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Abstract
The weight function W(X) is a diagnostic sensitivity to phase-space variables X that relates the
measured signal C to the distribution function F(X) through the equation C=

´
W(X)F(X)dX.

In the present work, an algorithm to calculate W for a diagnostic that measures 3 MeV protons
produced in d(d,p)t fusion reactions between a fast ion and a thermal deuteron is developed. The
emitted protons escape the tokamak on curved orbits and are detected. These curved orbits
constitute effective diagnostic ‘sightlines’. The presented algorithm accounts for the
complications associated with these curved sightlines. An initial calculation of time-reversed
proton orbits computes effective solid angles and sightlines for the relevant range of incident
proton velocity vectors. These precomputed orbits are then used within the framework of
FIDASIM (2020 Plasma Phys. Cont. Fusion 62 105008) to calculate the reactivity averaged
over the thermal distribution of the ‘target’ deuterons and the probability that a fast ion of
specified energy and pitch has a gyroangle that is consistent with the kinematic equations along
each of the sightlines. Comparisons with analytic formulas and with independent calculations
for the Mega Amp Spherical Tokamak 3 MeV proton diagnostic verify the algorithm.

Keywords: fusion products, fast ions, fusion reactions

(Some figures may appear in colour only in the online journal)

1. Introduction

The weight function plays a key role in energetic particle
research. The weight function W(X) describes the sensitivity
to phase-space variables X of a diagnostic signal and is used
in forward modeling of expected signals [1], in tomographic
inversions to infer the distribution function [2] and for qualitat-
ive interpretation of experimental dependencies [3]. Mathem-
atically,W determines which portions of the energetic particle
distribution function F(X) contribute to a measured signal C,

C=

ˆ
W(X)F(X)dX. (1)

Weight functions have already been developed for many fast-
ion diagnostics such as fast-ion D-alpha (FIDA) [4, 5], col-
lective Thomson scattering [6], neutral particle analyzer [1, 7],
neutron [8–10], gamma-ray [11, 12] and fast-ion loss detector

[13] diagnostics. In the present work, an algorithm to calculate
W for a 3MeV proton diagnostic such as the one at Mega Amp
Spherical Tokamak (MAST) [14] is developed. To date, the
majority of these weight functions were developed for two-
dimensional velocity space but recent work [5] utilizes three-
dimensional orbit weight functions.

In the ∼ 0.4 T field of MAST, the 3 MeV proton gyrora-
dius is so large that ions escape in (approximately) one half
of a gyro-orbit. Although we specifically consider the MAST
diagnostic installation, the algorithm developed here applies
equally to more complicated situations, such as the 3 MeV
proton orbits that were used to measure d–d spatial pro-
files during lower hybrid and neutral beam heating in the
5 T Princeton Large Torus [15]. It should also be noted that
the basic algorithm applies to any escaping charged fusion
reaction product, including the 1.0 MeV triton produced in
d–d reactions and the 15 MeV proton produced in d-3He
reactions.
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The MAST diagnostic measures 3 MeV protons produced
in d(d,p)t fusion reactions between fast ions and thermal deu-
terons in the plasma core. (As discussed below, protons are
also produced in beam-beam and thermonuclear reactions.)
The emitted protons escape the tokamak on curved orbits, pass
through a collimating structure, and are detected. Conceptu-
ally, the calculation is analogous to calculation of the weight
function of a neutron spectrometer but there are complications.
Unlike with neutrons, photons, or neutrals, the ‘sightlines’ are
curved trajectories that depend upon the proton velocity; the
orbit curvature also alters the solid angle accepted by the col-
limator. A further complication is that the energy of the emit-
ted proton depends upon the velocities of the reactants and the
direction of emission, so the ‘sightline’ itself depends upon
the reaction kinematics, with the consequence that different
proton energies probe different volumes in both velocity and
configuration space. Because the d–d reaction is anisotropic,
the reaction probability also depends upon these velocities.

The presented algorithm takes all of these complications
into account. Section 2 provides an overview of the approach.
Section 3 explains how to compute the effective solid angle
of the curved ‘sightlines’ that are accepted by the collimat-
ing structure. Calculation of the rate of relevant d–d reactions
involves two steps: the basic reaction rate (section 4.1) and
determination of the portion of the fast-ion population that
produces a proton with the measured energy and trajectory
(section 4.2). The computational approach adopted to calcu-
late these weight functions is described in section 5, followed
by verification of the calculations in section 6. Section 7 con-
tains formulas for velocity-space and orbit weight functions
and shows an example for a MAST detector. Conclusions
appear in section 8.

2. Formulation of the problem

If the signal-to-noise ratio of the instrument permits, the
measured quantity is an energy-resolved count rate at the
detector. We express the d–d reaction in standard nuclear
physics notation 2(1,3)4, where particle 2 is the thermal deu-
terium, particle 1 is the fast ion, particle 3 is the 3-MeV pro-
ton, and particle 4 is the triton. Our concern is the d(d,p)t
reaction so m1 = m2 = 2mp, m3 = mp and m4 = 3mp, with mp

the proton mass. The measured energy-resolved count rate is
C(E3,∆Ebin), where E3 is the proton energy and ∆Ebin is the
energy resolution of the measurement.

A limitation of the present work is that the calculated
weight function applies exclusively to reactions between an
energetic ‘fast-ion’ population and a slower, thermal popu-
lation. In other words, the fast-ion (particle 1) is the beam,
particle 2 is a thermal deuterium reactant, particle 3 is the
measured 3-MeV proton, and particle 4 is undetected. This
type of reaction is customarily called ‘beam-plasma’ in fusion
research. In reality, ‘beam-beam’ reactions between pairs
of fast ions and ‘thermonuclear’ reactions between pairs of
thermal deuterons also occur; in both of these situations, the
two reacting ions often have comparable speeds. Since the
beam-plasma reaction rate depends linearly on the fast-ion

distribution function, its weight function is well-suited for
tomographic inversion to infer the distribution function using
standard matrix methods; this is not true for beam–beam reac-
tions. However, on two devices where 3 MeV proton dia-
gnostics are currently implemented or planned, MAST-U [14]
and NSTX-U [16], beam-plasma reactions predominate. For
example, in the L-mode NSTX-U plasma of [17], beam–beam
reactions constitute <11% and thermonuclear reactions con-
stitute <1% of the total rate. Similarly, in the MAST experi-
ments of [18], beam–beam reactions constituted∼ 10% of the
total.

Since the escaping proton orbits are essentially collisionless
(fractional energy change < 10−6), the phase-space volume
accepted by the detector can be related to the phase-space
volume traversed by the curved ‘sightlines,’ so the measured
count rate is [19]

C(E3,∆Ebin) =

ˆ ˆ ˆ
dldAdΩS(r,v3), (2)

where
´
dl represents integration over the sightline,

´
dA

represents integration over the detector area,
´
dΩ repres-

ents integration over the solid angle accepted by the col-
limating structure, and S(r,v3) represents the emissivity (in
reactions/volume-time) of protons that are emitted at posi-
tion r along the sightline with the correct values of E3 and
solid angle. As in the formulation of the weight function for a
neutron collimator [8], the emissivity can be divided into two
pieces, one piece that describes the d–d reactivity for the selec-
ted reaction kinematics, and another piece that describes the
number of fast ions that can produce a proton with the velo-
city v3 accepted by the specified sightline,

S(r,v3) =
ˆ
dv1

ˆ
dv2R(v1,v2,v3,r)pgyro(v1,v2,v3)

f1(v1,r)f2(v2,r). (3)

The emissivity R depends upon the d–d cross section
(including anisotropy), the relative velocities of the reactants
|v1 − v2|, and the emitted proton’s velocity v3. In section 4.1,
the integration over the distribution function f 2 of the target
deuterons is incorporated into the emissivity R, making R a
function of the ion temperature T i, the rotation velocity vrot,
and the deuterium target density nd. In this work, the fast-
ion distribution function f 1 is represented by a guiding-center
distribution function F(v∥,v⊥,r); the third velocity coordin-
ate, the gyroangle γ associated with the fast gyromotion, is
assumed of uniform probability and is not explicitly shown.
(Here, v∥ is the component of the fast-ion velocity along the
magnetic field B and v⊥ is the magnitude of the perpendicular
velocity.)

The function pgyro(v1,v2,v3) represents the probability
density that the gyroangle of the fast ion has the correct value
to produce the measured proton. In practice, it is advantageous
[8] to consider intervals of speed v3 (or proton energy E3). If v3
is interpreted this way, pgyro represents the probability that the
selected fast ion has a gyroangle that produces protons within
the specified range of speeds.
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Recall from equation (1) that the weight function is
defined through the relation C(E3) =

´
W(X,E3)F(X)dX. The

goal of the following sections is to simplify and rearrange
equations (2) and (3) into the form of equation (1) in order
to extract the weight function W. To that end, the next section
explains how to simplify and calculate the

´ ´ ´
dldAdΩ term

that describes the sightlines and collimating structure. The
emissivity R is simplified in section 4.1 and formulas for the
probability pgyro are given in section 4.2.

3. ‘Sightlines’ selected by the collimating structure

The treatment of the sightlines follows [19]. Figure 1 illus-
trates the bundles of ‘rays’ collected by four MAST proton
detectors in a particular equilibrium. Owing to the large pro-
ton gyroradius in the ∼ 0.4 T MAST field, protons escape
before they complete a full gyro-orbit. Although the effect-
ive solid angle is largest for a central sightline, protons have a
finite probability of striking the detector for a range of differ-
ent incident velocity vectors. A full orbit code that integrates
the equations of motion with an Adams–Bashford–Moulton
scheme calculates the trajectory represented by

´
dl. Since

the orbit is collisionless, time is reversed in the calculation in
order to calculate orbits backward from the detector into the
plasma. Each trajectory has an effective weight represented
by the product

´ ´
dAdΩ. Since the magnetic field changes

little on the scale of the collimating structure, incident orbits
with the same velocity can be considered identical over the
entire area of the detector. With this approximation, we can
replace

´ ´
dAdΩ by A

´
T(Ω)dΩ, where the transmission

function T(Ω) is proportional to the fraction of the detector
area ‘illuminated’ by a particular incident velocity vector.

Define a central velocity vector on the axis of the collim-
ator, i.e. from the center of the aperture to the center of the
detector. Our goal is to compute AT(Ω) for a representative
sample of orbits that strike the detector. Consider a cylindrical
collimating structure of radius a and length d (figure 2(a)). If
the orbits were straight, velocity vectors that tilt from the col-
limator axis by tan(2a/d) strike the edge of the detector. Select
velocity vectors that travel from the center of the detector
to points on the aperture plane. Since the actual orbits are
curved, expand the area of the candidate points on the aper-
ture plane by an amount δa= ρ−

√
ρ2 − d2, where ρ is the

gyroradius, ensuring that all possible velocity vectors are con-
sidered. Use the sunflower algorithm that includes judiciously
selected boundary points [20] to uniformly sample velocity
vectors on this plane. (The sunflower arrangement uses golden
ratios for angle increments and square roots for radius incre-
ments.) For each velocity vector, calculate the actual orbit
between the aperture plane and the center of the detector.
Next, to determine the fraction of the detector area ‘illumin-
ated’ by this velocity, use the sunflower algorithm to uniformly
sample positions on the detector plane. Shift the orbit to vari-
ous positions on the detector plane to calculate the fraction
of the detector area that is illuminated by this velocity vector.
Figure 2(b) shows the portion of the detector area illuminated
by a particular incident velocity vector. This fraction is pro-
portional to the desired transmission function T(Ω).

Figure 1. Elevation (left) and plan (right) views of 3.03 MeV proton
orbits (colors) that reach the four MAST proton detectors in a
particular equilibrium. The thickness of the lines is proportional to
the effective transmission T. The black lines in the elevation
represent flux surfaces (thin lines) and the inner wall of the vacuum
vessel (thick line). The directions of plasma current Ip and toroidal
field BT are also indicated.

Figure 2. (a) Schematic diagram of a cylindrical collimator. For a
given orientation of the incident proton velocity, some orbits reach
the detector (red), while others do not (blue). (b) For a given incident
velocity vector, only the red portion of the detector is illuminated.
The figure also shows the sunflower sampling of the detector area.

To check the accuracy of this calculation, replace the actual
curved orbits with straight orbits. In this case, for small a/d,
the program correctly calculates that

´ ´
dAdΩ= (πa2)2/d2,

a familiar result in geometrical optics.
The output of this calculation is a set of velocity vectors

at the detector that have non-zero transmission weights T. For
each of these velocity vectors, follow the proton orbit back-
wards in the equilibrium field. For each channel, this bundle
of curved trajectories constitutes the detector field of view or
‘sightline.’

Note that the measured sightlines depend upon the pro-
ton energy. Typical changes in energy (section 4) shift the
trajectory through the plasma by a few centimeters radially

3
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Figure 3. (R, z) projection of orbits that enter the detector with the
same orientation for energies of 2730 (brown), 3030 (red), and
3330 keV (blue). The orbit shifts a few centimeters.

Figure 4. The overall transmission of the collimator increases with
energy because the incident orbits are straighter. A variety of
different incident velocity vectors are shown. The curves are
normalized to the transmission of the maximum velocity vector for
E3 = 3.03 MeV.

(figure 3). Although the shift is modest, the fast-ion distribu-
tion function often has a large density gradient, so the shift in
orbit must be properly treated. The transmission factors T also
depend upon proton energy (figure 4), so this dependence is
also taken into account.

4. Reaction kinematics and probability

For the reaction 2(1,3)4, particle 2 is the thermal deuterium,
particle 1 is the fast ion, particle 3 is the 3 MeV proton, and
particle 4 is the triton. The energy of the proton (equation (29)
of [21]) is

E3 =
3
4
(Q+K)+Vcosθ

√
3
2
(Q+K)mp+

1
2
mpV

2, (4)

where Q= 4.04 MeV, K= 1
2mp|v1 − v2|2, V= 1

2 (v1 + v2) is
the center-of-mass velocity, and θ is the angle between V and
the proton velocity in the center-of-mass frame v ′

3.
For a 100 keV deuterium beam (a relatively large value for

positive neutral beam sources) interacting with typical values
of v2, K≲ 0.05 MeV, a small value.

The first term on the right-hand side (RHS) of equation (4)
gives the nominal proton energy of 3.03 MeV. The shift in
energy from the nominal value is determined almost entirely
by the middle term on the RHS. The largest absolute value of
the middle term occurs for cosθ=±1, so the shift in energy of
the proton from the nominal 3.03 MeV value is

∆E3 ≃
1
2
v1

√
3
2
Qmp =

1
2

√
3
2
E1Q≲ 0.39 MeV, (5)

for E1 = mpv21 =
1
2mDv21 ≃ 0.10 MeV. This implies that the

fractional change in energy is ∆E3/E3 ≲ 13%. Equation (5)
determines the energies E3 for which the proton spectrum is
calculated.

At any particular location in the plasma, both the orienta-
tion and energy of the proton is known, so the proton velocity
vector in the lab frame v3 is a known quantity in the following
calculations.

4.1. Emissivity R

The goal of this subsection is to simplify the fusion emissivity
R(v1,v2,v3,r) that appears in equation (3).

There are three relevant rest frames. The proton velocity v3
is known in the lab frame. The effect of the target distribution
function f2(v2) on the reaction rate is most easily computed in
the rotating plasma frame. The effect of anisotropy is known
in the center-of-mass frame.

The first step is to eliminate the integral over v2 that appears
in equations (2) and (3). After integrating over theMaxwellian
target distribution,

´
σ(vrel)vrel f2(v2,r)dv2 becomes nd⟨σv⟩,

where nd is the deuterium density and ⟨σv⟩ is the averaged
reactivity. (Here, the relative velocity is vrel ≡ |v1 − v2|.) Both
nd and ⟨σv⟩ are functions of position. In the plasma frame,
the velocity of the fast ion is vpl1 = v1 − vrot. To evaluate ⟨σv⟩
we use equations (8) and (9) of Bosch and Hale [22], using the
coefficients given in their table IV for the cross-section σ, with
vpl1 for the projectile speed, and average σv over a Maxwellian
target that has temperature T i. The resulting ⟨σv⟩ is a function
of v1, vrot, and T i.

4
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The d(d,p)t reaction is anisotropic. Brown and Jarmie [23]
parameterize the differential cross section in the center-of-
mass frame by

σ(θ) = a+ bcos2 θ+ ccos4 θ. (6)

The coefficients a, b, and c are functions of energy and are
given in their table I. We know θ from

cosθ =
V · v ′

3

Vv ′3
, (7)

where the center-of-mass velocity V is

V=
1
2
(v1 + ⟨v2⟩)≃

1
2
(v1 + vrot) (8)

and v ′
3 = v3 −V is the proton velocity in the center-of-mass

frame.
The relative velocity in the center-of-mass frame is 2v ′1,

where v ′
1 = v1 −V is the beam velocity in the center-of-mass

frame. To get the Brown–Jarmie coefficients for this particular
reaction use the relative energy to interpolate for a, b, and c.
Our goal is to compute the effect of anisotropy on the Bosch–
Hale value of ⟨σv⟩ we have already found. If the reaction was
isotropic, the integral of the differential cross section over θ
gives a total cross section that is proportional to a+ b/3+ c/5,
so the anisotropy enhancement/deficit factor is

κ=
a+ bcos2 θ+ ccos4 θ

a+ b/3+ c/5
. (9)

Therefore, the reactivity for this reaction is κ⟨σv⟩ and the
emissivity is ndκ⟨σv⟩.

4.2. Calculating pgyro

The goal of this subsection is to determine the number of fast
ions in velocity space that can produce a reaction with the spe-
cified value of v3.

Jacobsen et al [8] calculated velocity-space weight func-
tions for neutron spectroscopy using the d(d,n)3He reaction.
Since v3 is known, they found that the calculation is simpler
in the lab frame than in the center-of-mass frame. For simpli-
city, they assumed negligible target velocity (v2 = 0) in their
treatment of the reaction kinematics (but not in the calculation
of R discussed in the previous subsection). In the following,
we do not make this assumption but ultimately conclude that
it is justified for typical parameters.

Following Jacobsen et al, the weight function for a particu-
lar fast ion with velocity (v⊥,v∥) [or (energy,pitch)] is pro-
portional to a factor proportional to the reaction rate and a
kinematics-dependent velocity-space factor. Symbolically, the
velocity-space weight function w(Ep1,Ep2,ϕ,v∥,v⊥,vrot,r) is
found for emitted proton energies between Ep1 and Ep2 that
are emitted at an angle ϕ with respect to the magnetic field by
a reaction between a fast ion with parallel and perpendicular
velocities v∥ and v⊥ and target ions that rotate at vrot and have
temperature T i at the spatial location r. This weight function

is the product of a reaction rate and a conditional probability
pgyro that depends upon the reaction kinematics,

R(ϕ,v∥,v⊥,vrot,Ti)× prob(Ep1 < E3 < Ep2|ϕ,v∥,v⊥,vrot).
(10)

For the conditional probability, two components of the fast-ion
velocity v1 are known but the third component, the gyroangle
γ, is not. The goal of the kinematics calculation is twofold:
(1) Find which gyroangles can produce a proton with the spe-
cified value of v3 and (2) determine the value of cosθ to use in
equation (9). Since gyromotion is assumed uniform, the frac-
tion of fast ions pgyro with the specified values of (v⊥,v∥) that
can produce this proton is equal to

pgyro =
∆γ

2π
, (11)

where ∆γ represents the range of gyroangles that produces
protons in a specified energy range, Ep,1 < E3 < Ep,2.

Including the plasma rotation but assuming zero tem-
perature of the target species, the equations of energy and
momentum conservation in the lab frame are

1
2
m1v

2
1 +

1
2
m2v

2
rot +Q=

1
2
m4v

2
4 +

1
2
m3v

2
3 (12)

and

m1v1 +m2vrot = m3v3 +m4v4. (13)

Use momentum conservation to eliminate v4 in
equation (12) and replace the masses with their values for
the d(d,p)t reaction. Introduce coordinates (â, b̂, ĉ) where b̂
is along the magnetic field, â is oriented along the perpen-
dicular component of the emitted proton, and ĉ is orthogonal
to the other unit vectors. Choose the origin of the fast-ion
gyroangle γ so cosγ= 1 when the gyroangle is aligned with
â. The fast-ion velocity is

v1 = b̂v∥ + âv⊥ cosγ+ ĉv⊥ sinγ, (14)

the proton velocity is

v3 = b̂v3 cosϕ+ âv3 sinϕ (15)

and the rotation velocity is

vrot = b̂vb+ âva+ ĉvc. (16)

After substitution, the equation for the gyroangle is

v⊥(sinϕ− 2va
v3

)cosγ = v3 −
3Q

2v3mp
− (v∥ + vb)cosϕ

− va sinϕ− 1
2
v21 + v2rot
v3

+
2vbv∥
v3

− v2rot
2v3

+
2vcv⊥ sinγ

v3
. (17)

Since the last term on the RHS is quite small, this equation is
easy to solve iteratively for cosγ.

5
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Figure 5. Dependence of (a) the absolute value of the normalized
gyroangle |γ|/π and (b) the probability of gyroangles in a specified
energy range pgyro on proton energy for E1 = 50 keV and a rotation
velocity of 2× 105 m s−1. Solid curves: lab-frame angle ϕ=π/2
and fast ion pitch v∥/v= 0.5. Dashed curves: ϕ=−π/4 and
v∥/v= 0.95. Dot-dashed curves: ϕ=π/2 and v∥/v= 0. In (a), for
the solid-line case, both γ+ (red) and γ− (black) are shown; the
curves nearly overlay one another.

For the anisotropy calculation, cosθ is given by
equation (7). All of the needed velocities are known.

In practice, the rotation velocity can be neglected in the
calculation of γ and cosθ. Since equation (17) is solved for
cosγ, both a positive gyroangle γ+ and a negative gyroangle
γ− satisfy the equation. If rotation is neglected, these angles
are equal and opposite. With rotation, the final term in
equation (17) that is proportional to sinγ causes an asymmetry
between positive and negative gyroangles. However, as shown
in figure 5(a), even for a relatively large rotation velocity of
2× 105 m s−1, the difference in these angles is very small.
Similarly (not shown), the center-of-mass angle cosθ depends
very weakly on the sign of γ.

To get pgyro, we want to calculate a pair of gyroangles γ
for two energies Ep,1 and Ep,2; this gives us an effective width
in velocity space. (We actually want to calculate this pair for
both γ+ and γ− but, since γ+ ≃ γ−, we can restrict the cal-
culation to γ+ and double its probability.) Note that we do
not want to calculate γ for two actual orbits with different E3.
Instead, we are interested in the velocity-space spread of fast-
ion gyroangles that produce protons in a specified energy bin
∆Ebin. Use equation (17) to find γhigh for Ep,1 = E3 +∆Ebin/2
and γlow for Ep,2 = E3 −∆Ebin/2. The gyroradius probability
factor is

pgyro ≃
|γhigh − γlow|

π
. (18)

There are two potential pitfalls in the numerical calculation
of γ from equation (17). One pitfall occurs when the factor
v⊥(sinϕ− 2va/v3) on the LHS of equation (17) is zero. This
occurs when the proton is emitted nearly parallel to the mag-
netic field or when v1 and v3 are nearly parallel or anti-parallel

to each other; since both of these conditions occupy small
velocity-space volumes, we set pgyro = 0 for these special
cases.

The second pitfall occurs when an energy bin extends bey-
ond the maximum or minimum values of E3 that are compat-
ible with the other selected parameters. The maximum and
minimum energies occur when the gyroangle is γ= 0 or γ=π.
In these cases, equation (18) is replaced by pgyro = γbin when
γ≃ 0 or pgyro = π− γbin when γ≃π. Here, γbin is the value of
γ evaluated at whichever edge of the energy bin has a value of
proton energy permitted by the kinematics.

The maximum and minimum values of E3 occur when
cosγ≃±1 in equation (17). Use the quadratic formula to find
that the minima and maxima values of the proton speed v3 are

v3 =
−B+

√
B2 + 4C
2

(19)

where

B=∓v⊥ sinϕ− (v∥ + vb)cosϕ− va sinϕ

and

C=
3
2
Q
mp

+
v21 + v2rot

2
− 2v∥vb∓ v⊥va.

5. Implementation into the FIDASIM framework

Calculation of the 3 MeV proton count rate has been imple-
mented within the framework of the FIDASIM synthetic dia-
gnostic code [1]. Since detailed documentation is available on
the FIDASIM GitHub website [24], only a brief summary is
provided here.

Data preparation of input files in HDF5 format occurs out-
side of the framework of the FORTRAN FIDASIM code.
As usual, plasma profiles, the fast-ion distribution function,
and the equilibrium are prepared using Python or IDL data-
preparation routines. The additional input quantities for the
3-MeV proton calculation are the proton sightlines and trans-
mission factors described in section 3; they are listed in table 1.
The user specifies an array of energies for the proton spectrum.
For each detector channel, ‘nrays’ is the number of orbits to
consider in the ‘bundle’ of trajectories that strikes the detector.
After reading the detector geometry and the equilibrium fields,
a Lorentz orbit code calculates the time-reversed orbit (the
‘sightline’) and an IDL code calculates the transmission factor
(‘daomega’) for each specified ‘ray’ for each detector. A typ-
ical calculation uses 150 orbital steps, 75 rays, and 11 proton
energies.

Figure 6 shows a flowchart of the calculation within
FIDASIM. After reading the input data, a routine converts
the proton orbits (the ‘sightlines’) into the Cartesian coordin-
ate system utilized in FIDASIM. Next, bilinear interpola-
tion is performed to find the fields and plasma parameters
at each sightline step. Calculation of the probability factor
and gyroangle described in section 4.2 is the first major pro-
cess in the algorithm. Inputs to subroutine get_pgyro are the

6
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Table 1. New inputs used by FIDASIM in the 3-MeV proton calculation.

FIDASIM proton table inputs

Member Type Rank Dimension Units Description

nchan Int 0 Scalar unity Number of detector channels
nrays Int 0 Scalar unity Number of ‘rays’
nsteps Int 0 Scalar unity Maximum number of orbit steps
nenergy Int 0 Scalar unity Number of proton energies
earray Float 1 [nenergy] keV Proton energies
daomega Float 3 [nenergy,nrays,nchan] cm2 Transmission factor
nactual Float 3 [nenergy,nrays,nchan] unity Number of orbital spatial steps
sightline Float 5 [nenergy,6,nsteps,nrays,nchan] cm s−1 cm Velocity and position in [r,phi,z]

magnetic field, proton energy, fast-ion energy, fast-ion pitch,
plasma rotation and proton velocity. Although the plasma rota-
tion is relatively small in equation (17), it is kept in the com-
putations for completeness.

Next, a gyro step is required to get the fast-ion density at the
guiding center position. Since the fields, pitch and gyroangle
are known, subroutine pitch_to_vec calculates the velo-
city of the fast ion. The velocity, beam mass and fields are
then used to determine the guiding center position in sub-
routine gyro_step using the formula for the gyroradius in
[25]. Finally, the beam energy and pitch are used to calculate
the guiding center fast-ion density at the gyro-step position.

Calculating the reaction rate is the last major process of the
algorithm and follows the procedure outlined in section 4.1.
Linear interpolation is performed to determine the Brown–
Jarmie coefficients for the given beam energy. FIDASIM reads
in pre-calculated tables for the neutron and proton branches of
the D–D beam-target fusion reaction. Bilinear interpolation is
performed to calculate the proton production rate for a given
thermal ion temperature and relative velocity between the fast
ion and rotation velocities. Finally, the rate is multiplied by the
thermal deuterium density.

After looping over detector channels, proton energies, orbit
rays, and orbit steps, the code outputs proton spectra for each
detector channel.

6. Code verification

This section discusses the selection of numerical parameters,
the sensitivity of the output to two physics effects, and tests
that verify that the code works properly. Two different sets of
inputs that are representative of the MAST diagnostic installa-
tion are used for these tests. The first set is an artificial case that
Netepenko used for the tests described in his PhD thesis [16].
The second is for an actual MAST discharge, #29 908. In both
cases, the equilibrium is provided by EFIT [26] and the plasma
parameters and distribution function are from TRANSP [27].

An initial test found that 5 proton energies is insufficient to
resolve the proton spectrum but 13 energies provides adequate
resolution. Increasing the number of orbital steps and number
of rays did not significantly affect the results but slowed down
the algorithm. Thus, nsteps = 110 and nrays = 50 are used in
the following section.

In order to quantify the importance of the anisotropy correc-
tion factor, FIDASIM is run using anisotropic (equation (9))
and isotropic (κ= 1) cross sections. Figure 7 shows that inclu-
sion of the anisotropy of the d–d cross section makes a small
difference of 4% for an injection energy of 50 keV for MAST
conditions. Because many protons are emitted near the center-
of-mass angle θ≃π/2, where anisotropy reduces the cross
section, the isotropic calculation is slightly higher. Since the
effect of anisotropy grows with increasing energy, proper
treatment of cross-section anisotropy is more important in
facilities with higher injection energies or RF accelerated fast-
ion tails.

Figure 8 compares the spectrum computed using the actual
proton orbits to a calculation that utilizes the same orbits and
transmission factors for all proton energies. Because higher-
energy protons have larger gyroradii, they originate deeper in
the plasma, where the fast-ion and thermal densities are lar-
ger and the emissivity is larger. Conversely, lower-energy pro-
tons originate closer to the plasma edge where the emissivity is
smaller. The result is that proper treatment of the orbits shifts
the spectrum to higher energies (figure 8). The overall effect
is modest for the MAST installation, however.

To benchmark the code, the calculated count rate was com-
pared with an independent calculation using the formalism
described in [16] for the inputs of MAST discharge #29 908.
The calculations differ by 2%–5% for different channels.

As a second verification exercise, the proton spectrum was
calculated for a monoenergetic, isotropic distribution function
with cold thermal deuterons. This is a condition for which
an analytical prediction of the expected spectrum is avail-
able [28]. The calculated spectrum has the predicted shape
(figure 9).

7. Weight functions

The algorithm and program described so far computes the pro-
ton spectrum,

C(Ep,1 < E3 < Ep,2)≃ A
ˆ ˆ

dldΩT(Ω)Rpgyro

F(v∥,v⊥)dv∥ dv⊥. (20)

If we choose to evaluate the protons that come from a single
position along the proton ‘sightline,’ (i.e. eliminate the integral

7



Plasma Phys. Control. Fusion 63 (2021) 055008 W W Heidbrink et al

Figure 6. Flowchart for the portion of the algorithm that is
implemented in the FORTRAN FIDASIM code.

over the sightline
´
dl), Equation (20) can be written as a set

of factors that multiply the guiding-center fast-ion distribution
function F. These factors constitute the velocity-space weight
function w2D,

w2D(E3,v∥,v⊥,r) = A
ˆ
dΩT(Ω)Rpgyro. (21)

Note that, although F is written as a function of v∥ and v⊥, it is
straightforward to reexpress the velocities in terms of fast-ion
energy E1 and pitch (v∥/v) if one prefers. In addition to its

Figure 7. Comparison of the proton energy spectrum calculated
using the actual anisotropic d–d cross section (solid curve) with a
calculation that ignores cross-section anisotropy (dashed).

Figure 8. Comparison of the proton energy spectrum calculated
using the true energy-dependent orbits and transmission factors
(solid curve) with a calculation that employs identical orbits and
transmission factors for all escaping proton energies (dashed).

dependence upon fast-ion velocity, w2D depends upon spatial
position along the line of sight.

For forward modeling with a specified guiding-center dis-
tribution function F(v∥,v⊥,r), the expected signal is

C(Ep,1 < E3 < Ep,2) =
ˆ
dl
ˆ ˆ

dv∥ dv⊥w2DF. (22)

The derived expression can also be used to find three-
dimensional weight functions for orbit tomography [5] by
appropriately weighting w2D spatially based on the properties
of the selected fast-ion orbits.

As an example, figure 10 shows velocity-space weight
functions for a MAST detector. In this example, contributions
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Figure 9. Proton energy spectrum for a monoenergetic (30 keV),
isotropic, fast-ion distribution function in a plasma with nearly
stationary deuterium target ions as computed by analytical theory
(solid) and by FIDASIM (dashed).

to w2D have been summed over the orbit to eliminate the spa-
tial dependence of the weight function. The selected chan-
nel is the one with the largest toroidal velocity component
in figure 1. Owing to the Doppler shift associated with the
cosθ term in equation (4), fast ions that move away from the
detector emit protons of reduced energy, while fast ions that
head toward the detector emit protons of increased energy.
This is the reason that deuterons that travel in the direction
of the toroidal field are more likely to produce a low-energy
proton than deuterons that circulate against B in figure 10(a).
Conversely, high-energy protons are produced most effect-
ively by deuterons that travel opposite to the toroidal field
(figure 10(c)). Near the unshifted energy of 3.03 MeV, owing
to the gyromotion, two peaks appear in the weight function
(figure 10(b)). This occurs because one phase of the gyro-
motion can cancel the parallel component of motion along B,
while another phase cancels the opposite parallel motion. The
shapes of these three proton-energy-resolved weight functions
are qualitatively similar to the FIDA weight functions of [4]
and are caused by geometrical effects associatedwith the gyro-
motion. If one integrates over energy, the pitch dependence of
theweight function essentially disappears (figure 10(d)). How-
ever, owing to the strong energy dependence of the d–d fusion
cross section, all proton energies exhibit a strong dependence
on deuteron energy. (When integrated over proton energy and
fast-ion pitch, the energy dependence of the weight function is
close to the energy dependence of the d–d reactivity σv.) The
proton signal is produced primarily by the highest energy ions
in the deuterium distribution function.

Although resolving the 3 MeV proton energy spectrum
can be challenging, it has been successfully measured pre-
viously (e.g. [29]). (The spectra were poorly resolved in
MAST but noise-reduction efforts are underway for MAST-
U). Figure 10 demonstrates that energy-resolved measure-
ments provide valuable information about the deuterium dis-
tribution function.

Figure 10. Velocity-space weight functions of a MAST 3-MeV
proton channel for (a) down-shifted d–d protons, (b) unshifted
protons, (c) up-shifted protons, and (d) protons of all energies. The
abscissa is the fast-ion energy and the ordinate is v∥/v relative to the
magnetic field. (Note that, since the plasma current is opposite to the
toroidal field in this example, the sign of the pitch is reversed if
pitch is defined relative to plasma current, as in TRANSP.) The
same linear rainbow color table is employed in panels (a)–(c); in
panel (d), the maximum value of the color table is 3.0 times larger.

8. Conclusion

An algorithm and computer program that calculates the count
rate and weight function of a 3-MeV proton diagnostic has
been developed and tested. The algorithm properly treats
effects associated with curved proton orbits, as well as the
anisotropy of the d–d cross section. The algorithm and pro-
gram assumes that the proton signal is produced by beam-
plasma reactions, rendering it inapplicable to plasmaswith sig-
nificant beam-beam or thermonuclear reaction rates.

In future work, the 3-MeV proton weight function will be
employed in tomographic reconstructions of the fast-ion distri-
bution function in MAST-U plasmas with proton, FIDA, neut-
ron collimator, and neutral particle data.
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