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Abstract
Magnetic feedback stabilization of the tearing mode (TM) is numerically investigated, utilizing
the MARS-F code (Liu et al 2000 Phys. Plasmas 7 3681) for toroidal tokamak equilibria. With
control coil configurations assumed in this study, magnetic feedback partially or fully stabilizes
the TM, with either vanishing or finite equilibrium pressure. The best control is achieved by the
combination of internal active coils and internal poloidal sensors. The internal and external
tearing indices are evaluated for the close-loop system, based on the MARS-F computed mode
eigenvalue and eigenfunction, respectively. In the absence of the favorable curvature effect, these
two indices are real-valued and quantitatively agree well with each other. For the equilibrium
with finite pressure gradient at the mode rational surface, the favorable average curvature effect
becomes important and the close-loop tearing index also becomes complex-valued, partly due to
interaction of the feedback system with the dissipative wall eddy current response. Isolating the
inner layer and outer region response to magnetic feedback, with either proportional or
proportional-derivative actions, allows to establish that feedback stabilization of the TM occurs
mainly due to modification of the behavior of the external ideal solution, further confirming the
analytic result reported in He et al 2021 Phys. Plasmas 28 012504.

Keywords: active control, tearing mode, toroidal tokamak equilibria

(Some figures may appear in colour only in the online journal)

1. Introduction

The tearing mode (TM) is an important macroscopic instabil-
ity affecting tokamak operations. Non-linear development of
a TM creates magnetic islands [1] that limit the plasma
performance, and in severe cases even induce plasma

∗
Authors to whom any correspondence should be addressed.

disruptions [2]. Furthermore, the neoclassical TM (NTM) can
be triggered at sufficiently high plasma pressure, either with
or without a finite sized seed island. The latter, observed in
DIII-D experiments under international thermonuclear fusion
reactor (ITER)-like conditions, appears to follow the clas-
sical drive mechanism for TM [3]. TM/NTM avoidance and/or
control is an essential issue in ensuring successful and optimal
tokamak operations.
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Analytic study of the TM stability often employs the
asymptotic matching technique, where an inner layer (near
the mode rational surface) problem with finite plasma resistiv-
ity is independently solved from the outer region where the
plasma is treated as a perfectly conducting fluid [4]. The inner
and outer solutions are then matched via the tearing index∆ ′,
in order to determine the TM stability. The external tearing
index, ∆ ′

ext, is defined as the logarithmic jump of the radial
magnetic field perturbation across the rational surface for plas-
mas where constant-ψ approximation is valid. For more gen-
eral cases, where the outer region solution has strong singu-
larities with two independent branches that exhibit different
fractional power-like asymptotic behavior,∆ ′

ext represents the
ratio of small to large solutions [5]. The inner resistive layer
solution yields ∆ ′

int which depends on the mode eigenvalue
[5–8]. The matching condition ∆ ′

ext = ∆ ′
int gives the disper-

sion relation for the TM. One aspect of the present study is
to numerically determine ∆ ′

ext for toroidal plasmas, and more
importantly to find out how magnetic feedback modifies∆ ′

ext.
Theoretically, the stability of TM is known to sensitively

depend on the local equilibrium pressure gradient within
the resonant layer [9–12]. Reference [11] analytically cal-
culated the sensitivity of ∆ ′ to local flattening of the pres-
sure profile near the resonant surface in a cylindrical model.
This study was later extended to toroidal geometry in [13].
The effect of toroidal coupling on the tearing index is also
numerically investigated [14–17], using the resistive magneto-
hydrodynamic (MHD) solver MARS-F [18] and the ideal
shooting code T7 [15]. Reasonably good agreement was found
over the range of parameters as reported in [17]. In this work,
we again employ MARS-F and the local pressure flattening
approach to compute the tearing index, but in the presence of
magnetic feedback.

Feedback stabilization of MHD modes, in the presence of
both plasma and wall resistivity, has been the focus of sev-
eral recent studies [19–23]. Active control of MHD instabilit-
ies is generally an essential consideration for future tokamaks
[24–26], such as ITER, chinese fusion engineering testing
reactor (CFETR) and demonstration fusion reactor (DEMO).
experiments in RFX-mod (operated in a circular cross-section
ohmically heated tokamak configuration), where the m/n=
2/1 TM (m is the poloidal and n the toroidal Fourier harmonic
numbers) is actively controlled as the q= 2 resonant surface
approaches the plasma boundary, showed that the plasma dis-
ruption can be avoided [22]. The analytic study in a cylinder,
reported in [23], shows that magnetic feedback can stabilize
the resistive-plasma resistive wall mode, largely due to modi-
fication of the external tearing index.

This work focuses on numerical study of active control of
the TM in toroidal plasmas, using 3D fields produced by mag-
netic coils as the actuator. We utilize the direct resistive MHD
solver MARS-F, which has been extensively used for mod-
eling active control of MHD modes by 3D fields [27–29] as
well as the plasma response to externally applied 3D fields
[30–32]. Being an eigenvalue solver, MARS-F provides both
eigenvalue and eigenfunction of the TM in the presence of
magnetic feedback. The eigenvalue will be used to derive the
internal tearing index, whilst the eigenfunction will be used to

evaluate the external tearing index. Both indices will be com-
pared as we vary the feedback gain, in order to understand the
relative role of magnetic control in the inner versus outer layer
solutions via direct toroidal computations.

We point out that feedback control of the TM has been
theoretically studied in several early works [19, 33, 34]. In
particular, [33] provided a theoretical foundation for magnetic
feedback control of the TM, by showing that a proportional
feedback system can reduce the external tearing index to a
negative value and thus stabilizes the mode. Reference [34]
derived equations for themagnetic island evolution in the pres-
ence of an external source field (either feedback control field or
error field) without directly invoking the feedback law. But the
formulation can be easily incorporated into a systemwith feed-
back law to study active control of the TM. The main advances
of our work in relation to the previous results are: (a) our work
represents a toroidal realization of the TM control scheme
envisaged in [19, 33, 34] with analytic cylindrical plasmamod-
els; (b) our work considers a more systematic approach (vari-
ous combinations of active and sensor coil types, proportional
as well as derive feedback actions) as long as the control aspect
is concerned; (c) we recover both the outer and inner tearing
indices from the external and internal solutions, respectively,
from the MARS-F direct feedback modeling results, and show
that these two tearing indices can indeed match; (d) we also
compare feedback control of the TM with and without the
favorable average curvature effect.

Section 2 briefly presents the computational model and
plasma equilibria assumed in this study. Feedback stabiliza-
tion of the TM, and the role of ∆ ′, are reported in section 3
assuming an equilibrium with vanishing plasma pressure. A
similar study is carried out in section 4, where we consider
equilibria with finite pressure, with or without local flattening
of the pressure profile near the mode rational surface. Conclu-
sion is drawn in section 5.

2. Computational model and plasma equilibria

2.1. Computational model

This work focuses on feedback control of the linear TM. Lin-
ear toroidal resistive MHD code MARS-F is utilized for this
purpose. Without considering equilibrium plasma flow, the
linearized, single-fluid, resistive MHD equations read

ρ0γ̂ v1 =−∇P1 + j1 ×B0 + J0 ×b1 (1)

γ̂b1 =∇× (v1 ×B0)−∇× η j1 (2)

γ̂P1 =−v1 ·∇P0 −ΓP0∇· v1 (3)

µ0 j1 =∇× b1 (4)

where γ̂ = γ+ iωr is the eigenvalue of the mode (γ and ωr

being the mode growth rate and real frequency, respectively).
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Quantities with subscript ‘0’, (ρ0, B0, J0, P0), denote the equi-
librium plasma density, magnetic field, current and pressure,
respectively. These equilibrium quantities are the solution to
the force-balance Grad–Shafranov equation, solved by using
an equilibrium code CHEASE [35]. Quantities with subscript
‘1’ denote the corresponding first-order perturbed fields. All
the perturbed quantities have toroidal mode number n= 1 as
opposed to the equilibrium quantities that have toroidal mode
number of n= 0. Γ = 5/3 is the ratio of specific heats. η is the
plasma resistivity, which will be specified through a dimen-
sionless quantity, the Lundquest number S= τR/τA, in this
work. Here, τR = µ0a2/η is the resistive decay time of the
plasma current, and τA = R0

√
µ0ρ0/B0 is the toroidal Alfven

time (R0 and a are the plasma major and minor radii, respect-
ively).

A basic feedback law is applied to model active control of
the resonant magnetic perturbation (RPM)

MsfIf =−Gψs (5)

whereMsf is the mutual inductance between the feedback coil
and the sensor loop. The magnetic sensor signal ψs is fed back
to determine the current If flowing in the active coils. The
dimensionless quantity

G= KP (1+αγτF) (6)

is the feedback gain, with KP representing the overall gain
amplitude. The parameter α defines the ratio of the derivative
to proportional gains, with α= 0 recovering the proportional
(P) controller and α ̸= 0 yielding the proportional-derivative
(PD) controller. τF is the L/R response time of active coils.

MARS-F directly solves the resistive MHD equations
across the whole plasma column. The code thus does not dir-
ectly compute the external tearing index, unlike T7 which
employs the shooting method. For cases where the constant-
ψ approximation holds, we evaluate ∆ ′

ext as the logarithmic
jump of the radial field perturbation, based on the MARS-F
computed TM eigenfunction

∆ ′
ext ≡

r
[
b ′
r,m

]
rs

brs,m
(7)

where [ f(x)]y ≡ f(y+ δ)− f(y− δ) is the jump value across a
small layer width of 2δ to be numerically determined. br,m is
the perturbed radial magnetic field for the resonant poloidal
harmonic m. rs is the radial location of the resonant surface
for the mode.

The internal tearing index, ∆ ′
int, is generally evaluated

using the following expression which is valid for large aspect
ratio circular plasma

∆ ′
int (γ̂) = 2.12(1+ g)A(γ̂τA)

5/4

×
[
1− 1

1+ g
π

4
DRB(γ̂τA)

−3/2
]

(8)

where γ̂ is the close-loop eigenvalue computed by MARS-
F. The correction factor g≈

(
π
4 − 1

)
QDR was introduced in

[30], with Q being inversely proportional to the ratio of spe-

cific heats [5, 6]. A≡ (ns)−1/ 2(1+ 2q2rs
)1/ 4

S3/ 4 and B≡
(ns)

(
1+ 2q2rs

)−1/2
S−1/2, with s and S being the magnetic

shear and Lundquist number, respectively. n is the toroidal
mode number assumed to be 1 in this study. The resistive
interchange index, DR, is typically a small negative num-
ber for a tokamak plasma, being roughly proportional to the
plasma pressure gradient at the mode rational surface. For an
equilibrium with vanishing plasma pressure or with locally
vanishing plasma pressure gradient at the mode rational sur-
face, we have DR = 0 in equation (8) and the favorable aver-
age curvature stabilization effect thus disappears. The afore-
mentioned two cases differ by the Pfirsch–Schluter inertial
enhancement factor, 1+ 2q2rs , from the coefficients A and B.
In other words, this inertial enhancement factor should be
dropped for the pressure-less equilibrium.

Based on the MARS-F computed close-loop TM eigen-
function and eigenvalue, equations (7) and (8) are thus used
to evaluate the external and internal tearing indices, respect-
ively. A consistent evaluation procedure should result in the
same value for both ∆ ′

ext and ∆ ′
int. More importantly, isolat-

ing both tearing indices from the MARS-F results allows us to
understand to which degree magnetic feedback stabilization
of the TM is due to modification of the external ideal solution.
This aspect is also the focus of the present study, on top of dir-
ect demonstration of feedback stabilization of the TM by the
MARS-F modeling.

2.2. Equilibria

Since equation (8) is strictly valid only for a large aspect ratio
circular plasma, we shall consider such a plasma with MARS-
F computations.We remark that it is certainly ofmore practical
interest to consider a tighter aspect ratio plasma and possibly
with plasma shaping effect as well (MARS-F close-loop mod-
eling is capable of dealing with generic toroidal equilibria).
However, equation (8) will then need modifications for quan-
tifying the internal tearing index, e.g. by adding an a-priori
unknown geometric correction factor to equation (8). In this
work, we avoid this complication by choosing simple toroidal
equilibria.

We consider a set of equilibria with aspect ratio of 10 and
with a circular plasma boundary shape, surrounded by a res-
istive wall of also circular shape (figure 1). The wall is placed
at rw = 1.4a, with a wall time of τw = 104τA. For feedback
control of the TM, we also consider a single set of active and
sensor coils, both placed near the low field side mid-plane as
shown in figure 1. The active coils are radially located either
external (rf = 1.5a) or internal (rf = 1.3a) to the resistive wall.
The poloidal angle coverage, normalized by π, of each act-
ive coil, is fixed at∆θ = 0.65 for the equilibrium with vanish-
ing plasma pressure and∆θ = 0.4 for the finite pressure cases.
Note that the coverage angle is chosen differently for differ-
ent equilibria, to ensure the best control in each case in terms
of minimizing the feedback gain. The sensor coils, measuring
the radial or poloidal component of the magnetic field perturb-
ation, is located at rs = 1.2a (i.e. internal to the wall).
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Figure 1. Feedback geometry on the poloidal plane, including the
plasma boundary, the resistive wall, and a sketch of the active and
sensor coils.

The plasma major radius is chosen to be R0 = 10 m, and
the vacuum toroidal field at the major radius is chosen to be
B0 = 1 T. The equilibrium current (the toroidal component)
density and pressure profiles are specified as J= J0

(
1− r2

)
and P= P0

(
1− r2

)2
, respectively. The current amplitude, J0,

is constrained by the on-axis safety factor of q0 = 1.05. The
plasma resistivity is assumed to be uniform along the radial
coordinate. Note that all equilibria are obtained by the fixed
boundary equilibrium solver CHEASE [35], thus satisfying
the MHD force balance.

As mentioned before, for the finite pressure case, we also
consider another equilibrium pressure with local flattening of
the profile near the mode rational surface, in our case the
q= m/n= 2/1 surface. Examples of the equilibrium pres-
sure and safety factor profiles, with or without local flatten-
ing, are shown in figure 2. The finite pressure cases have βN ≡
β [%]a [m]B0 [T]/ IP [MA] = 0.65, with β being the ratio of the
volume averaged plasma pressure to the magnetic pressure,
and IP the total plasma current. For the equilibrium with local
pressure flattening, the radial width of the flattened region is
fixed at ∆r= 0.01, well covering the resistive layer near the
q= m/n= 2/1 rational surface in our case. Note that the q−
profiles almost do not change for our equilibria while vary-
ing the plasma pressure. This is a useful property for com-
parative study of the TM control with different layer physics
(i.e. with or without the favorable average curvature effect).
Also note that the equilibrium parameters are chosen here such
that there is a single rational surface inside the plasma for the
n= 1 TM.

The open-loop TM stability, computed by MARS-F, is
reported in figure 3 as we scan the plasma pressure up to the
no-wall beta limit (∼1.6 in our case) for the onset of the n= 1
ideal kink instability. Within certain range of finite equilib-
rium pressure (and finite pressure gradient at the q= 2 sur-
face), the TM has finite frequency for static equilibria, due to
the favorable curvature stabilization [5]. With local flattening

of the pressure profile near the q= 2 surface, the favorable
curvature effect is removed. The mode becomes more unstable
meanwhile the mode frequency always vanishes. We also note
a sharp variation of the mode growth rate near βN = 0. This is
due to the Pfirsch–Schluter inertial enhancement factor as dis-
cussed before and alsomentioned in [29]. The other interesting
observation, which is not the focus of the present study though,
is a significant increase of the TM growth as the plasma pres-
sure approaches the no-wall beta limit. This is due to large
increase of the tearing index associated with a pole at this limit
[21].

For the close-loop study that follows, we choose equilibria
(with or without local pressure profile flattening) at βN = 0.65,
where the favorable average curvature is sufficiently strong to
induce finite mode frequency, while fixing the on-axis safety
factor at q0 = 1.05.

3. Close-loop TM stability and ∆ ′ for equilibrium
with vanishing pressure

In what follows, we first directly compute the close-loop TM
stability utilizing the MARS-F code, assuming proportional
(P) or PD controller. Next, we investigate how magnetic feed-
back changes ∆ ′ based on the MARS-F computed eigen-
value and eigenfunction. For plasma equilibria with vanish-
ing plasma pressure (which we consider in this section), or
with locally vanishing pressure gradient near themode rational
surface (to be considered in the next section), it is possible
to evaluate the external tearing index based on the MARS-
F computed mode eigenfunction. The procedure is illustrated
below.

We consider the m/n= 2/1 harmonic of the perturbed
radial magnetic field associated with the unstable TM, with
one example shown in figure 4(a). (The MARS-F toroidal
computations include 15 poloidal harmonics in total to
ensure numerical convergence.) Note that this 2/1 radial
field component represents the global radial structure of the
TM eigenfunction that includes both the inner and outer
solutions, smoothly coupled via the direct MHD solver.
In order to obtain the external tearing index, we need
to take a proper jump of the radial derivative shown in
figure 4(b), through the resistive layer of width 2δ. The key
issue is the choice of δ. Although the radial field perturba-
tion is regular across the layer, the radial derivative exhib-
its singular-like behavior near the (q= 2) rational surface
as expected [12]. More importantly, a finite jump in the
radial derivative appears when we plot

[
∂br,m/ n=2/ 1

/
∂r
]
rs
=

∂br,m/ n=2/ 1

/
∂r
∣∣
r=rs+δ

− ∂br,m/ n=2/ 1

/
∂r
∣∣
r=rs+δ

as a func-
tion of δ, as shown in figure 4(c). Note that there is a peak
value (a generic feature for the TM eigenfunctions computed
in this work) in the jump occurring at certain value δ0, which
can be assumed as a reference for separating the inner and
outer regions, and thus for evaluating the external tearing index
according to expression (7). We shall, however, perform more
fine tuning of the layer width around δ0 for calculating∆ ′, as
explained later on.
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Figure 2. Radial profiles of (a) the equilibrium pressures calculated in CHEASE [35] and (b) the safety factors with fixed on-axis value of
q0 = 1.05, assuming three equilibria: βN = 0, βN = 0.65 with and without locally flattened pressure profile near the q= 2 rational surface.
The plasma pressure is normalized by B2

0/µ0.

Figure 3. Eigenvalue of the n= 1 TM versus the βN, with or
without a locally flattened equilibrium pressure profile near the
q= 2 rational surface. The Lundquist number is fixed at
S= 5× 107.

3.1. Proportional feedback

With a P-controller (α= 0) and with increasing feedback gain
KP, the TM is partially or fully stabilized by magnetic con-
trol as reported in figure 5(a). Different control configurations
(in terms of the choice of active and sensor coils) results in
different degree of stabilization. With the same gain value,
the strongest stabilization is achieved with the combination of
internal (inside the wall) active coils and (internal) poloidal
sensors. With this configuration, the critical gain value for full
stabilization of the mode is about KP = 8.6 for our equilib-
rium. Note that the anomaly of the analytic single-pole model
[23], showing the best feedback configuration with the com-
bination of external (outside the wall) active coils and (internal
or external) poloidal sensors, does not occur with toroidal
computations. This is because the MARS-F toroidal modeling

includes multiple poloidal harmonics to properly describe the
feedback geometry, as explained in [23]. Figure 5(a) also
shows that feedback stabilization of the TM isweakwith radial
sensors.

Figure 5(b) reports the internal (∆ ′
int) and external (∆ ′

ext)
tearing indices, evaluated based on the MARS-F computed
numerical results, versus the feedback gain. As explained
before, ∆ ′

int is calculated by inserting the computed mode
growth rate (figure 5(a)) into expression (8), where the favor-
able curvature term and the Pfirsch-Schluter inertial enhance-
ment factor are ignored.∆ ′

ext is evaluated with expression (7),
following the procedure illustrated by figure 4. Figure 5(b)
shows that feedback stabilization of the TM is directly related
to reduction of the external tearing index, by modifying the
external solution in the ideal region outside the resistive layer.
The matching condition implies that the inner layer solution
has to change to follow the external solution modified by mag-
netic feedback, which in turn dictates the TM stability. For
the equilibrium with vanishing plasma pressure, feedback sta-
bilization of the TM occurs when the external tearing index
becomes negative due to the feedback action.

Figure 5(b) also shows a good agreement between∆ ′
int and

∆ ′
ext as we increase the feedback gain. This is achieved by a

proper choice of the δ−parameter when evaluating the deriv-
ative jump of the radial field perturbation. It is clear that the
δ−value should scale with the resistive layer width, which in
turn scales with the TM growth rate as γ1/ 4 [36]. Since the
close-loop TM growth rate, directly computed by MARS-F,
varies with feedback gain, the δ−value for evaluating the log-
arithmic jump of the external solution should also vary with
feedback gain. We thus choose

δ = C(γτA)
1/ 4 (9)

whereC is a constant independent of the feedback gain.C gen-
erally depends on the plasma resistivity for a given equilibrium
(a more generic scaling is δ ∼ (γτA/S)

1/ 4 following in [36]).
However, in our case, the plasma resistivity is fixed as we scan

5
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Figure 4. Numerical procedure of evaluating tearing index based on the MARS-F computed TM eigenfunction, showing (a) the m/n= 2/1
poloidal harmonic of the perturbed radial magnetic field br,m/ n=2/ 1 = qb ·∇ψP/(B ·∇φ), (b) the radial derivative of br,m/ n=2/ 1, and
(c) the jump in the radial derivative of br,m/ n=2/ 1 when evaluated from both sides of the q= 2 surface with distance δ as measured in the
radial coordinate r. Vertical dashed lines indicate the location of the q= 2 rational surface. The radial distance δ0 in (c) corresponds to the
maximal jump value in the radial derivative. Open loop is assumed here (G= 0). An equilibrium with vanishing pressure (β = 0) is
assumed.

Figure 5. Plotted are (a) growth rate of the n= 1 TM, and (b) numerically evaluated m/n= 2/1 external (∆ ′
ext) and internal (∆

′
int) tearing

indices versus the feedback gain KP. Considered is an equilibrium with vanishing pressure (β = 0). Compared are results with various
feedback coil configurations assuming proportional control action alone. Fixed is the plasma resistivity with Lundquist number S= 5× 107.
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Figure 6. Plotted are (a) growth rate of the n= 1 TM, and
(b) numerically evaluated m/n= 2/1 external (∆ ′

ext) and internal
(∆ ′

int) tearing indices versus the derivative gain α. Considered is an
equilibria with vanishing pressure (β = 0). Compared are results
with various feedback coil configurations assuming proportional
derivative control action. Fixed are the amplitude of proportional
feedback gain, KP = 2, the response time of the active coils,
τF/τw = 2, and the plasma resistivity with Lundquist number
S= 5× 107.

feedback gain. We fix the C value such that∆ ′
int =∆ ′

ext for the
open-loop, resulting in C= 0.1 for the case considered here.

We make two remarks here. (a) The δ-value obtained fol-
lowing the above procedure is the same order of magnitude
as the δ0-value determined by the peaking location shown
in figure 4(c). (b) The overall dependence of ∆ ′

ext on feed-
back gain is not sensitive to the choice of where the boundary
between the inner and outer solutions should be taken (as long
as it is not far from δ0). Therefore, even though it is not pos-
sible to exactly define the outer solution based on the MARS-
F computed mode eigenfunction, and consequently the exact
∆ ′

ext value, the qualitative trend of feedback reduction of∆
′
ext

is the same. Furthermore, as shown by figure 5(b), quantitative
agreement (with∆ ′

int) for the close-loop follows as soon as we
match the external and internal tearing indices for the case of
vanishing feedback gain.

3.2. PD feedback

Now we consider a PD-controller. The results reported in
figure 6 again assume various combinations of the active

and sensor coil types. We fixed the amplitude of the over-
all feedback gain at KP = 2, and vary the derivative gain
via the α-parameter as defined in equation (6). The response
time of the active coil is also fixed at τF/τw = 2. The com-
bination of internal active coils and poloidal sensors again
provides the strongest stabilization to the TM with the deriv-
ative action, although no full stabilization is achieved with the
PD-controller at fixed KP = 2 in our case (figure 6(a)). This
is due to the fact that the stabilizing effect of the derivative
action diminishes as the mode approaches the marginal stabil-
ity point.

Expressions (7) and (8), again ignoring the favorable
curvature term and the inertial enhancement factor, allow us
to obtain the external and internal tearing indices (figure 6(b)),
based on the MARS-F close-loop stability results. Note that
we choose the same parameter C= 0.1 for evaluating δ
and ∆ ′

ext here. Generally good agreement is again obtained
between ∆ ′

ext and ∆ ′
int. The agreement becomes worse at

large values of derivative gain, largely due to the uncertainty
in determining the exact boundary between the inner and
outer solutions as discussed before. The key conclusion from
figure 6(b), however, is that derivative action also helps to
reduce the external tearing index, and consequently to stabilize
the TM.

Similar conclusion is obtained with figure 7, where we
again vary the derivative gain but now assuming different val-
ues of proportional gain values. Fixed here is the feedback
configuration with internal active coils and poloidal sensors.
Agreement between ∆ ′

ext and ∆ ′
int is still reasonable at small

derivative gain. More importantly, figure 7 again confirms that
feedback stabilization of the TM largely stems from reduc-
tion of the external tearing index. The overall shapes of the
growth rate curves (figure 7(a)) and the tearing index curves
(figure 7(b)) agree well.

4. Close-loop TM stability and ∆ ′ for equilibrium
with finite pressure

In this section, we consider two finite pressure equilibria, both
with βN = 0.65. One equilibrium has a normal pressure pro-
file with finite gradient across the plasma column. The other
has locally vanishing pressure gradient across the q= 2 sur-
face. For the normal pressure profile case, the external tearing
index cannot be evaluated via the logarithmic derivative of the
perturbed radial field component, i.e. via the procedure illus-
trated by figure 4. This is because, in this case, the MHD solu-
tion from the outer ideal region has both small (regular) and
large (singular) branches near the mode rational surface and
the external tearing index is defined as the ratio of the coeffi-
cients for the small to large solutions [5]. Such solutions can-
not be accurately calculated by MARS-F code in a toroidal
geometry. Therefore, we shall only report the internal tearing
index for this case. The external tearing index will instead be
evaluated using the equilibrium with locally flattened pressure
profile (where the favorable curvature effect associated with
the inner layer solution again vanishes), following an approach
similar to that reported in [13].

7
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Figure 7. Plotted are (a) growth rate of the n= 1 TM, and
(b) numerically evaluated m/n= 2/1 external (∆ ′

ext) and internal
(∆ ′

int) tearing indices versus the derivative gain for the different
amplitude of feedback gain KP. Assumed is the proportional
derivative feedback control configuration combining the internal
active coils with poloidal sensor. The plasma equilibria pressure and
the other parameters are same as that in figure 6.

The key point to realize here is that local modification of
the pressure profile, within the inner layer, does not affect the
external tearing index, assuming that the local pressure flat-
tening does not significantly change the global profile for the
safety factor in a consistent equilibrium, which holds for our
case as shown in figure 2. This means that we should expect to
obtain the same (internal and external) tearing indices for both
equilibria considered here. The situation is, however, slightly
more complicated due to different ways of interaction between
the feedback system and the wall eddy current response, for
both equilibria. This will be further illustrated later on.

As in section 3, we again fix the Lundquist number at S=
5× 107. Considered are again feedback schemes with P- and
PD-control.

4.1. Proportional feedback

We start by considering the equilibrium with locally flattened
pressure profile, with feedback results reported in figure 8.

First, we note that feedback stabilization of the TM becomes
stronger in the plasma with finite pressure, with all feedback
configurations (figure 8(a)). The combination of internal act-
ive coils with poloidal sensors still provides the best result,
with full stabilization of the TM occurring as the proportional
gain value exceeds 6.5. On the other hand, the mode stabiliz-
ation is remarkably better with the control schemes assuming
radial sensors, compared to the results for the vanishing pres-
sure equilibrium reported in section 3. Note that the close-loop
eigenvalue has vanishing imaginary part (i.e. a purely growing
instability) for the equilibrium considered here, in the absence
of plasma equilibrium flow.

Feedback modification of tearing indices, reported in
figure 8(b), again shows good correlation with the TM stability
shown in figure 8(a), indicating that feedback action primar-
ily changes the outer solution for the TM. The external tear-
ing index is again evaluated via expression (7), and the coef-
ficient C from equation (9) is chosen to be C= 0.013 for this
new equilibrium. The internal tearing index is calculated with
expression (8), ignoring the favorable curvature term while
keeping the inertial enhancement factor. Figure 8(b) again
shows good agreement between ∆ ′

ext and ∆ ′
int, as we vary the

proportional feedback gain.
Next, we consider the equilibrium with normal pressure

profile, with results reported in figure 9. For this equilibrium,
the open-loop TM has finite mode frequency (figure 3) due to
the favorable average curvature effect. Proportional feedback
action reduces the mode growth rate while further increases
the mode frequency (figure 9(a)). Based on the MARS-F com-
puted close-loop eigenvalue, the internal tearing index,∆ ′

int, is
calculated using the full TM dispersion relation (8). The resist-
ive interchange index (DR =−8.69× 10−3) and the extra cor-
rection factor associatedwith finite plasma pressure (g≈ 0.58)
are obtained from the CHEASE [35] results. The internal tear-
ing index, calculated this way, has a dominant real part but
also a small imaginary part, as shown in figures 9(b) and (c),
respectively. (Note that ∆ ′

int is real at vanishing gain value.)
The imaginary part of ∆ ′

int in the closed loop partly comes
from the interaction between feedback and the resistive wall
response, where the potential energy dissipation associated
with the wall eddy current can produce complex-valued tear-
ing index [23].

Since for the equilibrium with locally flattened pressure
profile, the close-loop TM has vanishing mode frequency and
the corresponding tearing indices are always real as shown in
figure 8, we can compare the real part of the internal tear-
ing index from figure 9(b) with the former. It is evident that
the agreement is qualitatively reasonable but quantitatively
not good. Numerically, we find a heuristic way of obtain-
ing quantitative agreement for tearing indices between these
two equilibria (with and without local pressure flattening), by
considering the weighted sum Re [∆int

′] +DIm [∆int
′] for the

case with complex ∆ ′
int. With a proper choice of the D-value

(D≈ 6.5 in our case), we obtain good agreement between the
weighted sum for the equilibrium with normal pressure pro-
file, and∆ ′

int for the equilibriumwith locally flattened pressure
profile (figure 9(d)). We emphasize that there is no rigorous
argument that the weighted sum should be used here for the

8
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Figure 8. Plotted are the (a) growth rate of the n= 1 TM, and (b) numerically evaluated m/n= 2/1 external (∆ ′
ext) and internal (∆

′
int)

tearing indices versus the amplitude of feedback gain KP. Considered is a finite equilibria pressure (βN = 0.65) profile with locally flattened
near the rational surface. Again compared are results with various feedback coil configurations assuming proportional control action alone.

Figure 9. Plotted are the (a) eigenvalues of the n= 1 TM, and numerically evaluated (b) real and (c) imaginary part of m/n= 2/1 internal
(∆ ′

int) tearing index, versus the amplitude of feedback gain KP, by considering a normal finite equilibria pressure (βN = 0.65) profile. The
(d) sum of real and imaginary of ∆ ′

int for the different finite pressure profiles. Again compared are results with various feedback coil
configurations assuming proportional control action alone.
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Figure 10. Plotted are the (a) growth rate of the n= 1 TM, and (b) numerically evaluated m/n= 2/1external (∆ ′
ext) and internal (∆

′
int)

tearing indices versus the derivative gain α, by fixing the amplitude of feedback gain, KP = 2, and the response time of the active coils,
τF/τw = 2. Considered is a finite equilibria pressure (βN = 0.65) profile with locally flattened near the rational surface. Compared are
results with various feedback coil configurations assuming proportional derivative control action.

comparison, besides an intuitive understanding that the tearing
index generally represents free energy that drives the TM, and
the weighted sum in certain sense represents the total per-
turbed energy associated with the mode.

4.2. PD feedback

We now report feedback results with a PD-controller for
these two finite pressure equilibria. We fix the proportional
gain at KP = 2 and scan the derivative gain. Results for
the equilibrium with locally flattened pressure profile are
summarized in figure 10. Similar to the case with vanish-
ing equilibrium pressure as reported in section 3, figure 10(a)
shows partial stabilization of the TM by the derivative action.
This is directly related to partial reduction of the tearing index
as shown in figure 10(b). Furthermore, figure 10(b) again
demonstrates good match of tearing indices evaluated from
the inner and outer solutions, respectively, in the presence of
a PD-controller.

PD-feedback results for the equilibrium with normal pres-
sure profile are reported in figure 11. The derivative action
again stabilizes the TM. In particular, the feedback con-
figuration with internal active coils and poloidal sensors
allows full stabilization of the mode at sufficiently large
derivative gain, contrary to the case shown in figure 10(a).
This is because the derivative action is effective even close
to the mode marginal stability when the mode frequency
remains finite, which is the case for the equilibrium con-
sidered here. As mentioned before, the finite mode fre-
quency is introduced by the favorable curvature effect (in
the absence of equilibrium flow), and the feedback action
further modifies the mode frequency. In particular, we find
that the derivative action increases the mode frequency with
radial sensors, and reduces the mode frequency with poloidal
sensors.

The real and imaginary parts of the inner tearing index,
evaluated from the close-loop TM eigenvalue, are reported
in figures 11(b) and (c), respectively. It is interesting to note
that with radial sensors, derivative gain reduces Re [∆ ′

ext],

while the opposite trend holds with poloidal sensors. On
the other hand, Im [∆ ′

int] is always reduced by the derivative
action. Furthermore, the weighted sum of the real and imagin-
ary parts of the inner tearing index, Re [∆int

′] +DIm [∆int
′],

again recovers well that calculated for the equilibrium with
locally flattened pressure profile (figure 11(d)), by choosing
D ≈ 2.5.

5. Conclusion and discussion

We have numerically investigated magnetic feedback stabiliz-
ation of the TM utilizing the MARS-F code for toroidal toka-
mak equilibria. Considered are three types of equilibria: with
vanishing pressure, with finite pressure but locally finite versus
zero pressure gradient at the mode rational surface. Assumed
is either P- or PD-controller and compared are different feed-
back coil configurations. Our emphasis is on understanding
how magnetic feedback affects tearing indices.

We find that magnetic feedback generally (partially or
fully) stabilizes the TM in a tokamak plasma, independent of
the feedback coil configuration and the type of plasma equi-
librium. The best control is offered by the combination of
internal active coils and internal poloidal sensors. The deriv-
ative action further enhances the mode stabilization. For equi-
libria where the favorable curvature stabilization is not import-
ant, the close-loop eigenvalue is a real number (i.e. a purely
growing instability) and the derivative action does not lead
to full stabilization of the TM. The latter, however, can occur
for equilibria with finite pressure gradient at the mode rational
surface, thanks to the finite mode frequency even at the mar-
ginal stability point.

Whilst the internal tearing index can be straightforwardly
calculated based on the MARS-F computed close-loop eigen-
value, evaluation of the external tearing index, based on
the MARS-F computed mode eigenfunction, requires careful
determination of the boundary between the inner and outer
solutions. This is achieved by taking into account the analytic
scaling of the inner layer width with the close-loop growth
rate, equation (9), where the coefficient C is numerically
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Figure 11. Plotted are the (a) eigenvalues of the n= 1 TM, and
numerically evaluated (b) real and (c) imaginary part of m/n= 2/1
internal (∆ ′

int) tearing index, versus the derivative gain α, by
considering a normal finite equilibria pressure (βN = 0.65) profile.
The (d) sum of real and imaginary of ∆ ′

int for the different finite
pressure profiles. Again compared are results with various feedback
coil configurations assuming proportional derivative control action.

determined by matching the internal and external tearing
indices at vanishing feedback gain (i.e. open-loop). The C
value depends on the plasma equilibrium and the plasma
resistivity but is kept constant while scanning the feedback
gain.

In the absence of the favorable curvature effect, both
the internal and external tearing indices are calculated as
real numbers and quantitatively agree well with each other.
For the equilibrium with finite pressure gradient at the
mode rational surface, the favorable average curvature effect
becomes important. Both the open-loop and close-loop eigen-
values become complex (for certain range of the plasma pres-
sure). The close-loop tearing index also becomes complex-
valued partly due to interaction of the feedback system with
the dissipative wall eddy current response. A heuristic model,
based on weighted sum of the real and imaginary parts of the
internal tearing index, allows restoring a real tearing index that
agrees well with the value obtained for the plasma without
favorable curvature effect.

Our toroidal modeling shows that active control of the TM,
with either P- or PD-control, is directly correlated to the mag-
netic feedback modification of the solution in the outer ideal
plasma region, thus confirming the early idea proposed in [33].
In other words, feedback stabilizes the TM by mainly modi-
fying the behavior of the external ideal solution outside the
resistive layer.

Combination of the previous analytic work from [23, 33]
and the present numerical study provides a solid theoretical
basis for interpreting feedback control of the TM via magnetic
means. Because the results show that feedback modification of
the external tearing index plays a dominant role in the close-
loop stability, the same technique can also be applied to con-
trol the NTM. Presently, NTM control mainly relies on non-
magnetic means such as the electron cyclotron current drive
in tokamak devices. Magnetic control can provide a comple-
mentary method here and further efforts are desirable. In par-
ticular, the effect of plasma toroidal flow on the close-loop sta-
bility needs to be investigated. Toroidal modeling of magnetic
feedback control of TM for realistic experiments also remains
a future study.
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