)(a1 + a0)
a0c1 − a1c0

δT(0)e

Te
+

5a1/2
a0c1 − a1c0

δn(0)e

ne

]
.

(E.29)

Appendix F. Parallel flows and neoclassical
perpendicular diffusion terms in the ν∗ ≪ 1, ϵ ≪ 1
(banana) limit

In this section, we calculate the electron distribution func-
tion H(1/2)

e,(0) by solving equation (105) to leading-order in the
expansion in inverse aspect ratio ϵ= r/R0 ≪ 1. We take the
normalized electron collisionality ν∗ = qR0νee/ϵ

3/2vth,e ≪ 1.
We assume that the equilibrium can be approximated by cir-
cular flux surfaces [30, 42]. We use the fact that the 2π-
periodic θ variation in geometric quantities is small by O(ϵ).
For example, the magnetic field strength

B≃ B0 (1− ϵcosθ) = B0 +O(ϵB) , (F.1)

where B0 = I/R0 is a constant. As a consequence, the fraction
of velocity space occupied by trapped particles becomes small.
This can be seen from the definition of

v∥ = σ

(
2 ε
me

)1/2

(1−λB(θ))1/2 , (F.2)

where passing particles occupy 0⩽ λB0 < B0/Bmax ≃ 1− ϵ
and trapped particles occupy B0/Bmax ⩽ λB0 ⩽ B0/B(θ)≃
1+ ϵcosθ.We can identify two regions in the problem: there is
a ‘deeply passing’ region where λB0 ∼ 1∼ 1−λB0 ≫ ϵ, and
also the trapped-passing region where λB0 = 1−O(ϵ). In the
deeply passing region, we can find the leading-order solution
by taking λB0 ∼ 1∼ 1−λB0 and using ϵ≪ 1 to approximate
the geometric quantities. We find that

H(1/2)
e,(0) = HSH,0 − iλ0eχH

(0)
e +O

(
ϵ1/2H(1/2)

e,(0)

)
, (F.3)

where

λ0e = σλ0th,e

√
ε

Te

√
1−λB0, (F.4)

with λ0th,e = kαq ′Ivth,e/Ω0
e , Ω

0
e =−eB0/mec, and

HSH,0 = σ

√
ε

Te

√
1−λB0vth,eKSHF0e. (F.5)

The O
(
ϵ1/2H(1/2)

e,(0)

)
correction in equation (F.3) arises from

the presence of the trapped-passing region. To solve for the
λB0 = 1−O(ϵ) region, we note that the pitch-angle scattering
components of the collision operator, Cλλ[·] are larger than the
other test-particle and field-particle terms by O

(
ϵ−1
)
. In other

words, we need only the pitch-angle scattering collision oper-
ator (see [30, 32])

Cλλ[·] = νe(ε)

√
1−λB
B

∂

∂λ

(
λ
√
1−λB

∂

∂λ
[·]
)
, (F.6)

where

νe(ε) =
3
√
π

2

(
Te
ε

)3/2

×
(
νei + νee

(
erf
(√

ε/Te
)
−Ψ

(√
ε/Te

)))
,

(F.7)

with the error function erf(z) defined by equation (56), and
the function Ψ(z) defined by equation (57). We note the sim-
ilarity of the forms of the collision frequencies νe and ν⊥,i,
defined in equation (55). This similarity arises because the
terms involving these collision frequencies are due to the
pitch-angle scattering pieces of the electron and ion collision
operators, respectively. With these considerations, to leading-
order in ϵ, equation (105) becomes

2
B0

∂

∂λ

(
λ
〈√

1−λB(θ)
〉θ ∂

∂λ

(
H(1/2)

e,(0)

))
+σ

√
ε

Te

(
vth,eKSHF0e− iλ0th,eχH

(0)
e

)
= 0, (F.8)

where we have divided by the ε-dependent collision frequency
pre-factors, and we have used the identity

Cλλ[v∥g(ε)] =−νe(ε)
2

v∥g(ε), (F.9)

to simplify the terms proportional to v∥, andwe have employed
the definitions of the transit average ⟨·⟩t, and poloidal angle
average ⟨·⟩θ, equations (62) and (80), respectively, and finally
we have expanded the geometrical factors to leading-order in
ϵ≪ 1. We note that

√
1−λB(θ) may not be usefully expan-

ded in ϵ because λB0 = 1+O(ϵ), and the θ dependence of
B(θ) comes in at O(ϵ). We also note that

H(1/2)
e,(0) ∼ O

(
ϵ1/2

(
me

mi

)1/4

H(0)
e

)
, (F.10)

in the trapped-passing region. We can integrate equation (F.8)
directly, with the boundary conditions H(1/2)

e,(0) = 0 at λB0 =

B0/Bmax, and no divergence at λ= 0. The result is as follows:
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H(1/2)
e,(0) =−σ

√
ε

Te

(
vth,eKSHF0e− iλ0th,eχH

(0)
e

)
×
ˆ λ

1/Bmax

B0dλ ′/2〈√
1−λ ′B(θ)

〉θ . (F.11)

We can match to the deeply passing solution (F.3) by taking
the solution (F.11), and evaluating the integral with ϵ→ 0 and
1−λB0 ≫ O(ϵ).

Having evaluated the distribution function using the meth-
ods of neoclassical theory, we are now able to calculate the
electron parallel velocity δu∥ and electron parallel heat flux
δq∥, defined in equations (87) and (88), respectively. From the
deeply passing solution, equation (F.3), we can see that the
leading-order contributions will result from the responseHSH,0

to the parallel gradients of density and temperature. As in the
neoclassical calculation for the bootstrap current [32], we cal-
culate the additional contribution arising from the interaction
between passing and trapped electrons in the λB0 = 1−O(ϵ)
region.

To evaluate the electron parallel velocity and the electron
parallel heat flux, we need to compute an integral of the form

Γ=
1

⟨b ·∇θ⟩θ

〈
b ·∇θ

ˆ
v∥g(ε)

(
H(1/2)

e,(0) + iλeχH
(0)
e

)
d3 v

〉θ
,

(F.12)

where for g(ε) = 1 we obtain δu∥ = Γ/ne, and where for g=
ε/Te − 5/2we obtain δq∥ = TeΓ. First, we use that the result is
expected to be close to the Spitzer–Härm flows obtained from
HSH. We write

Γ = ΓSH +ΓB, (F.13)

with ΓSH defined by

ΓSH =
1

⟨b ·∇θ⟩θ

〈
b ·∇θ

ˆ
v∥g(ε)HSH d

3 v
〉θ

, (F.14)

and

ΓB =
1

⟨b ·∇θ⟩θ

〈
b ·∇θ

ˆ
v∥g(ε)

(
H(1/2)

e,(0)

−HSH + iλeχH
(0)
e

)
d3 v

〉θ
. (F.15)

We can calculate ΓSH using the results of appendix C. To eval-
uate the leading nonzero component of ΓB requires that we
calculate the sub-leading corrections to H(1/2)

e,(0) everywhere in
λ. To avoid this, we convert the integral (F.15) into an integ-
ral where the dominant contribution comes from the trapped-
passing region, where we can use solution (F.11). We localise
the integral to the trapped-passing region by introducing C[·]

into the integral. We do this by using the Spitzer–Härm prob-
lem (C.6) to replace v∥ in equation (F.15), with the result

ΓB =
1

⟨b ·∇θ⟩θ

〈
b ·∇θ

ˆ
g(ε)

C
[
v∥fSHF0e

]
F0e

×
(
H(1/2)

e,(0) −HSH + iλeχH
(0)
e

)
d3 v

〉θ
.

(F.16)

Now using the self-adjointness of C[·]with respect to the inner
product (C.8) [32], the integral becomes

ΓB =
1

⟨b ·∇θ⟩θ

〈
b ·∇θ

ˆ
v∥fSH C

[
g(ε)(H(1/2)

e,(0)

−HSH + iλeχH
(0)
e )
]
d3 v

〉θ
. (F.17)

Finally, we estimate the size of the contributions to ΓB from
the deeply passing region and the trapped-passing region. In
the deeply passing region, we find that the contribution is of
size

ΓB ∼ ϵ

(
me

mi

)1/4

vth,eδn
(0)
e , (F.18)

since C
[
H(1/2)

e,(0) −HSH + iλeχH
(0)
e

]
is small by O(ϵ) in the

deeply passing region. In the trapped-passing region, we find
that the contribution is of size

ΓB ∼ ϵ1/2
(
me

mi

)1/4

vth,eδn
(0)
e , (F.19)

since H(1/2)
e,(0) −HSH + iλeχH

(0)
e ∼ ϵ1/2 (me/mi)

1/4H(0)
e by the

estimates (F.10) and v∥ ∼ ϵ1/2vth,e, and Cλλ[·]d3 v/v3th,e ∼
(νei/ϵ)ϵ

1/2 ∼ νeiϵ
−1/2. As the contribution from the trapped-

passing region is larger than the contribution from the deeply
passing region, we replace C [·] by Cλλ [·]when we evaluate the
integral in equation (F.17).

To evaluate the integral in equation (F.17), we insert
the definition of Cλλ [·], equation (F.6), with d3v=
(Bε/m2

e |v∥|)dεdλdγ, and integrate by parts once in λ. The
integrals in ε and λ are separable, and we find the intermedi-
ate result

ΓB =
πv4th,e
3

ftrap

ˆ ∞

0
g(ε)νe(ε)

(
ε

Te

)3/2

fSH

×
(
vth,eKSHF0e− iλ0th,eχH

(0)
e

) dε
Te
, (F.20)

where following [32] we have defined the fraction of trapped
particles
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ftrap =
3B2

0

4

〈[ˆ 1/B(θ)

0

λdλ√
1−λB(θ)

−
ˆ 1/Bmax

0

λdλ〈√
1−λB(θ)

〉θ
]〉θ

, (F.21)

and taken ϵ→ 0 in the other geometrical quantities appearing
in equation (F.20). We note that the λ limits of the integrals
in equation (F.21) are determined by the fact that H(1/2)

e,(0) is

nonzero for passing particles only, whereas KSHF0e and H
(0)
e

have both trapped and passing particle components. Standard
manipulations can be used to simplify ftrap in the limit ϵ→ 0.
To leading order [32]

ftrap =
3
√
2

2

[
1−
ˆ 1

0

(
π

2E(z)
− 1

)
dz
z2

]
ϵ1/2 = 1.462 ϵ1/2,

(F.22)

where

E(z) =
1
2

ˆ π

0

√
1− z2 sin2

(
θ

2

)
dθ, (F.23)

is the elliptic integral of the second kind. Finally, using the
result in equation (F.20), we can calculate the ‘bootstrap’ cor-
rections to the electron parallel velocity and heat flux, δuB and
δqB, respectively. We find that

δuB = vth,e
ftrapνei
2

×

[
vth,e
qR0

(∑
p,q

apDp,qaq
∂

∂χ

(
δn(0)e

ne

)

+
∑
p,q

apDp,qcq
∂

∂χ

(
δT(0)e

Te

))
− iλ0th,eχ

×

(∑
p

apDp,0
δn(0)e

ne
+
∑
p

ap(Dp,0 −Dp,1)
δT(0)e

Te

)]
,

(F.24)

with the matrix element

Dp,q =

ˆ ∞

0
exp [−x̂]L3/2p (x̂)L3/2q (x̂)ν̂(x̂) dx̂, (F.25)

and the function

ν̂(x̂) = 1+ erf(x̂1/2)−Ψ(x̂1/2). (F.26)

Similarly, we find that

δqB = vth,eneTe
ftrapνei
2

×

[
vth,e
qR0

(∑
p,q

apQp,qaq
∂

∂χ

(
δn(0)e

ne

)

+
∑
p,q

apQp,qcq
∂

∂χ

(
δT(0)e

Te

))
− iλ0th,eχ

×

(∑
p

apQp,0
δn(0)e

ne
+
∑
p

ap(Qp,0 −Qp,1)
δT(0)e

Te

)]
,

(F.27)

with the matrix element

Qp,q =

ˆ ∞

0
exp [−x̂]

(
x̂− 5

2

)
L3/2p (x̂)L3/2q (x̂)ν̂(x̂) dx̂.

(F.28)

The numerical coefficients appearing in equations (F.24) and
(F.27) may be evaluated by using the truncated polynomial
solution of order N= 4 that is obtained in appendix C. We
use the values of {ap} and {cp} given in equations (C.16) and
(C.17), respectively.We compute the matrix elementsDp,q and
Qp,q, with the results (to two decimal places)

D=


1.53 2.12 2.53 2.85 3.13
2.12 4.64 5.88 6.78 7.53
2.53 5.88 9.25 11.15 12.61
2.85 6.78 11.15 15.34 17.91
3.13 7.53 12.61 17.91 22.88

 , (F.29)

and

Q=−


2.12 4.64 5.88 6.78 7.53
4.64 7.79 13.07 15.87 17.98
5.88 13.07 17.03 25.14 29.65
6.78 15.87 25.14 29.80 40.79
7.53 17.98 29.65 40.79 46.09

 . (F.30)

Combining these results, we find that

δuB = vth,e
ftrap
2

[
vth,e

qR0 νei

(
2.55

∂

∂χ

(
δn(0)e

ne

)
3.51

∂

∂χ

(
δT(0)e

Te

))

+iλ0
th,eχ

(
1.66

δn(0)e

ne
0.47

δT(0)e

Te

)]
, (F.31)

and

δqB = vth,eneTe
ftrap
2

×

[
vth,e

qR0 νei

(
2.98

∂

∂χ

(
δT(0)e

Te

)
− 0.07

∂

∂χ

(
δn(0)e

ne

))

−iλ0th,eχ

(
1.19

δn(0)e

ne
− 2.63

δT(0)e

Te

)]
. (F.32)
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Including both the Spitzer–Härm and the bootstrap contri-
butions, the results for the flows are (to O

(
ϵ1/2
)
)

δu∥
vth,e

= i
qŝkyρ0th,eχ

2 ϵ1/2

(
2.43

δn(0)e

ne
+ 0.69

δT(0)e

Te

)

− vth,e
2qR0 νei

[
1.97

(
1− 1.90 ϵ1/2

) ∂

∂χ

(
δn(0)e

ne

)

+ 3.37
(
1− 1.52 ϵ1/2

) ∂

∂χ

(
δT(0)e

Te

)]
,

(F.33)

and

δq∥
vth,eneTe

=−i
5qŝkyρ0th,eχ

4 ϵ1/2

(
0.70

δn(0)e

ne
− 1.54

δT(0)e

Te

)

− 5vth,e
4qR0 νei

[
0.56

(
1+ 0.07 ϵ1/2

) ∂

∂χ

(
δn(0)e

ne

)

+ 2.23
(
1− 0.78ϵ1/2

) ∂

∂χ

(
δT(0)e

Te

)]
,

(F.34)

where we have defined ρ0th,e = vth,e/Ω0
e , and used that, for ϵ≪

1 and circular flux surfaces, ftrap = 1.46 ϵ1/2, κ̂≃ 1, b ·∇θ ≃
1/qR0 and Idr/dψ ≃ q/ϵ. We note that λ0th,e = ŝkyρ0th,eq/ϵ.

We now turn to the calculation of the transport due to per-
pendicular diffusion via the neoclassical fluxes δΓN and δqN,
defined in equations (92) and (93). To evaluate these fluxes,
we need to compute integrals of the form

Γ⊥ =−

〈
I
Ωe

dr
dψ

ˆ
v∥g(ε)

×C
[
H(1/2)

e,(0) + iλeχH
(0)
e −HSH

]
d3 v

〉θ
. (F.35)

We note that the form of integral (F.35) is structurally similar to
the integral defined in equation (F.17). To be precise, we can
use estimates (F.18) and (F.19) to justify replacing C [·] with
Cλλ [·] when evaluating (F.35). Again, since the integrals in ε
and λ are separable in (F.35), we find the intermediate result

Γ⊥ =− I
Ω0

e

dr
dψ

πv4th,e
3

ftrap

ˆ ∞

0
g(ε)νe(ε)

(
ε

Te

)3/2

×
(
vth,eKSHF0e− iλ0th,eχH

(0)
e

) dε
Te
, (F.36)

where we note the similarity to (F.20). To compute the neo-
classical particle flux, we set g(ε) = 1 in equation (F.36), and
obtain the result (correct to O

(
ϵ1/2
)
)

δΓN

ne
=−ρ0th,e

q
ϵ

ftrapνei
2

[
vth,e
qR0

(∑
q

D0,qaq
∂

∂χ

(
δn(0)e

ne

)

+
∑
q

D0,qcq
∂

∂χ

(
δT(0)e

Te

))
− ikyρ

0
th,eŝχ

q
ϵ

×

(
D0,0

δn(0)e

ne
+(D0,0 −D0,1)

δT(0)e

Te

)]
.

(F.37)

Similarly, to compute the neoclassical heat flux, we set g(ε) =
ε/Te − 5/2 in equation (F.36), and obtain the result (correct to
O
(
ϵ1/2
)
)

δqN
neTe

=−ρ0th,e
q
ϵ

ftrapνei
2

[
vth,e
qR0

(∑
q

Q0,qaq
∂

∂χ

(
δn(0)e

ne

)

+
∑
q

Q0,qcq
∂

∂χ

(
δT(0)e

Te

))
− ikyρ

0
th,eŝχ

q
ϵ

×

(
Q0,0

δn(0)e

ne
+(Q0,0 −Q0,1)

δT(0)e

Te

)]
.

(F.38)

Inserting the numerical coefficients, we find that

δΓN

ne
= ρ0th,e

q
ϵ

ftrap
2
vth,e
qR0

(
1.66

∂

∂χ

(
δn(0)e

ne

)
+ 1.75

∂

∂χ

(
δT(0)e

Te

))

+ iνeikyŝχ(ρ
0
th,e)

2
(q
ϵ

)2 ftrap
2

(
1.53

δn(0)e

ne
− 0.59

δT(0)e

Te

)
,

(F.39)

and

δqN
neTe

= ρ0th,e
q
ϵ

ftrap
2

vth,e
qR0

(
0.11

∂

∂χ

(
δT(0)e

Te

)
− 1.19

∂

∂χ

(
δn(0)e

ne

))

+ iνeikyŝχ(ρ
0
th,e)

2
(q
ϵ

)2 ftrap
2

(
2.51

δT(0)e

Te
− 2.12

δn(0)e

ne

)
.

(F.40)

Appendix G. Obtaining matching conditions for the
inner region: the electron response in the outer
region

In this section, we examine the equations for the electron
response in the outer region, and derive the matching condi-
tions given in sections 5.3 and 5.4. We consider the case of
small electron tails, noting that the large-tail case follows trivi-
ally. To satisfy the ordering (110), in the outer region we take
H(0)

e = 0. Expanding in (me/mi)
1/4, the next order equation is

v∥b ·∇θ
∂H(1/2)

e

∂θ
= Cee

[
H(1/2)

e

]
+L

[
H(1/2)

e

]
. (G.1)
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Superficially, equation (G.1) has an identical form to equation
(81). However, in the outer region, H(1/2)

e cannot be assumed
to be periodic in θ. To solve for H(1/2)

e , we multiply equation
(G.1) by H(1/2)

e /F0e, and integrate over velocity and θ. We
obtain

ˆ ∞

−∞

[ˆ
H(1/2)

e

F0e
Cee

[
H(1/2)

e

]
d3 v+

ˆ
H(1/2)

e

F0e
L
[
H(1/2)

e

]
d3 v

]

× dθ
B ·∇θ

=

ˆ v∥
B

(
H(1/2)

e

)2
2 F0e

d3 v


θ=∞

θ=−∞

= 0, (G.2)

where in the final equality we have assumed continuity of the
leading-order piece of He in the matching region—and hence,
the velocity moment vanishes to leading order at θ =±∞.
With the entropy production properties (B.7), equation (G.2)
shows that

H(1/2)
e

F0e
=
δn(1/2)e

ne
+
δT(1/2)e

Te

(
ε

Te
− 3

2

)
, (G.3)

where δn(1/2)e and δT(1/2)e are a constant density and temperat-
ure, respectively, as required to match the inner region. These
results provide the density and temperature matching condi-
tions (114) and (115).

To calculate the electron flowmatching conditions, we pro-
ceed to the next order equation

v∥b ·∇θ
∂H(1)

e

∂θ
−Cee

[
H(1)

e

]
−L

H(1)
e −

mev∥δu
(0)
∥,i

Te
F0e


=−i

(
ω∗,e −ω(0)

)
F0e

eϕ(0)

Te
, (G.4)

where

δu(0)∥,i =
1
ni

ˆ
v∥J0ihi

(0) d3 v. (G.5)

We extract equations for the leading-order (nonzero) elec-
tron mean velocity δu(1)∥,e and electron heat flux δq(1)∥,e. Not-

ing that he(1) = H(1)
e for H(0)

e = 0, λe ∼ (me/mi)
1/2 and θ ∼

1, by virtue of expanding the definition (25), we obtain
that δu(1)∥,e = δU(1)

∥,e and δq
(1)
∥,e = δQ(1)

∥,e, where δU
(1)
∥,e and δQ

(1)
∥,e

are the moments of H(1)
e defined by equations (B.13) and

(B.16), respectively. Taking density and temperature velocity
moments, we find that

B ·∇θ ∂
∂θ

δu(1)∥,e

B

=−i(ωn∗,e −ω(0))
eϕ(0)

Te
, (G.6)

and

B ·∇θ ∂
∂θ

 δq(1)∥,e

BneTe
+
δu(1)∥,e

B

=−i
3
2
ωn∗,eηe

eϕ(0)

Te
. (G.7)

Equations (G.6) and (G.7) can be integrated to obtain the
leading-order jump in δu∥,e and δq∥,e across the outer region.
We find that,δu(1)∥,e

B

θ=∞

θ=−∞

=−i(ωn∗,e −ω(0))

ˆ ∞

−∞

eϕ(0)(θ)
Te

dθ
B ·∇θ

,

(G.8)

and, δq(1)∥,e

neTeB

θ=∞

θ=−∞

=−i

(
3
2
ωn∗,eηe −ωn∗,e +ω(0)

)ˆ ∞

−∞

eϕ(0)(θ)
Te

dθ
B ·∇θ

.

(G.9)

Equations (G.8) and (G.9) give the estimate (112) for the
jump in the electron flows across the outer region. There is
an implicit assumption that the potential due to the nonadia-
batic ion response decays for large θ in the outer region, so
that the integrals in equations (G.8) and (G.9) exist. In fact,
it is possible to show that there is a matching region of size
(ln(mi/me))

δ between the outer and inner regions where the
nonadiabatic ion response decays exponentially with θ, and
both the nonadiabatic ion and electron responses contribute
to a (me/mi)

1/4 small potential. The quantity δ is an order
unity number that we have not determined. Formally, we can
neglect this matching region in our analysis because the elec-
tron density, temperature and flows remain constant over the
matching region, and because no information about the ions in
this region is propagated into either the outer or inner regions.

The jump conditions on δu∥,inner and δq∥,inner can be
obtained by taking the following steps. First, we note that tak-
ing the |θ| →∞ limit in equations (G.6) and (G.7) leads to the
following results:

B ·∇θ ∂
∂θ

δu(1)∥,e,outer

B

= 0, (G.10)

and

B ·∇θ ∂
∂θ

 δq(1)∥,e

BneTe
+
δu(1)∥,e,outer

B

= 0, (G.11)

where we have used that eϕ(0)outer/Te becomes exponentially
small for large |θ|, due to the decaying nonadiabatic ion
response. Equations (G.10) and (G.11) state that δu(1)∥,e,outer/B

and δq(1)∥,e,outer/B are independent of θ at large |θ|. Second,
we note that, in the inner region, we can show that the
v∥/B moments of H(1/2)

e , δU(1/2)
∥,e,inner/B and δQ(1/2)

∥,e,inner/B, are

independent of θ for χ≪ (mi/me)
1/4 by taking the dens-

ity and temperature moments of equation (95). Hence, the
flows δu(1/2)∥,e,inner/B and δq(1/2)∥,e,inner/B are independent of θ for

χ≪ (mi/me)
1/4. Third, we demand that δu∥,e/B and δq∥,e/B
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should be continuous over the boundaries between the outer
and inner regions, i.e. δu∥,e and δq∥,e should satisfy

δu(1)∥,e,outer

B

∣∣∣∣∣∣
θ→±∞

=
δu(1/2)∥,e,inner

B

∣∣∣∣∣∣
χ→0±

, (G.12)

and

δq(1)∥,e,outer

B

∣∣∣∣∣∣
θ→±∞

=
δq(1/2)∥,e,inner

B

∣∣∣∣∣∣
χ→0±

. (G.13)

Finally, we combine equations (G.8), (G.9), (G.12) and (G.13)
to find the boundary conditions (116) and (117) on δu∥,inner and
δq∥,inner, respectively.
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